
Placement Techniques for VLSI
Layout Using Sequence-Pair

Legalization

Jens Egeblad
Master of Science Thesis

Department of Computer Science
University of Copenhagen

July 1st, 2003

CONTENTS 2

Contents

1 Introduction 10

1.1 Design and Construction of an Integrated Circuit 10

1.1.1 Physical Construction . 11

1.2 The Layout Description . 12

1.3 The Layout Problem . 13

1.3.1 The Placement Problem . 14

1.3.2 Routing . 15

1.3.3 Pre- and Post-processing . 16

1.3.4 The Placement and Routing Problems are NP-hard 16

1.4 Motivation and Objective of this Thesis 16

1.5 Outline of the Thesis and our Contributions 17

2 Preliminaries 19

2.1 General Conventions . 19

2.1.1 Numbers . 19

2.1.2 Graphs and Hypergraphs . 19

2.2 A VLSI Placement Instance . 20

2.2.1 Modules . 21

2.2.2 Pins . 21

2.2.3 Nets . 21

2.2.4 Placement . 22

2.2.5 Comments on Orientations . 23

2.2.6 More Formal Definition of the Placement Problem 23

2.2.7 Simplified Assumptions . 25

2.3 Net Models . 26

2.3.1 Distance Metrics . 26

2.3.2 Rectilinear Steiner Tree and Minimum Spanning Tree 26

2.3.3 Clique . 27

2.3.4 Star . 28

CONTENTS 3

2.3.5 Bounding-Box . 29

2.4 Minimizing Quadratic Netlengths . 30

2.4.1 The Conjugate Gradient Method 31

2.5 Minimizing Linear Netlength . 32

3 Previous work 33

3.1 Global Placement . 34

3.1.1 Graph Partitioning . 34

3.1.2 Analytic and Relaxation Based Placement 35

3.1.3 Analytic Based Partitioning Heuristics 38

3.1.4 Force-Based Methods . 41

3.1.5 Simulated Annealing for Global Placement 44

3.1.6 Clustering . 44

3.1.7 Other Strategies . 46

3.2 Final placement . 47

3.2.1 Simulated Annealing . 47

3.2.2 Greedy Approaches . 47

3.2.3 Guided Local Search . 49

3.3 Comparison of Placement Heuristics . 50

3.4 Minimizing Area and Topological Structures 51

3.4.1 Sequence-Pair . 51

3.4.2 O-tree and B*-tree . 54

3.4.3 Corner Block List . 55

3.4.4 BSG . 56

3.4.5 Transitive Closure Graph . 56

3.4.6 Comparison of Topological Structures 56

3.5 Branch-and-Bound Algorithm . 57

3.6 Legalization . 57

3.6.1 Simple Legalization Strategies . 57

3.6.2 Guided Local Search . 58

3.6.3 Overlap Removal by Sequence-Pair 58

3.7 Post Optimization . 58

CONTENTS 4

4 Sequence-Pair Legalization 60

4.1 Packing Problems . 60

4.2 The Sequence-Pair Representation . 61

4.2.1 Gridding . 61

4.2.2 Properties of the Sequence-Pair . 62

4.3 From a Placement to Sequence-Pair . 64

4.3.1 A Heuristic Approach . 65

4.3.2 A Sweep-Line Algorithm . 67

4.3.3 Overlapping Placements . 70

4.4 From Sequence-Pair to Placement . 78

4.4.1 Previous Sequence-Pair Placement Methods 78

4.4.2 Extended Semi-Normalized Placement 85

4.5 The Legalization Algorithm . 93

4.5.1 Centered Legalization . 93

4.5.2 The � -Parameter . 96

4.5.3 Remarks on Netlength Considerations During Placement 98

4.5.4 Poorly Legalized Placements . 98

5 Benchmark Circuits 100

5.1 About the Circuits . 100

5.1.1 MCNC Macro-Blocks . 100

5.1.2 MCNC Standard-Cells . 100

5.1.3 IBM Real-Life Circuits . 101

5.1.4 Data Format and Origin . 101

5.2 About the Circuit Data . 101

5.2.1 Pin Distribution . 103

5.2.2 Size Distribution . 103

5.3 New Benchmarks . 103

5.4 Rotations and Mirroring . 109

CONTENTS 5

6 Local Search for The Placement Problem 110

6.1 Overlap Handling . 111

6.1.1 Preliminary Considerations . 111

6.1.2 Pockets . 112

6.1.3 Locations . 113

6.1.4 Augmented Objective Function . 115

6.2 Neighborhood Reduction . 117

6.2.1 Bounding-Box Net-Functions Revisited 117

6.2.2 Guaranteed Improving Region . 119

6.3 Swap-Based Local Search . 120

6.3.1 Orientations . 121

6.3.2 Fast Evaluation of Netlength Change 122

7 New Global Placement Heuristic 124

7.1 Legalizing Unconstrained Quadratic Placements 124

7.1.1 Unconstrained Quadratic Placement Revisited 124

7.1.2 Legalizing the Quadratic Placements 126

7.1.3 Results for The Initial Placements 127

7.2 Iterative Improvement . 129

7.2.1 Adjusting the Quadratic Function 131

7.2.2 Strategy for Altering the Quadratic Function 132

7.2.3 Measuring Good Modules . 133

7.2.4 Regions . 133

7.2.5 The Iterative Flow . 134

7.3 Clean-Up Step . 136

7.4 Connection to Other Methods . 140

8 New Final Placement Heuristic 141

8.1 Outline of Final-placement . 141

8.2 Relaxation Based Local Search . 142

8.2.1 Sub-Circuit Extraction . 143

CONTENTS 6

8.2.2 Relaxation . 144

8.2.3 Semi-Legalization . 145

8.2.4 Store and Restore of Circuit and Pocket State 148

8.2.5 Final-Placement Move . 148

8.3 Simulated Annealing for Controlling Moves 149

8.3.1 Brief Introduction to Simulated Annealing 149

8.3.2 Simulated Annealing for Relaxation Based Local Search 151

8.4 Complete Final-Placement Outline . 153

8.4.1 When to Legalize . 153

8.4.2 Variables for Final-Placement . 155

8.5 Unsuccessful related approaches . 156

9 Experimental Results 158

9.1 Implementation . 158

9.2 Benchmark System . 158

9.2.1 Benchmark Circuits . 159

9.3 Experiments for Global Placement . 160

9.3.1 Fine-Tuning Quadratic Modification 160

9.3.2 Fine-Tuning Clean-Up . 169

9.3.3 Global Placement Results with Clean-Up 172

9.3.4 Comparison with Force-Based Placement 174

9.3.5 Comparison with Standard-Cell Legalization 177

9.3.6 Conclusion on Global Placement 177

9.4 Experiments for Final Placement . 178

9.4.1 Fine-Tuning Final Placement . 178

9.4.2 Final Placement Results . 186

9.4.3 Development of Final Placement 189

9.4.4 Comparison with Other Final Placement Results for the Circuits . 189

9.4.5 Conclusion on Final Placement . 192

CONTENTS 7

10 Conclusion 201

10.1 Future Directions . 202

10.1.1 Future Work – Legalization . 202

10.1.2 Future Work – Global Placement 202

10.1.3 Future Work – Final Placement . 203

10.2 Epilogue . 204

References 205

A Unsuccessful approaches 213

A.1 Unsuccessful Sequence-Pair Conversions 213

A.2 Unsuccessful Global Placement Improvement Strategies 215

A.3 Unsuccessful Final Placement Techniques 216

B Comparison of Standard and Extended Semi-Normalized Compaction 219

B.1 Area Compaction Results . 220

C Formulations for Unconstrained Optimization 222

C.1 Matrix Formulations of Quadratic Netlengths 222

C.2 Minimizing linear Bounding-Box Netlength 228

C.2.1 Linear Program for BB-netlength 228

C.2.2 Network Flow Interpretation . 230

C.2.3 No-overlap constraints and Fixed Module Sequence 232

D Semi-Convex Functions 233

E User manual 237

E.1 Compiling G/FLegal . 237

E.2 Invoking G/FLegal . 237

E.2.1 Command-line Options to Determine Operation-Mode 237

E.2.2 Command-line Parameters for Optimization 238

E.2.3 Command-line Options for Debug-Output 239

CONTENTS 8

Abstract

This thesis considers the placement problem in VLSI layout, which deals with
layout optimization of integrated circuits. Most practical formulations of this
problem are NP-hard. The most widely used formulations of this problem con-
sider placement of rectangles within a rectangular container. The rectangles repre-
sent logical components and are called modules. Modules are connected by wires
and a common objective is to minimize the wire-length.

Most authors consider modules of equal height, the so-called standard-cells,
but often practical instances of the problem also contain rectangles of varied height.
Therefore there is a need for placement methods which are not limited to standard-
cell placement. These problems fall in two groups mixed-cell placement which is a
combination of standard-cells and a limited number of larger modules of unequal
height, and general-cell placement which contain modules of arbitrary sizes.

The placement process is commonly broken in two parts; global and final
placement. Global placement generates a good initial solution which often con-
tains overlap. Final placement generally optimizes each module of the placement
individually and generates non-overlapping legal solutions.

We define the problem with different wire-length objective functions and pre-
sent a survey of successful placement techniques from the last decade. We present
a novel legalization technique for general-cell instances which has asymptotic
running time

���������
	��
�
, and is capable of removing overlap from placements

which is a well-known problem for many placement heuristics.
We use the legalization algorithm to create a new global placement method

which combines legalization and well-known analytic methods.
We present a new final placement method which is based on relaxation based

neighborhood search and use the legalization algorithm to remove overlap during
optimization. Experimental results are reported for the global and final placement
heuristics on standard- mixed- and general-cell circuits.

Experiments show promising results. New general-cell circuits based on com-
mon standard-cell circuits are placed with netlengths which are less than �����
worse than their standard-cell counterparts. Also the new placement algorithm
produces results comparable and in some cases better than those previously pub-
lished and produced by commercial placement tools.

CONTENTS 9

Preface

This is my M. Sc. thesis written in the period from July 2002 to July 2003 at the De-
partment of Computer Science, DIKU, University Copenhagen. Many thanks goes
to my counsellor Professor David Pisinger who listened patiently to many ideas and
suggested many improvements. I would also like to thank Associate Professor Mar-
tin Zachariasen for providing me with the real-life IBM-circuits. Thanks also goes to
Hans Eisenmann at PDF Solutions, Inc. for fast response to my e-mail queries. Fi-
nally I would like to thank Frank Johannes at the Technische Universität München for
providing me with the paper on the Domino placer and Jens Vygen at the Research In-
stitute for Discrete Mathematics University of Bonn for providing me with a currently
unpublished paper on legalization.

About the Reader

The VLSI-layout problem is complicated and not just in a combinatorial sense. How-
ever, although not a main goal of this thesis, I have tried to make the text readable even
by novices in the field of VLSI-layout. I do expect the reader to be familiar with certain
fundamental concepts of data-structures, algorithms and combinatorial optimization.
These include

� Graphs, search trees, algorithms and running time, minimum spanning trees,
steiner minimal trees, NP-hard problems.

� Multi-variable calculus and algebra.

� Linear programming and combinatorial optimization.

� Local search, simulated annealing and other meta-heuristics.

However a reader unfamiliar with some of these concepts may still understand the
majority of the text.

10

And gate

Or gate

Inverter

CarryIn

b

Sum

a

CarryOut

Figure 1.1: Simple example of logic. This is a full one bit-adder. � ,
�

and �����������
	 are input signals. ����������
����
and ����� are output signals.

1 Introduction

The purpose of this thesis is to consider novel techniques for layout optimization of
integrated circuits. Before we describe the problem in detail we will give a brief intro-
duction to the manufacturing process. This will be followed by an elaboration of the
layout problem and an overview of the subsequent chapters.

1.1 Design and Construction of an Integrated Circuit

When the overall design goals of an IC has been decided the manufacturing process
of it can roughly be divided into the following parts.

� Architectural and logic design Based on the design goals the architecture of the
IC is established and the architectural description is converted into logic com-
ponents (gates) of the form or, and, not etc., which are connected appropri-
ately to each other (see figure 1.1). Note that the logic components can also be a
combination of many connected components, such as a 32-bit adder or an ALU
(arithmetic logical unit).

� Circuit layout Based on the logical design a physical design description is cre-
ated. The logical components are now represented as modules which must be
positioned appropriately within a rectangular region. This phase is now com-
monly done by computers and part of it is the focus of this thesis.

� Physical construction When the layout phase has been completed actual con-
struction of the circuit can commence. The layout is transfered to a piece of
silicon.

Only the circuit layout phase is considered in this thesis, however in order to under-
stand it we need to consider the physical construction in more detail.

1.1 Design and Construction of an Integrated Circuit 11

Figure 1.2: Growing an integrated circuit on a wafer. First the the silicon dioxide is added. Then a photo resist
chemical is added. The photo resist is exposed to ultraviolet light emitted through a mask. Chemicals remove the
photo resist and the underlying silicon dioxide. The result is a pattern on the wafer which can become conducting
or insulating through further chemicals processes.

1.1.1 Physical Construction

An integrated circuit is constructed by using the semi-conducting properties of silicon
(Si - Element 14 in the periodic table). Silicon by itself is a mediocre conductor, how-
ever silicon’s conducting capabilities can be altered by chemicals to make it either a
fine conductor or insulator. This observation is the foundation of integrated circuits.

For production of ICs, silicon is delivered in cylinders called ingots which have diam-
eters in the order of decimeters. According to Intel’s home-page 1 they currently use
30 cm ingots for the Pentium IV production. The ingots are cut into thin slices only a
few millimeters thick. The slices are called wafers. The IC is placed on a wafer using a
technology called lithography. The process consists of many similar steps of the kind:

� Grow silicon dioxide.

� Add photo resist chemical.

� Emit ultraviolet light through a mask and expose parts of the photo resist layer.

� Remove exposed areas of photo resist and underlying silicon dioxide with chem-
icals.

� Make remaining silicon dioxide conducting or insulating by further chemical
steps.

The process is shown on figure 1.2 and can be repeated to grow a number of layers on
top of each other on the chip. The Pentium 4 chip uses approximately 20 layers. Layers
can be connected and connections between layers are called vias. Commonly the lower
layers consists of logical components while upper layers contain wires which connect
the components; so called routing layers.

Usually a wafer contains many ICs and each area containing an IC is called a die
(plural dice). The silicon ingots often contain a number of anomalies which would

1www.intel.com

1.2 The Layout Description 12

Year IC Transistors Feature size (micron) Die size (mm
�

)

1982 Intel 286 134.000 - -
1989 Intel 486 1.200.000 1 79
1993 Intel Pentium 3.100.000 0.5 161
1997 Motorola Power PC G3 6.350.000 0.22 -
1999 Motorola Power PC G4 10.500.000 0.20 -
2000 AMD Athlon (original) 22.000.000 0.25 184
1999 Intel Pentium III 28.000.000 0.18 106
2001 Intel Pentium 4 42.000.000 0.13 116

Table 1.1: A list of popular integrated circuits and the number of transistors on each circuit.

generate defects in the ICs. Making each IC as small as possible will increase the
number of ICs on a wafer (also called yield) and thereby decrease the number of circuits
affected by the anomalies.

The logic of the IC is achieved with transistors that are connected with wires. The
number of transistors and the die size have increased steadily during past years. Table
1.1 shows this development.

1.2 The Layout Description

As the previous paragraph explained the logic of the chip must be converted to a mask
that can be used to create the transistors and wires of the IC. A simple description of
the circuit is a hypergraph in which each node corresponds to a logic component or
even a transistor.

In some cases a hierarchical formulation is used. Here the logical components are
embedded into larger components which in turn may be part of even larger compo-
nents. The purpose of the hierarchical design methodology is clear; to reduce data and
problem complexity.

To hide the internal complexity during the layout phase, components are most often
considered black box rectangular elements with pins. Different components are con-
nected by attaching wires to the pins.

In this text we call the black-box components modules although other writers use dif-
ferent terms; cell, circuit, macro or block. The terms signify the complexity of the
underlying components. E.g. cells are very simple structures like and and or gates,
blocks consists of many cells. We use the term module for the general case but may in
some cases use the more precise terms.

Modules could have any shape but they are commonly described by rectangles, al-
though some writes consider rectilinear modules (irregular polygons with only hori-

1.3 The Layout Problem 13

Pin

Inverter

Or

And

CarryIn

b

a

CarryOut

Sum

Figure 1.3: A very simple example of a circuit layout consisting of inverters, and and or gates. The logic of
the circuit is the adder of figure 1.1. The large hollow rectangle is the real estate. Modules are shown as dark shaded
rectangles and the legend illustrates the three types of modules. IO-pins are shown as pins which are not placed on
modules. Finally wires are shown as lines. Vias have been left out of the figure. Also one routing layer is sufficient
since no wires cross.

zontal and vertical edges).

The area on which the modules are to be placed is of course the die but in this context
more commonly referred to as the real-estate.

Complete circuits also contain IO-pins (or pads) which connect the circuit to the “out-
side world”. These are often aligned along the borders but in some cases they are
distributed all over the real-estate. When aligned on the border the IO-pins could
have either predetermined positions or be allowed any position on the border.

1.3 The Layout Problem

The layout problem is to convert the circuit description to a physical layout which can
be used to create masks for the circuit construction.

Figure 1.3 is a very simple example of the logic from 1.1 converted to a physical lay-
out. The figure deserves a few comments. First of all it should be noted that the
adder shown on the figure is not a complete circuit. Among the things missing is the
clock signal. It consists solely of and, or and inverter gates which are shown as
shaded modules. The actual physical description of the three types of modules has
been completely hidden. The figure also illustrates IO-pins of the circuit which are
black rectangles not placed on any modules. Wires are also shown. It should be noted
that normally wires are routed on at least two different layers; One for horizontal and
one for vertical wires in which case one would require a connection between the two
layers (via) at every corner of a wire. We have omitted the vias to keep the figure
simple and also one routing layer suffices since no two wires cross.

Because of its complexity the layout problem is usually divided into two major sub-
problems; placement and routing. Placement deals with placing the modules on the

1.3 The Layout Problem 14

real-estate. Routing deals with positioning wires between the modules. The division
is not strict. Often some form of rough estimate of wire-length is considered during
placement

1.3.1 The Placement Problem

The placement problem – which is the focus of this thesis – is to position the mod-
ules on the real-estate such that some form of objective function is minimized. The
objective function is often one or several of the following: minimize expected length
of longest wire, minimize expected sum of wire-length, minimize congestion of wires
or minimize area.

The purpose of minimizing wire-length is to reduce signal delay which in turn may
increase possible clock frequency. Internally modules also contribute to signal delay
but we will not discuss this here. Minimizing area is used as an objective for at least
two reasons: in the hope that it will reduce netlength and to increase yield. Congestion
may simplify routing, reduce signal interference and distribute heat emission evenly
on the real estate. The objectives will be discussed in more detail in section 2.2.6.

Because the wire-lengths are connected to routing, placement algorithms often use an
estimate for wire-length during the placement optimization. Wire-length estimates
will be discussed in section 2.3

The final circuit may be confined to a specific layout style which describes shape and
position of the modules. The layout styles vary from semi-custom layout where the
design is restricted, to full custom layout where the designer has maximal freedom.
There exists five major layout styles:

1. Gate array The gate array design style consists of a prefabricated silicon with
identical modules distributed evenly on the real-estate. The function of a module
is determined solely by its connections. Therefore the entire logic is determined
by the wires. Space has been reserved for routing which occurs between cells.

2. Sea-of-gates The sea-of-gates layout is similar to gate array but no space is re-
served for routing. Instead the entire real estate has been filled with prefabri-
cated transistors. Some of the transistors become unusable however since space
must still be allocated for routing.

3. Standard-cell The standard-cell layout is by far the most popular of the literature
on the placement problem. In this case modules have identical height but varies
in width. Modules are placed in rows with space between them. The modules
may be taken from a library of predefined basic modules. Originally routing was
done between rows but multilayer technology now allows for routing anywhere
on the real-estate.

1.3 The Layout Problem 15

Module

Routing area

IO−Pad

Module

IO−Pad

Module

Routing Channel

IO−Pad

(a) (b) (c)
Module

Routing Channel

IO−Pad

Module

IO−Pad

(d) (e)

Figure 1.4: The different major layout styles. (a) Gate array. (b) Sea-of-gates. (c) Standard-cells. (d) Mixed cell
layout. (e) general-cell layout.

4. Mixed-cell The mixed-cell model is similar to standard-cell layout but allows
for large modules in the layout which may vary in height and width and cover
several rows.

5. General-cell (Macros) The final layout style which is also the only full-custom
is the general-cell layout style. In this case modules are allowed any size and
position on the real estate. In some cases modules are even allowed rectilinear
shapes .

As mentioned only the general-cell layout style is characterized as full-custom layout.
The other types of layout are characterized as semi-custom. In this thesis we will only
consider standard-cell, mixed-cell and general-cell layout and we will only consider
rectangular modules. Figure 1.4 illustrates the different layout styles.

Placement methods are commonly divided into two groups; global and detailed (fi-
nal) placement. Global gives a rough estimate or relative position of modules. Final
placement finalizes the placement by local optimization.

1.3.2 Routing

After placement the position of the wires is determined. This is called routing. The
routing solutions are restricted by the solution of the placement step; we cannot move
modules at this point. Therefore the quality of a placement depends on how well
it can be routed. The routing problem is often solved in two steps; global routing

1.4 Motivation and Objective of this Thesis 16

and detailed routing. Global routing determines how wires are placed relative to the
modules. Detailed routing determines exact position of the wires.

1.3.3 Pre- and Post-processing

In most cases there are two more steps; preprocessing and post-processing. Prepro-
cessing may divide the circuit into sub-circuits which are optimized individually but
can be combined during the complete circuit optimization phase. Post-processing
may compact and uncompact the circuit. Compaction will reduce the necessary area
whereas uncompaction will distribute modules and wires to reduce signal interference
or even out heat distribution.

1.3.4 The Placement and Routing Problems are NP-hard

Although it depends on the exact formulation most practical versions of the placement
problem are NP-hard (see e.g. [54]). In section 2.2.6 we will give a proof that placement
based on standard-cell or general-cell models is NP-hard independent of the objective
function.

Routing is also in general NP-hard. We point to [54] for proofs of this claim.

1.4 Motivation and Objective of this Thesis

Although the layout problem has existed since the invention of the integrated cir-
cuit local search methods of recent years have shown that placements can still be im-
proved. One problem with some local search methods is to deal with overlap. Also
with ICs reaching 100.000.000 transistors2 efficient methods capable of handling large
circuits are necessary. Little attention has been given to mixed- and general-cell lay-
out. Mixed-cell layout is generally handled by considering special cases for macros
and full-custom layout is generally avoided because of its increased complexity. Also
with more transistors and increased functionality of the circuits there is growing need
for the ability to split the circuit components into modules which can be optimized
separately and later combined. These modules would likely have arbitrary size.

The purpose of this thesis is to investigate a legalization technique for solving the
placement algorithm. The technique should allow us to remove overlap from a general-
cell placement. We will use the technique in connection with both a global- and final
placement and for both standard-cell and general-cell layout styles. The legalization
algorithm is based on a well-known abstract representation of rectangle placements;
sequence-pair, and is not limited to standard-cells such as most efficient current meth-
ods.

2Intel are working towards 1 billion transistors in 2007 [73]

1.5 Outline of the Thesis and our Contributions 17

Objective function and simplifications As objective function we have decided to
minimize wire-length. This is the most common objective of the literature and it al-
lows us to compare results with other authors. To handle the layout-problem some
simplified assumptions are made. In general we will not consider problems such as
electric interference, internal signal-delay in modules, congestion and routability. But
these simplifications are common in the VLSI-placement literature. We give a more
precise formulation of the layout problem in section 2.

1.5 Outline of the Thesis and our Contributions

The thesis is divided in roughly two parts. The following two sections consider formu-
lation of the placement problem (section 2) and previous work (section 3). These two
sections can be skipped by readers which are experienced with the VLSI-placement
problem.

The remaining sections describe the legalization algorithm and the associated global
and final placement heuristics. First, in section 4, we will present the legalization al-
gorithm which is based on the sequence-pair representation. Then in section 5 we will
introduce the benchmark circuits to give the reader a better understanding of their
complexity. In section 6 we present a local search method which is an important el-
ement to both our global- and final-placement methods. The new global-placement
method is presented in section 7 and the final-placement method is presented in sec-
tion 8. To test our new methods we report experimental results on well-known bench-
mark circuits in section 9. Finally in section 10 we give our conclusion on the new
placement methods and list future directions.

Some details have been omitted from the main text and can be found in the appen-
dices. Readers who wish to experiment with their own heuristic may find inspiration
in appendix A where we have listed a number of preliminary approaches that proved
unsuccessful and our explanation as to why the methods did not work.

Our contributions in this thesis can be summarized as follows:

� Extensive survey In section 3 we give an extensive survey of previous solution
methods with focus on the methods from the last ten years. To our knowledge
no other recent survey is quite as extensive.

� Extensions to the sequence-pair placement algorithms We have extended an existing
algorithm for converting a sequence-pair to a placement so that it can handle
more constraints and produce more compact placements.

� Placement-to-sequence-pair We have developed a placement-to-sequence-pair-ago-
ritem which can convert a placement to a sequence-pair even if the placement
contains overlapping rectangles.

1.5 Outline of the Thesis and our Contributions 18

� A Legalization algorithm. The placement-to-sequence-pair algorithm and the se-
quence-pair-to-placement algorithm have been combined to form a legalization
algorithm which can remove overlap from a placement. This and the previous
two items are the focus of section 4.

� New general-cell circuits In section 5 we will describe current as well as propose
three new benchmark circuits.

� New Global placement method Based on the legalization algorithm we have created
a new global placement heuristic which can handle standard-cell, mixed-cell and
general-cell layouts. This is the focus of section 7.

� New final-placement We have also developed a new final-placement method which
is the focus of section 8.

Results Experiments show that the new placement heuristics developed perform
well with both standard-cell and general-cell circuits. For the standard-cell circuits
we are able to produce results which are comparable to previously published and
commercially produced results. We are also able produce promising results for new
general-cell benchmarks. These results are good considering that our new placement
heuristics are only prototypes and much fine-tuning could probably improve results
both with respect to time and objective value.

19

2 Preliminaries

In this section we will give a more formal definition of the VLSI-placement problem.
Also we will introduce some well-known basics of the VLSI-placement problem which
is considered common knowledge in the VLSI-placement field. These basics are cru-
cial for the understanding of section 3 which deals with previous work.

Experienced readers may skip the section and use it solely for reference. However
we do recommend skimming the text if for no other reason than to get a feel of our
notation.

2.1 General Conventions

We use numbers and graphs extensively throughout the subsequent sections but use
standard conventions.

2.1.1 Numbers

��� is the set of positive integers �������	��
���
������������������ .
����� is the set of non-negative integers ��������������� .
��� is the set of integers ��� �!��������"#
���"��	�$�%�&�	��
��������'� .
��(is the set of rational numbers (� �*)+ | ,�- �.�$/ - �0� .
��1 is the set of real numbers.

��132 is the set of non-negative real numbers 4�5 � , 46- 1
��187 is the set of 9 -dimensional vectors :;- 1<7 .
��18=?>@7 is the set of 9BADC matrices (9 rows and C columns).

In general vectors and matrices are written in bold face. E�F is the G th element of vector
:;- 1H7 and I FKJ is the element at the G th row and L th column of matrix MN- 1<=?>@7 . For
vectors :;- 1 � E	O is the P -component and E!Q the R -component.

For intervals we let S �UT PWV � P �YX<Z 1 be the closed interval which contains PHV and P � .
S �[T P\V � P � T Z 1 is the half-open interval which contains P8V but not P � and S � X P]V � P � T_^
1 is the open interval which contains neither PHV nor P � .

2.1.2 Graphs and Hypergraphs

In general ` �badc8�$e6f is a graph in which c is the set of vertices and eb^�c A c is the
set of edges.

2.2 A VLSI Placement Instance 20

a
b

c

d

e

a
b

c

d

e

a
b

c

d

e

st st21

(a) (b) (c)

Figure 2.1: A hypergraph is converted to a standard graph. (A) The hypergraph. The edges in the hypergraph
(� ��� � ����� and � � ������	
�) are subsets and are illustrated as circumscribing curves. (B) The hyperedges have been
converted to sub-cliques. (C) The hyperedges have been converted to star-graphs. One new point - the star point -
is introduced for each edge.

Hypergraphs Hypergraphs are extensions of graphs with hyperedges. A hyperedge �
is a subset of vertices � ^ c . Edges of regular graphs are hyperedges with cardinality
2. Hypergraphs are in general referred to as � �Nadc��$e f . There is no way to convert
a hyperedge � to a regular edge without changing some properties of the graph. Two
common approaches exists however:

1. Convert � to a clique subgraph by adding edges between every pair of vertices
in the hyperedge.

2. Add one new vertex
���� , and convert � to a star subgraph by adding edges be-
tween every vertex E -�� and
����

The two methods are illustrated on figure 2.1.

2.2 A VLSI Placement Instance

The VLSI placement problem deals with nets and modules. The nets connect the mod-
ules through pins. Throughout this text we use the following conventions:

� The set of modules is � .

� The set of pins is � .

� The set of nets is � .

� The placement area with IO-pins is � .

Combined modules, pins and nets constitute a circuit � �[a � � � � � � � f .

2.2 A VLSI Placement Instance 21

2.2.1 Modules

For module C - � we define the following:

� A width � a C f (��� � � �3f .
� A height

� a C f (��� � � �<f .

Some modules are blockages or have fixed position and orientation. Let � be the set
of fixed modules and blockages (we assume all blockages are rectangular). For fixed
modules we let a P�� a C f � R	� a C f�f�
 - � A � be the position of the module. The placement
area is in general rectangular and contains input/output pins of the circuit. These are
also fixed. To simplify our notation the placement area � is also a fixed module. So
we have � Z � � � � � and � -�� . Also let � � � � � � � � be the set of modules
including the placement area.

2.2.2 Pins

Modules are connected to each other through pins. For each pin , - � we let
 a , f��
��� � � be the module , is connected to. Pins are placed with offsets on the modules
so for ,�- � we let a������ O a , f ������� Q a , f�f�
 - � A � be the offset of , with respect to the lower
left corner of the module
 a , f . Pins are only allowed within the boundary of their
respective module.

2.2.3 Nets

Nets are subsets of � so for each 9 - � we have 9 ^ � . Further all pins should be
part of a net so we have � 7	��� 9 � � . Without loss of generality we will also assume
that only one net is connected to each pin; 9<V � 9 � ��� for 98V � 9 � - � . To simplify
discussions we may say for a module C - � � that C -D9 if and only if there exists a
,;-;9 such that
 a , f0� C . To each net we also assign a weight �6a 9 f�� � that may be
used to describe the “importance” of that net.

This notation induces a hypergraph with modules as vertices and nets as edges which
allows us to define:

Definition 2.1. Connection graph The connection graph of a circuit � � a � � � � � � � f
is the hypergraph � � a�� � � f , where each C - � is represented by a node C"!\- �
and each net 9 - � is represented by a hyperedge

� - � and C ! - �
if and only if

there exists ,�-�9 such that
 a , f�� C .

Note also that without offsets pins are redundant.

2.2 A VLSI Placement Instance 22

0 90 180 240

0m 90m 180m 240m

Figure 2.2: The eight possible orientations of a module. In top row the module has been rotated 0, 90, 180 and 270
degrees respectively. In the second row the module is mirrored along the vertical axis.

2.2.4 Placement

A placement of a circuit � describes the position and orientation of each module. Mod-
ules may assume one of eight orientations although in some cases modules are not
allowed all orientations. Let

� � �����	���	��� �&���	��� ��
�� ��� �$��� C ���	��� C �&���	��� C ��
�� ��� C � (2.1)

be the set of the possible orientations of a module (see figure 2.2).

We use the following convention. A placement � is given by � � a P � R �
	!f , where
P � � � � � , R � � � � � and 	 � � � � �

are maps which describe lower-left
coordinates and orientation of every module C - � � .

Definition 2.2. Overlap and containment We say that two modules C�V � C � - � �
overlap with respect to a placement � �[a P � R �
	!f if and only if

P a CBV f�� � a CBV f � P a C � f�
���� P a C � f�� �6a C � f � P a CBV f
R a CBV f�� � a CBV f � R a C � f�
���� R a C � f�� � a C � f � R a CBV f (2.2)

Note that modules may abut.

Further we say that a module C V - � � is contained within a module C � - � � if
and only if

P a CBV f 5 P a C � f�
���� P a CBV f�� �6a CBV f�� P a C � f�� � a C � f
R a CBV f 5 R a C � f�
���� R a CBV f�� � a CBV f�� R a C � f�� � a C � f (2.3)

Definition 2.3. Legal placement A placement � �Na P � R �
	!f is legal if it obeys the fol-
lowing constraints:

� No two modules C V � C � - � overlap.

� All modules C - � are contained within the placement area � .

� For all fixed modules C - � : a P a C f � R a C f�f
 �[a P � a C f � R	� a C f�f�
 .
We will refer to the first two constraints as the no-overlap constraints.

2.2 A VLSI Placement Instance 23

2.2.5 Comments on Orientations

Since a module may assume up to eight different orientations we should really take
this into consideration when describing a legal placement. However the notation be-
comes too complex and in general for a placement � �[a P � R �
	!f we will assume:

� The width and height of a module C - � � is with respect to the orientation
	�a C f of C .

� The offset of a pin ,�- � is with respect to the orientation 	�a
 a , f�f of
 a , f .

We will not elaborate on determining width and height of a module or pin positions
with respect to an orientation since this it is relatively easy to deduce.

2.2.6 More Formal Definition of the Placement Problem

We can now define the placement problem more formally.

Definition 2.4. Placement problem Given a circuit � � a � � � � � � � f find a legal place-
ment � that minimizes some cost function � which depends on � and � .

Cost functions The cost function may be one or a combination of several of the fol-
lowing:

� Total wire-length (or netlength) The length of wires necessary to connect pins in
� . There are a number of different ways to approximate the netlength and we
will consider them in the following. If this is the cost function then we wish to
minimize

�

7 � �
� a 9 f���� a 9 f � (2.4)

where ��a 9 f is the length of the wire connecting net 9 . The wire-length of nets is
referred to as netlength.

� Congestion The number of wires in any one area. Congestion is loosely defined
and some writers consider the number of wires in small areas of the placement
area (see e.g. [71, 61]).

� Area The area may be minimized. There are two approaches to this. Either �6a � f��� a � f or �6a � f � � a � f may be minimized. Note that with this objective function
the size of � is not static.

� Timing Timing driven placement aims at minimizing the wire-length of critical
paths. For timing driven optimization see e.g. [18, 42].

2.2 A VLSI Placement Instance 24

(a) (b)

Figure 2.3: (a) There is some correlation between minimizing wire and area and congestion. (a) The circuit
on the left is minimized with respect to wire on the right. (b) However in some cases the objective functions are
contradicting. On the left the circuit is minimized with respect to wire. On the right with respect to area.

There is a consensus that the cost functions are in general correlated, e.g. minimizing
wire will at least to some degree reduce area and congestion (see figure 2.3(a)) however
in some cases the result may not be equal (see figure 2.3(b)).

The most widely used cost function is minimization of total wire-length and therefore
it is also the cost function we have chosen.

We now prove the following:

Theorem 2.1. The placement problem as described in definition 2.4 is NP-hard.

Proof. To prove this we first introduce the following definition

Definition 2.5. 2-Partition decision problem (2PDP) Given a set � of integers decide
if � can be partitioned in two sets � and � – ����� � � , � � � � � – such that� O ��� P �

� O �
	 P .

It is well-known that 2PDP is NP-complete (see e.g. [13]).

We now define the decision problem for placement.

Definition 2.6. Placement decision problem (PDP) Given a placement problem as
defined by definition 2.4, decide if there exists a feasible placement which satisfies the
constraints of definition 2.3.

We first prove that PDP is NP-complete. A trivial algorithm with quadratic running
time can determine if all modules are within the containment area, compare all pairs
of modules for overlap and determine if all fixed modules are positioned correctly.
Therefore PDP is in NP.

We now reduce from 2-partition. Assume we have an instance of 2-partition. It easy to
see that for

� O �
� P �
� O �
	 P we must require that:

� O �
� P �
� O �
	 P � V�

� O ��� P .
Now create a placement area with height 2 and width V� � O ��� P . For each element of
PB-
� create a module which has height 1 and width P . This reduction is polynomial.
Disallow rotation of modules. If we can find a feasible solution to this placement
problem we must also have a feasible solution to the 2-partition problem. To see this
observe that a solution to the placement problem must have two rows of modules,

2.2 A VLSI Placement Instance 25

(a) (b)

Figure 2.4: (a) Two modules with pins opposite to each other (the black circles). (b) According to our formulation
the pins may be placed coincident which would cause a short circuit.

each corresponding to sets for which the sum of elements equals half the sum of all
elements in � . Therefore PDP is NP-complete.

Since PDP is NP-complete and is the decision problem of the placement problem the
placement problem must be NP-hard.

2.2.7 Simplified Assumptions

The previous formulation is fairly simple and more constraints may be considered.

Spacing and rows In many cases spacing may be required between modules. E.g.
standard cell instances often require a spacing between rows to accommodate routing
if only one layer is used. Also the module positions may be confined to rows. We will
consider spacing between modules.

Confinement to regions Some modules may be required to be placed in a certain
region of the placement area or at the boundaries. This we will not consider but fixed
modules will be considered.

Short circuits In the above definition of pins and modules, we may place two mod-
ules with pins at the same location (see figure 2.4) which would create a short circuit.
This is unfortunate and the formulations can be altered to accommodate for this. How-
ever our formulation is simple and intuitive and the test circuits often requires spacing
anyway. Also the amount of required spacing is not a trivial matter since it depends
on the pin sizes. A real placement tool must take spacing more serious though.

It should be noted that IO-pins on the placement area are usually placed on a different
layer than pins of modules.

2.3 Net Models 26

2.3 Net Models

In this theses we have chosen to minimize the netlength. Since routing is itself an NP-
hard problem a fast heuristic to estimate the netlength during the placement phase is
necessary. This section is devoted to the most popular estimates. In the subsequent
discussing we assume that a placement � � a P � R �
	!f for a circuit � � a � � � � � � � f is
given and the netlength is to be measured.

2.3.1 Distance Metrics

Netlength depends on distance. For two points � ��� - 1 �

we use the ��� -norm induced
distance metric given by:

� � a � ���\f����	
 , O " / O
 � �

, Q ";/ Q

 � � � ��� - 1 � ��� - �.� (2.5)

where

P

is the absolute value of P - 1 ,
� V is the Manhattan or rectilinear distance

between � and � and
�

� is the Euclidean distance between � and � . Further letting� ��
 one gets: �����
����� � � a � ���\f3�

�

��*a
 , O ";/ O
 �
 , Q " / Q
 f � (2.6)

which allows us to define the � � induced metric� � a � ���\f��
�

��\a
 , O " / O
 �
 , Q " / Q
 f � (2.7)

Absolute coordinates of pins In order to keep the notation simple we need some
auxiliary notation. For , - � let M a , f6� a P a
 a , f�f � ����� O a , f � R a
 a , f�f � ����� Q f
 (i.e. the
absolute coordinate of a pin ,).

2.3.2 Rectilinear Steiner Tree and Minimum Spanning Tree

The routing-phase of the chip consists of connecting pins from the same net using
minimum netlength. In modern design routing is done on separate layers. Obviously
the total minimal netlength is achieved by connecting pins in each net with a steiner
tree such that no two steiner trees intersect. Therefore a lower bound on the netlength
is given by the sum of the sizes of the steiner minimal trees.

Currently only horizontal and vertical wires are used although more directions may
be used in the future (see www.xinitiative.org). Therefore the smallest wire-length is
achieved using a rectilinear steiner minimal tree (RSMT) (see figure 2.5(a)). An upper
bound on the RSMT is the rectilinear minimum spanning tree (see figure 2.5(b)). Hwang

2.3 Net Models 27

proved in [40] that the RMST of a set of 9 points in the plane is no longer than �� times
the RSMT and the bound is tight for 9 �
 .
Calculating the RSMT is an NP-hard problem however most of the nets in the bench-
mark circuits contain less than 10 pins so exact algorithms [90] can solve the problem
efficiently. Calculating the RMST can be done in

� a 9
�
��� 9 f time. Although not im-

possible to calculate the RSMT or the RMST bound most approaches to the placement
problem estimates the wire-length more efficiently. Therefore we will present three
other net models in the following. These are also the most popular net models and
each of them has advantages as well as disadvantages. Net models are not the pri-
mary focus of this thesis and for more a more complete survey we recommend section
3.4 of [24].

2.3.3 Clique

The clique model arises from the graph representation of the VLSI-problem discussed
in section 2.1.2. In the clique net model each net (or hyperedge) is converted to a clique
subgraph (see figure 2.5(c)). The length of the net 9 - � is then the total distance of
pairs of pins in the net:

� � � a 9 f � �

�a
 9
 " ��f �+ � 7

�

) � 7
� � a M a , f � M a'/!f�f � (2.8)

The purpose of the V� 7 � � V multiplier is to prevent large nets from dominating the net
model and the purpose of dividing with two is to count each “edge” once.

The clique netlength may be evaluated in time
� a
 9
 � f .

Relation to RSMT According to Vygen [87] the following holds:

Theorem 2.2. For a net 9 containing

9

pins the following is true.

� ���
 9
 �
���� � �
	 a 9 f � � � V a 9 f
� ���
 9
 ��� ���
�� � �
	 a 9 f � � � V a 9 f � � 7 � ���� � 7 � � V�� � � �
	 a 9 f
� ���
 9
 5 ����� � �
	 a 9 f � � � V a 9 f � � 7 � ���� � 7 � � V�� � � �
	 a 9 f

(2.9)

Proof. See [87].

This shows that ��� V a 9 f is certainly an upper bound of the RSMT.

2.3 Net Models 28

2.3.4 Star

The star model is similar to the clique model but arises from converting hyperedges
to star subgraphs (see figure 2.5(d)).

� 	 � a 9 f8�
� �
������ � 7 � ��� �

�
+ � 7

� � a M a , f ����	�
*a 9 f�f � � (2.10)

The point ��	

 a 9 f is called the star-point since this is exactly the position of the star-point
of section 2.1.2.
��	��@a 9 f is the median of respectively the P - and R -coordinates of the pins and can be
determined in linear time (see chapter 10 of [13]).

Determining ��	���a 9 f � a
�� � O a 9 f �
�� � Q a 9 f�f�
 is also simple. We differentiate in P and R -
coordinate to get the point which minimizes the sum. For the P -coordinate we get:

�
�
�� � O a 9 f

�
+ � 7

�
� a M a , f ����	 � a 9 f�f � (2.11)

� ����
 ��� � 7 � � + � 7
��� a P a
 a , f�f � ����� O a , fH"
�� � O a 9 f�f � � a R a
 a , f�f � ����� Q a , fH"
�� � Q a 9 f�f ��� �

� ����
 ��� � 7 � � + � 7 a P a
 a , f�f � ����� O a , fH"
�� � O a 9 f�f �

� � + � 7
�a�a P a
 a , f�f � ����� O a , fW"
�� � O a 9 f�f� � + � 7
�a P a
 a , f�f � ����� O a , f�f ";

9

�� � O a 9 f

A similar result holds for the R -coordinate. This allows to determine
�� � O a 9 f and

�� � Q a 9 f since minimum must occur for respectively ����
 ��� � 7 � � + � 7 � � a M a , f ����	 � a 9 f�f � � �
and ����
 ��� � 7 � � + � 7 � � a M a , f ����	 � a 9 f�f � � � :

�� � O a 9 f8�
�

9

 �
+ � 7
M a , f O

�� � Q a 9 f3�
�

9

 �
+ � 7
M a , f Q (2.12)

For , � � and , �b
 � 	 a 9 f can be calculated in time
� a
 9
 f since determining ��	��@a 9 f

and ��	
�%a 9 f can be done in linear time and calculating � 	 � a 9 f can be done in linear
time when ��	

 a 9 f is known.

Relation to RSMT � 	 � a 9 f is related to � � � a 9 f and this we use to prove the follow-
ing:

Theorem 2.3. For a net 9 containing

9

pins the following is true.

G f �����
 9
 5 � ��� � � 	6a 9 f � � 	 V a 9 f
GdG f �����
 9
 �
���� � � 	6a 9 f � � 	 V a 9 f
GdGdG f �����
 9
 5 � � � 	 V a 9 f � � 7 �

�
� � �
	 a 9 f

(2.13)

2.3 Net Models 29

Proof. G f Since � 	 V a 9 f measures rectilinear distance between points and is therefore
equivalent to a rectilinear steiner tree with one steiner point � � � 	6a 9 f � � 	 V a 9 f must
hold.

GdG f For

9

 �b� and

9

 �
 this is trivial. For

9

 �

�� V a 9 f must be a steiner point due

to its definition.

GdGdG f First we prove the following lemma.

Lemma 2.1. For a net 9 we have:

� 	 � a 9 f����
0"

9

�� ��� � a 9 f � (2.14)

Proof. We have:

� ��� a 9 f � �

 9
 ";
 �+ � 7

�

) � 7
� � a M a , f � M a'/!f�f �

5
�

 9
 ";
 �+ � 7
�

) � 7
� � a���	�
 a 9 f � M a'/!f�f �

�

9

 9
 ";
 � 	 a 9 f
� �

?" �� 7 �

� 	6a 9 f (2.15)

(The inequality in the second lines follows from the choice of ��	 � a 9 f which is chosen
such that the inner sum is minimized).

Now using theorem 2.2 and the previous lemma we get:

� 	 V a 9 f � �
0"

9

�� ���.V a 9 f

� �
0"

9

��

9

�

�
 9
 " � � � � 	6a 9 f

� �
 9
 � "
 9

 9
 ";
 � � � �
	 a 9 f
�

9

 � � �
	 a 9 f (2.16)

2.3.5 Bounding-Box

The bounding-box � � netlength is by far the simplest. The netlength estimate for a
net 9 is simply the half-perimeter of the bounding-box surrounding the net (see figure

2.4 Minimizing Quadratic Netlengths 30

(a) (b) (c)

(d) (e)

Figure 2.5: The five net models. (a) Rectilinear Steiner Minimal Tree. (b) Rectilinear Minimum Spanning Tree.
(c) Quadratic Clique (��� �). (d) Quadratic Star (��� �). (e) Bounding-box ��� . The black circles are pins. The
extra circle in (d) is the star point.

2.5(e)):

� � a 9 f8�
�

��+ � 7 a �#O a , f�f "

� �
�+ � 7
a � O a , f�f��

�

��+ � 7 a � Q a , f�f "

� �
�+ � 7
a �#Q a , f�f (2.17)

Calculating � � a 9 f can easily be done in time
� a
 9
 f although updating the netlength

with respect to movement of modules may be done faster.

Relation to RSMT Chung and Graham published a proof in [12] which stated that
� � � 	 a 9 f �

� � 7 � � V
� � � a 9 f . However Brenner and Vygen discovered an error in the

proof in [7]. In [24] Farø proved the less tight ratio:

� � � 	 a 9 f ���
�

9

 	
� ��

 � � a 9 f (2.18)

However for

9

�
 it is easy to see that � � � 	6a 9 f8� � � a 9 f .

Variations on bounding-box netlength In [9] Caldwell et al. presents extensions
to the bounding-box netlength. Their primary focus is on estimates of the netlength
when the positions of the modules are only determined within regions. However they
also demonstrate how the bounding-box area combined with height/width ratio can
be used as an estimator for the RSMT.

2.4 Minimizing Quadratic Netlengths

In appendix C.1 we show how both the quadratic clique and star netlengths can be
expressed by matrix notation. If the corresponding problem is relaxed by removing

2.4 Minimizing Quadratic Netlengths 31

the no-overlap constraints we can minimize the quadratic netlength by solving two
independent problems of the form:� �

��� ��� � ����� �	� a�
� f��

�
��
� ���

� ��� � (2.19)

with � - 187 >@7\��� - 187 and � - 1 defined according to theorem C.1 or C.2 (9 - �
varies).

According to multi-variable calculus a local minimum or any extreme point of � must
occur where � � a�
�Hf.��� for � � a�����O�� ��������� ��O � ������� f . Using the fact that � is symmetric
(theorem C.3) it is easy to see that

� � a�
�Hf8� �

� � �
� ���B�
 �
� ��� (2.20)

Further one can show that this extreme point is a minimum (see [77]). So minimizing

� is equal to solving the equation system:

 �
� � " � (2.21)

By using Gaussian elimination we may invert � in time
� a 9 � f . This is unsatisfactory

and it turns out there is a faster heuristic way.

2.4.1 The Conjugate Gradient Method

The Conjugate Gradient Method ([35, 74]) works on parabolic functions like � by tak-
ing steps towards the global minimum. The method requires that � is symmetric and
positive definite which is proven in appendix C.1. It is an iterative procedure and
in each step the current solution is moved in the direction of the eigenvalues of � .
When the solution is deemed close to minimum the procedure ends. We will not de-
scribe the method in detail here. Instead we will refer to the excellent introduction by
Schewchuk [77]. The order of convergence of the method depends on the spectral con-
dition number � of � and is

� a � � C f for � - 1H7 when C is the number of non-zero
elements of � and sparse matrix data structures are used.

The matrix � is in general sparse. Each row corresponds to a module. For the star
model the number of non-zero elements in a row is roughly equal to the number of
nets the module of that row is connected to. For the clique model this number is equal
to the number of modules the module is connected to. It is generally assumed and in
section 5 we will show empirically that the average number of nets each module is
connected to is usually less than 5. Therefore if one uses sparse matrix data structures
the size of the matrix � is the number of non-zero elements which in practice is C �� a
 � ! �

 f .

2.5 Minimizing Linear Netlength 32

Preconditioning As mentioned above the Conjugate Gradient Method depends on
the spectral condition number of � . This can be improved by using a preconditioner.
The essence of the preconditioning method is that instead of solving a system of the
form M � ��� one can solve an auxiliary system �

� V M � � � � V � . If �
� V M is better

conditioned than M we may get faster convergence. The matrix � is called a pre-
conditioner and the problem is of course determining � such that we can easily find
�
� V . Ideally one would pick M but since we do not know M � V we have to make

another choice. The simplest preconditioner is the diagonal of M and the most popu-
lar is an incomplete cholesky factorization of M . We will not discuss preconditioning
further here but even diagonal preconditioning can improve the order of convergence
significantly.

Reducing the number of non-zero elements A simple way to reduce the number
of non-zero elements of the matrix � is to consider the cardinality of nets. For the
clique formulation nets with 9 elements contribute with 9 � " 9 non-zero elements to� if we disregard the diagonal. Similarly nets with 9 elements in the star formulation
contribute with
 9 non-zero elements disregarding the diagonal. Since there are many
nets with cardinality two (see section 5) we can reduce the number of non-zeroes of �
by using the clique formulation for nets with cardinality two and star formulation for
nets with higher cardinality.

2.5 Minimizing Linear Netlength

The unconstrained linear bounding-box formulation can also be solved in efficient
time. Here the objective function is the dual of a minimum-cost-flow problem (see C.2
for details). The dual problem can be solved and by using LP-duality a solution to
the primal problem can be determined. Weis and Mlynski considered this in [91]. Un-
fortunately the fastest known maximum-flow algorithm takes

� a C 9
�
��� a 9 ��� C f�f time3

(see [27]) and therefore has quadratic running time.
3For the VLSI-design problem � is the number of modules � nets and 	 is the number of pins � nets

33

3 Previous work

The VLSI-placement problem has been the focus of much research over the past 20-30
years. The number of papers on the subject is overwhelming, and a complete survey
is certainly out of the scope of this thesis. Therefore we have chosen to concentrate on
the more interesting and relevant research of the last decade.

In the literature the placement problem is divided roughly into these five categories:

� Global placement deals with assigning modules to positions on the placement
area close to their optimal position. Some writers use the term “relative place-
ment”. In general global placement generates an initial placement with overlap.
A global placement heuristic can be both constructive and iterative.

� Final placement optimizes the positions of the modules with a global placement
as initial solution. In general this is an iterative procedure which moves between
solutions. In some cases only legal solutions are considered however often over-
lapping solutions are accepted during the improvement step. The result of the
final placement stage is usually a non-overlapping final placement.

� Area minimization The area minimization problem is a two-dimensional pack-
ing problem with rectangular shapes. The area minimization problem is NP-
hard.

� Legalization If the final placement is illegal some form of legalization must be
conducted at the end.

� Post optimization Generally a legal solution may be improved slightly without
changing relative order of the modules.

The literature on the five topics is concentrated mainly on global placement, final
placement and area minimization. Some solution methods are presented with both
a global placement and corresponding final placement heuristic.

These categories will form the outline of this chapter and a section is devoted to each
of the topics.

On Standard-cells and General-Cells In general most work has been done with re-
spect to standard-cells. The reason for this seems to be that general-cells renders the
placement problem too difficult for current placement heuristics. Although this the-
sis aims at new algorithms for general-cells there is at least one reason for presenting
the standard-cell heuristics. Well-functioning heuristics for standard-cells may work
well with general-cells and in fact some of the heuristics allow large macro-blocks as
part of the problem instances. The standard-cell heuristics could therefore serve as
inspiration.

3.1 Global Placement 34

(a) (b)

Figure 3.1: The graph partitioning method. (a) The circuit is partitioned. (b) With each partition the placement
area is divided into two equal sized parts and the modules of of each part is confined to the corresponding half. The
thickest lines are the earliest bisections.

3.1 Global Placement

There are surprisingly few overall approaches to global placement. Three main ideas
dominate. Partitioning based on the connection graph, partitioning based on analytic
placement and complete analytic methods.

3.1.1 Graph Partitioning

A classic global placement method is based on hypergraph partitioning. The hyper-
graph partitioning in its most basic form bisects the connection graph (see section
2.2.3) recursively. Nodes in the connection graph are usually given weight correspond-
ing to the area of their module. Each bisection is chosen such that the weight of nodes
(modules) on either side is close to equal while at the same time the number of hyper-
edges cut by the bisection is kept at a minimum. This optimization problem is indeed
NP-hard (reduce from 2-partition) because of the balance requirement.

The thought behind graph-partitioning is that highly-connected components of the
hypergraph should be close to each other in the final layout. When the recursion is
complete, e.g. only one node left, a relative placement of the modules is extractable
by the bisections (see figure 3.1). Note that another purpose of the graph-partitioning
method is to reduce congestion; the number of nets crossing any “line” on the place-
ment area is at least to some degree minimized.

The two most famous graph-partitioning heuristics are of Kernighan and Lin [47] and
Fiduccia and Mattheyses [23]. Fiduccia-Mattheyses’ is based on that of Kernighan and
Lin and is the younger and more popular of the two. Fiduccia-Mattheyses’ has also
been the primary focus of later research (see e.g. [43, 75, 51, 52, 33, 14, 10]). Both
heuristics are iterative and move-based. The Kernighan-Lin heuristic swaps modules
on opposite side of the cut whereas Fidducia-Mattheyses’ moves one module to the

3.1 Global Placement 35

a b c ba c

(a) (b)

Figure 3.2: Comparison of minimal linear and quadratic placements. (a) Linear formulation; module
�

is com-
pletely adjacent to � . (b) Quadratic placement. In Quadratic formulation the two nets on the left of

�
weigh twice

as much as the net on the right.

opposite side (the details are complicated). An obvious problem with the move-based
heuristics is generating an initial solution.

The graph-partitioning method is simple but does not directly consider module co-
ordinates or netlength. Further the min-cut objective seems somewhat inadequate
at modeling congestion. Therefore we choose to abandon graph partitioning at this
point. The complete literature and methods involved in graph- and circuit-partitioning
is also far too vast to consider here. Instead we point to [2] which is a fine survey on
graph-partitioning for VLSI-optimization.

3.1.2 Analytic and Relaxation Based Placement

In analytic placement the no-overlap constraints are disregarded or incorporated into
the objective function. The problem is then a matter of minimizing an unconstrained
objective function.

In section 2.4 and 2.5 it was explained how the unconstrained placement problem with
quadratic and linear bounding-box netlength can be solved. The quadratic netlength
formulations can be solved fast using the Conjugate Gradient Method or any sim-
ilar numerical linear equations solver while the bounding-box formulation requires
quadratic running time network-flow methods.

Comparison of linear and quadratic netlength for analytic placement Sigl et al.
[79] and Mahmoud et al. [58] compare the linear formulation with the quadratic. The
linear formulation will tend to stack modules on top of each other while the quadratic
formulation will spread them slightly. Secondly the average standard deviation of the
netlengths is smaller for the quadratic formulation; short nets in the linear objective
are longer in the quadratic and long nets shorter. A simple example is shown on figure
3.2.

Figure 3.3 shows several examples of how much overlap minimizing the unconstrained
bounding-box formulation results in compared to the star netlength. We have placed
a small macro-cell circuit, a standard-cell circuit and a real-life circuit analytically ig-
noring no-overlap constraints using both bounding-box netlength and star netlength.
The result is excessive stacking and unacceptable running times for the bounding-box

3.1 Global Placement 36

netlength. The bounding-box netlengths were minimized using CPLEX optimization
software 4 although not using the maximum-flow formulation but the simple linear
program formulation.

As it should be clear from figure 3.3 the decision between a linear and a quadratic ob-
jective function is not just a matter of choosing one or the other. In most global place-
ment heuristics the quadratic function is chosen because of its speed and because the
relative order of modules can used to generate a solution. This is impossible with the
linear formulations because modules stack on top of each other. During local search
however the linear bounding-box formulation is used because it is closer related to the
RSMT.

Since the quadratic netlengths are easier to optimize numerical methods have been
proposed that smooth the quadratic objective function and allows for extraction of
relative position of modules while maintaining an almost linear objective function
(see e.g. [1, 46, 4]). An example of a simple linearization scheme is given in section
3.1.3 during the description of Gordian. In general the linearization schemes are a
couple of times slower than the equivalent quadratic solution methods, but can make
a substantial difference in solution quality.

An interesting quality of the quadratic netlengths is that solutions to the unconstrained
problem always lie within the left-most, right-most, top-most and lower-most pins.
The explanation is simple. If a module was placed e.g. further left than the left-most
pin, netlength could be reduced by moving it until it abutted with the pin. This obser-
vation is basis of several placement algorithms.

Modules as points The first analytic placement heuristics used the modules as points
convention; i.e. all pins on a module are assumed at the center of the module. How-
ever we have found no need for this simplification; the analytic placement formula-
tions are only slightly more complicated if pin offsets are considered. On the other
hand considering the size of the placement area compared to the size of the modules
this probably has very little effect on the solution quality. However it does simplify
the problem for standard-cells since orientation of the modules is no longer an issue;
all orientations are equally good.

What is apparent from figure 3.3 is that stand-a-lone analytic placement results in far
too much overlap. Therefore placement-heuristics combine the analytic placement
with module spreading techniques. The two most popular forms are partition based
and force-based.

4CPLEX is created by ILOG Inc. (www.ilog.com)

3.1 Global Placement 37

Bounding-box Star

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Comparison of unconstrained placement of star wire-length and bounding-box wire-length on three
benchmark circuits, ami49 (a and b), industry1 (c and d), clk (e and f). (a), (c) and (e) are generated based on the
bounding-box linear formulation using CPLEX. (a) and (c) where generated in a few seconds, while (e) took more
than 10 hours. (b), (d) and (f) were all generated using a Conjugate Gradient Method in less than 20 seconds.
Note that the bounding-box placements of (a), (c) and (d) generate far more overlap than the corresponding star
placements of (b), (d) and (f). This is especially easy to see on (c) and (e) where the modules pile together on very
few spots or along the edges of the circuit. The completely black rectangles on the edges of ami49 and industry1 and
uniformly distributed on clk are I/O-pins.

3.1 Global Placement 38

Cut

Figure 3.4: The proud cutting method. An analytic placement is cut in two. The algorithm moves a cut-line from
left to right (sweep-line) until the area on either side is roughly half.

3.1.3 Analytic Based Partitioning Heuristics

The analytic partitioning heuristics are closely related to the graph-partitioning heuris-
tics. But instead of minimizing cuts they use the analytic placement to guide the posi-
tion of the cut-lines.

The oldest analytic method we have found in the literature is from 1970 and by Hall
[34]. He considered quadratic placement with “slot” constraints. The slot constraint
was added to the objective function as Lagrange-relaxation and in order to determine
the Lagrange multiplier he did eigenvector analysis.

Proud

The eigenvector analysis approach was dropped by Tsay et al. [83] because it was far
too slow on large circuits. Instead they use a quadratic clique formulation. Their idea
was based on reformulating the problem as a linear resistive network problem which
they optimize by solving a system of linear equations. This is done with Successive
Over Relaxation (SOR) (see e.g. [8]). The method is a predecessor of optimizing by
Conjugate Gradients.

As mentioned earlier such a placement is likely overlapping and therefore a partition-
ing method is used. A vertical cut line is moved from left to right until the sum of the
area of the modules on the left of the cut line is roughly half (see figure 3.4). This di-
vides the set of modules in two groups. The modules are now confined to two regions
each corresponding to half the placement area and the method now optimizes each
group while pretending that the modules of the opposite group are fixed; their coor-
dinates are simply projected onto the region boundary. Proud is related to the graph
partitioners but use the analytic placement to guide the cut instead of the min-cut
objective.

The method proceeds recursively on each region alternating between vertical and hor-
izontal cut lines until only one module remains. A heuristic four-way partitioner

3.1 Global Placement 39

is also proposed and test runs show that the four-way partitioner gives improved
netlength but often uses twice the time or more.

Gordian

Gordian was presented in 1991 in [49] by Kleinhaus et al. and uses a variety of meth-
ods.

A clique net-model is minimized analytically to give a global placement. Gordian uses
iterative improvement consisting of bi-partitioning and quadratic optimization.

Gordian works with regions. Initially the entire circuit is a region. In each iteration
each region is split in two. The split is done with a cut-line method similar to the one
used in Proud. However here both a horizontal and a vertical cut-line is found and
the one with fewest crossing nets (smallest cut) is chosen unless some width/height
ratio of the resulting regions is far from 1. To improve the cut the Fiduccia-Mattheyses
min-cut heuristic is used to exchange modules on different sides of the cut-line.

In order to prevent the modules from moving outside their assigned region in an iter-
ation Kleinhaus et al. uses a center of gravity constraint which requests that the center
of gravity of the modules in each region is the center of the region. This constraint and
analytical minimization of the netlength corresponds to a quadratic program with con-
straints. However by careful inspection of the constraints the objective function and
constraints are combined to form a new unconstrained quadratic problem which can
be solved by e.g. the Conjugate Gradient Method.

It may happen that modules in two subregions will migrate across a cut-line if the
partition is bad – i. e. the center of gravity constraint is insufficient to keep modules in
their respective regions. Therefore a repartition step is added. The subsets of modules
from two neighboring regions which violate the region constraint are merged and
repartitioned. This is repeated until all modules are within their region. Kleinhaus et
al. concludes that in practice one repartition step suffices.

The iterative procedure is stopped when there are less than � cells in each region.

A legal placement of standard-cell circuits is achieved by sorting the modules accord-
ing to their R -coordinate and splitting them into 4 rows. The sequence of the modules
in the rows is determined by their P -coordinate.

Mixed-cell layout is also considered. Since there may be up to � cells in each region,
macros are given special attention. The relative positions of the macros in the last
quadratic solution is used with a heuristic which determines the minimal area slicing
structure, thereby reducing the area required by the macros.

Gordian-L A linearization scheme was applied to Gordian by Sigl et al. in [79]. The
quadratic clique netlength was changed to a pseudo-linear star netlength. Sigl et al.

3.1 Global Placement 40

simply used the fact that the linear star length is separable in P - and R -coordinates and
that e.g. the P -coordinate contribution can be written as:

��� ��a 9 f O � �
+ � 7��

a M a , f O "
�� VdO f �

M a , f O "
�� VdO

 (3.1)

Sigl et al. approximated
��YVdO with
�� � O . The analytic minimization algorithm now pro-
ceeds iteratively in the following manner. The sum of the denominators is calculated
and inserted into the ordinary quadratic formulation as a constant. The quadratic
formulation is solved and the new sum of denominators is calculated. This is re-
peated until the difference between linear netlengths from succeeding iterations is
below some � . Note that this analytic minimization requires repeated minimization
of the quadratic function. The implementation is called Gordian-L. The algorithm im-
proves the netlength of the two and three pin nets compared to Gordian. No run times
are reported however.

The algorithm of Vygen

Another partitioning method is by Vygen [86]. It is primarily for standard-cells but it
can also handle mixed-cell-layout.

First a quadratic placement is calculated by minimizing the clique netlength. Then the
circuit is divided into four parts and the position of the modules from the quadratic
solution is used to determine into which of the four parts each module is to be placed.
The splitting algorithm gives close to minimal total movement of the modules and
runs in linear time. The process is repeated but for the subsequent quadratic opti-
mizations the nets are split so that no net cross a region. If a net crosses a boundary of
a region an artificial module is placed on that boundary. This leads to a new formu-
lation for each net on each region containing only artificial and ordinary modules of
that region. (see figure 3.5).

Before partitioning at each level a re-partitioning step is also conducted on each
 A

sub-grid in the current grid. The modules of the
 A
 sub-grid are “thrown” together
again and a quadratic problem for the sub-grid is solved. After partitioning this leads
to a new placement of the modules in the
 A
 sub-grid which is accepted if it is better
than the old one.

Extra care is taken to avoid situations where all modules in the same region end in the
same spot. This is done by introducing a constraint that makes the center of gravity of
the modules be at the center of each region.

Vygen’s algorithm can also place large macro modules in combination with standard-
cells. This is done by including them in the partioning step. When regions become
too small to contain the macros a branch-and-bound algorithm is used to place all
macros within the region while minimizing total movement. The algorithm is simi-
lar to that of Onodera et al. [68] (see section 3.5), but here branching occurs on the

3.1 Global Placement 41

Artificial module

Module

Figure 3.5: Illustration of Vygen’s splitting technique. Since the two modules are placed in separate regions the
net between them is split in two. Artificial modules are placed at the region boundaries and connected to the module
of their respective regions. The new formulation is used as basis of a quadratic optimization in the next iteration.

two most overlapping modules. The nodes of the branch-and-bound algorithm are
linear programs which are duals of minimum cost flow problems and can be solved
in
� a 9

�
��� 9 a C � 9

�
��� 9 f�f 5 time [69].

The final phase of the algorithm considers moving modules between the final regions.
Regions are characterized as having too many modules if they cannot contain the mod-
ules. Also some regions may have surplus space. The movement of modules is mod-
eled as a minimum-cost-flow problem between adjacent regions. A knapsack problem
determines which modules to move.

3.1.4 Force-Based Methods

Some writes refer to all analytic placement methods as force-based methods. The
name originates from an alternative interpretation of the analytic quadratic placement.
If modules are modeled as objects and nets as springs connecting the objects, then by
Hooke’s law minimizing the netlength is equivalent to putting the “spring-system”
into equilibrium (see figure 3.6).

In this text the we define the force-based methods as the successors of the method
introduced in [19] by Eisenmann and Johannes in 1998. The force-based method uses
the analytic placement techniques to achieve an illegal overlapping placement which
minimizes quadratic netlength.

Eisenmann and Johannes’ heuristic proceeds iteratively introducing “repelling forces”
between each module and bins on the placement area with overlap (see figure 3.7). In
each iteration the current overlapping forces are added to the quadratic netlength and
the combined quadratic function is minimized.

The force at a location a P � R f
 is set to:

� a P � R f�� �

��
� �
� �
� �
� ��� a P ! � R ! f��

" � !

� " � !

�
� P ! � R ! � (3.2)

5 	 is number of modules and � is number of “disjointness” constraints.

3.1 Global Placement 42

(a) (b)

Figure 3.6: Origin of “the force method”. By reformulating the netlength (a) to a system of springs (b) minimizing
the quadratic netlength is equivalent to bringing the spring-system into equilibrium.

where �
a P ! � R ! f is the “density” of the point a P ! � R ! f�
 and � � a P � R f�
 and � ! � a P ! � R ! f�
 .

The density function is a value for each bin which describes the number of modules in
it. By careful inspection one notices that

� a P � R f can be calculated at the center of every
bin by a two-dimensional folding of two functions; �

a P ! � R ! f and � a P � R f#� � � ���� � � � � � � . By
using a Fast Fourier Transform (see e.g. [67, 60]) we can evaluate

� a P � R f at every bin
center in

� a 9
�
��� 9 f time, where 9 is the number of bins. This detail was omitted from

the original paper and seems to have been overlooked by at least the writers of [61],
however a personal communication with Hans Eisenmann verified that this was indeed
the method originally used.

To improve the netlength Eisenmann and Johannes also used a variation of the lin-
earization method proposed in [1]. Finally the Domino local search method which
will be discussed in section 3.2.2 was used for final placement.

Eisenmann and Johannes only used the heuristic on standard-cell circuits but Mo et
al. [61] extended the force-based heuristic to macro-cells. Unlike Eisenmann and Jo-
hannes no linearization scheme is considered. Also instead of introducing repulsive
forces a filling force is introduced between modules and empty regions of the place-
ment area. Mo et al. also consider orientation of the macro-cells. For each cell the new
orientation is determined by considering all eight possible orientations and selecting
the one which minimizes the external force. Since changing orientation of one cell will
affect the force on other cells, care must be taken not to change orientation of too many
cells at once. Therefore only ����� of the cells are selected for orientation optimization
in each iteration. Finally Routing and pad positioning are considered. Routing is con-
sidered by estimating congestion in each bin and pad positions are determined similar
to module-position by including the pads in the quadratic netlength formulation, but
limiting their movement to one dimension. The iterative flow is divided into three
stages. Stage one gives initial positions of the macro-cells. Stage two optimizes orien-
tation and routing. Finally stage three removes any additional overlap.

Hu and Marek-Sadowska [37] introduced a slight modification of Eisenmann and Jo-
hannes’ method referred to as Fixed-point Addition and Relaxation (FAR). Instead of
adding repelling forces from overlapping regions to the objective function they intro-

3.1 Global Placement 43

Figure 3.7: The force method of Eisenmann and Johannes. The placement area is split into regions. At each region
the force of the modules based on overlap and empty space in all other regions is calculated. Here the force vectors
are shown as arrows. Notice that the force in the overlapping regions is towards regions without any cells. Also
notice that the force formulation pulls cells toward the center of circuit. The image was created by our placement
program as described in section 9.1.

3.1 Global Placement 44

duced a pseudo-module (fixed-points) for each module and a pseudo-connection be-
tween each module and its associated pseudo-module. The advantage of fixed-points
is that they are easier to control than the forces. Hu and Marek-Sadowska are able to
confine the analytic placements to a specific region which is not as simple with the
constant forces of Eisenmann and Johannes.

A completely different force-based method called Attractor Repellor Approach (ARP)
was proposed in 1999 by Etawil et al. [20]. Instead of looking at overlapping regions
a repelling force is introduced between directly connected modules. However this
plain modification of the objective function is insufficient and results fall into two
categories; too much cell overlap or poor netlengths because the objective function has
been distorted too much. Therefore Etawil introduces attractive forces in low density
regions.

3.1.5 Simulated Annealing for Global Placement

Simulated annealing was introduced by Kirkpatrick et al. [48] and, because of its sim-
plicity, it has become the meta-heuristic of choice if all else fails. Naturally simulated
annealing has also been applied to the placement problem, however most writers use
the methodology for final placement because the solution space is considered too large
during global placement.

Sarrafzadeh and Wang use simulated annealing on a global placement grid of bins.
The method was first introduced in [76] (NRG). The placement area is partitioned into
bins. Now each move in the simulated annealer is a swap of cells between bins. The
size of the grid is determined from analysis of the circuit.

The method was also used in [89] (Dragon) – also by Sarrafzadeh and Wang – at the
detailed stage of the global placement. The first stage of the placer in [89] consists
of a hierarchical approach. The placement area is recursively divided into a 2x2 bin
structure. This recursion ends when there are only 7 modules in each bin. At each level
of the hierarchical algorithm a bin swapping algorithm attempts to swap the contents
between neighboring bins to improve the placement. The details however are omitted
from the article.

3.1.6 Clustering

Some placement algorithms combine modules in clusters (clustering). There are at
least two reasons to consider this method.

� Clustering sub-circuits can reduce the running time since there are fewer mod-
ules.

3.1 Global Placement 45

� Clustering can move a simple placement algorithm out of local minimum be-
cause it considers more than simple individual cell movement (See figure 3.8)

The primary problem of clustering is determining clusters. There are two approaches
to this problem:

� Determining the clusters strictly from the hypergraph representation of the cir-
cuits.

� Determining the clusters based on placement.

Clustering methods have been used with the graph partitioning algorithms of section
3.1.1 to improve the speed of the partitioning (see [32, 94]). However clusters have
also been used in direct placement.

Grover and Mallela [30] use simulated annealing for global placement. In order to
reduce the search space of global placement Grover and Mallela use a clustering algo-
rithm which combines modules with high connectivity together and then use simu-
lated annealing to optimize the clusters’ positions on the placement area. The cluster-
ing algorithm starts with a seed module. Now a set of candidate modules is searched
and candidates are rated according to several criteria (e.g. number of additional pins,
common nets with the seed, etc.). Grover and Mallela even allow clusters to be com-
bined.

The TimberWolf Placer version 7 by Sun and Sechen [80] also uses simulated anneal-
ing in conjunction with clustering but with a different clustering algorithm. Here a
predefined number of clusters and a lower and upper capacity of the clusters is speci-
fied. The algorithm assigns weights to clusters depending on the fraction of pins from
nets belonging to the cluster. The total weight is optimized using a separate simu-
lated annealer. The method shows quite promising results especially for large circuits.
Although no run time comparison between the clustering method and an ordinary
simulated annealing is reported, the authors state that the clustering method can be
up to 7 times faster.

Both of the previous clustering based heuristics use the hypergraph to determine clus-
ters however Hur and Lillis [38] use the current placement. Clusters are optimized
many at a time. Some of the clusters are extracted and the remaining modules are
fixed at their current position. Hur and Lillis now use a concept they refer to as Re-
laxation Based Local Search (RBLS). The no-overlap constraints are relaxed and the
resulting linear program is solved using network-flow methods. Whenever Hur and
Lillis reach local optimum with a final placement algorithm they apply their clustering
method which is quite effective at escaping local optimum.

3.1 Global Placement 46

(a) (b)

Figure 3.8: Illustration of how clustering may improve an otherwise local minimum. (a) A swap-based local search
cannot improve the placement because the modules of the two clusters are too strongly interconnected. However
swapping the entire clusters (b) improves the netlength. This is of course a very simple example.

3.1.7 Other Strategies

Although the previous sections cover most of the successful approaches from the lit-
erature other interesting approaches have been attempted.

Relaxation Based Local Search

In [39] (Mongrel) Hur and Lillis use the the Relaxation based local search method
introduced in [38]. Here they use a two-dimensional bin structure the placement area
with bin capacities. They now consider a global placement legal if it satisfies the bin
capacities. Also module coordinates during the global placement are simply the center
of the bin they belong to.

It is not clear from [39] how they form an initial solution but the global optimiza-
tion is the following iterative process: In each iteration a sub-circuit of C modules is
extracted. The remaining cells are fixed at their current positions. Now the linear pro-
gramming formulation of the sub-circuit is optimized using network flow methods
which Hur and Lillis presented in [38], and a relaxed placement is constructed.

In order to remove overlap of the new placement a legalization step is introduced.
Hur and Lillis moves each module from the sub-circuit to its new relaxed position.
If that position is legal it is accepted. If it is illegal (bin capacities exceeded) they
use a legalization method they call “node-rippling”. The “node-rippling” moves cells
from a bin which exceeds capacity constraints to neighboring bins. Careful analysis
determines the best candidates for movement to keep netlength increase low. The
result of the “node-rippling” method is a sequence of moves of modules which will
legalize the placement.

A very important element of Hur and Lillis heuristic is that they consider C legal
placements of each iteration and choose the best. This increases the number of consid-
ered solutions.

3.2 Final placement 47

To further improve on the placement Hur and Lillis also use the min-cut heuristic of
Fidducia and Mattheyses (see section 3.1.1) between adjacent bins.

3.2 Final placement

Final placement has been given surprisingly little attention. Many global placers are
combined with a simple final placement method which swaps module positions, often
in a simulated annealing framework. Most final placement heuristics are limited to
standard-cells.

3.2.1 Simulated Annealing

The final placement heuristic adopted by most authors is based on simulated anneal-
ing. There are two different approaches:

� Optimize netlength and disregard the no-overlap constraint between modules
but penalize overlap in the objective function.

� Optimize netlength but when moving modules to new locations ensure that the
resulting placement is still legal.

The first method has been adopted by [78] and [76] (NRG). In both cases the simulated
annealing considers swap of modules and moving modules to new positions.

The second method has been adopted by [80] and [29]. Note that [78] constitute Tim-
berWolf 6.0 and [80] constitute TimberWolf 7.0 and are written by the same authors.
The conclusion the authors give in [80] is that it is better to update the netlength to fit
the new legal placement. Since this update is very expensive – up to half the modules
of a row can be moved left or right – they develop an approximate method which is an
improvement of a method developed in [29]. The main idea is to look at small moves
of each module. For each module C a value, prefer, is initialized to 0. prefer is de-
creased for each of the nets for which C is rightmost and increased for each of the nets
for which C is leftmost. By multiplying with the distance C is moved an approximate
new netlength is calculated (see figure 3.9).

3.2.2 Greedy Approaches

The Domino-improver by Doll et al. [15] works with legal placements but can accept
an overlapping placement as initial solution. The current placement is split into re-
gions. Each region is placed one at a time. The region , is placed as follows: Other
regions are considered fixed. Domino works from left to right, so all modules to the
left of , have been placed in this iteration. Each cell is now split into sub-cells of equal

3.2 Final placement 48

a

b 0 −1 −1 1 1

Shift right

0 �
�

1 1

Estimated cost: −1 δ
δShift units right

a

(a) (b) (c)

Figure 3.9: The “prefer” method for estimating netlength change when moving a cell from one row to another. (a)
We wish to test the swap of modules a and b. The connections in the second row are shown. (b) The prefer values
for each module. The prefer value is the number of nets for which this module is left-extreme minus the number
of nets for which this module is right-extreme. (c) If shifting the row � units to accommodate for the size of a does
not change which modules are extreme the new netlength is ����� when ��� is the sum of prefer values on the left.
Otherwise this is a rough estimate.

Border line

New placement Previous placementCells to be placed Candidate positions PositionsModules

(a) (b) (c)

Figure 3.10: The Domino placement of a region. (a) Shaded cells left of the border are fixed according to their
new position. Shaded cells on the right are fixed according to their old position. The clear cells are from the region
to be placed. (b) Candidate positions for sub-cells are constructed from the rows. (c) A transportation problem is
formulated. The cost of the edges is the estimated netlength contribution of each sub-cell. Supply from each module
is the number of its sub-cells. Demand in each location is one sub-cell.

size and then a set of legal positions of the sub-cells is generated in each row. A trans-
portation problem of sub-cells is now formulated. The cost of moving a sub-cell to a
location is estimated based on netlength and the problem is solved. Doll et al. discov-
ered that most of the sub-cells end up next to each other. Therefore each cell is placed
at the position of most of its sub-cells. Due to the estimated netlength and the size
of the transportation problem Doll et al. limit the number of modules in each region
to between
	� and �!� . Because Domino places modules according to a transportation
problem and repeatedly legalizes a relaxed placement it has the ability to escape lo-
cal minima of e.g. greedy swapping based heuristics. Figure 3.10 gives an overview
of Domino’s placement procedure. The Domino netlength approximation scheme is
elaborated on in [16].

In [89] the global solution is considered so good that instead of using the simulated
annealing final placement the authors opt for a greedy approach. For each module the

3.2 Final placement 49

1a 1b a a a a a2 3 4 5 6b b b b b2 3 5 64

1a b2 a6 b6a2 1b a53b 4b b5 a3 a4

Figure 3.11: The Mongrel placement improvement. The sequences � � � ������� � ����� and �
� � ������� � � ��� are

interleaved optimally by dynamic programming.

complete neighborhood is searched for the best swap. The neighborhood is relative
small; only cells a few neighbors away are considered as candidates for swapping.

Vygen [86, 88] consider rows of the final placement. He uses the term “zone” for a
maximal part of a row which is not intersected by a fixed object. The initial assignment
is done based on the global placement as described in 3.1.3. Now some zones may
contain too many modules and some too few. To overcome this problem he solves a
minimum-cost network flow problem where overloaded zones are sources and zones
with free capacity are sinks. The cost function is based on an estimate of moving a unit
(e.g. an inverter not a module) from one zone to another. After the minimum-cost flow
problem has been solved he solves a knapsack problem to actually determine which
modules to move.

A very interesting idea is by Hur and Lillis [39]. Their placer Mongrel considers only
movement within rows. Let a row consist of the modules

	
. Now a subsequence

� � I V ��������� I 7 of the modules of
	

is extracted and a subsequence � � � V ��������� � = �
	 ! � is also extracted. They now preserve the relative order of the modules in each of
the subsequences but to improve the placement they consider an optimal interleaving
of the subsequences (e.g. I V � I � � � V � I �

� � � � �
�
� I � �������). It turns out that determining the

optimal interleaving can be done by dynamic programming in time
� a C 9 � , a 9 � C f�f

where , is the total number of pins on the modules. The idea is illustrated on figure
3.11

Another novel idea by Hur and Lillis [39] is to cluster the rows. During the final
placement they create clusters of between
 and ��� modules. Now the interleaving
method described above is used on the clusters.

3.2.3 Guided Local Search

The guided local search based method of Færø et al. [21] is interesting because of its
simplicity and generality to modules of arbitrary size.

3.3 Comparison of Placement Heuristics 50

The local search is an iterative process. In each iteration an optimal – with respect
to the objective function – either horizontal or vertical position of a module C is de-
termined. The local search method can determine this position in

� a
 � =
 � a
 � =
 �

� =

�

� =

 f
�
��� a
 � =
 �

� =

�

� =

 f�f time where � = is the number of pins of
C , � = is the number of modules directly connected to C , � = is the number of nets
connected to C and � = is the number of modules which overlaps horizontally or
vertically with C 6. To move towards legal placements overlap between pairs of mod-
ules is penalized in the objective function. In order to reduce the search space a region
based search is used for large circuits.

The local search is controlled by the Guided Local Search (GLS) meta-heuristic (see e.g.
[85]) which has been quite successful for other problems. GLS enables the local search
to escape local optimum by perturbing the penalized overlap part of the function.
Also the Fast Local Search methodology, which is part of a standard GLS framework,
limits the number of candidate modules for local search.

The primary problem with the GLS method seems to be that in order to ensure legal
placements the overlap penalty may be set very high making it more difficult to move
cells. In other words the netlength and overlap penalty are contradicting objectives.
Also the local search may be too slow for very large circuits even with region based
search. However GLS does produce good results.

In [25] the GLS method was parallelized and also used with a congestion objective.

3.3 Comparison of Placement Heuristics

Results of the standard-cell benchmarks which are described in section 5 have been
reported for most of the previously described placement heuristics by their authors.
However the results were investigated by Madden [57] who has been in contact with
many of the authors. Madden discovered that there were several subtleties in com-
paring the standard-cell methods.

The biggest problem with the results is that the following items are not specified in
the circuit description:

� Row height The benchmarks are standard-cell but the row height is not specified
and authors have interpreted the row height freely. Some placement heuristics
operate with row spacing equal to cell height while others completely disregard
row spacing.

� Dimensions The dimensions of the layout area are not specified and heuristics
use different number of standard-cell rows.

6Two modules overlap horizontally if their horizontal extends overlap

3.4 Minimizing Area and Topological Structures 51

� Pad positions The positions of the IO-pins of the circuits are not specified so
some placement heuristics may be more lucky placing the pads than others.
More importantly however is that IO-pins in some cases are positioned on the
border of the placement area and in other cases some distance from it.

Another problem is pin location on the modules. Although all the heuristics measure
wire-length using bounding-box netlength some disregard the pin offsets and use the
module centers or lower left corner.

Run time comparisons are also difficult. Firstly the machines used for benchmarking
may be different. Secondly some heuristics use random starts and often only the best
achieved result and its sole running time is reported. Thirdly most heuristics have
a number of different parameters, e.g. constants for simulated annealing or overlap
penalties. Fine-tuning these parameters may change the quality of the heuristic. Fi-
nally many of the global placement methods use some form of legalizer and final
placer with only the end-result and running time reported.

Although these issues makes it hard to compare the heuristics we enlist the results
from various articles as they were originally presented by their authors in table 3.1. A
similar table was presented by Madden [57] but we have omitted some of the place-
ment heuristics and added the GLS based heuristic of Færø et al.

3.4 Minimizing Area and Topological Structures

Area minimization is the other popular objective. It makes little sense to do area mini-
mization of standard cells and we will not consider this matter here. Instead we focus
solely on general-cells. The reason to consider area minimization is because the area
minimization algorithms are often connected with topological structures. We will use
a topological structure in our legalization algorithm and therefore the right choice of
structure is important.

Topological structures describe the relative position of the modules (floor-plan). The
set of slicing floor-plans are floor-plans which can be achieved by recursively bisecting
the placement area (see figure 3.12). The non-slicing floor-plans are floor-plans that
are not slicing. Slicing floor-plans can be represented by a binary tree whereas general
floor-plans (slicing and non-slicing) are more complicated to represent. We will only
look at representations for general floor-plans here.

3.4.1 Sequence-Pair

The sequence-pair model is by far the most researched model for area minimization
and macro-block placement. Since the sequence-pair model is the primary subject of
section 4 we will not go into details of the representation here.

3.4 Minimizing Area and Topological Structures 52

Circuit Eisenmann et al. [19] FAR ���
�

[37] ARP [20] NRG[76] Dragon [89]
industry1 - - 1.50/376 - -
industry2 14.6 / 1284 14.4/213 - - 12.9/1461
industry3 45.1 / 1605 42.7/131 48.1/4253 - 42.3/2849
avqlarge 5.38 / 2032 8.25/277 7.16/11202 - 5.25/1984
avqsmall 4.91 / 1741 7.40/527 6.42/8534 - 5.17/1420
biomed 1.78/284 4.23/31 1.83/1290 - -
golem3 - - - - 77.6/8422
struct 0.338/40 - 0.34/116 0.315/- -
primary1 0.870/37 - 1.08/95 0.900/- -
primary2 3.72/152 3.45/24.6 4.02/504 3.41/- -

CPU used Alphastation Pentium 3/ Sun Ultra/ Sun Sparc/ PC �����
�

250/4-266 850 Mhz 140 20 500 Mhz
Circuit TimberWolf 7 [80] Mongrel �������

�
[39] Itools �����

�
XQ �	�

�
GLS [21] �
���

�

industry1 - - - 1.75/90 1.86 � 1.63
industry2 15.8/9252 12.45/3443 11.4/- 16.9/1.14 14.46 � 14.3
industry3 44.9/8766 37.90/4814 39.6/- 48.7/1260 42.7 � 42.6
avqlarge 7.16/21086 5.00/8344 4.78/- 8.55/1320 6.88 � 6.79
avqsmall 6.42/17.44 4.62/8222 4.48/- - -
biomed 3.96/2640 1.48/480 2.90/- 4.32/1254 3.47 � 3.44
golem3 - - 79.9/- 119/8400 118 � 114
struct - 0.278/90 0.272/- 0.77/54 0.778 � 0.744
primary1 1.08/168 0.87/162 0.799/- 1.14/31 0.987 � 0.949
primary2 4.02/922 3.13/249 3.37/- 4.10/150 3.64 � 3.61

CPU used DEC Station Pentium 2 - Pentium 2 Pentium 3
5000/200 400 Mhz 500 Mhz 800 Mhz

Table 3.1: Comparison of the standard-cell benchmarks. The numbers are ’wire-length (meters)/run time (sec-
onds)’. ’-’ indicates number missing from original article.
���� The results for FAR are after legalization and simple
optimization.
������ CPU brand not reported but is likely to be Pentium 2.
�������� Average results from article.
������
ITools is the commercial version of TimberWolf. We have found no details on its algorithm and the results are from
[57].
���� According to [24] XQ uses the algorithm of Vygen and the results are from [24].
������ GLS was conducted
on TimberWolf initial solutions. All runs of GLS lasted 60 minutes. Results are reported as Timberwolf Solution� GLS-solution. The circuits are elaborated on in section 5.

Figure 3.12: Slicing floor-plan. The placement on the right is converted to a floor-plan on the left. The placement
is achieved by recursive bisection. The thinner the line the deeper the recursion step.

3.4 Minimizing Area and Topological Structures 53

a
b

c

d e
f h

g

Figure 3.13: Macro-block example containing 8 modules.

The model was introduced in 1996 by Murata et al. [63]. The primary idea of the model
is to describe relations between any pair of modules by two sequences of module
references. The intermodule relation is simple to determine from the sequences. If
module I precedes module � in the second sequence and module I precedes module
� in the first sequence then I is left of � . Similarly if I precedes module � in the second
sequence and module � precedes module I in the first sequence then I is below � .
Based on this description the placement of figure 3.13 corresponds to the sequence
pair: ���

 � � � � � � � � � I � � � � � � � I � � � � � � � � � � � � �
 ���

Converting the two sequences into a placement has been the topic of extensive re-
search and we will elaborate on it in section 4.4 however we will present running
times of the algorithms. The original method of Murata et al. had running time

� a 9 � f
for placing 9 blocks. Tang et al. [81] improved this

� a 9
�
��� 9 f and later to

� a 9
�
���
�
��� 9 f

[82].

Pisinger [72] also improved the placement algorithm in 2002. Here the placement is
done with a very simple packing envelope structure in combination with a fast prior-
ity queue data-structure and his algorithm also has running time

� a 9
�
���
�
��� 9 f . The

resulting placements are semi-normalized 7 and are therefore not completely true to
the the sequence-pair representation. However it is proven in the article that an opti-
mal sequence-pair packing must be semi-normalized8. The improvement of Pisinger
lies both in the fact that the placement algorithm is fast and in the fact that it produces
more compact placements than the true sequence-pair based algorithms.

Common for the sequence-pair algorithms is that they were implemented in a simu-
lated annealing framework. Results of the algorithms are in table 3.2.

Various authors have contributed to the sequence-pair paradigm. In [93, 45, 26] gen-
eral rectilinear blocks are considered. Fixed module and obstacles are considered in
[62, 82], and other topics are discussed in [55, 53, 5, 64].

7In a normalized placement all modules are moved as far left and down as possible
8Optimal in the sense that the area is minimized

3.4 Minimizing Area and Topological Structures 54

b

g

d e

f ha

c
hf

edb

c g

a

(a) (b)

Figure 3.14: O-trees of macro-block example from figure 3.13. (a) Horizontal O-tree. (b) Vertical O-tree.

b

g

d e

f ha

c

Figure 3.15: The B*-tree of the placement of figure 3.13. Module a is the root of the tree.

3.4.2 O-tree and B*-tree

The O-tree structure was introduced in [31] by Guo et al. in 1999. The representa-
tion uses less space, transformation to placement takes time

� a 9 f and placements are
more compact than those of the original sequence-pair algorithm. The O-tree structure
is a single-source shortest-path tree in either a horizontal or vertical constraint graph.
Nodes in the tree corresponds to modules and children’s position are determined by
their parent, e.g. they cannot be moved further left (or down) than the right (or up-
per) edge of the parent. The root node corresponds to the left or lower edge of the
chip (see figure 3.14). The placement-algorithm uses a tree-traversal and an enve-
lope structure. The authors implemented three placement heuristics; a constructive
algorithm, a deterministic algorithm for refinement and an algorithm based on ran-
dom O-trees.Table 3.2 shows results of their deterministic algorithm. Rectilinear block
placement is considered in [70].

The B*-tree by Chung et al. [11] is similar to the O-tree but consist of a binary tree.
If a node L is the left child of node G then module L is adjacent and right of module
G . If L is the right child of G then L is above G and has same P -coordinate as G . The
placement algorithm is similar to that of the O-tree and has linear time complexity.
In addition the authors describe how to extend the algorithm to handle pre-placed,
rectilinear and soft modules – modules with specific area but unspecified dimensions.
The experimental results are shown in table 3.2. Figure 3.15 shows a B*-tree for the
modules of figure 3.13.

3.4 Minimizing Area and Topological Structures 55

a
b

c

d e
f h

g

a
b d

a
b d e

f a
b d e

a
b d e

f

g

a
b d e

f

g

h

f:V:2, g:H:3, ... e:V:1, f:V:2, ... d:V:1, e:V:1, ...

c:H:3 h:V:2, c:H:3 g:H:3, h:V:2, c:H:3

a
b

b:V:1, d:V:1, ...
a
a:H:1, b:V:1, ...

CBL: a:H:1, b:V:1, d:V:1, e:V:1, f:V:2, g:H:3, h:V:2, c:H:3

Figure 3.16: CBL construction from macro-cell example of figure 3.13.The CBL is constructed backwards. In each
step a block is deleted. Deletion is categorized as horizontal if it “frees” most blocks in the horizontal direction and
vertical if it “frees” most blocks in the vertical direction. The number of blocks with incident edges to the deleted
block in the corresponding constraint graph is recorded.

3.4.3 Corner Block List

In 2000 Hong et al. introduced the Corner Block List in [36]. The Corner Block List
(CBL) is a topological structure for a subset of floor-plans called mosaic floor-plans.
The set of mosaic floor-plans is a superset of slicing floor-plans but a strict subset of
non-slicing floor-plans. The CBL structure is a bit-pattern describing how each block is
to be placed relative to previous blocks. Constructing a corner block list from a place-
ment is simple. First the top-right module is deleted from the placement. The dele-
tion is categorized as either a horizontal or a vertical deletion depending on whether
removing the module reveals covered modules below or to the left. The CBL con-
struction is demonstrated in figure 3.16. A reference to the module, deletion type and
number of revealed modules are stored in front of the CBL. Converting the CBL to a
placement can be done in

� a 9 f time. The CBL placement algorithm was combined
in a simulated annealing framework. The neighborhood of the local search does not
always lead to legal floor-plans, but the authors discard illegal floor-plans.

Because of the floor-plan-nature of CBL-placements the CBL’s main strength lies in its
ability to handle soft modules. However the authors comment little on this matter
other than to give results for soft placements.

3.4 Minimizing Area and Topological Structures 56

b

g

d e

f ha

c
b d e

h

gc

fa

(a) (b)

Figure 3.17: TCG of placement from figure 3.13. The figures illustrate the complexity of the TCG.

3.4.4 BSG

In 1996 Nakatake et al. introduced the Bounded Sliceline Grid (BSG) structure [66].
The BSG is described as an infinite grid consisting of rooms, which defines a horizontal
and a vertical graph. In either graph exactly one edge crosses each room. For the
placement each module is assigned to one room but not all rooms need to be filled. The
placement is constructed from a longest path algorithm and has quadratic running
time. The advantages of the BSG are unclear however the authors show that their
algorithm is capable of packing in general shapes by preassigning dummy modules
to rooms where modules are not allowed to be placed.

3.4.5 Transitive Closure Graph

Lin and Chang [56] proposed the transitive closure graph (TCG) for modeling non-
slicing floor-plans. The TCG-model consists of a horizontal and a vertical dependency
graph where each node corresponds to a module. An edge from G to module L in
the horizontal graph means that L must be to the right of G , while a similar edge in
the vertical graph means that L must be above G . Transitive edges are included in the
graphs which makes moves of modules in the graphs simple. The TCG of the place-
ment from figure 3.13 is shown in figure 3.17. Transforming the TCG to a placement
is with a longest path algorithm and has a quadratic running time. However the au-
thors present fine results with running times matching CBL and Fast-SP. The results
are shown in table 3.2.

3.4.6 Comparison of Topological Structures

The quality of the various topological structures and the time spend on the results are
listed in 3.2. Although some of the results are quite impressive one should of course
note that the results from the simulated annealing based algorithms in general are

3.5 Branch-and-Bound Algorithm 57

Algorithm apte xerox hp ami33 ami49 Processor

Original sequence-pair 44.89 / 1881.6 SunIPX
Fast-SP 46.92 / 1 19.80 / 14 8.947 / 6 1.205 / 20 36.50 / 31 166 Mhz. Sun Sparc Ultra-1
Semi-normalized SP 46.92/0.80 19.80/1.10 8.947/1.01 1.178/4.96 36.33/9.33 Pentium-III 1 Ghz
Iterative O-tree 63.3 / 0.65 25.9 / 0.44 14.3 / 0.26 1.69 / 2.83 54.6 / 11.2 200 Mhz. Sun Sparc Ultra-1
Iterative B*-tree 46.92 / 0.11 20.06 / 0.39 9.17 / 0.21 1.27 / 7.83 37.43 / 39.24 200 Mhz. Sun Sparc Ultra-I
SA B*-tree 46.92 / 7 19.83 / 25 8.95 /55 1.27 / 3417 36.80 / 4752 200 Mhz. Sun Sparc Ultra-I
Corner block list - 20.96 / 30 66.14 / 32 1.201 / 36 38.58 / 65 Sun Sparc 20
TCG 46.92 / 1 19.83 / 18 8.947 / 20 1.20 / 306 36.77 / 434 433 Mhz. Sun Sparc Ultra 60

Table 3.2: Comparison of macro-cell placement algorithms (area mm
�
/time sec). The benchmarks (apte,

xerox, hp, ami33, and ami49) are elaborated on in section 5.

the best results – not the average result of a number of runs. This makes comparison
difficult since good results may be a matter of random seed choice.

3.5 Branch-and-Bound Algorithm

We have only found one exact branch-and-bound algorithm for the placement prob-
lem. In 1991 Onodera et al. [68] published a very simple branch-and-bound algo-
rithm. The branch-and-bound algorithm introduces block constraints of the form “left
of”, “above” etc. in the search tree and prunes if optimum of the resulting linear-
programming formulation is worse than the current best, if the introduced constraint
is redundant or if the current placement violates some aspect ratio constraint. The
algorithm is only capable of placing less than six modules and for more than six mod-
ules a clustering method is used.

It is interesting that very little work has been done in terms of area-minimized rectan-
gle packing. There exists branch and bound algorithms for rectangle bin packing and
strip packing which are quite efficient [59, 22]. The problem is likely discovering good
bounds for area-minimization.

Also in terms of minimizing netlength an exact branch-and-bound algorithm makes
little sense when the netlength is based on some rough estimate.

3.6 Legalization

Some of the placement methods of the previous sections do not result in a legal place-
ment. Therefore a legalization step must be introduced.

3.6.1 Simple Legalization Strategies

A legalization strategy often exerted by authors of standard-cell placements is to sim-
ply sort the modules according to P - and R -coordinate and place the modules in rows
using the R -coordinate to determine row number and the P -coordinate to determine
module order of that row. This method is used in e.g. [49],

3.7 Post Optimization 58

3.6.2 Guided Local Search

The guided local search method described in section 3.2.3 can also be used strictly to
legalize a placement [24]. This is done simply by setting the penalty for overlap suf-
ficiently large, and even large circuits can be legalized in a matter of minutes without
changing the netlength of a global placement more than 10-20 percent.

3.6.3 Overlap Removal by Sequence-Pair

In [65] Nag and Chaudhary describe a method to remove overlap using the sequence-
pair representation (see section 3.4.1). The current overlapping placement is con-
verted to a sequence-pair representation. The sequence-pair representation is con-
verted to the horizontal and vertical constraint graphs of the original sequence-pair
model (which will be described in section 4.4.1). An upper limit is imposed on the
horizontal and vertical dimensions of the chip. This in turn corresponds to an upper
limit on the longest path in either constraint-graph. Now the most violating path in
either graph is determined. The violating path is then searched for an edge-swap.
The edge-swap procedure roughly converts a horizontal module relation to a vertical
one or vice versa. The procedure reduces overlap in the direction (horizontal or verti-
cal) of the longest path, but with the risk of introducing new overlap in the opposite
direction. The path-search determines the best edge-swap. The algorithm proceeds
iteratively reducing overlap and stop when a feasible placement is reached. The origi-
nal placement of the modules is taking into consideration by adding a distance-weight
to each arc in the constraint graphs. When a feasible placement has been determined
the surplus space between modules is divided among the arcs using the original dis-
tances as a reference. This ensures that the final feasible placement is close to the orig-
inal placement. The algorithm seems fairly slow compared to e.g. GLS (see section
3.2.3). Only one experiment is reported. The experiment removes 9 overlaps within 2
minutes on an UltraSparc2.

3.7 Post Optimization

When the relative order of the modules has been determined by final placement there
is often room for improvement.

Vygen [88] use the order of the modules at the end of the final placement to construct a
linear program which minimizes the bounding-box netlength of the modules but with
the ordering preserved. This turns out to be the dual of a minimum-cost-flow problem
(see appendix C.2.3) and can be solved in quadratic time which unfortunately is too
expensive. Therefore he uses the algorithm on small regions of the placement area.

For minimizing the bounding-box netlength of a single row with fixed ordering Bren-
ner and Vygen [6] improve an algorithm by Kahng et al. [44]. Brenner and Vy-

3.7 Post Optimization 59

gen’s algorithm runs in time
� a C

�
���

�
��� C f for the cases with unweighted nets and� a C a

�
��� C f � f for the weighted case. However the method is too complicated to de-

scribe here.

60

4 Sequence-Pair Legalization

In this section we present a legalization algorithm based on the sequence-pair repre-
sentation which was briefly presented in section 3.4.1. The algorithm has running time� a 9

�
��� 9 f for 9 rectangles and consists of two large steps.

1. The current possibly overlapping placement will be converted to a sequence-
pair.

2. The sequence-pair representation is used to construct a new non-overlapping
placement.

Before considering these two steps of the legalization we will explain the sequence-
pair representation in more detail than was given previously in section 3.4.1. After
this brief introduction we will consider conversion to and from sequence-pair.

Why Sequence-Pair We have chosen the sequence-pair representation as topological
representation for several reasons. Firstly the sequence-pair representation is by far
the most researched of the representations. Secondly sequence-pairs consists of codes
rather than complicated tree or graph structures. This makes it easy to represent and
build the abstract representation. Thirdly the sequence-pair representation contains
information of relative placement of any two rectangles. It is harder to extract relative
placement of two arbitrary rectangles in e.g. the B*-tree representation.

4.1 Packing Problems

The sequence-pair representation is used for packing problems and therefore we will
avert to these for this entire section. We begin with the following definitions:

The first definition corresponds to the one of section 2.2.4.

Definition 4.1. Placement (of rectangles) Let � be a set of rectangles with width 4��;-� and height 4��B- � for 4 - � . Then a placement � � a P � R f of � is a pair of maps
P � � � �H� and R � � � ��� which gives the coordinates of each rectangle.

Definition 4.2. Packing Let � be a set of rectangles with width 4 � - � and height
4�� - � for 4 - � . Then a packing � � a P � R f of � , P � � � � and R � � � � ,
with width � - � and height

� - � is a placement of � such that no two rectangles
overlap and all rectangles are contained within the rectangular region T �%��� X A T �%� � X . I.e.
� 4 �
 - � ��a P a 4 f � 4 � � P a
 f�f��0a P a
 f �
 � � P a 4 f�f��#a R a 4 f � 4�� � R a
 f�f��0a R a
 f �
�� � R a 4 f�f
and

� 4 - � � P a 4 f 5 �	� R a 4 f 5 �	� P a 4 f�� 4 � � �
� R a 4 f�� 4�� � �
.

4.2 The Sequence-Pair Representation 61

Note that our definition requires that a packing is a legal placement in the sense that
no two rectangles overlap.

We also define rectangle relations:

Definition 4.3. Left, right, above and below For two rectangles 4 and
 in a placement
� � a P � R f we say that 4 is left of
 if and only if P a 4 f�� 4 �

�
P a
 f . Similarly we define

right (P a 4 f � P a
 f �
 �), below (R a 4 f � 4��
�
R a
 f) and above (R a 4 f � R a
 f �
��) relations.

Definition 4.4. RPDP The rectangular packing decision problem (RPDP) of the in-
stance a �6��� � � f is to determine if there exists a packing of the rectangles � with width� - � and height

� - � .

The RPDP is a decision problem and easily shown to be NP-complete by reducing
from 2-partition.

Definition 4.5. ARPP The area rectangular packing problem (ARPP) of the instancea �6� I f is to determine if there exists a packing of the rectangles � with area I such that
the width � and height � of the packing is I � � � � .

Although not immediately obvious RPP is polynomially reducible to ARPDP (see e.g.
[63]), and so ARPP is also seen to be NP-complete.

Definition 4.6. Minimal Area Rectangle Packing Problem (MARPP) The MARPP of
a set of rectangles � is to determine the minimal I � � � � - � such that there exists a
packing � of a �6��� � � f .

Note that MARPP is of course NP-hard.

4.2 The Sequence-Pair Representation

The original sequence-pair representation was introduced by Murata et al. [63]. The
purpose of this abstract representation of legal placements was to use it for solving
MARPPs.

4.2.1 Gridding

To explain the sequence-pair representation we will first demonstrate a simple tech-
nique to transform a placement to a sequence-pair by hand. This was also the way it
was presented by Murata et al.

Figure 4.1 (a) illustrates 6 rectangles. Their relative placement is converted to a sequence-
pair as follows:

4.2 The Sequence-Pair Representation 62

d

c

e
f

b

a f
e

e
f

bc
d
a

fe

b

a

d

c

adcb

e
f

efabd c

a
b
de
fc

a

b

c

d

(a) (b) (c)

Figure 4.1: Construction of a sequence-pair using gridding. (a) The placement of the rectangles. (b) positive
step-lines. (c) negative step-lines. The rectangle sequence arising from positive step-lines is �

� ��� � ��� 	 � � ��� � .
The sequence from the negative step-lines is � � � � ����� 	 ��� � � � .

� For each rectangle draw alternating leftwards horizontal and downwards verti-
cal lines from its lower left corner until the the lower left corner of the rectangle
placement area is reached. Do not cross other rectangles or their step lines.

� Do the same from the upper right corner of each rectangle to the upper right
corner of the placement area with rightwards and upwards orthogonal lines and
do not cross any of the lines from the previous step.

These lines are called positive step-lines. We may order the lines from left to right at
e.g. the lower left corner or from top to bottom at the upper left corner (see figure
4.1(b)). Because the lines do not cross the order is maintained throughout the place-
ment area and it allows us to construct a sequence of rectangles. Call this sequence
M .

Similarly we construct a sequence, � , by drawing lines from upper left corners and
lower right corners of the rectangles to respectively the upper left corner and lower
right corner of the placement area (figure 4.1(c)). These lines are called negative step-
lines. Combined the two sequences form the sequence-pair

�
M � � � .

4.2.2 Properties of the Sequence-Pair

Based on the gridding process we can conclude a nice property of the sequence-pair�
M � � � .

Theorem 4.1. (Murata et al. [63]) Assume
�
M � � � is a sequence-pair of a packing � produced

by gridding.

If I precedes � in sequence M (i.e. M �
� �����&� I ��������� � ������� �) and I precedes � in sequence �

(i.e. � �
� ������� I ������� � ��������� �) then I is left of � in � .

Similarly if � precedes I (i.e. M �
� �����&� � ��������� I ������� �) in sequence M and I precedes � in �

then I is below � in � .

4.2 The Sequence-Pair Representation 63

a

b

a

b

(a) (b)

Figure 4.2: Illustration for the proof of theorem 4.1. Assume � precedes
�

in both sequences of the sequence-pair.
(a) The positive step-lines require that � be left of or above

�
. (b) The negative step-lines require that � be left of or

below
�
.

Proof. The proof is based on [63].

Assume I precedes � in both sequences. When we drew the step-lines for � , I must
have preceded � in the ordering of both the positive and negative step-lines. Since
we drew the positive step-lines from the top-right corner of � to the top-right corner
of the placement area, and from the lower-left corner of � to the lower-left corner of
the placement area with horizontal and vertical step-lines, I must be left or above �
(see figure 4.2(a)). Similarly I must have preceded � in the ordering of the negative
step-lines and therefore I must be left of or below � (see figure 4.2(b)). From this we
conclude that I must be left of � .

The other case is proven similarly.

Note of course that the theorem is symmetric in the sense that if I proceeds � in both
sequences then I is right of � and if I proceeds � in the M -sequence and precedes � in
the � -sequence then I is below � .

P-admissible As described in the previous paragraphs a sequence-pair is a code of
a packing. All sequence-pairs for a set of rectangles constitute a solution space and
Murata et al. proposed the following 4 properties of a “good” solution space of codes
which could be used for combinatorial search:

1. The solution space is finite

2. Every code is feasible

3. Realization of a code is possible in polynomial time.

4. There exists a code which corresponds to an optimal solution of the problem.

4.3 From a Placement to Sequence-Pair 64

They call such a solution space P-admissible. The purpose of these requirements should
be clear; that the solution space can be searched in finite time, without considering in-
feasible solutions and the optimal solution is part of the solution space. Apart from
item 4 it will become clear from the following sections that the sequence-pair rep-
resentation is P-admissible. To see 4 keep in mind that in a optimal solution to the
Minimal Area Rectangle Packing Problem any rectangle can be moved as far left and
down as possible until it abuts another rectangle. It should also be noted here that the
sequence-pair representation is not P-admissible in terms of the placement problem
since there exists solutions to the placement problem in which rectangles cannot be
moved left and down without increasing netlength (see e.g. 2.3).

4.3 From a Placement to Sequence-Pair

In this section we will present an algorithm which can convert a placement into a
corresponding sequence-pair. In the previous section we explained the sequence-pair
representation and used gridding to decide the ordering of the two sequences. This
method is not in strict sense an algorithm.

Imahori et al. [41] presented an algorithm which runs in time
� a 9

�
��� 9 f but this algo-

rithm does not consider possible overlap. Originally unaware of Imahoris algorithm
we have created a different algorithm which also has running time

� a 9
�
��� 9 f . Our al-

gorithm is based on gridding. The algorithm is a combination of two algorithms. One
algorithm clears overlap by reducing the dimensions of the rectangles while another
algorithm converts the non-overlapping packing to a sequence-pair.

First we will describe a very fast heuristic which does not always produce the correct
sequence-pair. This method also has running time

� a 9
�
��� 9 f but the constants are

smaller since it is based completely on sorting.

We can justify the
� a 9

�
��� 9 f running times by this theorem.

Theorem 4.2. No correct conversion from a placement to a sequence-pair can be done faster
than sorting a set of distinct integers.

Proof. Assume � Z � is a set of distinct integers. For each number G - � create a
rectangle with coordinates a P � R f0� a G �$��f and dimensions a�� � � f?� a �	�&��f . Then the M
(and �) sequence of the packing corresponds to a sorted sequence of the numbers.
This is true since according to theorem 4.1 a block I is left of another block � if and
only if I precedes � in both sequences of the sequence-pair. Further I is left of � if and
only if the number corresponding to I is less than the number corresponding to � .

The same argument can be used for other abstract representations (e.g. O-trees and
B*-trees).

4.3 From a Placement to Sequence-Pair 65

f
b

a

d

f
b

a

d

(a) (b)

Figure 4.3: (a) Gridding with diagonal line fragments. (b) The diagonal line fragments of � can be converted to
straight line fragments thus obeying the rules of gridding.

4.3.1 A Heuristic Approach

The purpose of transforming a packing to a sequence-pair is to legalize the placement
fast. We will begin with a simple heuristic for two reasons.

1. The heuristic method forms the base of the algorithm which we will present in
the following section.

2. The heuristic method is several times faster than the algorithm allowing speed-
ups whenever an approximate sequence-pair suffices.

First we note that allowing diagonal line fragments during the gridding phase is ab-
solutely legal as long as no lines cross. The argument supporting this is that diagonal
lines can be converted to a stair case of sufficiently small steps of horizontal and ver-
tical lines thus obeying the rules of the sequence-pair gridding (see figure 4.3).

The idea of the heuristic is simple. It is based on the assumption that all rectangles
are points (e.g. the center of the rectangle). Allowing diagonal line fragments and
assuming that rectangles are points we get a gridding as shown on figure 4.4. If all
diagonal lines have equal slope they do not intersect and we can order them as we
previously ordered the step-lines. Simply ordering the rectangles according to their
diagonals gives us the two sequences. The method is illustrated on figure 4.5

Since the order of the diagonals is maintained throughout the plane, the order can be
determined by the intersection point of the diagonal and any horizontal line. In the
following we choose the P -axis (horizontal line with R � �).
The equation of a diagonal through a point � �ba ,*O � , Q f
 is

P � � � R " , O " � � , Q � � (4.1)

4.3 From a Placement to Sequence-Pair 66

d

c

e
f

b

a

Figure 4.4: If rectangles are considered as points and we allow diagonal grid lines we get this gridding of the
packing from figure 4.1.

d

c

e
f

b

a

b d c e a f

d

c

e
f

b

a

a b fe cd

(a) (b)

Figure 4.5: Extending the line-segments through the rectangles to the bottom of the packing area we can get the
sequence-pair by looking at the intersection of the diagonal with the bottom. (a) is the � sequence. (b) is the �
sequence. The sequence-pair is � � � ������� � 	 � � ����� ��� � � � � ��� 	 ��� ��� ��� . Notice that the only difference from this
and the sequence-pair of figure 4.1 is that � and � have swapped place in the first sequence. This has the unfortunate
effect of requiring that � be placed to the right of � instead of above.

4.3 From a Placement to Sequence-Pair 67

Where � is a constant which describe the slope of the diagonal. Intersection with the
horizontal line R �b� occurs at P � , O � � , Q . Positive � gives M -sequence diagonals
while negative � gives � -sequence diagonals.

The previous discussing allow us to define algorithm (heuristic) 4.1 for determining
the sequence-pair of a packing.

Algorithm 4.1: Heuristic for sequence-pair encoding
Input(A placement � � a P � R f of rectangles � with center-coordinates a P a 4 f �
���

�
� R a 4 f�� ���

�
f�
 46- � , and real number �) ;

M �[T R sorted ascending according to P a 4 f�� ���
�
� ��a R a 4 f � � �

�
f X ;

� �[T R sorted ascending according to P a 4 f�� ���
�
" ��a R a 4 f � � �

�
f X ;

return sequence-pair
�
M � � �

Notice on figure 4.5 that even in the illustrated simple case the heuristic does not
produce the correct result. The error comes from assuming that all modules are points.
The method performs best with instances of rectangles of more or less equal size.

4.3.2 A Sweep-Line Algorithm

Using the heuristic of the previous section we can construct a simple sweep-line algo-
rithm for creating the sequence-pair of a placement. Once again we use the gridding
methodology and once again we use diagonals as opposed to step lines. The algo-
rithm does not allow for overlap in the placement. We only describe the algorithm for
the M -sequence since the � -sequence can be constructed similarly.

Instead of drawing diagonals through the center of the rectangles from bottom to top
of the packing area we only draw diagonals from the upper right corner of rectangles.
Secondly we add line-segments from lower left to upper right corner of each rectangle.
We call these line-segments rectangle-segments. This is shown on figure 4.6(a).

According to the gridding rules no “step-lines” are allowed to intersect. Since diago-
nals are all parallel this means that no diagonal is allowed to cross a rectangle-segment.
Assume that the diagonal “step-line” of a block I intersects with the rectangle-segment
of a block � . If we break the course of the diagonal of I and let it continue along the
rectangle-segment of block � and further along the diagonal of � we would not violate
the gridding rules since no-segment would cross. This is illustrated on figure 4.6(b).

We are now able to reason on this method. If a diagonal of a rectangle I intersects with
a rectangle-segment of a rectangle � then the remainder of the positive upper-right
“step line” of I can run along the “step-line” of � . If the diagonal of I hits the rectangle-
segment on the upper-left side of the rectangle-segment, then I must precede � in M .
On the other hand if the diagonal of I hits the rectangle-segment on the lower right
side, then I must succeed � in M . We will clarify this in a moment.

4.3 From a Placement to Sequence-Pair 68

d

c

e
f

b

a

d

c

e
f

b

a

b

f

e
d

c

a

(a) (b) (c)

Figure 4.6: Illustration of the diagonals and rectangle-segments. (a) The diagonals are now drawn from the upper
right corner of the modules and segments are added between lower-left and upper right of the rectangles these are
called “rectangle-segments”. (b) No diagonals are allowed to intersect a rectangle-segment – This is the correct
layout of the diagonal “step lines”. (c) Diagonal step lines are cut and merged at intersections.

b c f

d e a

Preceeds Succeeds

Inorder: <b,c,d,e,a,f>

Figure 4.7: Tree like structure to describe the � -sequence of the modules from figure 4.6. A “node” in the tree
represent a module and has two children. The left child is an ordered list of modules preceding it. The right child
is an ordered list of modules succeeding it.. The top node is an artificial node and every module succeeds it. An
“in-order” run gives the � -sequence.

Based on this discussion we can thus break the positive ‘’step-line” of I once it hits a
rectangle-segment. This is illustrated on figure 4.6(c).

In figure 4.6(c) the diagonals of
�

and � hits the rectangle-segment of
 from lower
right side so these to modules succeed
 in that sequence. Also the diagonal of I
hits the rectangle-segment of � from top left side and so I should precede � . This
can be represented by a tree-like structure as shown on figure 4.7. An extra artificial
rectangle-segment is added at the top corresponding to the root of the tree.

Based on this discussion we can present the details of our sweep-line algorithm.

First we rotate the coordinate system so that the diagonals become parallel with the
R -axis (see figure 4.8). An orthogonal coordinate system with the diagonals as one
axis is given by the vectors a �	��" �8f
 and a �<�&��f
 . It is therefore easy to verify that the

4.3 From a Placement to Sequence-Pair 69

b

c

d
e

fa

x

y

b

(α, 1)
c

d
e

a

f

(1, −α)

t

t

Figure 4.8: Rotation of the coordinate system such that the diagonals become parallel to the � -axis. The top
line-segment is the top of the packing area corresponding to the artificial module.

coordinate system transformation induced by the matrix

� � " �

� � � � (4.2)

rotates diagonals into the R -axis. Note that the transformation is not distance preserv-
ing. Now the algorithm proceeds as a common sweep-line algorithm.

A sweep-line algorithm moves from left to right only stopping at specific P -coordinates
which are called breakpoints (see e.g. [13] for an introduction to sweep-line algo-
rithms). In our case the breakpoints are at the transformed lower-left and upper-
right corners of rectangles. The breakpoints serve two purposes. Firstly whichever of
the two breakpoints comes first activates the rectangle-segment of the corresponding
rectangle. Activation inserts the rectangle-segment into a data structure containing
rectangle-segments ordered by their transformed R -coordinate. The last of the two
breakpoints removes the segment from the data structure. Further the upper-right
breakpoint for a rectangle I checks which rectangle-segment is above it in the trans-
formed coordinate system. Let � be the rectangle of the rectangle-segment which is
above the upper right corner of I . If the rectangle-segment above is descending (has
negative slope) then I is above � . If it is ascending (positive slope) then I is below � . In
both cases I is inserted into the previously described tree-structure in either preceding
or succeeding list. Figure 4.9 illustrates this.

Finally when all breakpoints have been visited the nodes in the tree-like structure are
visited in an in-order search. The in-order search starts from the top of the tree-like
structure and visits each node recursively by first visiting predecessor nodes, then the
node itself and finally successor nodes.

A more precise description of the algorithm is given in algorithm 4.2.

4.3 From a Placement to Sequence-Pair 70

b

c
d

e

a

f

1 2 3 45 6
7

8910 12
11

b c

d e a

f

b c

d e a

f

b c

d e a

f

1. 5.

7. 9.

b c

d e a

f

b c

d e a

f

b c

d e a

f

10. 11.

(a) (b)

Figure 4.9: The sequence-pair sweep-line algorithm at work. (a) Breakpoints in the transformed coordinate system.
(b) The evolving tree-like structure. The numbers in upper right represent the breakpoint of the occurrence. Note
that the structure only changes at upper-right breakpoints. The lines of the tree in (b) show how rectangles get
connected at each breakpoint.

Asymptotic Running Time The asymptotic running time is dominated by sorting
the breakpoints and maintaining the rectangle-segment data structure. The rectangle-
segments cannot cross since this would imply overlap in the placement and we as-
sumed that the placement contained no overlap. With this in mind both sorting and
maintaining the rectangle-segment structure can be achieved in

� a 9
�
��� 9 f time if a

balanced tree structure e.g. red-and-black tree (see [13]) or similar is used for the ac-
tive rectangle-segments.

This algorithm creates the M -sequence of the modules. By mirroring the modules in
the R -axis one can use the same algorithm to encode the � -sequence.

4.3.3 Overlapping Placements

Although the previous algorithm does, to some extend, work for placements with
overlap have taken no special care to handle it. Therefore we we will present an algo-
rithm in this section that deals with overlap in a structured fashion.

4.3 From a Placement to Sequence-Pair 71

Algorithm 4.2: Algorithm for sequence-pair encoding
Input(A placement � � a P � R f of a set of placed rectangles � with coordinatesa P a 4 f � P a R f�f
 46- � , and a value � - 1) ;
Generate breakpoints at the lower-left and upper-right transformed cor-
ners of the rectangles in � ;
Sort the breakpoints by increasing transformed P -coordinate;
foreach Breakpoint do

if Breakpoint is start of rectangle-segment then
Insert the rectangle-segment into segment data structure.

if Breakpoint is end of rectangle-segment then
Remove the rectangle-segment from segment data structure.

if Breakpoint is upper-right of rectangle 4 then
Find segment
 above ;
Let � be the rectangle of
 ;
if
 has negative slope in transformed coordinate system then

Insert 4 as successor of �
else

Insert 4 as predecessor of �
Do in-order search of tree-like structure;
return The sequence of modules visited during in-order search.

There are at least two approaches; either we extend algorithm 4.2 to handle overlap or
we create a completely new algorithm which runs prior to algorithm 4.2 and removes
any overlap.

We have chosen the second strategy. There are three reasons for this.

� A separate algorithm keeps algorithm 4.2 simple,

� a separate algorithm to handle overlap may work regardless of the abstract data-
structure used (e.g. sequence-pair, B*-tree, O-tree etc.), and is therefore a more
general approach,

� and preliminary attempts at extending 4.2 proved that consistent overlap han-
dling was difficult.

If we are not allowed to move the modules there is only one way to remove overlap; to
reduce their size. This is our strategy. Before we describe the method we will introduce
a concept which is commonly used for the nesting problem (polygon packing). It
should be noted that we have adapted the concept slightly.

Definition 4.7. Intersection depth Let rectangles I and � overlap. Then we say that
the intersection depth along a vector E is the distance I has to move along E so that I
and � no longer overlap.

4.3 From a Placement to Sequence-Pair 72

a
b

(1, 0)
t

(−1, 0)

t

Figure 4.10: Intersection depths between � and
�

along the vectors
��� ������� and

��	
� ������� . I.e. moving � right or
left.

In nesting problems this has led to the no-fit polygon which can be used to quickly
determine the intersection depth. Without dwelling upon it further the no-fit polygon
of two rectangles with dimension a I � � I � f
 and a � � � � � f
 is simply a rectangle with
dimensions a I � � � � � I � � � � f
 . Instead of using the no-fit polygon we will make a few
observations with respect to intersection depth along the P - and R -axis.

Definition 4.8. Minimum intersection depth Let I and � be overlapping rectangles
in a placement � � a P � R f . The minimum intersection depth along the P -axis is the
smallest of the intersection depths along the vectors a �	�$��f
 and a " �	�$��f
 . (I.e. moving
left or right). The minimum intersection depth along the R -axis is defined similarly.

Lemma 4.1. If I and � are rectangles in a placement � � a P � R f with dimension a I � � I � f�

and a � � � � � f�
 and lower-left coordinates a P a I f � R a I f�f
 and a P a � f � R a ��f�f�
 and the center of I is
left of the center of � , i.e. P a I f���� �

�
� P a ��f���
 �

� then the minimum intersection depth along
the P -axis is along the vector a " �	�$��f�
 .

Proof. There are only two possibilities. The intersection depth along the vector a �	�$��f�

is P a � f � � � " P a I f and the intersection depth along a " �	�$��f
 is P a I f � I�� " P a ��f (see
figure 4.10). We deduce:

P a I f�� I �
 � P a ��f��
�
�

 P a I f�� I � �
 P a ��f � � �
P a I f�� I � " P a � f � P a ��f�� � � " P a I f (4.3)

This lemma is the base of our algorithm. From it we can deduce that if the center I
is left of the center of � then moving I to the left until I and � no longer overlap is
less movement than moving I right until I and � no longer overlap. Because of the
“antisymmetry” of intersection depth we know that the opposite is also true.

4.3 From a Placement to Sequence-Pair 73

Running time of our algorithm is important. Since the other algorithms (non-overlap-
ping placement to sequence-pair and sequence-pair to placement) have running times
less than or equal to

� a 9
�
��� 9 f we wish to hit the same running time for this algorithm

which limits our possibilities.

Our algorithm consists of two almost identical sweep-line algorithms. One works
from left to right. The other from bottom to top. We begin by describing the left to
right algorithm.

First we introduce a cut-method between two overlapping rectangles. The method
either cuts the rectangles by a vertical cut-line or by a horizontal cut-line. We call the
vertical cuts P -cuts and horizontal cuts R -cuts. Let us consider the P -cuts since the
R -cuts are rotated but otherwise exactly the same. For a rectangle I in a placement
� �[a P � R f let I O �[T P a I f � P a I f � I � X and I Q �bT R a I f � R a I f � I � X .
We consider two rectangles I and � . Assume also that the center of I is left of the center
of � . According to the previous discussion it makes sense that I should be left of � after
the cut. When considering the intervals I O and � O there are now three possibilities.

� I O ^ � O In this case we cut halfway between the centers but no more right than
P a I f�� I � .

� � O ^ I O Here we cut halfway between the centers but no more left than P a ��f .
� P a � f 5�P a I f � P a ��f � � � � P a I f � I � We cut halfway between left side of � and

right side of I .

Note that the remaining possibility P a I f 5�P a ��f � P a I f � I � � P a � f � � � would imply
the center of I is right of the center of � . The three possibilities are depicted on figure
4.11 and allow us to define a function P���� � a I � ��f which returns the x-coordinate of the
vertical cut-line between I and � . Note that P���� � a I � � f assumes that I should be left of �
after cutting and the function is not symmetric. We also introduce a function R���� � a I � ��f
which is equivalent to P���� � a I � ��f but considers R -direction instead of P -direction.

For two rectangles I and � we also wish to determine whether an P - or a R -cut is best.
We considered three ways to choose between P - and R -cuts:

1. Choose the direction that maximizes area after cut.

2. Choose the direction with smallest intersection depth.

3. Choose the direction with relative smallest intersection depth. I.e.
O��
	���
��O��������
	���
�� orQ��
	���
��Q���������	���
��

In all cases we assume that centers specify which rectangle should be below or left
as discussed in lemma 4.1. Examples of the three possibilities are shown of figure

4.3 From a Placement to Sequence-Pair 74

ba

a b ba

b
a a

a b

b

(a) (b) (c)

Figure 4.11: The three possible � -cuts (see the text). (a) �
��� � �

. (b)
� ��� �

�
, (c) � � � ����� � � ���	� � � � � � � �

� � � � � � �

2.

3.

1.

Figure 4.12: Examples of three different ways to determine whether to do an � -cut or a � -cut. Top row is the
original overlapping packing and the other tree rows are various solutions. 1. is based on area. 2. based on
direction with smallest minimum intersection depth. 3. smallest relative minimum intersection depth.

4.3 From a Placement to Sequence-Pair 75

4.12. Based on investigations we have decided to use the smallest relative minimum
intersection depth method. Let the function P R���� � a I � � f determine whether to do an
P -cut or a R -cut of the overlapping rectangles I and � .
We are now ready to explain our cut-algorithm which is also a sweep-line algorithm.
We visit the rectangles of the placement from left to right sorted by center-coordinates.
At any given time during the algorithm an interval data structure � contains a set of
intervals sorted by R -coordinate. Each interval correspond to a rectangle and we call
the rectangles which have intervals in � active rectangles.

When we visit a rectangle � we search for its center R -coordinate in the interval struc-
ture. First we must determine the cut-line between � and every overlapping rectangle.

To do this we move from the center to the bottom of � visiting intervals from � . Each
interval corresponds to an active rectangle I which overlap vertically with � (I Q � � Q��� �).
For every such rectangle I encountered during this search which also overlap with
� we determine – by P R ��� � a I � ��f – whether an P - or a R -cut is best. If an P -cut is best we
calculate the cut-line by the P���� � a I � ��f function. We store the rightmost cut-line. When
testing with the P R���� � -function we always pretend that � has been cut by the rightmost
cut-line encountered so far. This downwards search pauses when P R���� � reveals that a
R -cut is best or we have reached the lowest interval which overlap vertically with � .
We now move from center to top and calculate cut-lines in the same manner as from
center to bottom. Once again we investigate for each rectangle of the interval structure
whether an P - or a R -cut is best.

When we have finished the center to top search we resume the center to bottom search
if it was paused by suggesting a R -cut. The reason for this is that the center to top
search may have moved the rightmost cut-line further right and could therefore influ-
ence the decision made by P R���� � . Similarly we may resume the center to top search
since the second center to bottom search may also have moved the cut-line. This con-
tinues until the searches in neither direction visits new rectangles.

When the two cut-line determination searches completes we do a second search which
actually cuts all rectangles according to the rightmost cut-line. However we do no R -
cuts yet. All intervals S � T I
 � I
 X in � with S ^ � Q , i.e. covered by � are removed from
� and finally an interval S
 for � is inserted into � .

Intervals overlapping with S
 are cut so the interval structure never contains over-
lapping intervals. After deletion there can be a maximum of two intervals from the
interval data-structure which overlap with S
 . If there is only one interval S it may
contain S
 completely. In this case we break S in two pieces. A lower and an upper
piece (see figure 4.13). Otherwise we simply break intervals so they no longer overlap.

The method is described in algorithm 4.3.

Note that if we decide to do a R -cut, � from the outer loop may overlap with either
the rectangle of � 	 , or � 	 � � 	 C . In this case we should be careful when updating � .

4.3 From a Placement to Sequence-Pair 76

a

a

b

a
b

a a
b

Figure 4.13: Insertion of rectangle
�

in interval structure. The interval for � completely contains the vertical
extend of

�
. Therefore it is split in two intervals.

Algorithm 4.3: Algorithm for removing overlap by P -cutting
Input(A set of rectangles � in a placement � �[a P � R f) ;
� � � T Data-structure containing intervals for active rectangles ordered
from top to bottom X ;� �bT R sorted by center P -coordinate X ;
foreach rectangle � - � do

Let R � R a � f �
 �
� ;

Let P ! � P a ��f ;
Determine highest interval S�� �bT R
� � R
� X - � such that R
� � R ;
Let � 	 � � 	 C � S�� ;
Let � 	 , � S � ;
repeat

repeat
Let 4 be rectangle for � 	 � � 	 C . if 4 overlaps with � then

if P R ��� � a 4 � ��f determines P -cut best then
Let P ! � CDI@P a P ! � P���� � a 4 � ��f�f ;

else
Break� 	 � � 	 C �bT Interval below � 	 � � 	 C X

until � 	 � � 	 C Q � R a ��f ;T Do as above but go upwards updating � 	 , X
until � 	 , or � 	 � � 	 C not changed;T Cut � according to cut-line at P ! X ;T Cut visited rectangles in � between � 	 � � 	 C and � 	 , according to cut-
line X ;T Remove intervals in � between � 	 � � 	 C and � 	 , covered by � X ;T Insert � into � X ;T Update bottom and top intervals X appropriately

4.3 From a Placement to Sequence-Pair 77

b

a

b

a

Figure 4.14: During the � -run we may wish to do an � -cut instead of a � -cut. Rather than postponing this cut,
we do a simple � -cut using the lower (with respect to center) rectangle’s left or right edge.

When updating the intervals � 	 , and � 	 � � 	 C we let the rectangle with rightmost side
dominate. So assume that � overlaps with e.g. the rectangle of � 	 , then we update the
intervals for � and � 	 , such that the interval S �[T R
F � R
F X for the rectangle with rightmost
side is maintained while the other interval is broken so it no longer overlaps with S .
To handle the R -cuts which were all postponed during the P -cutting algorithm, we do
a similar run in the R -direction where rectangles are sorted by R -coordinate of center
and with R -cuts. The only difference in this case is that should P R ��� � determine that
an P -cut is best we do a vertical cut immediately rather than postpone. Assume that
we visit a rectangle � which is compared with a rectangle I then if I and � overlap and
P R���� � determines that we should do an P -cut then if I is left of � we cut at the right
edge of I and if I is right of � we cut at the left edge of � (see figure 4.14).

Proceeding the R -cutting algorithm no overlap remains. This statement is not trivial.
Let us consider how the cuts work during the R -cutting algorithm. In this case a rect-
angle � is inserted and compared against rectangles I - � . Let us start by considering
R -cuts. Proceeding the inner loops � cannot overlap with any rectangle visited before
� . The primary reason for this is that all three possibilities for a R -cut cuts above I ’s
center disallowing � to reach below I . Thus it is impossible for � to touch any rectangle
covered by I . So after the cut � cannot touch any rectangle which has been removed
from the active rectangles set � . On the other hand the cut line is chosen such that �
cannot overlap with any rectangle from � either since we also dealt with P -cuts im-
mediately.

The algorithm is connected to lemma 4.1. If two rectangles overlap the algorithm
maintains their horizontal or vertical order with respect to their centers. If the rect-
angles were re-expanded to full size and this order was maintained it would mimic
a move of the rectangles in the direction of the minimum intersection depth of either
horizontal or vertical direction.

Running time Each of the two sweep-line algorithms have running time
� a 9

�
��� 9 f where

9 is the number of rectangles as promised. The active rectangles interval data-structure,
� , can be implemented with a balanced search tree – e.g. a red and black tree – indexed
by lower coordinates of the intervals. The search and insert operations can be done in

4.4 From Sequence-Pair to Placement 78

� a
�
��� 9 f time. Insertion of an interval for a rectangle can only give rise to a maximum

of two new intervals in the interval data-structure if another interval is split. Therefore
no more than
 9 intervals can be inserted. Apart from no more than two intervals in
each iteration � 	 � � 	 C and � 	 , of the outer loop all intervals in � are visited only once
since the removal step removes all intervals strictly between top and bottom. The
total interval visits must therefore be

� a 9 f so the amortized cost of each insertion is� a
�
��� 9 f time and the algorithm has running time

� a 9
�
��� 9 f .

An example of insertion of one rectangle is shown in figure 4.15.

4.4 From Sequence-Pair to Placement

Since the introduction of the sequence-pair in [63] several algorithms for converting a
sequence-pair to an actual placement have been proposed. An incomplete survey of
the placement algorithms were given in section 3.4.1. In this section we will describe a
new extended version of a placement algorithm proposed by Pisinger [72]. However
to help the reader understand the algorithm we will explain the three previous most
successful algorithms first.

4.4.1 Previous Sequence-Pair Placement Methods

Constraint Graphs

The original method used by Murata et al. was based on longest paths in a graph.
Theorem 4.1 describes rectangle relations. For each rectangle I it can be examined
which rectangles are to the right and above I . A vertical and a horizontal constraint
graph can now be constructed from the rectangle relations. In this context a constraint
graph is a weighted, acyclic, directed, graph.

The horizontal constraint graph can be constructed from the sequence-pair
�
M � � � as

follows:

1. For each rectangle I add a corresponding node.

2. Add two extra nodes
	

(west) and e (east).

3. Add a directed edge between nodes I and � if rectangle I is left of � as deter-
mined by the sequence-pair

�
M � � � using theorem 4.1. Set its weight to the width

of I .
4. Add a directed edge between

	
and every node with weight 0.

5. Add a directed edge between every node and e with weight 0.

4.4 From Sequence-Pair to Placement 79

a1

a2

a3

a4

a5a5

a4

a1

a2

a3

b

c

a1

a2

a3

a4

a5a5

a4

a1

a2

a3

b

c

a1

a2

a3

a4

a5

b

c

(a) (b) (c)

a1

a2

a3

a4

a5

b

c

a1

a2

a3

a4

a5

b

c

a1

a2

a3

a4

a5

b

c

(e) (f) (g)

a1

a2

a3

a4

a5
a5

a3

b

c

b
a1

a2

a3

a4

a5

b

c

(g) (h)

Figure 4.15: Visiting a rectangle
�

in algorithm 4.3. (a) The setup. Rectangle
�

is to be visited. Rectangles
� � ������� � ��� are active and the interval data structure with active rectangles is shown on the left. � is a non-active
rectangle. (b) First the starting interval is for the rectangle � � since � � ’s interval overlaps with

�
’s center. The

cut-line is calculated (dashed line). (c)
�

is checked with � � and the cut-line is moved slightly to the right. (d)
�

is checked with ��� and it is determined that a � -cut is best. The downward search is suspended. (e)
�

is checked
with ��� . No change. (f)

�
is checked with � � and a � -cut chosen. This ends the search for the cut-line. (g) The

rectangles are cut against the cut-line and the interval data structure is updated. Notice that ��� has higher priority
when updating the segment containing

�
and ��� because ��� ’s right edge is further to the right than

�
’s. (h) The

placement after the succeeding � -cut algorithm.

4.4 From Sequence-Pair to Placement 80

b

a

d e

f

c

W E b

a

d e

f

N

S

c

(a) (b)

Figure 4.16: Constraint graphs of the sequence-pair from figure 4.1. Weights and transcendent edges are omitted.
(a) is the horizontal constraint graph. (b) is the vertical constraint graph.

The vertical constraint graph is created in a similar fashion but with
	

and e replaced
with � (south) and � (north) and edges are added on the below relation instead of
the left relation with weight equal to the height of rectangles instead of their widths.
Figure 4.16 shows the constraint graphs of the sequence-pair of the placement of figure
4.1.

We can now determine the position of a rectangle I . Let
 be the length of the longest
path from

	
to I in the horizontal constraint graph and � be the length of the longest

path from � to I in the vertical constraint graph. Then the lower left coordinate of
I is a
 � � f . This is justified by the fact that I must be placed right and above all the
rectangles left of and below it, which is exactly the rectangles � for which there is a
directed edge a � � I f in the constraint graphs.

Determining the longest path from e and � to every other node in respectively the
horizontal and vertical graph can be done in time

� a 9 � f since there are
� a 9 � f edges.

This is the running time of the original sequence-pair placement algorithm. The re-
quired placement area size of a sequence-pair is determined by the longest path from
	

to e and from � to � .

Weighted Longest Common Subsequence

Tang and Wong [81] used the observation from theorem 4.1 quite differently than Mu-
rata et al. They observed that given a rectangle I the set of rectangles to the left of
I are those rectangles which precedes I in both sequence M and � . If each rectangle
is given weight equal to their width in the two sequences, the horizontal position of
I can be determined as the weighted longest common subsequence of the rectangles
preceding I in M and � . Similarly, using the second part of theorem 4.1, we get that
the vertical position of I can be determined from the longest common subsequence of
the rectangles preceding I in M and preceding I in the reverse of � .

An algorithm to determine the weighted longest common subsequence of M and � is

4.4 From Sequence-Pair to Placement 81

presented in [81] which runs in time
� a 9

�
��� 9 f . Tang and Wong [82] later improved

this to
� a 9

�
���
�
��� 9 f using a priority queue data structure.

Confined and fixed rectangles In [82] Tang and Wong were also able to confine rect-
angles to regions and specific positions. Confining a rectangle I to the region betweena P �	� R �&f and a P\V � R%V f was done simply by introducing a dummy rectangle between

	

and I with width P , a dummy rectangle between I and e with width equal to � " P�V (�
is the width of the placement area) etc. This method of confinement however comes at
a price. It is possible that the sequence-pair representation does not allow a rectangle
I to be placed in its confined region; e.g. if there are too many rectangles to the left of
I or the dummy rectangle between I and e is too far right. Tang and Wong solves this
problem by simply disallowing such placements which ruins the P-admissibility (see
section 4.2) of the resulting solution space.

Semi-Normalized Placement

Pisinger [72] presented a method with equal running time of Tang. Here a so called
envelope is used to guide the placement. Rather than determining the position of each
rectangle independently, Pisinger places the rectangles one at time and determines the
position of new rectangles from previously placed rectangles.

When placing a rectangle the legal positions are “open” corners between already
placed rectangles. The positions corresponds to placing a rectangle as far down and
left as possible but without allowing rectangles lower of more left than right and up-
per edges of previously placed rectangles.

We will explain the algorithm in detail since it will be the foundation of our new
slightly more complicated placement method. We begin with the following defini-
tions.

Definition 4.9. Rectangle-shade A rectangle I with width I � and height I � is shaded
by a rectangle � in a packing � �[a P � R f if and only if

P a ��f�� � � 5 P a I f�� I �

���� R a ��f�� � � 5 R a I f�� I � (4.4)

In addition we say that a rectangle I is shaded if there exists a rectangle � such that I
is shaded by � . See figure 4.17(a).

Definition 4.10. Corner between rectangles The corner of the ordered pair of rectan-
gles a I � ��f in a packing � �[a P � R f is the point a P a I f�� I � � R a ��f�� � � f . See figure 4.17(b)

The algorithm constructs a new packing by iteratively adding a rectangle to an existing
packing. At any time during the constructive placement algorithm a data structure

4.4 From Sequence-Pair to Placement 82

a
b

c

b

c

(a) (b)

Figure 4.17: (a) Shade definition. In this packing � shades
�

but not � . All rectangles contained completely within
the grey area would be shaded by � . (b) corner definition the dark circle is the corner between rectangles � and

�
.

e , called the envelope, contains the rectangles that are not shaded with respect to
the current packing. The rectangles in e are ordered and the corners of succeeding
rectangles of e are candidate positions for the lower left corners of rectangles to be
added. So if e.g. e �

�
�!V � � � � � �

��������� � � � all corners of rectangle pairs a � F � � F 2 V f
are candidate positions. Initially two dummy rectangles
 and � are added to e .
 is
infinitely high and left of all rectangles and � is infinitely wide and below all rectangles.
So the initial envelope is e��

�

 � � � .

To determine the right corner to place a rectangle I we find a rectangle pair a � F � � F 2 V f
from e such that �&F is left of I and �&F 2 V is below I according to the sequence-pair. For
now assume such a pair exists.

Now we position I such that its lower left corner is exactly the rectangle corner ofa ��F � ��F 2 V f . We then update e by inserting I between � F and �&F 2 V and remove all rectan-
gles shaded by I . The algorithm is sketched in algorithm 4.4.

The algorithm accepts as input a sequence pair
�
M � � � of rectangles. The rectangles

are placed in order according to the � -sequence and positioned according to the M -
sequence .

Lets us briefly return to our assumptions regarding the uniqueness of a � F � � F 2 V f . When-
ever we place a rectangle I let us pick the � F of e which has the highest index less than
the index of I in the M -sequence. Initially e �

�

 � � � and for any rectangle we would

have �&F �
 . Because we always place a rectangle according to this rule the elements
of e will be sorted according to their indices in the M -sequence. Since every element
has unique index in the M -sequence we are guaranteed uniqueness.

This procedure makes sense. When we place a rectangle I any rectangle in e has
lower index in the � -sequence. If a rectangle �	F6- e has lower index than I in the
M -sequence we know from 4.1 that I should be placed to the right of � F . Similarly
if � F 2 V has higher index than I in the M -sequence we know that I should be placed
above � F 2 V .
Of course the dominant part of the running time of the algorithm lies in determining
the predecessor ��F of a rectangle in e and removing newly shaded rectangles. We will

4.4 From Sequence-Pair to Placement 83

Algorithm 4.4: Semi-normalized sequence-pair placement
Input(Sequence-pair: � �

�
I V �������&� I 7 � � � �

�
� V ������� � � 7 �);

E = < s,t >;
for k = 1 to n do� � � � ;

Determine � F - e with highest index less than
�

’s index in � ;
, = � F ;/ = � F 2 V ;
P a � f�� P a , f�� , � ;
R a � f3� R a'/!f���/ � ;
[insert

�
in e between , and /]. ;

DeleteShadedRectangles(E, h) ;

now explain these parts in more detail.

Since elements of e are sorted with respect to their index in the M -sequence e can
implemented as a search-tree data-structure. Also note that the elements of e have M -
indices from ���	������� � 9 � Pisinger suggested the priority-queue structure by Van Emde-
Boas et al. [84]. When the elements of the priority-queue have values from the set���	������� � 9 � the operations insert and delete can be done in time

� a
�
���
�
��� 9 f . In other

words the Van Emde-Boas structure enables determination of predecessor and inser-
tion of new rectangle to be done in time

� a
�
���
�
��� 9 f .

The last step of each iteration – removing shaded rectangles – can also be implemented
quite efficiently. Whenever a rectangle

�
is inserted the successors of

�
in e are tra-

versed until a non-shaded rectangle is reached. This is sufficient because once a a non-
shaded successor rectangle G is reached no further successors from e can be shaded
by

�
since then they would also be shaded by G and have been removed when G was

inserted (see figure 4.18). Similarly the predecessors are traversed until a non-shaded
rectangle is reached. This is also sufficient.

Except from the last successor and last predecessor all rectangles visited during this
traversal are removed from e . A rectangle can only be removed from e once, so the
total number of visits during the placement must be less than
 9 � 9 � � a 9 f . In other
words the removal takes amortized constant time for each rectangle.

An example of the semi-normalized placement of a sequence-pair is shown in figure
4.19.

The semi-normalized placement does not in strict sense place according to the sequence-
pair. A simple example for which this is not the case is shown on figure 4.20. No-
tice how the semi-normalized placement compacts the sequence-pair by moving rect-
angles down and left. Although the semi-normalized placement does not obey the
sequence-pair it is P-admissible and it does seem to produce more compact place-
ments.

4.4 From Sequence-Pair to Placement 84

h
����� �����

i
i+1e
e

e
e

e e e

i+2
i+3

i+4

Figure 4.18: Removing the shaded rectangles during semi-normalized placement. the rectangle � is being inserted
between 	
	 and 	
	�� � . The removal algorithm picks predecessors and successors of � until it reaches a rectangle which
is not completely shaded. In this case the rectangles 	
	 and 	
	�� � , 	
	�� � are removed from the envelope.

a a b

c

a b

(a) (b) (c)

c
d

a b

c
d

a b e

f

c
d

a b e

(d) (e) (f)

Figure 4.19: The semi-normalized placement in action. Six rectangles are placed according to sequence-pair
� � � ��� � ��� � � � � 	 � ��� ��� � ��� � ��� 	 ��� ��� Each rectangle can only be placed at the black circles. The thick dark line
is the “envelope”. No rectangle can be placed below or left of the envelope, and the corner points of the envelope are
legal positions. Although the semi-normalized placement is more compact than a regular sequence-pair placement
rectangles still “float” in midair ((e) and (f)).

4.4 From Sequence-Pair to Placement 85

a b

c
d

e

f

g
c d g

a b e

f

(a) (b)

a

c d e E

gf

b

W

a

c d e

gf

b

S

N

(c) (d)

Figure 4.20: Comparison of semi-normalized placement (a) and strict sequence-pair placement (b) of the sequence-
pair � � � � � ������� � � � � � 	 � ��� � � � ��� ������	 ������� ��� . Notice how rectangle � , � and � floats in the strict sequence-
pair placement. (c) and (d) are constraint graphs for the placement. In other words the semi-normalized placement
violates some of the constraints of the sequence-pair to produce a more compact placement.

4.4.2 Extended Semi-Normalized Placement

In this section we present a new placement method which can produce placements
that are slightly more compact than the semi-normalized method while sharing the
asymptotic running time.

First we define rectangle-visibility.

Definition 4.11. Visibility of a rectangle. A rectangle 4 in a packing � �ba P � R f is said
to visible from above if there exists an infinite vertical line segment

� � � P
R
� � � � � � � � � P !

4�Q � � � � � - 1 2 (4.5)

with P ! - T P a 4 f � P a 4 f � 4 � X , and which does not intersect any rectangle (see figure 4.21).
We define visibility from left, right and below similarly.

Now the idea is to introduce two additional sets of extreme rectangles. Let e � be
the rectangles of the current placement which are visible from above and e�� be the
rectangles visible from the right. This will enable us to “push” the rectangles either
downwards or leftwards in certain situations.

4.4 From Sequence-Pair to Placement 86

a

b

c

x

y

a

b

c

x

y

(a) (b)

Figure 4.21: Visibility. (a) A rectangle is said to be visible from above if there exists an infinite vertical line from
the upper edge of the rectangle towards infinite � which does not intersect any rectangle. In this case rectangles�

and � are visible from above and � is not. (b) Visibility from right is defined similarly. A rectangle is visible
from right if there exists an infinite horizontal line from the right edge of the rectangle towards infinite � . All three
rectangles are visible from the right.

a

b
c d

a

b
c d

E = <a, d> hE = <a, c, d> vE = <a, b, d>

a

b
c d

Figure 4.22: An intermediate placement with envelopes defined by � , � � and ��� . The envelopes are illustrated
with thick lines.

Since visible rectangles are extreme rectangles we now have three sets of extreme rect-
angles; e �$e � �$e � . Note that since any rectangle in e must be visible from both above
and right e �be � � e � . Envelopes defined by the three sets are illustrated on figure
4.22.

Placement of a rectangle The placement of a rectangle
�

is similar to that of [72]. The
algorithm is described in algorithm 4.5.

Based on figure 4.23 the algorithm proceeds as follows. First the predecessor I and
successor � of

�
in e is determined as in algorithm 4.4. This defines the intermediate

position of
�

between I and � .

At this point we decide whether we wish to attempt to “slide”
�

down or left. Assume
that we wish to slide

�
down.

�
’s P -coordinate is now locked.

Since we wish to move
�

downwards we update e � first. We have determined
�

’s

4.4 From Sequence-Pair to Placement 87

P -coordinate based on I ’s right side. We now determine I ’ successor in e � ,
 , and
traverse e � right until we reach a rectangle, � , that remains visible with

�
’s current

P -coordinate. Every rectangle which becomes invisible from above by the addition
of

�
in e � is concurrently deleted from e � . While traversing e � rightwards we also

determine the top most feasible placement of
�

by looking at the rectangles of e � . This
defines the R -coordinate of

�
. Determining I ’s successor in e � can be done in constant

time, by including a reference from every rectangle in e to its position in e � and e � .

Algorithm 4.5: Extended envelope sequence-pair placement
Input(Sequence-pair: � �

�
I V �������&� I 7 � � � �

�
� V ������� � � 7 �);e[� �
 � � � ;e

�
� � ;e � �
 ;

for � � � to n do� � � � ;
Determine , and / as in algorithm 4.4 ;
Decide horizontal or vertical movement based on horizontal and ver-
tical distance between , and / ;
if Vertical Movement then

Find , in e � ;
P a � f3� P a , f +, � ;
Traverse e � from , ’s position until a rectangle C not shaded by

�
is

reached (i.e. P a C f � C � � P a � f�� �
�). Delete all rectangles shaded

by
�

while traversing;
Set R a � f � R a
 f �
�� , where R a
 f �
 a � f is the highest coordinate
among the visited rectangles;e
�
� e

�
� � � � ;

Find / in e � ;
Traverse e � from / ’s position until a rectangle C not shaded by

�
is

reached. Delete all rectangles shaded by
�

while traversing;
if

�
still visible from right thene �?� e � � � � � ;

else
Do as in the horizontal case, but with respectively P and R and e �
and e � interchanged.

Remove rectangles shaded by
�

from e ;
if

�
inserted in both e � and e � thene ��e � � � � ;

Having determined the R -position of
�

we proceed to update the vertical envelope e �
and finally the regular envelope e . Both are updated according to the final location
of

�
. However if

�
is not visible from the right at its final location it not inserted into

4.4 From Sequence-Pair to Placement 88

h h
a

b
c d e

f g

2.

h
a

b
c d e

f g

3.

h

a

b
c d e

f g

1.

a

b
c d e

f g

4.

Figure 4.23: Updating the horizontal envelope � ��� � ��� � � ��� 	 ��� � � � . 1. The regular envelope � is used to
determine the predecessor � of � . This gives the � -position of � and an intermediate � -position. 2. � is used to
determine the reference into � � . � ’s successor in � � is the first rectangle horizontally shaded by � . � � is traversed
from � rightwards until a rectangle, � , not shaded by � is reached. 3. The � -coordinate of the top most edge of the
visited rectangles is used to determine the final � -coordinate of � . 4. While traversing � � rectangles shaded by �
are removed from � � and � inserted between � and � giving the new horizontal envelope � � � � � � ��� � .

e � and e . Updating e � at this point is similar to e � as described above except the
rectangle placements of e � are not used to determine the P -coordinate of

�
. Updatinge is similar to [72].

Leftwards or downwards “slide” In the previous example e � was used to deter-
mine the lowest feasible R -coordinate but alternatively e � could be used to determine
leftmost feasible P -coordinate.

It is however not clear how to determine which direction results in the better place-
ment. As a prime objective we consider most compact placements. We have decided
to let the rectangles of e determine the direction. We consider the horizontal and ver-
tical gap between the two extreme rectangles of e which determine the intermediate
position of the rectangle to placed. If the horizontal gap divided with the width of
the rectangle is larger than the vertical gap divided by the height of the rectangle it is
assumed that the placement will become more compact by a downwards movement.
This is merely a heuristic solution towards compact placements and many similar ap-
proaches could be used.

For VLSI-placement one could choose the direction that would presumable lead to
minimum netlength by counting the number of nets the module would be extreme
of (similar to the prefer method mentioned in section 3.2.1). However tests with this

4.4 From Sequence-Pair to Placement 89

a
b
c
d
e f

g

h

a

b

c

d
e

f

a

b

c

d
e

f

(a) (b)

Figure 4.24: (a) The heuristic determination of downwards or leftwards movement will attempt to move rectangle
� leftwards instead of downwards since the vertical gap between � and � is larger than the horizontal one. Thus the
best move is missed. (b) Only movement in one direction is possible. So in this case the rectangle � is still placed
in a “floating” position.

strategy showed worse results in terms of total netlength of the placement. The pri-
mary reason seemed to be that the placements were less compact, which increased
overall netlength.

Asymptotic Running time The running time of the extended algorithm is
� a 9

�
���
�
��� 9 f

where 9 is the number of rectangles. Determining the predecessor of a rectangle in e
and updating e is as in [72]. Updating the two other envelopes e � and e � is done in
amortized constant time for each rectangle. This follows from the fact that updatinge
� and e � deletes any rectangle visited except one (the last). Thus updating the two

additional lists takes a total of
� a 9 f time. The running time is dominated by searching

and updating the van Emde Boas Trees and is thus
� a 9

�
���
�
��� 9 f .

Short comings The extended envelope algorithm as described above has two imme-
diate short comings.

� Determining leftwards or downwards “slide” heuristically as described above
does not always lead to a better solution.

� If both a leftwards and a downwards “slide” is possible only one is done.

The two short comings are illustrated on figure 4.24.

Fixed rectangles VLSI-placements in general may contain fixed modules. When
placing a rectangle 4 � at a corner
 using the algorithms we may place it on top of
a fixed rectangle. Assume for now that we have a way to determine if this happens.
At this point we insert the fixed rectangle 4 in the main envelope. We search for the

4.4 From Sequence-Pair to Placement 90

(a) (b)

Figure 4.25: Example of the extended envelope method. (a) Normal envelope sequence-pair placement. (b)
Extended envelope placement.

top-most corner below 4 and insert 4 at this corner. All corners between the corner of
4 � ,
 , and this corner will be shaded since otherwise 4 would have overlapped with a
rectangle in a previous step (see figure 4.26).

Inserting the fixed rectangle 4 with lower-left coordinates a P a 4 f � R a 4 f�f
 , width 4 � and
height 4�� at a P ! � R ! f
 can be done by inserting a rectangle of size a P a 4 f&" P ! � 4 � � R a 4 f�" R ! �
4�� f
 at a P ! � R ! f
 in the main envelope e (see figure 4.27(a)). When 4 has been inserted
we restart the insertion step of 4 � .
It is slightly more complicated for the two auxiliary envelopes e � and e � . Here we
need to insert dummy rectangles of zero height and width respectively so that the

rr0

Figure 4.26: Determination of corner for fixed rectangle. Assume a rectangle ��� is to be inserted. When we insert
� � we discover that it collides with a fixed rectangle � . Now we wish to insert � . We search in the envelope for the
top-most corner below � (large circle). Any corner between the original corner and this top-most corner must be
shaded by � since � � overlaps with � otherwise another previous rectangle would have collided with � .

4.4 From Sequence-Pair to Placement 91

r r

(a) (b)

Figure 4.27: Handling fixed rectangles in the envelopes. (a) If a fixed rectangle � needs to be inserted in the main
envelope � a dummy rectangle of slightly larger size is inserted. (b) To handle the two other envelopes two dummy
rectangles are inserted so that � � and ��� do not allow for rectangles to slide too far down behind � and create
inconsistency.

envelopes do not become inconsistent with placements (see figure 4.27(b)).

Determining whether a collision happens during the placement of 4 may easily be
done by a two-dimensional search trees with search time

� a
�
��� 9 f . However this in-

creases the running time of the placement algorithms to
� a 9

�
��� 9 f which is still ac-

ceptable.

Limited placement area The VLSI-placement benchmarks have limited size. In this
case we should avoid placing rectangles outside the placement area. This complicates
the placement algorithm. We can solve the problem with two search trees. One is
indexed according to the R -coordinate of the top of the rectangles in e . The other
according to the P -coordinate of the right side of the rectangles e . Whenever rectangle�

is to be placed outside the placement area we use one of the search trees to determine
the position of

�
. So if e.g.

�
would be above the placement area we determine the

first legal coordinate of
�

by using the rectangle-top search tree (see figure 4.28(b)).

A problem with this method is that it messes with the ordering of the M sequence so
simply using the rectangle of � F - e with highest index in M in algorithm 4.4 may
return a poor location (see figure 4.28(c)) To solve this problem we mark rectangles
which have been moved into the placement area. If � F is marked, we place

�
as high or

right as we can without violating the placement area using the search trees (see figure
4.28(d)) instead of using � F to determine the location for

�
.

The argument for placing
�

as high or right as we can is that if � F fell outside the
envelope there is a good chance that

�
would also, and while the relation between�

and its predecessor as specified by the sequence-pair is not maintained, relations
between

�
and other rectangles may be. As an example of this, reconsider figure 4.28.

Here
�

is supposed to be above I and � . Unfortunately
 is moved into the placement

4.4 From Sequence-Pair to Placement 92

a b

c d

a

c

b

(a) (b)

da b

c

d

a b

c

(c) (d)

Figure 4.28: Four rectangles with the sequence-pair � � � ����� ��� � � ��� � � � � � ��� ��� are to placed inside a limited
placement area. (a) The placement without limitations. (b) � is moved down to the first legal position. (c) Moving
� and using the algorithm directly would position � here. (d) Instead we observe that � has been moved down and
position � as far up as we can.

area so placing
�

with
 as predecessor would maintain
�
’s relation to
 but not with I

and � . On the other hand if
�

is placed as far above as possible it will still be above I
and � .

Unfortunately the search trees require insertion and searching times of
� a
�
��� 9 f in-

creasing the running time of the placement algorithm to
� a 9

�
��� 9 f total.

Row-packing and cell-spacing VLSI-instances may contain large blockages mixed
with standard-cells. To To ensure that modules are packed in rows we re-scale the
large blockages so their bottom and top are aligned with a row. Pins are also realigned
to fit the new size. If all modules have height equal a multiple of a row-height then
the final placement will also be row-based.

To deal with spacing we simply expand modules during the sequence-pair placement.

P-admissible Without the limited placement area the algorithm guarantees � -admis-
sibility since all codes are feasible placements even with fixed rectangles.

Comparison of the Standard and Extended Envelope Methods It seem natural to
compare performance of the extended envelope method with the standard envelope
method for area minimization. In section B.1 we describe how we have done this in

4.5 The Legalization Algorithm 93

a simulated annealing framework. The conclusion is that the difference in quality is
only noticeable during the first steps of the combinatorial search. At later stages the
placement is presumably compact enough that the extended envelope makes little dif-
ference. In general the two methods perform almost equally. It is likely that the extra
run time spend searching for better compactions of the standard envelope method is
equal to the extra run time induced by the higher constants of the more complex ex-
tended envelope method. It should also be noted that our results of both methods
are among the best ever reported, which demonstrates the strength of envelope-based
placement.

4.5 The Legalization Algorithm

We are now ready to combine the pieces of the previous sections to form the legaliza-
tion algorithm. The outline of the complete algorithm looks as follows:

1. Remove overlap by cutting with algorithm 4.3.

2. Convert non-overlapping placement to sequence-pair
�
M � � � with algorithm 4.2

3. Convert sequence-pair to a semi-normalized placement using algorithm 4.5 with
extensions.

Figures 4.29 and 4.30 illustrate the algorithm on the circuit ami49. The result of the
cutting step is shown on figure 4.31.

4.5.1 Centered Legalization

The algorithm can easily legalize a VLSI placement but this comes at a cost; the rectan-
gles will be semi-normalized towards the lower-left corner of the placement area. In
some cases this is not optimal since connections between modules and IO-pads on the
upper and right boundaries will be very long. Secondly the more rectangles the harder
it is for the legalization algorithm to legalize without large movement. Therefore we
propose a legalization in the center of the circuit.

This is achieved by dividing the rectangles into four sets, ����� , ����� , ��� � , � � � and placing
the four sets individually. The sets contain the rectangles of the upper-right, lower-
right, lower-left and upper-left part of the placement area respectively. Now the mod-
ules of the four sets are placed in four equally sized quadrants of the placement area.
All four placement have the center of the circuit as origin but such that the upper-right
set is placed towards upper-right corner of the placement area, the lower-right rectan-
gles are placed towards lower-right corner of the placement area etc. The placement
method is illustrated on figure 4.32.

4.5 The Legalization Algorithm 94

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.29: Animation of the legalization algorithm on ami49. (a) The original placement based on unconstrained
quadratic placement with massive overlap. (h) The legalized placement. (b)-(g) movement of modules. These images
are interpolated placements between overlapping and legalized placements and are not in any way related to the
algorithm. Their sole purpose is to illustrate how modules are moved during legalization.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.30: Animation of the legalization algorithm on ami49. (a) The original placement with some overlap.
(h) The legalized placement. (b)-(g) movement of modules. These images are interpolated placements between
overlapping and legalized placements and are not in any way related to the algorithm. Their sole purpose is to
illustrate how modules are moved during legalization.

4.5 The Legalization Algorithm 95

(a) (b)

Figure 4.31: Results of the overlap-removal by cutting algorithm. (a) Cutting result of legalization from figure
4.29. (b) Cutting result of legalization from figure 4.30.

R ul

R lr

R ur

R
ll

Figure 4.32: Center placement. Rather that placing the rectangles with the lower left corner of the placement area
as origin the rectangles are divided into four groups which are each placed with the center of the circuit as origin but
with their placements builded towards lower-left, lower-right, upper-left and upper-right corners of the placement
area.

We use two different strategies to divide the modules into the four sets.

The first strategy we refer to as simple centered legalization. Here the placement are
is divided into four equal-sized rectangular regions corresponding to the four men-
tioned set. A rectangle is placed in a set if its center belongs to the region of the set.

The second strategy we refer to as complex centered legalization. Let � be the set of
rectangles and � � a P � R f be the current placement. To determine the four subsets of
� we partition � in the following manner:

1. Sort the rectangles of � by P -coordinate.

2. Let 4 � equal the area of a rectangle from � . Then create subset ���*^ � , by adding
modules from the sorted set � in left to right order until

�
� ����� 4 � 5 V�

�
� ��� 4 � .

Let � �
� � ! ��� .

3. Sort the set � � by R -coordinate. Create a subset � ����^ ��� by adding modules
from the sorted set � � in bottom to top order until

�
� ������� 4 � 5 V�

�
� ����� 4 � . Let

����� � ��� ! ����� .
4. Create similar sets � � � and � � � .

4.5 The Legalization Algorithm 96

R

R

R

R

R RR l r

lu

ll

lr

ur

Figure 4.33: The sets of the four-partition step.

a a a

(a) (b) (c)

Figure 4.34: Effect of � . (a) Slope of the diagonals is high. Few rectangles are considered above � in the placement-
to-sequence-pair algorithms. (b) and (c) Slope is lower more rectangles will be considered above � .

The sets ��� � , ����� , ��� � , � � � constitute a four-partition of � as shown on figure 4.33.

We will use the two strategies differently. For placements with massive overlap it can
be hard to place the modules within the placement area if e.g. one of the four groups of
the simple method contain the majority of the modules. Therefore we divide modules
almost evenly among the groups.

For placements with little overlap the simple method work best since a module will
lie in the same region on the placement area before and after legalization.

4.5.2 The � -Parameter

The � -parameter of algorithms 4.1 and 4.2 can affect the legalized placement. The
� -parameter describes the slope of the diagonals in the placement to sequence-pair
algorithms. Consider the placement of figure 4.34. The lower the slope is the fewer
rectangles will be considered above the rectangle I in the placement to sequence-pair
algorithms. The higher the slope the more rectangles will be considered right of I .
This allows us to “rotate” the legalized placement to distribute the modules more
evenly on the placement area after legalization. Figure 4.35 shows how different � -
values affect the legalized placement of a real-life circuit. Needless to say the right
choice of � may effect the quality of legalized placement.

4.5 The Legalization Algorithm 97

(a) (b)

(c) (d)

Figure 4.35: Different legalized placements of the industry1 standard cell circuit. The placement is not limited
to any specific placement area, however the placement area is shown. Notice that higher values of � makes the
placement “taller”. (a) � � � � � ��� . (c) � � ��� � � . (b) � � � � � . (d) � � ��� � .

4.5 The Legalization Algorithm 98

4.5.3 Remarks on Netlength Considerations During Placement

Although it would seem natural to consider the netlength during placement all our
attempts have proven otherwise.

We have tried the following strategies during the placement algorithm:

� Smallest netlength contribution in envelope Instead of choosing the position
for a module based on its index in the M -sequence we tried choosing the position
which minimized netlength. The netlength was measured such that for modules
not placed yet their illegal position was used. In general this worked worse than
straight-forward approach. This could be explained by the fact that the relative
module position is not maintained in the placement.

� Smallest move We also tried to place modules at the position closest to their
illegal coordinates. This approach failed completely with placements with great
amounts of overlap and was in general not better than the strategy based on
the M -sequence. This strategy probably has the same flaw as the previously
mentioned one.

� Slide in best direction Finally we tried to slide modules in the direction which
was likely to minimize netlength (based on “prefer”-values) instead of the di-
rection with largest hole. The problem with this strategy was that the placement
would be less compact and therefore have longer netlength.

Based on preliminary results all three strategies were abandoned.

4.5.4 Poorly Legalized Placements

Although the legalization can perform well in some cases it will perform poorly in
other cases where modules relative order is altered. This can happen for a number of
different reasons:

� The legalizer does not consider module distribution on the placement area. Also
if modules overlap severely the cut algorithm will distort sizes. Therefore the
placement algorithm will build placements unevenly which will distort the in-
ternal module relations, since modules are also pushed as far left and down as
possible.

� The legalizer assumes that modules can fit within the placement area. This is also
not the case. Often the legalizer has to fix placements that violate the placement
area. This affects the internal module relations a great deal.

4.5 The Legalization Algorithm 99

� Overlap with fixed modules is not allowed. Therefore the placement algorithm
moves modules beyond the fixed modules, but this also alter the internal module
relations.

Many preliminary attempts at dealing with these problems failed during this work.
We experimented with placement-to-sequence-pair algorithms that considered mod-
ule sizes and we tried to redistribute modules evenly on the placement area before
converting to sequence-pair. None of these methods improved placements noticeably
and in most cases they functioned more poorly than the method we have described
in the previous sections. The unsuccessful approaches towards dealing with these
problems are listed in more detail in appendix A

100

5 Benchmark Circuits

Before discussing the layout problem further we will briefly consider the standard
layout circuit benchmarks. The purpose of introducing the benchmarks at this point
is to give the reader a better understanding of the complexity and structure of the
VLSI layout instances. In the first half of this section we will discuss the benchmark
characteristics and in the final half we will propose three new general-cell benchmarks
based on common benchmarks.

5.1 About the Circuits

We will consider three kinds of circuit instances. The MCNC macro-block instances,
the MCNC standard-cell instances and three IBM real-life circuits.

5.1.1 MCNC Macro-Blocks

The MCNC macro-block instances are small compared to the standard-cell circuits.
The largest of the five instances contain only 49 modules and about 400 nets. The in-
stances comes from the 1991 Physical Design Workshop [50]. These benchmarks have
been used to demonstrate area minimization. The modules represent large macro-
blocks. The macro-block instances are called: apte, xerox, hp, ami33 and ami49.

5.1.2 MCNC Standard-Cells

The MCNC standard-cells were also released at the Physical Design Workshop 1991
[50]. All cells have equal height. Writers have not agreed on spacing between rows.
Most writers use row-spacing and horizontal spacing between cells although recent
papers have abandoned the spacing due to advances in technology9. The MCNC
standard-cells circuits vary from a few hundred modules and nets to almost 100.000
modules and 150.000 nets. The standard-cell instances are called: industry1, indus-
try2, industry3, primary1, primary2, avqlarge, avqsmall struct and fract. The fract
circuit contains only 125 modules and is rarely used in articles because of its small
size.

Although not a MCNC-benchmark circuit, the golem3 circuit is commonly used by
writers in conjunction with the other benchmarks.

9As a side note: The lack of row spacing can improve netlength substantially.

5.2 About the Circuit Data 101

5.1.3 IBM Real-Life Circuits

The final type of circuits we will describe is the IBM circuits. These contain cells of
various width and height however the majority of the cells are of equal height. There
are only few macro-blocks. Further the design rules restrict placement of modules
to rows of specified height. The IBM instances contain as many as almost 170.000
modules and 190.000 nets. To further complicate matters these instances also contain
a number of fixed modules. The number of fixed modules is listed in table 5.2. The
IBM instances are called clk, decoder and pu. At this point we would like thank IBM
and Associate Professor Martin Zachariasen for supplying us with the real-life circuits.

5.1.4 Data Format and Origin

The MCNC standard-cell benchmark instances we use are not the original MCNC-
benchmarks, but are modified instances originating from P. Madden comparison of
standard-cell placers (see section 3.3 and [57]). The instances were modified in [24] and
later converted to an XML-based file-format in [25], which is the format we use. The
modifications of [24] were mainly with respect to pin-positions and size of placement
areas. The MCNC-specifications does not specify size of placement area so the size
used by [24] is based on test-results conducted by P. Madden [57] on the TimberWolf-
placer. However Færø increased the width of the placement area by
	��� in [24] so
effectively there is about
	��� surplus space on the placement area. See [24] for the
exact modifications of the circuits.

We have decided to use the benchmarks from [24] instead of the original MCNC-
benchmarks because it allow us to do an honest comparison of our results with those
of [24] since circuit-size, pin-locations and row-height are identical.

5.2 About the Circuit Data

Various characteristics of the circuits are listed in table 5.1.

� Number of modules and nets are roughly equal It seems that the number of
modules and the number of nets are of same order disregarding the macro-block
instances. I.e. 100.000 modules implies in the order of 100.000 nets.

� Average number of pins is low. The average number of pins is low. On aver-
age modules and nets contain as little as 3-4 pins disregarding the macro-block
instances. For the macro-block instances nets still contain very few pins.

� Modules are of almost equal size Not surprisingly the standard-cell instances
contain only few different sized modules. What is more surprising however is
that the real-life circuits from IBM also contain few modules of different size.

5.2 About the Circuit Data 102

Instance name Modules Nets Module sizes Area Module Pins Net Pins

apte 9 97 3 - 23.78 2.21
xerox 10 203 10 - 69.60 3.43
hp 11 83 6 - 24.00 3.18
ami33 33 123 31 - 14.55 3.90
ami49 49 408 47 - 19.00 2.28
industry1 2271 2478 25 - 3.53 3.24
industry2 12142 13419 17 - 3.95 3.57
industry3 15059 21938 13 - 4.52 3.10
avqlarge 25114 25384 5 - 3.29 3.26
avqsmall 21854 22124 7 - 3.49 3.44
biomed 6417 5742 7 - 3.26 3.65
fract 125 147 7 - 3.5 3.14
struct 1888 1920 4 - 2.90 2.85
golem3 99932 144949 20 - 3.36 2.32
primary1 752 901 8 - 3.73 3.12
primary2 2907 3028 8 - 3.80 3.65
decoder 54930 59256 38 58.2 % 3.37 3.12
pu 164510 184231 90 65.6 % 3.75 3.35
clk 29410 30293 36 19.1 % 3.79 3.68

Table 5.1: Data for the benchmarking circuits. The “module pins” and “net pins” numbers are respectively the
average number of pins on each modules and in each net. The area value is the placement area divided with area of
the modules. I.e. placed legally the modules will cover this percentage of area not including required spacing. No
placement area is specified for the MCNC-benchmarks.

Instance Fixed modules

decoder 19
clk 354
pu 550

Table 5.2: Number of fixed modules of the IBM real-life instances. Even for these very large instances the number
of fixed modules is low.

5.3 New Benchmarks 103

� Few fixed modules The IBM real-life circuits contain few fixed modules. Even
the largest of the instances contain only 550.

The observations are important because a heuristic may exploit some of these observa-
tions. E.g. the fact that modules are of equal size or that the number of nets connecting
each module is low.

5.2.1 Pin Distribution

If we investigate the pin distribution further we get an interesting result. The pins
per module distribution is plotted on figure 5.1. This shows than 80 % of the modules
of the large instances contains � 5 pins and less than 5 % contain more than 10 pins.
Looking at figure 5.2 we see the same pattern for nets. 80 % of the nets contain less
than 5 pins and less than 5 % contain more than 50 pins. This is interesting because it
means that the underlying hypergraph is sparse.

5.2.2 Size Distribution

We also consider the distribution of the module sizes. Figure 5.3 shows this distribu-
tion on each of the three types of circuits.

It is interesting that the standard-cell circuits contain modules of sizes between 1 and
10 times the smallest module. For the real-life circuits 80 % of the modules are smaller
than 10 times the smallest module and more than 95 % of the modules are smaller
than 25 times the smallest module. This demonstrates that the real-life circuits con-
sists mainly of standard-cells. It should also be noted that the real-life circuits contain
modules of sizes up to 75.000 times the smallest module. However some of the largest
modules are fixed modules.

The size distribution tells us that a heuristic should probably be geared towards mod-
ules of close to equal size.

5.3 New Benchmarks

In this section we propose new benchmarks. We do this because our placement heuris-
tic is capable of placing general-cells and the benchmarks of the previous sections are
all standard-cell benchmarks – although the IBM circuits do contain macros.

Since we wish to compare results of our heuristic with others we will base the new
circuits on existing ones. We will use two approaches:

� Tiling of macro-block circuits. A macro-block instance is tiled creating 9 A
C copies of the original circuit. Modules connected to IO-pads of the original

5.3 New Benchmarks 104

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

M
od

ul
es

 p
er

ce
nt

ag
e

Pins

Accumulated Pins/Modules Comparison
apte

xerox
hp

ami33
ami49

0

10

20

30

40

50

60

70

80

90

100

1 10 100

M
od

ul
es

 p
er

ce
nt

ag
e

Pins

Accumulated Pins/Modules Comparison
struct

primary1
primary2

biomed
golem3

avqlarge
avqsmall
industry1
industry2
industry3

(a) (b)

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

M
od

ul
es

 p
er

ce
nt

ag
e

Pins

Accumulated Pins/Modules Comparison
clk
pu

decoder

(c)

Figure 5.1: Pins on modules. Percentage of modules (� -axis) containing less than or equal (�) the given number
of pins (� -axis). (a) macro-block instances. (b) standard-cell instances. (c) Real-life circuits.

5.3 New Benchmarks 105

50

55

60

65

70

75

80

85

90

95

100

10 100

N
et

s
pe

rc
en

ta
ge

Pins

Accumulated Pins/Nets Comparison
apte

xerox
hp

ami33
ami49

30

40

50

60

70

80

90

100

10 100 1000

N
et

s
pe

rc
en

ta
ge

Pins

Accumulated Pins/Nets Comparison
struct

primary1
primary2

biomed
golem3

avqlarge
avqsmall
industry1
industry2
industry3

(a) (b)

55

60

65

70

75

80

85

90

95

100

10 100 1000

N
et

s
pe

rc
en

ta
ge

Pins

Accumulated Pins/Nets Comparison
clk
pu

decoder

(c)

Figure 5.2: Pins on nets. Percentage of nets(� -axis) containing less than or equal (�) the given number of pins
(� -axis). (a) macro-block instances. (b) standard-cell instances. (c) real-life circuits. (� -axis starts at 2)

5.3 New Benchmarks 106

0

10

20

30

40

50

60

70

80

90

100

1 10 100

M
od

ul
es

 p
er

ce
nt

ag
e

Area (units of smallest module)

Accumulated Area/Modules Comparison
apte

xerox
hp

ami33
ami49

0

10

20

30

40

50

60

70

80

90

100

1 10 100

M
od

ul
es

 p
er

ce
nt

ag
e

Area (units of smallest module)

Accumulated Area/Modules Comparison
struct

primary1
primary2

biomed
golem3

avqlarge
avqsmall
industry1
industry2
industry3

(a) (b)

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000

M
od

ul
es

 p
er

ce
nt

ag
e

Area (units of smallest module)

Accumulated Area/Modules Comparison
clk
pu

decoder

(c)

Figure 5.3: Size distribution of cells. Percentage of modules (� -axis) smaller than or equal (� 	��) the area (� -axis).
The area is in units of the smallest module. (a) macro-block instances. (b) standard-cell instances. (c) real-life
circuits.

5.3 New Benchmarks 107

Figure 5.4: Tiling of a circuit to create a new larger instance. Left is the source circuit. Right is a
�����

tiling.
Only IO-pads on the boundary of the destination circuit are maintained. Shared IO-pads inside the boundary are
deleted and nets connecting these are merged.

circuit are connected to modules of any neighboring copy instead (see figure
5.4).

� Modifying standard-cell circuits. The standard-cell instances are modified. A
new instance with equal total module area is created, but the modules are scaled.
For each module ratio 4 is randomly picked uniformly between 1 and 3, meaning
that the new width � will be � � � �

� , where I is the area of the original module.
Based on the new width the new height can be calculate (

� ��� �
� �). Pin offsets

are scaled according to the new dimensions of the module.

In the first case we hope that the resulting optimal netlength may be close to 9 ABC
times the optimal netlength of the original macro block circuit. Of course it is not
unlikely that the netlength may be reduced in the large instance since the increased
space allows for new packings of the modules.

In the second case we hope that by not changing the area of the modules the optimal
netlength will be more or less the same. Of course new packing configurations are
allowed resulting in possible lower netlength. On the other hand general-cells makes
it harder to compact the modules for low netlength without creating unused areas.

We have created three circuits based on these two methods: ami33K which is a tiling
of

 A

 � ���!
 � instances of ami33 and primary2g, industry2g and industry3g which
are general-cells versions of the popular industry2 and -3 benchmark circuits. The
ami33K circuit contains the ami33 circuit 1024 times, which means that it contains

�� �
 modules and � �&�
��
 nets, making it a very tough instance. Ami33 was chosen
because it contains many differently sized modules (
%�) and only four times as many
nets as modules.

In order to determine the placement area for ami33K we used the packing results of
appendix B of ami33. We scaled the horizontal and vertical dimensions of the minimal

5.3 New Benchmarks 108

(a) (b)

(c) (d)

Figure 5.5: Extracts of the three new instances. (a) ami33K. (b) Industry2g. (c) industry3g. (d) primary2g. The
extracts are from legalizations of initial quadratic placements and are screen-grabs of our placer (see section 9.1).

packing by 32 in each direction corresponding to the

 A

 tiling. To compensate for
the complications involved with packing the circuit we increased the width and height
by
	��� .

For industry2g and industry3g we expanded the height of the circuits by
	��� to com-
pensate for general-cell complications.

The three circuits are shown in figure 5.5.

A problem with ami33K which we have not dealt with is the connectivity of the tiled
sub-circuits. The tiled sub-circuits are connected to each other but only weakly since
there are relatively few nets connected to the IO-pads of ami33. The resulting relaxed
placements therefore becomes a tiling itself (see figure 5.6). This simplifies global
placement a great deal since the relaxed placement positions modules inside their re-
spective tiles which is where one would expect them to be positioned in an optimal
placement.

5.4 Rotations and Mirroring 109

Figure 5.6: Relaxed placement of ami33K (star netlength). Because of weak connectivity of the modules of ami33
and its IO-pads the relaxed placement becomes a tiling, which simplifies global placement.

5.4 Rotations and Mirroring

According to [24] orientation and mirroring of the MCNC standard-cell and IBM real-
life circuits are not allowed and therefore we will not permit this for these circuits in
the placement heuristics of the following sections.

However for the new general-cell circuits we will permit rotation and mirroring.

110

6 Local Search for The Placement Problem

A central part of both our new global placement and final placement methods is a
local search method which we will present in this section. The most common local
search methods for final placement are:

� One-move Move a module to its optimal position with respect to length of inci-
dent nets.

� Two-move (swap) For a module determine the best exchange with another mod-
ule with respect to the length of their incident nets.

� Solve transportation problems Several methods solve a form of transportation
problem to determine where modules should move to.

� Relaxed local search Recent methods relax the no-overlap constraints of a sub-
circuit and solve the bounding-box formulation with maximum-flow algorithms.

See section 3.2 for more details of these methods.

We have decided to use the swap-based method for a number of reasons. Firstly it
will not place modules directly on top of each other and is therefore less likely to pro-
duce highly overlapping placements. This is important since our legalizer can handle
some overlap but has difficulties with severe overlap. Secondly it can be implemented
relatively efficiently. Thirdly it is a much simpler method than the transportation- or
relaxation-based methods.

Algorithm 6.1: Greedy swap-based local search for one module
Input(A placement problem, and a module C � which should be optimized) ;
���������3� "
 ;
C �����	�8�bT � ����
 X ;
foreach C -�� do

Swap positions of C and C � ;
Let � be the netlength reduction after swap ;
if � � ��������� then

�������	�8� � ;
C �����	�8� C ;

Swap C and C � back gain. ;
if C �����	� ��[T � ����
 X then

Swap positions of C and C �����	� ;
return Improved solution

In the following sections we will describe the local search method in detail. The out-
line of a simple swap-based local search for one module is shown in algorithm 6.1,
however this straight-forward approach has two main flaws:

6.1 Overlap Handling 111

� Module sizes are not considered so swaps may result in placements with an
uncontrolled amount of overlap, which could make it hard to legalize without
moving modules too much.

� The potential positions are static; modules can only be placed at positions where
there already is another module.

� Searching every other module of the circuit is computationally extremely expen-
sive.

In the following sections we will address these flaws. In the next section we will con-
sider how overlap can be accounted for during local search and also how new posi-
tions can be generated. In section 6.2 we show how the neighborhood can be reduced
considerably and finally in section 6.3 we present our swap-based local search.

6.1 Overlap Handling

To ensure that the placement contains little overlap when modules are swapped we
wish to consider the overlap resulting from a swap of two modules. Therefore we
need to know the amount of overlap a swap results in.

6.1.1 Preliminary Considerations

Probably the most elegant method in conjunction with local search for the VLSI-place-
ment problem for overlap-determination was developed by Færø et al. [24, 21]. Here
the local search neighborhood consists of horizontal or vertical translations of one
module C . The amount of overlap arising from a horizontal or vertical translation is
determined by an efficient sweep-line algorithm which also determines bounding-box
netlength. The sweep-line algorithm examines a subset of positions on the placement
area.

Unfortunately swap-based local search presents us with a number of problems which
renders this approach inefficient. Firstly, although preliminary investigation showed
that it would be possible to implement an algorithm similar to the sweep-line algo-
rithm efficiently there are two major complications.

� It must be determined which and how many modules to exchange position with.
If more than one overlapping module is chosen then it must be determined how
two or more modules should be placed at the original location of C . If only one
is chosen then it must be determined which one.

� Also we deem that the one-dimensional search is insufficient for a swap-based
neighborhood. If one would wish to do a two-dimensional translation it would

6.1 Overlap Handling 112

have to be broken into two one-dimensional steps which must both be accepted.
The one-dimensional neighborhood made perfect sense in the guided local search
framework, because only penalized overlap – i.e. overlap between certain pairs
of modules – was considered which allows for more acceptances.

The answer to the second problem would be a two-dimensional translation algo-
rithm. Our initial investigations show that it is possible to extend the one-dimensional
sweep-line algorithm to two dimensions but it would become far more complex.

Because of these complications we have decided to calculate the overlap by an esti-
mate instead. This makes sense since we are not interested in generating solutions
with zero overlap. As long as the solutions have little overlap the legalization algo-
rithm should be strong enough to remove it.

For each module we will let a rectangular region represent nearby area containing the
module. This way we can determine if a module uses more than nearby space. Such
a violation can be interpreted as overlap with neighboring modules. As the region is
rectangular we should be able to determine this overlap estimate in constant time.

6.1.2 Pockets

To represent the surrounding area of a module we divide the placement area into a set
of rectangular regions. Each such region we call a pocket. Pockets can contain modules
but may be empty. Also pockets can be larger than the module they contain.

Traditionally division of the placement area occurs by bi- or quadrisection methods
or by dividing it into a number of equally sized bins. In the spirit of this thesis we
have decided to use the sequence-pair representation to divide the placement area by
reversing the envelope-based placement algorithm. This is a novel technique for cre-
ating a floor-plan with cells containing each module and it is as simple to implement
as the envelope-based placement algorithm.

First a sequence-pair for the current placement is determined by the placement-to-
sequence-pair algorithm (algorithm 4.2 of section 4.3). Then the sequence-pair is placed
in backwards order; the last module of the � -sequence is placed first. This time we
build a reverse envelope which contain the lower and left side of the modules. This is
shown on figure 6.1.

Now as each module is placed we determine its index in the envelope using the M -
sequence just as in the placement algorithm but unlike the placement algorithm we
do not use the envelope to determine the position of a module. Rather we use it to
construct pockets. On figure 6.2 (a) we have shown how a module is inserted into the
envelope. As the envelope is updated shaded modules are removed. While removing
shaded modules from the envelope we can determine a pocket which contains the
new module. This is shown on figure 6.2 (b). The remaining newly shaded area is

6.1 Overlap Handling 113

Figure 6.1: Construction of pockets. An envelope is maintained containing the lower and left side of the modules.

also divided into pockets as shown on 6.2(c). Finally the envelope is updated with the
newly added module as shown on figure 6.2(d).

To determine the pocket for the module to be inserted we traverse the corners of the
shaded envelope. This way we can determine the largest rectangle with respect to area
that contains the module (see figure 6.3(a)). Any remaining area above or right of the
created pocket is also divided into pockets. The area above we divide into rectangles
between the top-side of the pocket and the envelope. The area to the right we divide
into rectangles between the right-side of the pocket and the envelope (see figure6.3(b)).

An example of the result of the pocket algorithm is shown on figure 6.4.

Running Time The asymptotic running time of the pocket algorithm is equal to that
of the envelope based sequence-pair-to-placement algorithm (algorithm 4.4) since all
pockets are created by a constant number of extra amortized constant length envelope
traversals; one to determine largest pocket, one to determine auxiliary pockets and one
to remove shaded modules. All three traversals consider an equal number of modules
from the envelope. Therefore the run time is

� a 9
�
���
�
��� 9 f as it was for algorithm 4.4.

6.1.3 Locations

Pockets allow us to determine a set of candidate locations for the lower-left corner of
a module during moves in the swap-based local search.

A priori all pockets constitute a location. However even if a pocket contains a module
C it may contain enough free space for it to be possible to position another module C !
in it without causing too much overlap.

Based on these thoughts we use the following locations within a pocket , :
� A module can always be placed at the lower-left corner of a pocket.

6.1 Overlap Handling 114

a

1

(a) (b)

2

3 1 1

1

3

(c) (d)

Figure 6.2: Creation of pocket from placement. (a) Module � is to be inserted into the envelope. The black circle
corresponds to its index in the envelope as determined from the � -sequence. (b) The shaded envelope is traversed
to determine a pocket for module � (1). (c) The remaining shaded area is also divided into pockets (2, 3). (d) The
envelope is updated and the free-area surrounding � has been divided into three pockets.

a

a

a

a

a
(a) (b)

Figure 6.3: Determination of pockets surrounding a module � . (a) The shaded envelope is traversed to determine
the largest rectangle containing � . The three possibilities are tested. The lower-right figure shows the choice of
pocket which is always the rectangle with largest area. (b) The remaining area is divided into pockets between the
top of the pocket and the envelope and the right of the pocket and the envelope.

6.1 Overlap Handling 115

(a) (b) (c)

Figure 6.4: Result of the pocket algorithm. (a) Placement without pockets. (b) Modules and pockets arising from
the placement. (c) Just pockets.

� If a pocket contains a module C , then another module may be placed just right
of C given that the pocket is strictly wider than C .

� If a pocket contains a module C , then another module may be placed just above
C given that the pocket is strictly taller than C .

The three locations are depicted on figure 6.5. This way we can also position modules
at new locations in the placement.

Pocket splitting and merging During local search we will not allow pockets to con-
tain multiple locations, so if we use any of the two extra locations, we split the pocket
in two pockets such that modules are contained in separate pockets. On the other
hand a pocket may become empty in which case it may be possible to merge two
pockets. This merging procedure may be simple but determining which other pocket
to merge with seems difficult. Therefore we do no merging. This may lead to fragmen-
tation but as will be explained in conjunction with our new global and final placement
methods (see section 7.3 and 8.2.3) the placement area will be re-divided into pockets
from scratch sufficiently often for fragmentation to be limited.

6.1.4 Augmented Objective Function

We introduced pockets to control the amount of overlap in the placement. It is very
likely that there exists two modules of different size where a swap would improve the
netlength. In this case the move may result in one of the modules being larger than
its destination pocket. To handle this we penalize such moves. The penalty can be
interpreted in two ways

6.1 Overlap Handling 116

m’ m’m m

m’

(a) (b) (c)

Figure 6.5: Pockets may contain three locations for modules. (a) Any module � � can be positioned at the lower
left corner of the pocket. (b) If the pocket contains a module � and is wider than � then another module � � may
placed to the right of it. (c) If the pocket contains a module � and is taller than � then another module � � may
be placed above it. Note that we may use a location even if a module is too large for it, since this is penalized in the
objective function.

� Overlap will move other modules during the legalization phase which is likely
to increase netlength. Therefore the penalty should reflect the increased netlength
due to legalization.

� Overlapping placements are a relaxation of the placement problem and should
therefore be avoided in general. The penalty will make the local search avoid
overlap if possible.

To penalize moves we introduce a penalty function for a given module at a given
location. A location � has a free width � � and free height � � equal to the respectively
the width of the free area right and the height of the free area above the location in the
corresponding pocket (see figure 6.6). We now introduce a penalty function:

�
�
�
��
���

�
��� a � � C f��[a

�

��\a C � " � � �$��f �

�

��]a C � " � � �$��f�f � (6.1)

Note that the penalty should be interpreted as intersection-depth penalty (see defini-
tion 4.7) and not overlap-area penalty. The reason why we have chosen the intersection-
depth strategy is that we expect it to better reflect netlength change due to legalization;
modules are moved left and right a distance equal to intersection depths of overlap-
ping modules.

During local search penalties are added to the objective function which will now have
the form: � �

� �

7	���
�6a 9 f � � � a 9 f���� �

= ���

&G
	 � , �&9]I � � R a � = � C f � (6.2)

where � 5 � and � = is the location of module C . The constant � allows us to control
how relaxed the placement algorithm is. A small � will allow moves with a lot of
overlap, while a large � will limit the amount of allowed overlap in the placement.

6.2 Neighborhood Reduction 117

L

Lh

w

L Lh

Lw

L
(a) (b)

Figure 6.6: Definition of � � and � � for at location � in a pocket. Two different locations of pocket. A module is
shown in both (a) and (b) at the location � . � � is the width of the location space. � � is the height of the location
space. Note that for the lower left location of a pocket � � is the width of the pocket and � � is the height of the
pocket.

The guided local search (GLS) approach by Færø et al. [24, 21], introduced a penalty
term between each pair of modules. Indeed a similar approach could be used here be-
tween a location and module, but the primary problem would be determining when to
use a high penalty and when to use a low penalty. In the GLS-framework this was han-
dled by the GLS meta-heuristic by increasing the penalty factor for most overlapping
modules at local minima. Færø et al. [24, 21] raised � during the placement algorithm
to work first with relaxed placements and then later towards legal placements.

One could probably control location penalties with GLS but it makes less sense since
we are not working towards completely legal solutions.

6.2 Neighborhood Reduction

The last of the mentioned problems with the swap-based neighborhood is its size.
Fortunately we can determine a region for a module C for which it is guaranteed that
the length of nets incident with C will be reduced.

6.2.1 Bounding-Box Net-Functions Revisited

Assume that 9 is an incident net of C and that all other modules connected to 9 are
static. Also assume that , � is the leftmost pin connecting C with 9 and , � is the right-
most pin connecting C with 9 . Note that we allow , � � , � . Let 9 ! � C � be the remaining
modules connected to 9 .

Let P 7 � be the P -coordinate of the left-most pin and P 7� be the P -coordinate of the right-
most pin connecting 9 with modules in 9 ! � C � . Let ����� O a , � f be the P -offset of , � and����� O a , � f be the P -offset of , � . Now we consider horizontal translation of C .

6.2 Neighborhood Reduction 118

x xr l�
x xrl

L (x(m))n

x(m)

Figure 6.7: The � -portion of the bounding-box netlength of a net as a function of the � -position � � � � of module
� . � � is the left-most and � � is the right-most pin of the remaining modules of 	 . The offset of the pin connecting
� with 	 is zero in this simple example.

As C is moved right from P a C f � "
 the left border of the bounding-box of 9 is
moved right and � � a 9 f decreases until the P -coordinate of , � reaches the left border
of the bounding-box of 9 (P a C f��"����� O a , � f � P 7 �) or , � is beyond the right border of the
bounding-box of 9 (P a C f � ����� O a , � f � P 7�). If ����� O a , � f " ����� O a , � f

�
P 7� " P 7 � it will be the

first of these scenarios that occurs.

Now assume this scenario (P a C f � ����� OY, � � P 7 �). In this case � � a 9 f remains constant
until , � reaches the right border of the bounding-box. On the other hand if we assume
the second scenario (P a C f � ����� O a , � f � P 7�) � � a 9 f remains constant until , � reaches the
left border of the bounding-box for 9 . After either of these two last incidents the right
border of the bounding-box moves to the right while the left border remains static and
� � a 9 f increases.

By exploiting these observations we can write a piece-wise linear function � 7 a P a C f�f
which is the bounding-box netlength as a function of the P a C f since the vertical extend
of the bounding-box of 9 is completely independent of P a C f . Assume that ����� O a , � fH"
����� O a , � f�� P 7� " P 7 � (the first of the two scenarios). Then we have:

� 7 a P a C f�f3�
���� P 7� " P a C fW" ����� O a , � f ����� P a C f�� P 7 � " ����� O a , � f
P 7� " P 7 � ����� P a C f - X P 7 � " ����� O a , � f � P 7� " ����� O a , � f X
P a C f�� ����� O a , � fH" P 7 � ����� P a C f � P 7� " ����� O a , � f

(6.3)

(A similar version can be written for the second scenario). � 7 a P a C f�f is shown on
figure 6.7. Using this observation we may write the P -portion of the bounding-box
netlength of the incident nets as:

� a P a C f�f3� �� 7 � = � 7�� � a 9 f � 7 a P a C f�f (6.4)

Since 	� 7 a P a C f�f<� � a 9 f � � 7 a P a C f�f is continuous piece-wise linear we may write it as:

	� 7 a P a C f�f��
�� � I �7 � P a C f�� � �7 ����� P a C f -�S

�
7

I V7 � P a C f�� � V7 ����� P a C f -�S V7
I �

7 � P a C f�� �
�

7 ����� P a C f -�S �

7
� (6.5)

6.2 Neighborhood Reduction 119

with I F7 , � F7 , and S F7 for G - ���%�&�	��
@� defined appropriately. With this definition we can
write

� a P a C f�f � �� 7 � = � 7��
�

O � = � ��� 	�
� I F7 � P a C f � � F7 f

� I � P a C f�� � � (6.6)

For I and � defined for specific P a C f . Now consider P a C f moving from "
 to
 .
Initially I � � � 7 � = � 7�� I �7 since P a C f - S

�
7 for sufficiently small P a C f . As P a C f leaves

an interval S F7 and it enters the interval S F
2 V7 I is decreased by I F7 and increased by I F

2 V7
since I F7 leaves the sum and I F

2 V7 enters the sum. A similar observation holds for � .
This observation allows us to search � a P a C f�f from left to right by a sweep-line al-
gorithm. Let � � � � P

P � P 7 � � P � P 7� � ��� C - 9 � be a set of breakpoints. Set

I � � � 7 � = � 7 � I �7 and �6� � � 7 � = � 7�� � �7 . Now visit the breakpoints from � � in order
from left to right (smallest to largest). As each breakpoint P is visited do the following:

� If P is P 7 � for some net 9 then subtract I
�
7 and �

�
7 from respectively I and � and

add I V7 and � V7 to respectively I and � .
� If P is P 7� for some net 9 then subtract I V7 and � V7 from respectively I and � and

add I �

7 and �
�

7 to respectively I and � .

Now during this search � a P a C f�f�� I � P a C f�� � .
6.2.2 Guaranteed Improving Region

For our purpose the most important element of 	� 7 a P a C f�f is that regardless of which
of the two scenarios for translation of P a C f is true, 	� 7 a P a C f�f decreases from
 on S

�
7 ,

is constant on S V7 and increases to
 on S �

7 .
Returning to � a P a C f�f we are now able to prove the following theorem:

Theorem 6.1. Assume � a P a C f�f is defined as (6.4) then the following holds:

1. � a P a C f�f is semi-convex (Please see appendix D for our definition of semi-convexity).

2. For some P � there exists an interval T P �d� P � X such that � a P a C f�f � � a P ��f if and only if
P a C f - T P �d� P � X .

Proof. 1. Each of the functions 	� 7 a P a C f�f�� �6a 9 f � � 7 a P a C f�f are semi-convex. To see this
first note that the netlength goes to
 if a module moves either left or right towards"
 or
 . Also the three segments of 	� 7 a P a C f�f have slopes " �6a 9 f �$�%��� a 9 f in that
order. Therefore 	� 7 a P a C f�f is semi-convex since it is also continuous and piece-wise
linear. Since � a P a C f�f is a sum of semi-convex functions � a P a C f�f is also semi-convex
according to lemma D.2.

2. This is simply a different formulation of lemma D.4.

6.3 Swap-Based Local Search 120

Assume a module C is placed at a P a C f<� P � � R a C f<� R ��f�
 then theorem 6.1 states that
there exists an interval T P �d� P � X such that if and only if the P -coordinate of C is within
this interval the sum of the P -component netlengths of nets connected to C will be less
then or equal what they are at P a C f3� P � . The interval T P ��� P � X can easily be calculated
by traversing from left to right using the previously defined sweep-line algorithm:

� First calculate � a P ��f .
� Use the sweep-line algorithm to move from left to right.

� Determine when � a P a C f�f�� � a P ��f during this traversal.

� Let the first point for which � a P a C f�f�� � a P � f be P � .
� Let the last point for which � a P a C f�f�� � a P � f be P � .

R -interval Any part of the previous discussing also applies to the R -component of
the netlengths of nets connected to C . Therefore a similar interval T R�� � R � X in the R -
direction can determined in the same manner. We omit the details.

Since the P - and R -portions of the bounding-box netlength are independent, the inter-
val for the P -direction and the interval for the R direction can be combined to form a
two-dimensional rectangular area in which it is guaranteed that the netlength will be
less or equal to the current one. This area is given simply by

� �[T P ��� P � X A T R�� � R � X � (6.7)

It should be noted that there may exist module positions a P � R f
 �- � which reduce the
sum of netlengths. This is true since an increment in P -netlength could be canceled by
a similar decrement in R -netlength. However � is easy to calculate and very easy to
test against.

6.3 Swap-Based Local Search

Based on the previous sections we can now describe the local search algorithm in more
detail. We assume that the pocket-based floor-plan has been constructed prior to the
local search and that pockets are inserted into a bin data-structure so that it can easily
be determined which pocket overlaps with a position a P � R f
 on the placement area.

To do local search for a module C � within this region. the change in augmented ob-
jective function is evaluated for positioning C � at each location of � . The change is
calculated by subtracting old and adding new lengths of nets connected to C � , and
subtracting old and adding new penalty for C � . If there is a module C at the location

6.3 Swap-Based Local Search 121

we place it at C � ’s original position and evaluate further change in augmented ob-
ject function. The best of these location is the one with most reduction in augmented
objective value. C � is placed at this location.

This final version of the local search method is described in algorithm 6.2.

Algorithm 6.2: Swap-based local search
Input(A placement and module C � which should be optimized) ;� � �bT Location of C � X ;
���������3� "
 ;� ���������[T � ����
 X ;
� �[T P ��� P � X A T R�� � R � X (as defined by (6.7)) ;
foreach Location � within � do

Place C � at � ;
if � is occupied by module C then

Place C at � � ;
�]�[T objective value reduction X ;
if � � ��������� then

�������	�8� � ! ;� �����	�8� � ;
Return C � and possibly C to their original locations ;

Place C � at � �����	� ;
if module C is at � �����	� then

move C to � �
Split the pocket of � ������� if necessary ;
return New solution to placement problem

6.3.1 Orientations

In some VLSI-instances all eight orientations as described in section 2.2.4 are legal. In
other cases only a limited number of orientations may be allowed (e.g. mirroring).
Finally in some cases only one orientation is allowed.

If more orientations are allowed C � is checked for every one of the legal orientation at
every location.

An alternative approach would be to split the change of orientation into a completely
separate local search move, so either C � would change position or orientation but
never both. However there is a good chance, that rotating C � would increase overlap
penalty too much, and therefore such changes in orientation would hardly ever be
accepted.

Note that the improving regions contains the current position of C � so even if no good
swap can be found C � is allowed to change orientation.

6.3 Swap-Based Local Search 122

6.3.2 Fast Evaluation of Netlength Change

In local search it is imperative that the netlength change due to a move or swap can be
calculated fast.

If the intervals of the net-function � a P a C �&f�f are stored as a balanced tree data-structure
for each module C , it is possible to calculate the netlength reduction of any position
in time

� a
�
����� f when � is the number of nets connected to C � . Unfortunately when-

ever a module C � is moved it is extremely expensive to update the data-structures
since � a P a C f�f of every other connected module C must be updated. Updating each� a P a C f�f may require

� a � f time since the constants of the linear functions depend on
each other and the entire tree must be updated. In total a move would require

� a � � � f
time where � is the number of modules connected to C and � is the maximum number
of nets any of the modules is connected to.

On the other hand most moves of the swap-based algorithm are of the form: move C �
to a P � R f
 , move C to a P �	� R �&f
 , move C back to a P �	� R ��f
 and move C � back to a P � R f
 . In
other words C � is moved back and forth a number of times. So most of the time we
only need to update the data-structure for the second module C . To handle this we can
mark if � a P a C f�f would need recalculation (if C and C � were connected). Then when
testing C at a P �	� R �&f we could recalculate � a P a C f�f if needed. Upon return of C � the
data-structure for � a P a C f�f would need recalculation once again if the two modules
were connected.

Because of the complications involved with the search-tree data-structures we have
chosen a slightly simpler method. For each net 9 we store extreme modules, i.e. the
left-most, right-most, upper-most and lower-most modules. Also we store the second-
most extreme modules. Now if we wish to calculate the net-length of 9 without the
module C , we can test to see if it is one of the extreme modules. If this is the case we
can use the second-most extreme module in that direction to calculate the bounding-
box of 9 without C , otherwise the bounding-box of 9 is unaffected by the removal of
C . The bounding-box of 9 without C can now be expanded to any new position for
C . The concept is illustrated on figure 6.8 and figure 6.9.

Whenever we wish to determine the netlength reduction for a new location of a mod-
ule C � , we can calculate the bounding-boxes before C � is moved and afterwards in
constant time for each net connected to C � . We also use the on-demand recalculation
scheme of the previous section, but this time on the nets. The complete scheme during
the inner loop for evaluating the swap of two modules C � and C is as follows:

� Calculate the netlength reduction of moving C � to its new location by using the
extreme and second-most extreme modules.

� Move C � to its new location and mark every net connected to C � as “dirty”.

� Use extreme modules to determine netlength reduction of moving C � .

6.3 Swap-Based Local Search 123

Extreme module

Second−most extreme module

Module

Figure 6.8: For fast evaluation of bounding-box net-length we store the extreme and second-most extreme modules
of each net.

� For every net connected to C recalculate it if it is “dirty”.

� Move C to the original location of C � and evaluate netlength change by extreme
modules.

� Return C to its original location. The extreme modules of nets are maintained.

� Return C � to its original location.

� Recalculate all nets connected to C � which are no longer “dirty” and mark all
nets connected to C � as “non-dirty”.

When a module is actually moved at the end of the local search all nets connected to
it are always recalculated.

The time needed to recalculate the extreme modules of a net 9 is
� a
 9
 f . The total

running time of each step of the inner loop is
� a ��� � � � � �&/!f where ��� is the number

of nets connected to C � , � is number of nets connected to C , � is the number of nets
C � and C share, and / is maximum number of pins connected to any of the � nets.

From section 5 we know that the number of nets a module is connected to on average is
about � . So the number of nets shared by two modules is certainly very small. Finally
we also know from 5 that the number of modules connected to each net is about �
on average. Practical experiments have shown that this scheme is extremely effective
compared to calculating netlengths at every location.

Large nets In some of the instances – e.g. avqlarge, avqsmall and pu – we have
discovered that some nets contain in the order of thousands of pins. These nets are
likely clock-signals or similar. Even with the aforementioned scheme such nets impact
performance significantly. Therefore a net is only marked dirty and recalculated if C �
is moved beyond the inner most extreme modules. Even this simple modification
resulted in great speed-ups of the local search method.

124

(a) (b)

Figure 6.9: Reevaluation of bounding-box nets based on setup from figure 6.8. (a) One of the extreme modules is
moved. The bounding box of the other extreme modules and the second most extreme module in that direction are
used to create a new bounding-box. The new bounding-box is expanded with the new location of the moved module.
(b) One of the non-extreme modules is moved. The bounding-box of the extreme modules is expanded to include the
new location of the moved module.

7 New Global Placement Heuristic

In this section we will present a new technique for global placement. First we will
describe how the quadratic star netlength function is used in conjunction with the
legalization algorithm of section 4. Then we will describe how the legalized solution
can be used to modify the quadratic formulation and result in a new solution. This we
use to create an iterative algorithm.

Quadratic netlength choice We have chosen to use the star netlength for quadratic
optimization because it generates more sparse matrices than the clique netlength. We
have not used a hybrid method which was described at the end of section 2.4.1, but
the main difference should only lie in slightly longer solution times to the quadratic
problem. Note that unlike the clique netlength the star netlength per default is not
divided by the number of pins.

7.1 Legalizing Unconstrained Quadratic Placements

By legalizing analytic unconstrained quadratic placements one can generate a solution
to the placement problem. However there are a few subtleties to this that we will
describe in the following sections.

7.1.1 Unconstrained Quadratic Placement Revisited

As mentioned in section 2.4 the quadratic netlengths can be written in matrix notation
as:

� a	�Wf3� �
 � � ���
 � ��� (7.1)

7.1 Legalizing Unconstrained Quadratic Placements 125

Where � represents the current placement of modules. It was also described how
by using the Conjugate Gradient Method it was possible to solve the unconstrained
problem: � �

�� � a	�Wf (7.2)

By legalizing the solution � using the legalization algorithm of section 4 we would
have a legal solution based on the unconstrained quadratic solution. In general the
bounding-box netlength with this initial legal solution is poor. Therefore we initially
tried to improve the initial solution by adjusting net contributions.

Linearization Scheme In section 3.1.3 we described a Linearization scheme [79] by
Sigl et al. which was used for Gordian-L and also adopted by the force method of
Eisenmann and Johannes [19]. The method divides the quadratic star netlength during
quadratic optimization with the linear distance between modules and star points of
the last solution to create an approximation to the linear star netlength. The new “net-
weights” are then used in the quadratic solver to return a new solution. This method
is repeated until the sum of differences between linear netlength is less than some � .
The method is described in algorithm 7.1. Note however that the linearization scheme
is only described for the P -coordinate. The linearization scheme is separated on each
coordinate just as the minimization step is. � � was set by Sigl et al. to the average
width of a module (height for the R -direction).

Algorithm 7.1: Linearization scheme of Sigl et al. [79]
Set iteration number � � � ;
foreach net 9 - � do

Set current linear star length of 9 to �
� � �7 � �

repeat
Minimize unconstrained placement with net-weights 	�6a 9 f�� � � 7 �

�
 � �� ;� � � � � ;
foreach net 9 - � do

Recalculate star linear netlength �
� � �� by: ;

�
� � �� �

�

��\a�� � � � + ���

M a , f O "
�� � O a 9 f

 f

until Current and last linear netlengths obey
�
7 � �

�
� � �7 " � � � � V��7

� � ;

Net-size fraction The linearization scheme did not improve placements significantly.
Most likely because modules are not separated during the first iteration. Instead we
try to predict the length of nets before the quadratic placement. Nets with many mod-
ules will probably be large making the star netlength much larger then the bounding-
box netlength. On the other hand small nets will have netlength close to the bounding-
box netlength. Therefore we divide the weight of each net with the number of pins and

7.1 Legalizing Unconstrained Quadratic Placements 126

(a) (b)

(c)

Figure 7.1: Unconstrained placements of primary2. (a) Standard star netlength placements. (b) Placement with
linearization scheme. (c) Placement with net-size fraction.

set the weight during unconstrained minimization to:

	� a 9 f�� �6a 9 f

9

 " � � � ��� 9 - � (7.3)

Note that this fraction has no relation with the fraction explained for the clique net-
length in section 2.3.3. The fraction for the clique netlength was to ensure that large
nets did not dominate the net-function. Our fraction is introduced to make the star
netlength behave more as the bounding-box netlength. Our net-fraction is not related
to theorem 2.3 either since this deals with linear star netlength and � � � 	6a 9 f .
The three unconstrained forms for the primary2 circuit are shown on figure 7.1. The
figure illustrates that the net-size fraction method does give better spreading than the
other two methods.

7.1.2 Legalizing the Quadratic Placements

The unconstrained placements in general hold a great deal of overlap and the legal-
ization algorithm has difficulty legalizing them without moving modules too much.
The setup of the legalization algorithm is as follows:

� Limited placement area and fixed modules are considered, so the legalization
will obey all constraints.

7.1 Legalizing Unconstrained Quadratic Placements 127

� The algorithm uses centered legalization (unless we specify otherwise).

� The algorithm uses the extended envelope sequence-pair placement method.

Also rather than using the complex sequence-pair conversion algorithm we use the
simple diagonal-heuristic for determining the sequence-pair of the legalized place-
ment which is slightly faster and seems to work better for massively overlapping
placements (see section 9.3.1 for run-time comparisons).

Varied � We have used the extra time gained from the heuristic sequence-pair ex-
tractor to search different legalizations by altering � (see section 4.5.2. In general the
netlength as function of alpha is roughly a convex curve. this is illustrated for three
different circuits in figure 7.2. Although � does seem convex we have decided to sim-
ply search an interval for good � values. Therefore we try the legalization algorithm
for the following values of � :

�B� �
��Wa G ��!� f � ����� G<- ���	����������
	���!� (7.4)

We then choose the best solution among the 20. At this point we should note that
preliminary attempts at determining a good value for � based on the unconstrained
placement, the modules sizes and the size of the placement area failed completely. It
was simply too difficult to estimate good values of � .

A simple standard-cell legalization method To test the quality of the sequence-pair
legalization we also implemented a very simple standard-cell legalization method. The
method sorts the modules by R -coordinate and divides them in rows. The number of
modules in each row is estimated based on the average modules width. In each row
the modules are placed according to P -coordinate.

Figure 7.3 illustrates how the unconstrained placement from primary2 is legalized as
an example of the legalization algorithm.

7.1.3 Results for The Initial Placements

In table 7.1 we have shown results for the initial solutions of the unconstrained place-
ments. The table contains four columns; the solution based on the standard uncon-
strained star netlength, the solution based on a linearized star netlength using the lin-
earization scheme, the solution based on the star netlength with our net-size fraction
weights, and the final column gives the results of the simple standard-cell legalization.
All results were computed within minutes on a 980 MHz. Pentium III. One can draw
a number of conclusions from the table:

7.1 Legalizing Unconstrained Quadratic Placements 128

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
et

le
ng

th
 (

m
et

er
)

phi

alpha vs. netlength (primary2)

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
et

le
ng

th
 (

m
et

er
)

phi

alpha vs. netlength (biomed)

(a) (b)

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
et

le
ng

th
 (

m
et

er
)

phi

alpha vs. netlength (industry2)

(c)

Figure 7.2: � -values compared with netlength (� ������� ��� �) for three MCNC standard-cell circuits. The
netlength is roughly a convex function of � . (a) primary2. (b) biomed. (c) industry2.

7.2 Iterative Improvement 129

Circuit Basic Net-fraction Linearization scheme Standard-cell legalizer

fract 96576 92145 94148 81642
industry1 2687698 2368701 2574084 1717549
industry2 60223530 40132972 44740349 51516819
industry3 133871822 116760980 119017771 151154547
avqlarge 54822592 23404247 28980532 38036796
avqsmall 48491449 21424993 28346937 30653101
biomed 16501145 8305231 13000255 11188979
golem3 433339144 346631291 338263293 318995267
struct 2498590 2098600 2430237 1503554
primary1 1695513 1583839 1787370 1535910
primary2 8421795 6985533 7906193 8627260
decoder 41595421 37557587 39143823 -
pu 241659248 233460664 317062483 -
clk 16688293 14797056 30427228 -
industry2g 80098783 51174857 75153100 -
industry3g 237724726 194539726 257635302 -
ami33K 177236386 155041276 146512641 -

Table 7.1: Comparison of different net-weight schemes and the resulting legalized placements. The missing num-
bers (-) arise from the fact that the simple standard-cell legalizer cannot legalize general- and mixed-cell circuits.

� In general the linearization scheme and net-size fraction scheme work better
than the basic setup. Also the net-size fraction is mostly better than the lin-
earization scheme.

� The standard-cell legalizer can outperform the sequence-pair legalizer. This is
no surprise since both methods attempt to convert the topology of the overlap-
ping placement to a legal placement. The main difference lies in the underlying
methodology. Of course the standard-cell legalizer is not capable of handling
general cells.

� Compared to the results of table 3.1 it can be seen that the netlength of the place-
ments in general is two to three times longer than that of published results. This
should not come as a surprise either since at this point we have done little to
improve the placement.

7.2 Iterative Improvement

Although final placement may be capable of improving the quality it is unlikely that
the netlengths can be improved by �	��� within reasonable time even by a good final

7.2 Iterative Improvement 130

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.3: Animation of the legalization algorithm on unconstrained placement of primary2. (a) The optimal
unconstrained placement from quadratic star netlength with the net-size fraction scheme. (h) The legalized place-
ment. (b)-(g) animation of modules. The images are interpolated placements between overlapping and legalized
positions and are not in any way related to the algorithm. Their sole purpose is to illustrate how modules are moved
during legalization.

7.2 Iterative Improvement 131

quadratic function
Minimize

modify quadratic function
Use legal placement to

placement
Legalize

Figure 7.4: A requirement for the global placer is that the iterative flow use the legalization method in iterative
improvement of the quadratic placement by modifying the quadratic objective function.

placer. Therefore the placements must be improved further to be usable which is the
aim of this section.

We have decided to create a new iterative global placement algorithm based on the
legalization algorithm. The basic outline of our approach is illustrated on figure 7.4.
The legalization algorithm will modify the quadratic formulation. The motivations
for using this scheme are:

� The legalization contains no overlap and can therefore “point” in a direction of
a good global placement. Also it considers a real placement not just an estimate
based on area as the partition based algorithms do. Further unlike the force-
based methods which attempt to fill nearby empty regions for each module the
legalization algorithm has a more global perspective at where modules can be
placed without overlapping.

� If a legalized placement is used to adjust global placement in each iteration then
the next solution to the unconstrained quadratic problem could be interpreted
as a relaxation of the legal placement.

This will become more clear and we will discuss the two items in more detail when we
have presented the algorithm in the following sections. Before presenting the method
we will briefly recapitulate how the quadratic function can be modified.

7.2.1 Adjusting the Quadratic Function

To improve the placements we will adjust the quadratic function so that it will be eas-
ier to legalize. Altering the quadratic function must be done with care. If the function
is altered too much the problem will have little in common with the original quadratic

7.2 Iterative Improvement 132

problem. On the other hand if it is not altered enough the method will have slow
convergence. The standard ways to modify the quadratic function are

� External forces Add a vector � to the quadratic function and minimize:

� a	�Wf<� �
�� � ���
 � � �

 � ��� (7.5)

by solving

 � � ��� � � � � (7.6)

This was the method adopted by Eisenmann and Johannes [19]. External forces
can drag a module in a specific direction.

� Artificial nets Add an artificial net between a module and a static position on the
placement area. This was the method adopted by Hu et al. [37]. Unlike external
forces the forces from artificial nets are not constant and can be used to drag a
module towards a specific position. Specifically a function of the form

� a	�Wf�� �
 a � � � ! f � ���
 � ��� !
 � ��� ��� ! (7.7)

is to be minimized by solving

�a � � � ! f � ��� ��� ! � � (7.8)

� Soft constraints Kleinhaus et al. [49] used a form of soft constraints which were
simply part of the objective function.

� Partition problem Vygen [86] broke the problem into smaller parts by splitting
nets at grid-cell boundaries and iteratively refining grid resolution.

7.2.2 Strategy for Altering the Quadratic Function

The primary problem to be solved is how to use the legalized placement in an iterative
flow. The immediate ideas that come to mind are:

1. Use the legalized placement as a hint as to where modules should be placed in a
non-overlapping placement.

2. Use the legalized placement as a hint as to which direction modules should be
moved in to remove overlap from the placement.

3. Fix those modules of the legalized placement which are placed at a “good” po-
sition.

7.2 Iterative Improvement 133

We have decided to solve this problem by adding artificial nets between well-placed
modules in the legalized placement and their position in the legalized placement. The
use of artificial nets have the following properties:

1. Modules are dragged towards a specific location not just in the direction of the
location which would be the case with external forces.

2. No actual fixing occurs. So even the “good” modules are still allowed move-
ment.

Unfortunately we now have to determine which and how many modules are “good”.

7.2.3 Measuring Good Modules

There are a number of ways to measure the quality of a module’s location in a place-
ment:

� The distance from the placement in the unconstrained quadratic placement.

� The external forces acting on the module in the current placement. These can
be determined by calculating

� �
 �
� ��� , where
� is the legal placement.
Each component of

�
corresponds to a module. By looking at the component

of module C it can be be determined what its external force is. Note that
� � �

for a solution to the unconstrained problem.

� Using the bounding-box netlengths of the incident nets. Areibi et al. [3] presents
a utility function which gives low values to modules that are well-placed.

Through preliminary experimentation we have concluded that the distance between
the position and the unconstrained quadratic placement is the best way to evaluate a
module.

7.2.4 Regions

Unfortunately simply adding artificial nets between the e.g. � � best placed modules
and their legal position gives poor results which will reduce quality of the placement
over time. One immediate requirement to the iterative flow is that the modules will be
spread increasingly more in each iteration. However the best placed modules – with
respect to distance – will be legalized close to the relaxed placement so little spread
will arise from this procedure.

To solve this problem we divide the placement area into a number of rectangular re-
gions. Now we add an artificial net between the best placed module in each region
and its legal placement.

7.2 Iterative Improvement 134

7.2.5 The Iterative Flow

There is a number of parameters that can be adjusted for the method.

� Weight of artificial net Artificial nets should have appropriate weight. This
could depend on the quality of the legalized position of the connected module.

� Number of regions The number of regions has great effect on the solution. Too
many regions will drag many modules towards the legalized placement which
may be incorrect. Too few will not alter the quadratic function substantially.

� Artificial net life time and relaxation The artificial nets do not need to be static.
To allow for new placements the artificial nets could be removed over time or
have their weights decreased.

� Stopping criteria When to stop the global placement. There are two possibilities;
either when overlap is sufficiently small or when a specific number of iterations
have been conducted.

Some preliminary experiments have shown that the best setup is as follows:

� Net-weights should not depend on distance to relaxed position. If distance is
considered, long artificial nets have either too small or too large influence. There-
fore we set weights to some constant � . A good value for � will be given during
fine-tuning of our global placer in section 9

� Net-weights should be decreased. We multiply them by a constant
�

in each it-
eration. It is important not to remove nets completely since they have perturbed
the quadratic function towards its current state and removing the nets will move
the quadratic function into an unknown state.

� The number of regions should grow over time. Preliminary experiments showed
that multiplying it by 4 in every third iteration until there is an equal number of
regions and modules works well. Keeping a number of iterations with an equal
number of regions allows the algorithm to undo some of its faults.

� The starting number of regions should be small. Experiments have shown that
64 regions are good. Also we never create more regions than there are modules.

� We let the stopping criteria for global placement be a specific number of itera-
tions which will be revealed in section 9.3.1.

Note that some decisions were made in the previous text. These decisions were made
based on many preliminary experiments and seem vital for the algorithm to function
properly. With this setup the complete iterative flow is shown in algorithm 7.2

Figure 7.5 illustrates the iterative flow on the primary2 circuit. Figure 7.6 shows the
legalization of the last iteration of this procedure.

7.2 Iterative Improvement 135

Algorithm 7.2: Global placement
Input(Instance of VLSI-placement problem) ;
Set � ��� � regions ;
Set iteration counter G �[� ;
Set best solution
 ���������[T � ����
 X ;
Let �8a
 f be the current bounding-box netlength of a solution
 ;
Set �8a
 ��������f��
 ;
repeat

Solve unconstrained quadratic problem ;
For a module C - � let � a C f��[a P a C f � R a C f�f
 be its center position in
the solution of the unconstrained quadratic problem ;
Legalize the unconstrained problem ;
For a module C - � let
� a C f��[a 	P a C f � 	R a C f�f
 be its center position in
the legal placement ;
foreach Artificial net 9 do

Set weight � a 9 f�� � � �6a 9 f ;
Setup � A � regions ;
foreach Region 4 do

Determine the module C with legal position in 4 and smallest dis-
tance

�
� a � a C f �
� a C f�f ;

Create artificial net 9 between center of C and
� a C f (weight � a 9 f3�
�) ;

if G�� �
�

� �D
 then� �
� �
�]a � ����� �

�

 f

Let
 be the current legal solution ;
if �8a
 f

� �8a
 �������) then

 ��� �����

G � G � �
until Stopping criteria met;
return
 �����	�

7.3 Clean-Up Step 136

Reuse of quadratic solution It should be noted that although minimizing the quadratic
function can take a while for the first iteration, using the previous solution as initial
solution for the Conjugate Gradient Method will improve speed significantly so sub-
sequent quadratic solutions can be determined in a few seconds even for the largest
of the placements.

� -variation During the iterative flow we also test for 20 different legalizations de-
pending on the � -parameter of 4.5.2 as we did for the initial solution (see section 7.1.2).

7.3 Clean-Up Step

The iterative flow of the previous section will give acceptable results. However in
general they are still
	� " �	��� worse than previously published solutions (The exact
solutions will be revealed in section 9). The main problem is that the legalizer alters
the relative order of modules. Therefore a clean-up procedure is applied.

At the end of global placement we will conduct the local search method of section 6
for each module C - � . When the local search completes we introduce another legal-
ization step to remove overlap from the local search step. This is repeated a number
of times. The objective function for the clean-up step is the one of section 6:� �

� �

7	���
�6a 9 f � � � a 9 f���� �

= ���

&G
	 � , �&9]I � � R a � = � C f � (7.9)

for some � 5 � .
The outline of the clean-up step procedure is described in algorithm 7.3.

Algorithm 7.3: Clean-up procedure after global placement
Input(Solution
 of the placement problem after global placement) ;
Let �8a
 f be the current bounding-box netlength of a solution
 ;
Set best solution
 ���������
 ;
repeat

Do local search for each module on solution
 ;
Legalize the solution of the local search ;
Let
 be the new legal solution ;
if �8a
 f

� �8a
 ��������f then

 ��� �����

until Stopping criteria met;
return
 �����	�

The clean-up procedure has been applied on the global-placement solution of pri-
mary2 on figure 7.7.

7.3 Clean-Up Step 137

Iter. Unconstrained Legalized

1 (1,596,345) (6,904,771)

4 (2,009,200) (6,058,828)

8 (3,439,032) (5,577,291)

12 (3,618,762) (5,372,513)

Figure 7.5: Example of global placement on primary2. Images are shown for iteration 1, 4, 8, and 12. The
images on the left are the solutions to the unconstrained quadratic problem. The images on the right are
legalized solutions. The numbers in brackets indicate netlength in micron at the specific iteration.

7.3 Clean-Up Step 138

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.6: Animation of the legalization algorithm on unconstrained placement of the 12th iteration of global
placement of primary2. (a) The optimal unconstrained placement at iteration 12. (h) The legalized placement.
(b)-(g) Animation of modules. The images are interpolated placements between overlapping and legalized positions
and are not in any way related to the algorithm.

7.3 Clean-Up Step 139

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.7: Animation of the clean-up step (a) Solution of primary2 after global placement, legalization and
one iteration of the clean-up step. (h) Solution after legalization and clean-up step (netlength: 4,607,676 micron)
(b)-(g) Animation of modules. The images are interpolated placements between overlapping and legalized positions
and are not in any way related to the algorithm.

7.4 Connection to Other Methods 140

7.4 Connection to Other Methods

Our algorithm is very similar to the ordinary force-based methods (e.g Eisenmann
and Johannes [19]). In both cases overlap is attempted removed by spreading the
modules. Eisenmann and Johannes use the overlap-induced forces on a bin-structure
to calculate external forces. We use the legalized placement. Both techniques have
their flaws.

Eisenmann and Johannes technique requires a bin-structure of sufficient resolution
to represent the overlap of modules well enough on the placement area. The bin-
structure must be used in conjunction with a fast-fourier-transform step to calculate
the external forces (see section 3.1.4). If the bin resolution is very high this could rep-
resent a problem in terms of memory and computational requirements.

Our method does not rely on a bin structure. However the main flaw here is that
legalization will tend to push modules in different directions in each iteration. This
happens because the legalization algorithm rarely places a module in the same spot
in two subsequent iterations. Therefore our algorithm never reaches a state where
overlap is completely removed as would be expected from Eisenmann and Johannes
algorithm.

Another point is that the legalization algorithm uses a more global perspective to re-
move overlap while the force-based methods simply use close neighborhood. The
effect of this should be faster convergence to good solutions.

The algorithm is also closely connected to the partition based algorithm Gordian of
Kleinhaus et al. [49] (see section 3.1.3). Here the modules were constrained to spe-
cific regions which were determined by partitioning. We drag well placed modules
towards specific regions. The position of each such module is determined by a place-
ment similar to a partition based on area.

Alternative interpretation Instead of interpreting the method as a force-like method
it could be interpreted as a relaxation method. In each iteration a legal placement is
relaxed to construct a better but illegal placement which is then re-legalized to form a
new and hopefully better legal solution than the previous one.

141

placement
Legalize Improve modules

by local−search

Figure 8.1: The outline of our final-placement.

8 New Final Placement Heuristic

In this section we will present a new local search based final placement heuristic. The
method uses linear program formulation of bounding-box netlengths and relies on the
swap-based local search we described in section 6. The local search of this section also
has a larger neighborhood than the local search of section 6. Similar techniques have
been used by other authors but our approach is a novel technique.

8.1 Outline of Final-placement

Our strategy for final placement is similar to our global placement and is shown on
figure 8.1. Using local search we will improve the placement and we will allow for
overlapping placements. Then from time to time we will legalize the placement. There
are two reasons to legalize the placement during final-placement and not just at the
end of final-placement:

� The less overlap a placement has the more accurate the netlength will be with
respect to a final legal placement. Therefore to maintain accurate netlength dur-
ing final-placement the placement should be legalized from time to time. On
the other hand legalizing too often will slow final-placement, so the number of
legalizations must be balanced. Legalization during final-placement was also
briefly discussed in section 3.2.1 when we described TimberWolf 7 [80].

� Legalizing the placement will move many modules and is therefore a way to es-
cape some local minima. On the other hand if modules are moved too much dur-
ing legalization the improvement steps conducted before the legalization will be
lost.

At this point the next question is what form of local search to conduct. The local search
method of section 6 would probably work well but it has tendency to move modules
into local minima of the form shown of figure 8.2. Here several modules must be
moved at one time to improve the current placement.

8.2 Relaxation Based Local Search 142

Figure 8.2: The swap-based local search method of section 6 will create local minima of this type. Each of the four
shaded rectangles are modules. The rectangle is the bounding-box of a net. No move of one single module from the
net can be cause a reduction in netlength since it would that two modules were moved consecutively..

To avoid such local minima we have decided to use a stronger but also more demand-
ing local search method. We will extract a collection of connected modules and relax
all no-overlap constraints while fixing non-extracted modules. The netlength of the
nets connected to extracted modules will then be reduced analytically. This will gen-
erally create overlapping placements and therefore we will introduce a local search
clean-up step – semi-legalization – based on the local search algorithm of section 6. To
guide our new relaxation based local search we will use simulated annealing to escape
local minima. The objective function is the same as we used for local search in section
6: � �

� �

7	���
�6a 9 f � � � a 9 f���� �

= ���

&G
	 � , �&9]I � � R a � = � C f � (8.1)

for some � 5 � .
The outline of our description of final placement is as follows. First we describe the
relaxation based local search method in section 8.2. In section 8.3 we present the simu-
lated annealing heuristic which controls the relaxation based moves. Finally in section
8.4 we summarize the final-placement heuristic.

8.2 Relaxation Based Local Search

The relaxation based method by Hur and Lillis [39] was briefly touched upon in sec-
tion 3.1.7. They relax sub-circuits (connected groups of modules). The algorithm is
for global placement and bin-based. After each relaxation is solved a clean-up step,
called node-rippling, ensures that each bin does not have a surplus area of modules.
The method was also used earlier by Hur and Lillis [38] during final-placement. Here
a “force”-number of each module (similar to the prefer number of section 3.2.1) was
used to determine how modules would be legalized. Unfortunately the method as
described in [38] relies on equal-sized modules.

We will use as similar approach. The outline of the inner iterations of our final-
placement heuristic is as follows:

8.2 Relaxation Based Local Search 143

1. Extract sub-circuit First we extract a sub-circuits � . A sub-circuit is a collection
of connected modules.

2. Relax sub-circuit Next we minimize netlength of the sub-circuit while com-
pletely relaxing no-overlap constraints of all modules and fixing remaining mod-
ules � !�� . This can be done in polynomial time.

3. Clean-up sub-circuit We now clean-up the relaxed placement. We do this with
a variant of our local search which we described in section 6.

4. Accept/reject If the netlength has been reduced or is equal we accept the moves.
Otherwise we restore the state of the circuit before extraction and relaxation.

After a number of such iterations we can legalize the placement. The complete final-
placement heuristic will repeat this process until some time-criteria or other stopping
criteria is met. To control the process we use simulated annealing.

We will explain each of these elements in detail. In section 8.2.1 we explain how sub-
circuits may be extracted. In section 8.2.2 we explain how we solve the relaxation
of the sub-circuit. In 8.2.3 we explain the clean-up step. In section 8.2.4 we explain
how the current state of the circuit along with pockets can be saved. This is necessary
since we may reject moves of the relaxation based method which may include many
exchanges of module positions. Finally in section 8.2.5 we give the outline of one
move in the local search neighborhood for final-placement.

8.2.1 Sub-Circuit Extraction

The first step of each iteration is to extract a sub-circuit � . � can be extracted in at least
three different ways:

� Randomly - modules based First a module C - � is picked randomly. C is
added to � . Now the procedure adds new modules repeatedly to � by choosing
one module C ! from � and adding one module connected to C ! . This was the
method of Hur and Lillis [38].

� Randomly - net based One net 9 - � is picked randomly and its connected
modules are added to � . � is expanded repeatedly by choosing a module C
from � and adding modules of another not previously added net connected to
C . Neighbor nets are chosen randomly.

� Utility-based method Based on some quality-value of nets and modules which
state how well nets and modules are placed, nets or modules may be added
greedily but connected nets and modules which have low quality are added first
since they are most likely to improve placement. A utility-value for nets and
modules were described in [3].

8.2 Relaxation Based Local Search 144

We have chosen a net-oriented scheme rather than a module-oriented scheme because
we feel that the relaxation based method works better if modules of an entire net are
relaxed. Also ome preliminary tests pointed in the direction that this scheme was
better at escaping local minima left by the clean-up step of global placement. We
have not tested the utility-based approach but our other attempts with utility based
optimization were unsuccessful so we did not pursue it in this context.

Our sub-circuit extraction works as described in algorithm 8.1

Algorithm 8.1: Sub-circuit extraction
Input(Placement problem and maximum sub-circuit size �) ;
Set subcircuit � � � ;
Choose net 9 - � randomly ;
Add modules from 9 to � ;
repeat

Choose C - � randomly ;
Choose 9 connected to C randomly ;
Add modules connected to 9 which have not been previously added
to � ;

until

�

 � � ;

return Sub-circuit �

8.2.2 Relaxation

The next element to our final-placement heuristic is relaxation of the sub-circuit. Here
we will minimize the bounding-box formulation of the nets connected to modules of
� while relaxing the no-overlap constraints.

Let
�

be the nets connected to modules from � . To solve the relaxation we construct
a linear program formulation of the modules � and the nets

�
. Modules connected to

nets from
�

but not in � are treated as fixed modules during the relaxation phase.

Using the notation from section 2 the linear program takes the form:� �
� �

7	��� � a 9 f a P 7 " P 7 � R 7 " R 7 f� �����
 � � � � �
P 7 " P � a
 a , f�f 5 ����� O a , f 9B- � � ,�-D9 �
 a , f - �

P � a
 a , f�f " P 7 5 " ����� O a , f 9B- � � ,�-D9 �
 a , f - �
R 7 " R � a
 a , f�f 5 ����� Q a , f 9B- � � ,�-D9 �
 a , f - �

R � a
 a , f�f " R 7 5 " ����� Q a , f 9B- � � ,�-D9 �
 a , f - �
P 7 5

�

�� + � 7 a P a
 a , f�f � ����� O a , f�f 9B- � �
 a , f �- �" P 7 5 "
� �
� + � 7 a P a
 a , f�f � ����� O a , f�f 9B- � �
 a , f �- �

R 7 5
�

�� + � 7 a R a
 a , f�f�� ����� Q a , f�f 9B- � �
 a , f �- �" R 7 5 "
� �
� + � 7 a R a
 a , f�f � ����� Q a , f�f 9B- � �
 a , f �- �

(8.2)

8.2 Relaxation Based Local Search 145

All variables, P 7 � P 7 � R 7 � R 7 for 9 - � and P � a C f � R � a C f for C - � are free and represent
respectively the boundaries of each net 9 - �

and the position of each module C -
� . The last four constraints describe modules not in � (which were static under the
relaxation). Notice that the formulation can be split in both an P - and a R -component
since the bounding-box netlength is separable in the two directions. For more details
on linear programming formulation of the bounding-box netlength see appendix C.2.

We now solve the linear program which minimizes the bounding-box netlength of the
nets from 	 and place modules at the position induced by the solution to the linear
program (a P � a C f � R � a C f�f�
).
Also we set penalties of modules from � to 0 and update the objective function with
new netlengths and penalties. The reason for resetting penalties will become clear in
section 8.2.3.

Network-flow interpretation The linear program can be separated in P - and R -com-
ponent. The dual of either of these linear programs can be interpreted as a minimum-
cost network-flow problem with negative edge costs (The details of the flow inter-
pretation are in appendix C.2.2). Each module contributes with one node to the net-
work each net contributes with two nodes and two edges and each pin connecting
modules from � with nets from

�
also contributes with two edges. Since the linear

program can be written as a network-flow problem we can solve it efficiently in time� a C 9
�
��� a 9 � � C f�f [27] where C �

�

�

 �
 and 9 �

 �
 �
 , when , is the number
of pins connecting � and

�
.

8.2.3 Semi-Legalization

The relaxation step usually introduces overlap in the placement which must be dealt
with. Ideally the legalization algorithm of section 4 could remove overlap but there
are two reasons why this is not a good idea:

� Firstly it is computationally expensive to legalize the entire placement after each
sub-circuit has been relaxed. Even though the legalization algorithm is fast it
still takes a second to legalize a placement containing about 30,000 modules.

� Secondly the overlap induced by the linear relaxation is often severe. As was
briefly touched upon in section 3.1.2 linear program relaxation has a tendency
to place modules connected to each other in the same spot. Which means that
modules are placed on top of each other after the relaxation step of the previ-
ous section. However even if the solution to the linear program did not place
connected modules directly on top of each other there is a good chance that
a relaxed module would be placed on top of some other module on the place-
ment area since placements produced by our legalization algorithm are compact.

8.2 Relaxation Based Local Search 146

Therefore simply using the legalization algorithm at this stage will deteriorate
the solution significantly.

Instead we use a variant of the local search method of section 6 to clean-up the place-
ment once again. This procedure we call semi-legalization.

Let � ! be the set of locations occupied by modules from � before the relaxation step.
After relaxation the modules from � are semi-legalized in some order.

For each module C � - � the semi-legalization proceeds as follows. Locations in a re-
gion � surrounding C � are searched in the same manner as in the local search heuristic
of section 6. Each location � � in � is visited and the change of objective value from
placing C � at � � is evaluated. If a module C is occupying � � we attempt to move it
to one of the locations of � ! . Once again we test the objective change of placing C at
each location � -�� ! . The best combination of location � � , module C and location �
in terms of objective value reduction is chosen and the appropriate movements and
pocket manipulations are conducted.

The procedure is described in algorithm 8.2

Algorithm 8.2: Semi-legalization of one module
Input(A placement problem, a module C � which should be semi-legalized, a
search-region � , a set of original locations � !);
���������3�
 ;� ���������[T � ����
 X ;� � �������3�[T � ���
 X ;
foreach Location � � within � do

Place C � at � � ;
if � � is occupied by module C then

Determine the best location � from � ! for C ;
�]�[T objective value increase due to moves X ;
if �

�
��������� then

�������	�8� � ! ;� � �����	�8� � � ;� �����	�8� � ;
Return C � and possibly C to their original locations ;

Place C � at �
 � �
 ;
if module C is at � � �����	� then

move C to � ��� ���

Split the pocket of � � ������� if necessary ;
return New solution to placement problem

There are two parameters for the procedure which we did not explain:

8.2 Relaxation Based Local Search 147

� Order of modules In which order should the modules from � be semi-legalized.
This could have an impact on the final solution, since modules placed early will
affect steps of later modules and the quality of nets from

�
.

� Search region for modules Only a limited number of exchanged modules C -
� !�� can be tested for the method to function efficiently.

Order of modules For the order of modules we considered three different approaches:

� Random.

� Ascending order of distance between position before and after relaxation step
(largest last).

� Descending order of distance between position before and after relaxation step
(largest first).

Preliminary experimentation showed that the ascending strategy worked best. This
makes sense since modules which have moved least were at a good position before
relaxation and there is a good chance that they can fall back into their old location
without changing the net-boundaries too much from the relaxed placement.

Search region for modules For the search region for modules we tried two ap-
proaches:

� Relaxation region For each module C with original coordinates a P a C f � R a C f�f

and new relaxed coordinates a P � a C f � R � a C f�f�
 let

P = � �
� �
�]a P a C f � P � a C f�f � P =� �

�

��]a P a C f � P � a C f�f �

R =� �
� �
�*a R a C f � R � a C f�f � R =� �

�

��*a R a C f � R � a C f�f � (8.3)

and let C ’s search region be defined by

� = �[T P = � � P =� X A T R =� � R =� X � (8.4)

� = corresponds to the area between the original location and the new relaxed
location.

� Total relaxation region Alternatively all modules could have equal search re-
gion:

� �[T
� �
�

= ���
a P = � f �

�

��
= ���
a P =� f X A T

� �
�

= ���
a R =� f �

�

��
= ���
a R =� f X (8.5)

8.2 Relaxation Based Local Search 148

Preliminary experiments showed that individual regions worked best of the two strate-
gies. This can be explained by the fact that the region for each module is smaller and
can be searched quicker and that the larger search region does not contribute suffi-
ciently to improve the solution. However in practice the region � = proved too small
so we expanded it to double size by subtracting half width and half height of � = from
the lower left corner of � = and adding half width and half height to upper left corner
of � = .

The argument for the larger search region, � , would be that one of the early modules
C could be placed far from the remaining modules expand shared nets. These nets
would then be decreased in size if the remaining modules were able to move close to
C , which would require a sufficiently large search region.

8.2.4 Store and Restore of Circuit and Pocket State

The circuit state must be stored so that it can be restored if the relaxation based move
is rejected. To do this efficiently each move of a module during the relaxation phase is
stored along with any modification that occurs with any pockets associated. Before a
move of a module is conducted, its current orientation and position are stored in a list
of moves. Also if the move results in a pocket-split the data necessary for merging the
two resulting pockets are saved in the list of moves.

If the entire relaxation based move is rejected the list of moves is traversed in reverse
order and each move is undone one at a time. This way a module can move several
times during the semi-legalization phase if e.g. the semi-legalization of a later module
of � moves an earlier module of � .

8.2.5 Final-Placement Move

We are now ready to describe the complete neighborhood move of the final-placement
heuristic.

1. A net 9 is extracted at random.

2. 9 is used to construct a set of modules � which are connected and constitute a
sub-circuit �

3. The current value of the objective function is stored. The state of pockets and
locations of modules � are also stored.

4. The sub-circuit of � is relaxed using the linear-program formulation of the boun-
ding-box netlength without no-overlap constraints. Penalties for modules of �
are set to 0. Netlengths for nets incident with modules from � are recalculated
to match the relaxed placement. The value of the objective-function is also recal-
culated to match the new state.

8.3 Simulated Annealing for Controlling Moves 149

5. The resulting placement is now semi-legalized. Modules from � are semi-legalized
in order of least moved first. The semi-legalization process searches for a candi-
date position for each module and possibly a move of a module from a location
to one of the original locations of the modules from � such that the increase of
objective value is least.

6. The value of the objective function before relaxation and after semi-legalization
are now compared. If the entire relaxation based move resulted in an overall im-
provement or zero-change of objective-value the entire list of moves conducted
during semi-legalization is accepted. Otherwise all moves are rejected. Note that
the change in objective function can be calculated during semi-legalization and
does not require the otherwise very computationally intensive evaluation of the
objective function.

7. If the relaxation based move is rejected, moves conducted during semi-lega-
lization are undone one at a time to restore the original state of the circuit and
pockets.

The entire procedure is illustrated on figure 8.3

Comments on accept We accept zero moves. The argument for this is that two con-
nected modules may exchange places without reduction of netlength by the procedure
described above. This increases the possibility of escaping local minima.

8.3 Simulated Annealing for Controlling Moves

To control the flow of the relaxation based local search we use the simulated anneal-
ing (SA) meta-heuristic. SA was chosen because experiments with the guided local
search (GLS) heuristic failed and no appropriate alternative for meta-heuristic could
be found. This section is divided in two parts. First we give a brief introduction to sim-
ulated annealing. Then we explain how we use it in conjunction with the relaxation
based local search of the previous section.

8.3.1 Brief Introduction to Simulated Annealing

SA was first used for combinatorial optimization by Kirkpatrick et al. [48] and has
been used previously for VLSI-placement optimization as described in sections 3.1.5
and 3.2.1. Simulated annealing exists in many variants. We use a modified version
of a simulated annealing which was described by K. Dowsland [17]. Our variant of
Dowsland’s version is described in algorithm 8.3

The algorithm deserves a few comments. In each iteration a solution is picked ran-
domly. If the solution is better than the previous solution we accept it and continue

8.3 Simulated Annealing for Controlling Moves 150

a

b

c

d
b

d

a

c
(a) (b)

b
a

c d

1

c
b

a

d
(c) (d)

c ab

d2

c
3

b

a d
(e) (f)

Figure 8.3: Outline of a relaxed local search move. (a) A sub-circuit � is extracted consisting of modules
� � � � � � � � ��� � . (b) The sub-circuit is relaxed. Note that � ,

�
, � and � may not end up in the same place since

nets connecting individual modules may differ. (c) Modules are semi-legalized in order of least movement during
relaxation. � is first and semi-legalization results in movement of module

�
to the original location of

�
. (d) Next

module is � which fall into its original place. (e) Now
�

is semi-legalized which results in movement of a module
�

to the original location of � . Placing
�

results in overlap which is penalized in the objective function. (f) Finally �
is placed at

�
’s place and

�
is positioned at � ’s original place.

8.3 Simulated Annealing for Controlling Moves 151

Algorithm 8.3: Variant of Simulated Annealing by Dowsland [17]
Let �8a
 f be value of objective function for a solution
 ;
Select an initial solution
 � ;
Select and initial temperature � ��� � ;
Select a temperature reduction parameter � - X �%�&�!T ;
repeat

Select
?- � a
 ��f at random ;
� � �8a
 f\" �8a
 ��f ;
if

�
� � then

 � �
 ;

else
Select random P - X �%�&�!T ;
if P

�
���
�
� then

 � �

if Solution
 was accepted then

� � � � �
if Reset criteria is met then

Set � � � � ;
until Stop criteria met;
return
 � as solution to problem;

with the new solution. If it is not better than the previous solution we may still accept
it if, for some random number P , P

�
���
�
� holds. The value � is the current “temper-

ature”. � is reduced by a factor � whenever we have accepted a solution. To better
enable the search to escape local minimum we have included a reset strategy which,
whenever some reset-criteria is met, resets the temperature of the system. This version
has only three variables
 � , � and � � . Reset- and stop criteria will be specified shortly.

8.3.2 Simulated Annealing for Relaxation Based Local Search

It is straight forward to let simulated annealing control the relaxation based local
search. The neighbor solution
 is given by the relaxation based local search proce-
dure which starts with a random net and adds modules to the net at random. If the
solution is not accepted we simply restore the state of the previous solution. The out-
line is given in algorithm 8.4.

The cooling schedule based on acceptances was chosen because we believe it will focus
search towards local minima. However we hope that the reset method will allow the
search to escape local minima from time to time. As will be clear from the following
section the initial solution
 � will generally already be good so the simulated annealer
will only work from good initial solutions. Therefore we expect that resetting the fine-
tuned annealer will not move the search too far away from the current solution. The

8.3 Simulated Annealing for Controlling Moves 152

Algorithm 8.4: Simulated Annealing for relaxation based local search
Let �8a
 f be the value of objective function for solution
 ;
Select an initial solution
 � ;
Select and initial temperature � � � � ;
Select a temperature reduction parameter � - X �%�&�!T ;
repeat

Select net 9 - � at random ;
Solve relaxation based local search of 9 ;
Let
 be solution after relaxation based local search ;

� � �8a
 f\" �8a
 ��f ;
if

�
� � then

 � �

else
Select random P - X �%�&�!T ;
if P

�
� �
�
� then

 � �
 ;
if Solution
 was accepted then

� � � � �
else

Restore to solution
 � ;
if Reset criteria is met then

Set � � � � ;
until Stop criteria met;
return
 � as solution to VLSI-placement ;

8.4 Complete Final-Placement Outline 153

exact reset-criteria will be given in section 8.4.2

Comments on choice of simulated annealer Simulated annealing is almost a science
field by itself. Our choice of simple simulated annealer is merely guesswork as to what
will work well. A complete and thorough testing of different cooling strategies and
other modifications would be beyond the scope of this thesis and we leave it to future
work.

8.4 Complete Final-Placement Outline

We now describe the complete final-placement heuristic. The final-placement heuris-
tic does combinatorial search on an initial solution returned by global placement. The
combinatorial search is controlled by the simulated annealing for relaxation based
search. Whenever some stopping criteria is met the combinatorial search is halted
and the current possibly overlapping solution is legalized using our legalization algo-
rithm. When the solution has been legalized the combinatorial search continues from
the new solution.

The outline of the entire final-placement is given in algorithm 8.5.

Note that we accept the legalized solution
 always. This is to allow the simulated
annealing to continue from where it left off before legalization.

One important element is missing from the final-placement outline; the legalization
criteria.

8.4.1 When to Legalize

It is not easy to determine when the solution should be legalized. Different criteria
comes to mind:

� Overlap limit Legalize when the amount of overlap in the placement increases
beyond some upper limit. This way overlap can be controlled however good
solutions may be missed because they simply do not carry enough overlap for
them to be legalized. When the overlap increases beyond the limit the legaliza-
tion algorithm may also have difficulty with removing overlap and the other-
wise good solution before legalization would be completely lost.

� Time Legalize after a specific amount of time spend on local search or a num-
ber of local search iterations have passed. This way we can control the amount
of overlap in the placement and ensure that legalized solutions are generated
frequently. However time may not easily capture the underlying moves of the
combinatorial search. Maybe the combinatorial search is fighting to escape local

8.4 Complete Final-Placement Outline 154

Algorithm 8.5: Final-placement using SA and relaxation based local search
Let �8a
 f be the value of objective function for solution
 ;
Let
 � be solution from global placement ;
Let
 �����	� be the current best solution ;
Select and initial temperature � ��� � ;
Select a temperature reduction parameter � - X �%�&�!T ;
repeat

repeat
Store current state of circuit ;
Select net 9 - � at random ;
Extract sub-circuit � based on 9 of maximum size � at random ;
Relax � using linear program formulation ;
Semi-legalize � ;
Let
 be solution after semi-legalization ;

� � �8a
 fW" �8a
 ��f ;
if

�
� � then

 � �

else
Select random P�- X �%�&�!T ;
if P

�
� �
�
� then

 � �
 ;
if Solution
 was accepted then

� � � � �
else

Restore circuit to solution
 � ;
if Reset criteria is met then

Set � � � � ;
until legalization criteria met;
Let
 be solution after sequence-pair legalization of
 � ;
Set
 �.�
 ;
if �8a
 � f

� �8a
 ��� ��� f then

 ��� �����
 � ;

until 	 GdC � � � I@P 	 GdC � ;
Return
 � as solution to VLSI-placement ;

8.4 Complete Final-Placement Outline 155

minima or is moving steadily towards a local-minima when we interrupt it. The
legalization moves modules so some of this work would be lost.

� Legalize after fraction modules moved Legalize after a fraction of the modules
from � has been moved by the relaxation based local search method. This way
we only legalize when a specified amount of change has been recorded in the so-
lution and it can still control overlap to some degree. Another reason to use this
model is that it is likely that a certain amount of improvement of the objective
value is needed to account for the possible loss due to movement of modules
during legalization.

We have chosen the last of these strategies – Legalize after fraction of modules moved
– since it is independent of problem size and it allows us to control overlap to some
degree without depending on the overlap to increase beyond some limit. Prelimi-
nary testing also showed that this method was superior to the time or iterations count
method. The iterations count method had a tendency to legalize too rarely in the early
stages when there are plenty of good moves and too often in the later stages when
only few relaxation moves are accepted. Thus the legalization criteria is:

Legalization criteria: When / �

�

modules have moved as a result of
relaxation based local search (/ � �).

8.4.2 Variables for Final-Placement

The final placement has several variables which can adjusted and may influence the
quality of final-placement. These are:

� Overlap penalty � The overlap penalty determines how much overlap is al-
lowed in local search solutions.

� Fraction of modules moved / The amount of modules to move before legaliza-
tion.

� SA parameter – initial temperature � � The initial temperature of the simulated
annealer.

� SA parameter – cooling value The cooling parameter. The temperature � drops
by � � � � � whenever a move is accepted.

� Sub-circuit size � The size of the sub-circuits extracted by relaxation based local
search.

With the exception of the sub-circuit size these parameters will be fine-tuned with
experiments in section 9. Large sub-circuits are more difficult to semi-legalize and
slows the heuristic. Small sub-circuits weakens the heuristic.

8.5 Unsuccessful related approaches 156

sub-circuit size: For the sub-circuit size we have determined through pre-
liminary experiments that a value of ��� is good.

Reset criteria The reset criteria has not been discussed previously. We have chosen
the simplest; reset after 4 legalization iterations. The exact value of 4 will be determined
in section 9. The argument for not resetting after a number of relaxed local search iter-
ations is that this way the legalization may miss the local minimum reached before
reset.

8.5 Unsuccessful related approaches

We tried many other approaches for final-placement all of which were unsuccessful.
Some of the approaches were related to the previously described approach.

� Extracting cycles After relaxation of the sub-circuit � we only allowed modules
at an original location of another module from � . In general this is insufficient.
Therefore we tried to extract “cycles” of moves. If � �N� I � � �
 � � � � � and I was
positioned at � ’s old position, � at
 ’s old position,
 at I ’s old position,

�
at � ’s

old position and � at
�
’s we would have two cycles of moves. If the entire new

placement had more netlength it would be rejected. Instead each of the cycles
would be evaluated and accepted if they individually reduced netlength.

� � -moves Relaxation based local search has a very large neighborhood. Another
large neighborhood would be to consider � -moves. Instead of considering sim-
ple swaps of pairs of modules we would consider creating cycles of a maximum
of � modules. The details of this method are in section A.3.

� Guided local search I Guided local search based final placement as implemented
by Færø et al. [24, 21] included overlap penalties and connection penalties be-
tween connected modules. We tried a similar approach but in a swap based
neighborhood and with overlap penalty based on our � -scheme. The GLS-scheme
penalizes pairs of overlapping modules to move towards legal placement. This
strategy made less sense in our context so the overlap penalties were dropped.
The connected penalties however proved insufficient to improve the placement.
Even combined with relaxation based local search.

� Guided local search II We also tried a completely different version based on the
guided local search meta-heuristic. Here features were nets which violated some
lower bound on net-size (

� T
 �
�
 ��� � ������
 � �
��
�

� � �

�

 � X). This lower bound was

introduced in [3] to describe utility of modules. However we discovered that
good solutions can have large nets which violates the lower bound and that good
placements in general are not directly related to the size of the connected nets.

8.5 Unsuccessful related approaches 157

One of the main problems with the strategy may also be that there is no easy
way to remove a feature for a net. Even relaxation does not guarantee to remove
such features.

158

9 Experimental Results

In this section we will describe our experimental results. First we describe our imple-
mentation which is called G/Flegal (G is for global and F is for final). Then we conduct
experiments on the global placement heuristic. These will include fine-tuning, bench-
mark results and finally comparison with an implementation of another global place-
ment heuristic. Concluding this we will conduct experiments with final placement.
As for the global placement heuristic we will fine-tune the final placement heuristic
and present final benchmark results.

Netlength unit In the following section netlength is reported in microns unless stated
otherwise.

9.1 Implementation

We have implemented the sequence-pair, local search, global and final placement
heuristics of the previous sections in C++.

Standard Template Library (STL) was used for most data-structures. For random num-
ber generation the C-function rand() was used.

The QT-package by Trolltech10 was used to create a graphical user interface, which
was a great help to visualize the heuristics (see figure 9.1).

For solving the unconstrained quadratic minimization problem we implemented both
diagonal- and cholesky-precondition versions of the Conjugate Gradient Method. How-
ever we had difficulties with numerical stability in relation to cholesky-preconditioning
and therefore the following results were achieved by diagonal-preconditioning.

The linear program formulation of relaxation based local search is solved by CPlex and
as a standard linear program not as a network-flow problem. Our implementation also
include source code to link to the freeware GLPK-solver library11.

Eisenmann and Johannes [19] force-based global placement was also implemented.
Initially to increase our understanding of the force-based methods but in this section
we will use the implementation to compare with our method.

A user manual for the program is provided in appendix E.

9.2 Benchmark System

All tests were conducted on a number of identical machines. The machine configura-
tions were:

10www.trolltech.com
11GNU Linear Programming Kit (http://www.gnu.org/software/glpk/glpk.html)

9.2 Benchmark System 159

Figure 9.1: Screen-grab for our placement tool. The graphical user interface allowed us to visualize the underlying
algorithms and the placement methods.

� Dual Pentium III at 930 MHz. No advantage was taken of dual processing capa-
bilities.

� 1 Gb ram.

� Standard installation of Linux Redhat 7.3.

� G/Flegal was compiled with gcc 3.1 and the -O3 optimization parameter.

9.2.1 Benchmark Circuits

Our heuristic is geared towards placement of general-cell circuits but we will also
do placement on standard-cell circuits as a reference to the quality of the general-cell
placements and to compare the placement heuristics with those of other authors.

We will therefore use our placement heuristic on all circuits described in section 5
except the small MCNC-benchmarks. Our global and final placement heuristics are
simply not geared for such small circuits, and we deem that best netlength would
be better reached by methods specifically designed for these circuits. The circuits we
choose not to use are the macro-cell circuits (apte, xerox, hp, ami33, ami45) and the
smallest standard-cell circuit (fract). We will conduct tests on all other circuits from
section 5 including the new benchmark circuits.

Spacing and orientations Except from the ami33k circuit the design rules of all cir-
cuits require spacing between modules and this is accounted for by expanding mod-

9.3 Experiments for Global Placement 160

ules (see section 4.4.2).

For the new general cell circuits primary2g, industry2g, industry3g and ami33k we
allow all eight orientations during optimization. Modules of the remainder of the
circuits are only allowed one orientation.

9.3 Experiments for Global Placement

First we fine-tune some of the parameters of global placement and the clean-up step.
Based on these adjustments we will give results of global placements. This will be
followed by comparison of our heuristic for global placement with an implementation
of the force-based heuristic of Eisenmann and Johannes (see section 3.1.4).

9.3.1 Fine-Tuning Quadratic Modification

In this section we fine-tune the parameters of the global placement step. The parame-
ters are:

� Number of regions in each iteration.

� Legalization algorithm.

� Initial artificial net-weight � .

� Fall-off value of artificial net-weight
�
.

� Number of iterations for global placement.

� Overlap penalty � for clean-up step.

� Number of iterations for clean-up step.

Through preliminary tests we concluded that the number of regions at any iteration
should be
 � A
 � for � � � a

�
�
 �
 �

�
��� � �

�
�
 � � �!f �
�� , however we will tune the other

parameters. It should be noted that the parameters are likely dependent on each other.
This will complicate testing a great deal. Therefore we will idealize our assumptions
and assume that parameters are to some extend independent.

Another issue is which circuits to use to determine good values of these parameters.
The circuits are similar in some respects and different in others. This will complicate
testing. For fine-tuning the global placement heuristic we will generally use a subset
of circuits that we expect to represent all circuits well.

9.3 Experiments for Global Placement 161

Placement Algorithm Comparison
Circuit LCS Standard envelope Extended Envelope

industry2 53,640,136/158 29,035,808/145 25,777,463/148
industry2g 62,138,408/309 45,434,113/256 30,602,647/256

Table 9.1: Comparison of sequence-pair to placement setup. The column of LCS is placements based on the original
sequence-pair formulations but implemented with the weighted longest common subsequence method. Standard
envelope is semi-normalized placement with standard-envelope. Extended envelope is semi-normalized placement
with extended-envelope. Numbers are ’netlength’/’run time in seconds’. Please note that the implementation of the
LCS algorithm may be inefficient.

Preliminary legalization setup Apart from industry1 all circuits are legalized using
complex centered sequence-pair legalization as described in section 4.5.1 during global
placement. We have discovered that industry1 benefits significantly from a legaliza-
tion with the lower-left corner of the placement area as origin for the sequence-pair
algorithm. So for the industry1 circuit we use lower-left corner of the placement area
and only one region for legalization.

Legalization Algorithm

We begin by presenting some insight to the legalization algorithm for global place-
ment. We first illustrate the necessity of the extended envelope algorithm. For this
purpose we do 20 iterations of the global placement algorithm on the two circuits (in-
dustry2 and industry2g). Note that industry2 is a standard-cell circuit. To convert the
placement to a sequence-pair we use the heuristic conversion (algorithm 4.1) for this
test. We compare the placement results after the 20 iterations of the three methods:
ordinary sequence-pair placement (based on the weighted longest common subse-
quence method), semi-normalized sequence-pair placement and finally our extended
semi-normalized placement. The netlength-results and run times are reported in table
9.1 and represent general results.

From the table it should be clear that the extended envelope based method is the better
of the three. Figure 9.2 is the legalized placement of the 20th iteration of industry2g.
As can be seen the standard sequence-pair method is completely incapable of packing
the general-cells of industry2g. The standard envelope method can do this to some
degree but the packing violates the placement area severely. Finally our extended
method seem to produce an (almost) legal placement.

Preliminary tests have shown that placement-to-sequence-pair heuristic (algorithm
4.1) is faster than the algorithm (algorithm 4.2) while producing results that are almost
equal. To give the reader some sense as to the difference of the two algorithms we
present results for two different circuits (biomed and industry2) and 20 iterations of
the global placement algorithm (untuned) in table 9.2. As can be seen from the table

9.3 Experiments for Global Placement 162

(a) (b)

(c)

Figure 9.2: Comparison of the three placement algorithms. This is the legal placement of the 20th iteration of
untuned global placement of industry2g. (a) Standard sequence-pair placement. (b) Semi-normalized sequence-
pair placement. (c) Extended semi-normalized sequence-pair placement. Please note that all three placements
violate the placement area which is the large unfilled rectangle in the middle. Note that the standard sequence-pair
algorithm has placed modules very uncompacted. The reason for the columnized placement in (b) arises from the
placement algorithm’s attempts to maintain the placement within the placement area.

9.3 Experiments for Global Placement 163

Placement to Sequence-pair comparison

Circuit Heuristic SP Run time Algorithm SP Run time
Netlength seconds Netlength seconds

biomed 6,043,345 78.5 5,914,488 160
industry2 25,448,553 163 24,849,633 364

Table 9.2: Comparison of placement-to-sequence-pair algorithm during global placement. Heuristic SP is the
heuristic conversion. Algorithm SP is the algorithm for conversion. Second and third column are for the heuristic,
while fourth and fifth are for the algorithm.

the algorithmic version creates slightly better results. These come from later steps in
the global placement when there is less overlap. During the early steps the heuristic
produces better results. A more important matter is the run time comparison. The
algorithmic legalization is twice as slow as the heuristic without delivering sufficient
improvement to the placement.

Legalization algorithm setup Based on the previous discussion we choose
to use the extended envelope based placement with diagonal heuristic
method for legalization of placements during the remainder of the global
placement experiments.

Fine-Tuning � and
�

First we fine-tune � and
�

for the artificial nets. Experiments will show that these can
have a great influence on the results of the global placement.

We let � and
�

vary among the values:

� - ���%� �	�$�%�
��$�%�
��$�%�
 �%�$�%�K�����%� �@��� �%� �%�$��� �@���%� �%�&�!� �	���	� �@�!�
� - ���%� �	�$�%�
��$�%�
 ���$�%�
%�$�%�
 �%�$�%�K��� �%� �%�$��� �@���%� ���!� (9.1)

Since � and
�

are highly dependent we do placements for all � � A � combinations of
values.

Test circuits We have chosen a subset of the benchmark circuits that we believe rep-
resents the benchmarks well. The set include primary2, biomed, industry2, indus-
try2g, avqlarge and clk. primary2 and biomed are medium-small sized standard-cell
benchmarks. industry2g was chosen because of the general-cell property. industry2
was chosen to function as a reference to industry2g. avqlarge was chosen because it is
a medium-large standard-cell benchmark. Finally clk was chosen as a representative
of mixed-cell layout. Conducting the 99 test-runs for the larger of the circuits takes
considerable time and this has limited the practical size of the circuits for this test.

9.3 Experiments for Global Placement 164

Linearization or net-fraction scheme We would also like to test the linearization
scheme against the net-fraction scheme (see section 7.1.1) during global placement.
Therefore tests are conducted with both the linearization and net-fraction scheme.

Iterations As mentioned above the extreme number of tests makes it impractically
to conduct large tests. This is also true when it comes to the number of iterations. We
therefore limit these tests to a period of 20 iterations of the global placement.

Results The results of the these tests are displayed on figure 9.3 and 9.4. Here we
have plotted a three-dimensional surface graph of netlength as a function of � and

�

for each circuit. The netlength shown is the best netlength after the 20 iterations.

The graphs shows four things:

� High values of the fall-off parameter
�

do not function well. The
�
-parameter

determines how much a solution to the quadratic problem will be effected by
previous solutions. A low value is likely good since it gives the heuristic more
freedom.

� High values and low values of the initial artificial net-weight � does not work
well. This is not as easy to see from the graphs but inspection of the data revealed
this.

� The net-size fraction and linearization schemes react more or less equally to the
setup of � and

�
.

� All test-circuits seem to share good values of � and
�
.

To conclude further we have extracted the two best results of each of the circuits along
with respective � and

�
parameters which are shown in table 9.3. Values are shown for

both net-fraction and linearization. Except from the industry2 and industry2g circuits
(which are related) the net-size fraction scheme delivers best results. The run times
for a typical run (a � � � f<�[a'�%� ���$�%� �@f) is listed in table 9.4. The first iteration usually has
higher run time since the initial solution to the quadratic problem must be determined.
Run times are similar for all runs and for the large tests run times are severely smaller
for the net-fraction scheme.

Choice of net-weight scheme Based on the fact that the net-fraction scheme
has lower run time and produces the best results in most cases we choose
the net-size fraction scheme for further testing.

9.3 Experiments for Global Placement 165

Selected � -
�

Results

Net-size fraction Linearization
Circuit �

�
Netlength �

�
Netlength

primary2 0.5 0.3 5,183,122 1.1 0.1 5,244,322
0.35 0.35 5,186,529 1.1 0.2 5,278,800

0.4 0.4 5,242,042 0.4 0.4 5,411,036
biomed 0.35 0.25 5,887,903 0.3 0.1 6,074,793

0.5 0.5 5,909,397 0.3 0.3 6,036,830
0.4 0.4 5,977,785 0.4 0.4 6,271,410

industry2 0.5 0.25 24,683,994 0.35 0.25 23,328,231
0.3 0.3 24,714,195 0.45 0.2 23,601,899
0.4 0.4 24,805,635 0.4 0.4 24,377,858

industry2g 0.5 0.1 29,240,737 0.2 0.1 28,094,528
1.1 0.25 29,529,849 0.3 0.1 28,202,690
0.4 0.4 30,850,407 0.4 0.4 30,858,771

avqlarge 0.1 0.25 11,890,982 0.3 0.1 12,067,708
0.1 0.1 11,902,897 0.2 0.2 12,100,069
0.4 0.4 12,869,293 0.4 0.4 13,943,764

clk 0.2 0.3 10,448,641 0.35 0.1 13,066,961
0.1 0.2 10,472,650 0.2 0.2 13,240,889
0.4 0.4 10,859,835 0.4 0.4 14,831,176

Table 9.3: � - � results for the six circuits. The first two rows for each circuit are the two best results. The last low
is simply for

�
� � ��� � � � � ������� � �

Choice of � and
�

Based on investigation of the graphs, the table of best
results and the complete data-results we have decided to set:

a � � � f3�[a'�%� ���$�%� �@f � (9.2)

for further tests. The results of the a � � � f6� a'�%� ���$�%� �@f combination is also
listed in table 9.3.

Number of Iterations

Based on these choices we now create the global placements without the clean-up step.
We let the global placement heuristic run for 60 iterations on all benchmark circuits.
This is done to investigate if the placement heuristic has any effect at all with many
iterations. The results are shown in table 9.5. In general the results show that little
improvement occurs after the 20th iteration and there is hardly any improvement after
the 40th iteration.

9.3 Experiments for Global Placement 166

Run-Times for � -
�

Experiment

Net-size fraction
Circuit 1st. iteration Average iteration Total time

primary2 3.94 2.70 53.9
biomed 10.5 6.55 131
industry2 21.1 13.5 269
industry2g 21.3 13.8 275
avqlarge 86.9 41.4 828
clk 65.2 39.8 795

Linearization
Circuit 1st. iteration Average iteration Total time

primary2 6.72 3.98 79
biomed 17.5 10.4 208
industry2 45.9 22.7 456
industry2g 43.9 22.3 445
avqlarge 112 78.9 1579
clk 149 87.1 1742

Table 9.4: Run times for the � - � experiment in seconds. The run times are from the
�

� � � � � � � � ������� � � -run but
are similar for all runs. Run times are first iteration time, average iteration time and total time. Note that this is
only for one of the 99 runs which were part of the � - � experiment.

9.3 Experiments for Global Placement 167

Net-Size Fraction

Omega−delta fine−tuning (primary2)

0
0.2

0.4
0.6

0.8
1

1.2
1.4omega 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

delta

6e+06

Netlength (micron)

Omega−delta fine−tuning (biomed)

0
0.2

0.4
0.6

0.8
1

1.2
1.4omega 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

delta

6e+06

Netlength (micron)

(a) (b)

Omega−delta fine−tuning (industry2)

0
0.2

0.4
0.6

0.8
1

1.2
1.4omega 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

delta

2.8e+07

Netlength (micron)

Omega−delta fine−tuning (industry2g)

0
0.2

0.4
0.6

0.8
1

1.2
1.4omega 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

delta

3e+07

Netlength (micron)

(c) (d)

Omega−delta fine−tuning (avqlarge)

0
0.2

0.4
0.6

0.8
1

1.2
1.4omega 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

delta

1.5e+07

Netlength (micron)

Omega−delta fine−tuning (clk)

0
0.2

0.4
0.6

0.8
1

1.2
1.4omega 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

delta

1.2e+07

Netlength (micron)

(e) (f)

Figure 9.3: Net-size fraction �
�
� -tuning. These graphs show how the netlength depends on � and � . The

netlength is reported after 20-iterations using the specified � and � . The values of � and � were picked from the sets:
��� � ��� � � � � � ����� � ����� � � � � � � ����� � � � ��� � ��� � ������� ��� � � � � � � � � and ��� � � � � ����� � � � � � � ��� � � � ��� � � ����� � ��� � � � ��� ����� � � � .
For the large circuits the total time for these tests were as much as 20 hours.

9.3 Experiments for Global Placement 168

Linearization

Omega−delta fine−tuning (primary2)

0
0.2

0.4
0.6

0.8
1

1.2
1.4omega 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

delta

6e+06

Netlength (micron)

Omega−delta fine−tuning (biomed)

0
0.2

0.4
0.6

0.8
1

1.2
1.4omega 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

delta

Netlength (micron)

(a) (b)

Omega−delta fine−tuning (industry2)

0
0.2

0.4
0.6

0.8
1

1.2
1.4omega 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

delta

2.8e+07

Netlength (micron)

Omega−delta fine−tuning (industry2g)

0
0.2

0.4
0.6

0.8
1

1.2
1.4omega 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

delta

3e+07

Netlength (micron)

(c) (d)

Omega−delta fine−tuning (avqlarge)

0
0.2

0.4
0.6

0.8
1

1.2
1.4omega 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

delta

1.5e+07

Netlength (micron)

Omega−delta fine−tuning (clk)

0
0.2

0.4
0.6

0.8
1

1.2
1.4omega 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

delta

1.4e+07

Netlength (micron)

(e) (f)

Figure 9.4: Linearization �
�
� -tuning. These graphs shows how the netlength depends on � and � . The netlength

is reported after 20-iterations using the specified � and � . The values of � and � were picked from the sets: � �
� ��� � � ��� � ����� � ��� � ��� � ��� ������� � � � � � � ����� � ����� ��� � � � � � � � � and � � � ��� � ����� � � ��� � � ����� � ����� � � � � � � ����� � � � � ������� � � . For the
large circuits the total time for these tests were as much as 20 hours.

9.3 Experiments for Global Placement 169

We also investigate how the heuristic behaves during the 60 iterations. We have plot-
ted the development of netlength for 60 iterations of six circuits in the graphs off figure
9.5. The circuits are primary2, biomed, industry2, industry2g, avqlarge and decoder.

The graphs also show how the sequence-pair legalizer functions compared to the
standard-cell legalizer. The sequence-pair legalizer is still used for creating artificial
nets but the placement is also legalized using the standard-cell legalizer. The purpose
of this is to investigate if the standard-cell legalizer is superior to the sequence-pair
legalizer at later stages of the placement heuristic.

Choice of global placement iterations From the graphs and table 9.5 we
observe that global placement does not benefit from more than 40 itera-
tions. Therefore we choose to use the results of the 40th iteration and we
will also report total run times based on the 40th iteration.

The second element of the test; to compare sequence-pair legalization with the simple
standard-cell legalization technique shows that the two techniques are more or less
equally good. In general, however, the sequence-pair legalization technique seems
slightly better during the first iterations. It should be no surprise that the two meth-
ods are almost equal in quality; both methods use the topology of the overlapping
placement to legalize it.

9.3.2 Fine-Tuning Clean-Up

We now consider the clean-up step of global placement. For the clean-up step we must
decide � and the number of iterations.

We let clean-up use simple centered legalization. For the standard-cell instances we
use the simple diagonal heuristic to determine sequence-pair. For the general-cell in-
stances we use our placement-to-sequence-pair algorithm. This setup was determined
through preliminary tests. Note that for the clean-up test of general-cell circuits we
allow orientation change.

First we fine-tune � . For this test we assume that � should be equal on all circuits. The
circuits are very similar, however � has to do with overlap. A thorough investigation
of � would require that we conducted tests with all circuits. Instead we choose a
limited number of circuits that we believe represent the benchmarks well. These are
primary2, biomed, industry2, industry2g, industry3, avqlarge, decoder.

For this test we do 5 iterations of the clean-up step on the solutions from the 40th
iteration of global placement on different values of � . The value of � is selected from
the set

� - ���%�K�!���$�%� �	�$�%� ���&�	��
�� ���Y��� ���&�&�%���&���
	� ��
!���
	�%� �	��� � �%�&�&� ���&���	����
 �!��� (9.3)

9.3 Experiments for Global Placement 170

Results of Global Placement without Clean-Up
Netlength Netlength Netlength Netlength Netlength Netlength

Circuit 1 iteration 10 iterations 20 iterations 30 iterations 40 iterations 60 iterations

industry1 2,313,980 1,975,538 1,888,261 1,888,261 1,871,481 1,788,286
1.71 13.93 26.1 38.3 50.7 75.8

industry2 39,001,191 29,297,628 24,805,635 24,492,458 24,314,034 24,314,034
13.5 91.4 155 215 276 402

industry3 115,969,220 85,151,301 73,602,786 73,574,522 73,574,522 73,574,522
26.3 198 340 478 616 896

avqlarge 23,490,822 15,167,572 12,587,219 12,587,219 12,587,219 12,587,219
65.8 452 732 1002 1275 1827

avqsmall 20,999,581 13,392,951 11,665,195 11,665,195 11,665,195 11,665,195
53.6 316 485 642 798 1114

biomed 8,375,860 6,497,541 5,977,785 5,977,785 5,977,785 5,977,785
6.65 46.5 76.7 106 135 196

golem3 339,017,223 295,221,580 250,633,000 248,758,003 246,543,415 246,199,030
168 1320 2155 2850 3545 4945

struct 2,044,071 1,329,956 1,278,283 1,243,151 1,237,178 1,237,178
1.82 14.4 26.8 39.3 51.9 77.5

primary1 1,558,346 1,362,124 1,328,566 1,323,310 1,307,988 1,307,988
0.60 5.0 9.49 14.9 18.7 28.0

primary2 6,904,771 5,524,673 5,242,042 5,242,042 5,176,233 5,176,233
3.20 26.1 48.5 70.7 93.2 138.8

primary2g 9,285,104 6,744,974 6,544,430 6,315,672 6,315,672 6,315,672
2.95 19.1 31.9 44.6 59.1 84.7

industry2g 51,438,650 36,016,646 30,850,407 30,267,954 30,267,954 30,267,954
14.1 95.8 160 224 288 420

industry3g 197,507,003 108,524,087 88,643,257 85,085,462 83,729,433 83,729,433
26.6 201 344 483 624 912

ami33k 159,933,561 152,619,873 145,380,403 145,380,403 145,380,403 145,380,403
68.1 466 972 1472 1977 3008

clk 13,068,885 13,063,269 10,292,641 10,292,641 10,292,641 10,292,641
55.9 396 729 1005 1341 1959

decoder 27,113,975 23,259,883 19,564,917 19,564,917 19,564,917 19,564,917
98.3 713 1337 1900 2471 3624

pu 191,728,197 176,729,527 157,078,981 157,078,981 157,078,981 157,078,981
379 2531 4745 6654 8572 12465

Table 9.5: Global placement results before clean-up step at different iterations. First row of each circuit is netlength
in micron. Second row is run time in seconds. Notice that the run time of the pu-circuit is extremely high compared
to the remaining circuits.

9.3 Experiments for Global Placement 171

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

0 10 20 30 40 50 60

N
et

le
ng

th
 (

m
ic

ro
n)

Iterations

Global Placement (primary2)
SP

Unconstrained
Standard

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

1.1e+07

1.2e+07

0 10 20 30 40 50 60

N
et

le
ng

th
 (

m
ic

ro
n)

Iterations

Global Placement (biomed)
SP

Unconstrained
Standard

(a) (b)

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

5.5e+07

0 10 20 30 40 50 60

N
et

le
ng

th
 (

m
ic

ro
n)

Iterations

Global Placement (industry2)
SP

Unconstrained
Standard

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

5e+07

5.5e+07

0 10 20 30 40 50 60

N
et

le
ng

th
 (

m
ic

ro
n)

Iterations

Global Placement (industry2g)
SP

Unconstrained

(c) (d)

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

0 10 20 30 40 50 60

N
et

le
ng

th
 (

m
ic

ro
n)

Iterations

Global Placement (avqlarge)
SP

Unconstrained
Standard

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

2.2e+07

2.4e+07

2.6e+07

2.8e+07

0 10 20 30 40 50 60

N
et

le
ng

th
 (

m
ic

ro
n)

Iterations

Global Placement (decoder)
SP

Unconstrained

(e) (f)

Figure 9.5: Development of netlength during global placement. The netlength is shown during the first 60
iterations of global placement with � � � � � ��� � ��� � � � . Bounding-box netlength is reported for the unconstrained
placement (unconstrained), the sequence-pair legalized placement (SP) and the standard-cell legalized placement
(Standard). Note that industry2g and decoder are not standard-cell instances. Therefore there are no standard-cell
legalization plots for these two circuits.

9.3 Experiments for Global Placement 172

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

0.01 0.1 1 10 100 1000

N
et

Le
ng

th
/B

es
t N

et
le

ng
th

Gamma

Gamma tuning
primary2
industry2

industry2g
biomed

industry3
avqlarge
decoder

Figure 9.6: Fine-tuning � . 5 iterations of the clean-up step has been run for 17 different values of � on seven
circuits. The value plotted is the best netlength achieved during the 5 iterations divided with the best overall
netlength achieved during the all 17 different runs.

The test is conducted on the seven different circuits.

We have plotted the result of this test on the graph of figure 9.6. For each value of �

the netlength has been divided by the best overall netlength achieved during the test.

Choice of � during clean-up Based on the graph it appears that � can be
set to a global constant for all circuits and we deem that a good value of �

is 7 which will be used for further clean-up tests.

The second element of fine-tuning the clean-up step is to determine the number of
sufficient clean-up iterations. For this we do 15 iterations of the clean-up step on three
different circuits; primary2, industry2, decoder.

The table shows that there is little change in objective value after the 5th iteration.

Clean-up iterations Based on results from table 9.6 we believe it is suffi-
cient to do 5 clean-up iteration steps. Another reason to use few iterations
steps is that the final placement heuristic may function better if the place-
ment does not begin in a complete local-minimum.

9.3.3 Global Placement Results with Clean-Up

The results for the entire global placement step is enlisted in table 9.7.

9.3 Experiments for Global Placement 173

Clean-Up Tuning
Circuit 1 iter. 3 iter. 5 iter. 10 iter. 15 iter.

primary2 4,470,178 4,231,582 4,168,973 4,143,416 4,143,081
1.26 3.55 5.8 11.34 16.9

industry2 20,738,792 19,608,424 19,445,688 19,319,476 19,294,304
9.0 30.75 44.1 78.0 105

decoder 15,082,699 13,458,868 13,061,748 12,988,976 12,906,141
65 148 183 385 556

Table 9.6: Clean-up step development. For each circuit netlength and run time is reported. First row is netlength,
second is run time in seconds.

Results of Global Placement with Clean-Up

Circuit Netlength Clean-up Total Circuit Netlength Clean-up Total

primary1 1,101,678 1.12 19.9 primary2 4,168,973 6.0 93.2
biomed 4,566,847 31.0 166 struct 912,683 3.3 55.6
industry1 1,409,059 4.9 55.6 primary2g 4,737,722 14.8 102.5
industry2 19,529,866 38.4 314 industry2g 22,364,797 89.8 378
industry3 52,621,272 40.4 646 industry3g 59,525,034 116 740
avqsmall 8,294,763 894 1692 avqlarge 8,974,081 830 2105
golem3 167,805,962 327 5272 clk 8,509,108 99.5 1440
decoder 13,061,748 218 2689 pu 140,576,463 1050 9622
ami33k 132,442,156 397 2324

Table 9.7: Global placement results after clean-up. Columns are Netlength, clean-up run time in seconds, total
time (global placement including clean-up) in seconds.

Some things are worth noticing. First of all the run time is fine for the small to the
medium sized circuits while the larger circuits, e.g. avqsmall, avqlarge, clk, decoder
and pu have high-running times. They are still within hours however.

A second and very interesting thing to notice is the result of the general-cell circuits
industry2g and industry3g. For these circuits the netlength is not much worse than
for the plain standard-cell circuits industry2 and industry3. This is interesting because
it demonstrates that the heuristic is well-suited for placing large instances of general-
cells.

As a final note we discovered that the clean-up step does not function well on the
ami33K circuit with �D� � . Therefore we have determined a good value of � to be ��� � �
by hand and this is used for this circuits. All other results were constructed based on
our previous decisions.

9.3 Experiments for Global Placement 174

Forced Based Placement Results

Circuit Sequence-pair Standard-cell Running time
legalization legalization 60 iterations

primary2 4,885,446 4,559,120 74
biomed 5,354,268 4,472,259 121
industry2g 25,068,031 - 245

Table 9.8: Results of the force-based heuristic. The values of the second and third columns are netlengths of best
legalization encountered. The run times to the right are for the force-based placement heuristic and not including
legalizations which were done in a separate run. Run times are in seconds.

9.3.4 Comparison with Force-Based Placement

The results of the previous section has little meaning without comparison with other
global placement heuristics. Unfortunately we have found no reports for the global
placement step of any other heuristics.

Instead we will use our own implementation of the force-based method of Eisenmann
and Johannes [19] (see section 3.1.4) to compare our global placement method with
their. It should be noted that several details are missing from [19]. Therefore we
cannot guarantee that the implemented force-based heuristic has the same quality as
the original. Secondly although we have tuned the heuristic to produce good results
there is probably room for more fine-tuning.

For this experiment we use three circuits; primary2, biomed and industry2g. The
three circuits are placed with the force-based global placement heuristic. We let the
force-based heuristic run for 60 iterations. On the graphs of figure 9.7 we have plot-
ted netlength for the 60 iterations. We report three different netlengths; unconstrained
netlength (based on the current overlapping placement), netlength of a sequence-pair
legalization of the unconstrained placement and netlength of a standard-cell legaliza-
tion (see 7.1.2) of the unconstrained placement.

What can be seen from the graph is that our implementation of the force-based method
use about 20 iterations to converge for the tested circuits. Also convergence seem
better than for our global placement heuristic; the netlength is more stable. Finally
the standard-cell legalization seem to outperform our sequence-pair legalization algo-
rithm for both of the standard-cell circuits.

The best results of legalizations are reported in table 9.8. We also report the total run-
ning time for all 60 iterations. By comparing with table 9.5 it can be seen from table
9.8 that the force-based method is definitely superior to our global placement heuris-
tic. The unconstrained placement of the 60th iteration of the force-based placement
of primary2 is shown on figure 9.8. Please notice how little overlap there is in this
placement.

9.3 Experiments for Global Placement 175

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

1.1e+07

0 10 20 30 40 50 60

N
et

le
ng

th
 m

ic
ro

n

Iteration

Force method (primary2)
Unconstrained

SP
Standard

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

2.2e+07

0 10 20 30 40 50 60

N
et

le
ng

th
 m

ic
ro

n

Iteration

Force method (biomed)
Unconstrained

SP
Standard

(a) (b)

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

0 10 20 30 40 50 60

N
et

le
ng

th
 m

ic
ro

n

Iteration

Force method (industry2g)
Unconstrained

SP

(c)

Figure 9.7: Results of the force-based method. Please compare with figure 9.5. The reported netlengths are
current unconstrained bounding-box netlength (unconstrained), current sequence-pair legalized bounding-box
netlength (SP) and current standard-cell legalized bounding-box netlength (standard). Note that industry2g is
not a standard-cell circuit so there are no results for the standard-cell legalizer for the circuit.

9.3 Experiments for Global Placement 176

Figure 9.8: The placement of 60th iteration of primary2 from the force-based method.

Clean-Up of Force-Based Placements

Circuit Clean-up Clean-Up
Netlength Time

primary2 4,342,362 5.0
biomed 4,411,510 25.2
industry2g 22,154,951 88.8

Table 9.9: Clean-up of force-based results. The values of the second columns are netlengths. The third column is
running time for clean-up step.

Clean-Up of Force-Based Method

To test the quality of the solutions generated we also do a clean-up step for the force-
based results. As initial solution of the clean-up step we pick the best sequence-pair
legalization encountered during the 60 iterations of the force test. Otherwise the setup
of the clean-up step is exactly as it was for our own heuristic.

The results of clean-up for the force-based solutions are given in table 9.9. The results
are interesting. The clean-up step for the force-based results is not quite as effective as
it were for our own results. Secondly the the solutions are very similar to our solutions
after clean-up step. This also shows that the quality of a global placement cannot be
determined by its netlength alone. It can only truly be determined by the subsequent
optimization steps.

We will not discuss the force-based placement further but simply note that our global
placement heuristic with the clean-up step could produce results which are compa-
rable to the global placements of the force-based method for these three circuits. Of
course it should be stressed that parameters of the implemented force-based method
may not be optimally tuned and that the clean-up step is not tuned for the placements
produced by the force-based heuristic. Although we expect the placements of our

9.3 Experiments for Global Placement 177

Standard-cell legalizer
Circuit Best result after 20 iterations Time (20 iterations)

primary2 5,690,327 11.3
biomed 5,633,041 30.0
industry2 28,409,961 63.8
avqlarge 12,466,112 379

Table 9.10: Second column gives best net-length results in micron of global placement based on standard-cell le-
galization for each of the circuits in the first column. Third column gives run times in seconds for the 20 iterations.

method and the force-based method to be similar.

9.3.5 Comparison with Standard-Cell Legalization

As a final test of the global placement strategy we will also compare sequence-pair
legalization with the standard-cell legalization technique. To do this we conduct tests
on four standard-cell instances. We do 20 iterations of the global placement heuristic
but with the standard-cell legalization technique as underlying legalizer instead of the
sequence-pair legalization. The setup is otherwise as above (net-fraction and (� � � f.�
a'�%� ���$�%� �@f).
The results of the best placement after 20 iterations of the standard-cell legalization
technique are shown in table 9.10

Two observation can be made from comparing table 9.10 with tables 9.5 and 9.4.

� The standard-cell legalizer will in some cases produce better results than the
sequence-pair legalizer.

� The standard-cell legalization based global placement is several times faster than
the sequence-pair based.

Both of these observations should not come as a surprise. The standard-cell legal-
ization is similar to the sequence-pair legalization in that both use the topology of
the overlapping placement to construct a legal placement. Also the sequence-pair le-
galization suffers from the varied � strategy which in essence means that it does 20
legalizations in each iteration. We should stress however that the standard-cell legaliza-
tion technique is incapable of handling mixed- and general-cell layouts. We will not pursue
the subject of standard-cell vs. sequence-pair based legalization further in this thesis.

9.3.6 Conclusion on Global Placement

Our global placement heuristic produces fine results combined with the clean-up step.
The heuristic is slow for large instances but small instances are handled well.

9.4 Experiments for Final Placement 178

In general the clean-up step has proven very effective and in all cases faster than the
basic 40 iterations of global placement.

Our heuristic seems comparable to the implemented force-based method with clean-
up step. However without clean-up step the force-based method is superior.

The heuristic with clean-up step is also quite capable of placing general-cell circuits
of substantial size (industry2g and industry3g). The general-cell circuits were placed
with netlengths comparable to those of the corresponding standard-cell circuits (in-
dustry2 and industry3).

As a conclusion the global placement heuristic could certainly function as a proto-
type for a full-blown global placement heuristic. However we deem that the current
implementation is still too rough around the edges for practical use.

9.4 Experiments for Final Placement

In this section we conduct experiments with final placement. The final placement
heuristic has many variables which can all influence it severely. Therefore it is crucial
that we conduct tests that determine good values for the parameters.

Our final placement is controlled by simulated annealing. This alone introduces sev-
eral variables and also a greater amount of randomness to the solutions. In general
for heuristics which rely on randomness it is necessary to conduct many experiments
to determine the behavior of the heuristic.

Unfortunately time and computational power does not allow us to conduct a complete
range of tests on all circuits. Therefore we will rely on stability of the heuristic. We
will determine if the heuristic produces close to equal results with equal parameter
values but different random seed which should give some indication of stability.

The section is otherwise similar to the section of global placement. First we will fine-
tune a subset of the many parameters of final placement. Then we will give the results
of our final placement. Finally we will compare the results with results of other au-
thors.

legalization setup For legalization we will use the placement-to-sequence-pair algo-
rithm since it generates better placements when there is little overlap. The legalization
setup is otherwise as it was for the clean-up step.

9.4.1 Fine-Tuning Final Placement

To recapitulate the parameters of final placement are:

9.4 Experiments for Final Placement 179

� Sub-circuit size � The size of the sub-circuits extracted by relaxation based local
search.

� Overlap penalty � The overlap penalty determines how much overlap is al-
lowed in local search solutions.

� Fraction of modules moved / The amount of modules to move before legaliza-
tion.

� SA parameter – initial temperature � � The initial temperature of the simulated
annealer.

� SA parameter – cooling factor The temperature � drops by � � � � � whenever a
move is accepted.

� Reset interval 4 The time between resets of the temperature of the simulated
annealer.

Through preliminary tests we had determined that a good and practical value of the
sub-circuit size is 10 (see 8.4.2). We will consider adjustment of the remaining param-
eters however.

Tuning Simulated Annealing

We begin by tuning the simulated annealing constants since good values of the re-
maining parameters may depend on the behavior of the simulated annealer.

Our simulated annealing has only two parameters; initial temperature and cooling
factor. Just as the other parameters of our placement heuristics good values may be
highly dependent on the placement instance. However based on the discussion of
section 5 we assume that good values are equal for all the circuits for this test.

Unfortunately � � and � are highly dependent. Therefore we conduct tests with 28
different combinations of � � and � . The values are taken from the sets:

� � - �����%���	�%�&��� �%���	� �%�&�&� �!�%� �	�!� �%� ���!� �!��� I@9 � � - ���%� �����$�%� �������$�%� � �����%�$��� ���������@�

To account for randomness we do 5 different runs with each combination. Each run
takes 10 minutes (total time: 1400 minutes! for each circuit). Because we need to deter-
mine the behavior of the simulated annealer during a longer period, not just for the
first iterations, we will conduct the tests on small circuits. The hope is that the small
circuits will share sufficient properties with the larger circuits that the behavior of the
heuristic is almost equal.

Also since the choice of � � and � influence the behavior of the final placement heuristic
we expect good values to work well for both general-cell and standard-cell instances.

9.4 Experiments for Final Placement 180

SA-parameter Test Results
Circuit]� � Min Average Max

struct 500 0.99999 793,485 795,953 798,812
1000 0.9999 796,441 798,068 802,503
5000 0.9999 785,382 791,412 795,681

industry1 500 0.9999 1,240,314 1,261,288 1,277,173
100 0.99999 1,258,289 1,263,796 1,267,071

1000 0.9999 1,287,825 1,292,801 1,303,946
primary2 1000 0.9999 3,888,819 3,896,796 3,917,124

500 0.9999 3,898,440 3,917,492 3,927,806

Table 9.11: Results of tests of simulated annealing parameters. The second and third columns are values of � �
and � . The last three columns are netlengths of respectively best, average and worst results for each combination
of � � and � . The combinations shown are the two best average results and our choice of � � and � . Note there are
only two results of primary2 since the combination

�
� � ��� � � ��� � ����� � � � � � � � was also the best among the average

results.

The circuits we have chosen are struct, industry1 and primary2. The smallest of these
circuits contains 1888 modules and the largest 2907. For the � parameter we have
chosen a value of ��� which is a pessimistic guess based on the � fine-tuning of global
placement (see section 9.3.1). For the fraction of moves to be accepted in each legal-
ization iteration we have chosen 15 � based on some initial testing.

The results of the tests are plotted on figures 9.9 and 9.10. We have plotted the mini-
mum, average and maximum best netlength achieved during the 5 runs for each com-
bination of the two variables.

First of all we note how similar the graphs of min, max and average are for each
individual circuit. This points in the direction that the simulated annealing is stable
and that most work is probably done by the relaxation based local search.

Secondly the graphs have equal structure which we assume comes from by the fact
that � � and � have more or less same influence independently of the circuits. The
results of the combinations with best average results for each circuit are also presented
in table 9.11. Please note how little variation there is between min, max and average
values of each combination of � � and � .

Choice of � � and � Based on these graphs and further data inspection we
have determined that good values for � � and � are � � � ��� � � and � ��%� ������� .

Tuning � and /

9.4 Experiments for Final Placement 181

SA−min (industry1)

10

100

1000

10000

t0

2
2.5

3
3.5

4
4.5

5

−log(−log(K))

Netlength (micron)

SA−min (struct)

10

100

1000

10000

t0

2
2.5

3
3.5

4
4.5

5

−log(−log(K))

Netlength (micron)

(a) (b)

SA−average (industry1)

10

100

1000

10000

t0

2
2.5

3
3.5

4
4.5

5

−log(−log(K))

Netlength (micron)

SA−average (struct)

10

100

1000

10000

t0

2
2.5

3
3.5

4
4.5

5

−log(−log(K))

Netlength (micron)

(c) (d)

SA−max (industry1)

10

100

1000

10000

t0

2
2.5

3
3.5

4
4.5

5

−log(−log(K))

Netlength (micron)

SA−max (struct)

10

100

1000

10000

t0

2
2.5

3
3.5

4
4.5

5

−log(−log(K))

Netlength (micron)

(e) (f)

Figure 9.9: Plots of � � and � of the simulated annealer for industry1 and struct. Please note that � is among the
values � � � � ��� � � � � ��� � � � � � ��� ��� � � � � � � so e.g.

	������ ��	������ � � � � � � � � � � � � ��	���� . The top row plots are of the best
results achieved during all 5 runs. The second row plots are of the average results achieved and the final row plots
are of the worst (max) results achieved.

9.4 Experiments for Final Placement 182

SA−min (primary2)

10

100

1000

10000

t0

2
2.5

3
3.5

4
4.5

5

−log(−log(K))

4e+06

Netlength (micron)

(a)

SA−average (primary2)

10

100

1000

10000

t0

2
2.5

3
3.5

4
4.5

5

−log(−log(K))

4e+06

Netlength (micron)

(b)

SA−max (primary2)

10

100

1000

10000

t0

2
2.5

3
3.5

4
4.5

5

−log(−log(K))

4e+06

Netlength (micron)

(c)

Figure 9.10: Plots of � � and � of the simulated annealer for primary2. Please note that � is among the values
� ��� � ��� � � � � ��� ��� � � � ��� ��� � � � � � � so e.g.

	������ ��	������ � � � � � � � � � � � � ��	 ��� . The top row plots are of the best results
achieved during all 5 runs. The second row plots are of the average results achieved and the final row plots are of
the worst (max) results achieved.

9.4 Experiments for Final Placement 183

The next element of tuning the final placement heuristic is determining � and the frac-
tion of moves required between each legalization iteration / . These two variables are
likely highly correlated since the number of moves limits the amount of total overlap
allowed while � limits the amount of overlap allowed for each step of the relaxed local
search.

For this test we use 6 circuits. The circuits are primary2, industry2g, industry2, de-
coder and clk. Once again we search for a combination of good values. � and / are
selected from the sets:

� - � �@�&���%�&�&����
 �����	���@� / - ���%�K�!���$�%� ���%�$�%� �&�����%�
!�@�@� (9.4)

We have discovered that for the two IBM-circuits the limited values of � did not pro-
duce good results. Therefore we also test for � - ����� �%�&��� � ��� for these circuits.

We do not wish to set / � �%�
 � since we deem that no more than
 � � of the modules
will move during later iterations.

The parameters of the test are based on the results of the simulated annealing as deter-
mined in the previous section. We let the test of the smaller circuits primary2, indus-
try2 and industry2g run for 10 minutes. This should be sufficient time for the heuristic
to do several legalization iterations. For the larger circuits, clk and decoder, we deem
that 20 minutes is necessary. For each of the small circuits the total time of this test is
200 minutes. For the larger circuits it is 560 minutes.

We include industry2g in the list since this is a general-cell circuit which may be more
sensitive to the correct choice of � since it is harder to place.

At this point we assume that the final placement is stable enough that the results will
represent general tendencies. This assumption is based on the tests of the simulated
annealing parameters which showed high stability.

The results are plotted on the graphs of figure 9.11. The best and second best combi-
nation of each circuit are listed in table 9.12.

Firstly the graphs show that the value of � for the IBM-circuits must be very high. Also
by careful inspection of the graphs it may be seen that the heuristic generally performs
best with / � �%� �&� and / ���%�
 � . Secondly it can be seen that the IBM-circuits require a
very high � value. In fact values of � less than 1000 results in unstable behavior where
the heuristic does not reduce the netlength of the clean-up step. Thirdly it can be seen
that the correlation of � and / is less than could have been expected. A good value of
� generally performs well independently of / .

Choice of � and / . Based on the graphs and table 9.12 we choose a �W�$/!f �a �&���$�%�
 �!f for the MCNC circuits and a � �$/ f � a ��� � �%�$�%�
 �!f for the IBM-
circuits since these produce the best results according to table 9.12.

9.4 Experiments for Final Placement 184

Gamma−q test (primary2)

5
10

15
20

25
30

35
40

45
gamma 0.1

0.15

0.2

0.25

q

4e+06

Netlength (micron)

Gamma−q test (industry2)

5
10

15
20

25
30

35
40

45
gamma 0.1

0.15

0.2

0.25

q

Netlength (micron)

(a) (b)

Gamma−q test (industry2g)

5
10

15
20

25
30

35
40

45
gamma 0.1

0.15

0.2

0.25

q

2.4e+07

Netlength (micron)

Gamma−q test (clk)

1

10

100

1000
gamma

0.05

0.1

0.15

0.2

0.25

q

8e+06

Netlength (micron)

(c) (d)

Gamma−q test (decoder)

1

10

100

1000
gamma

0.05

0.1

0.15

0.2

0.25

q

Netlength (micron)

(e)

Figure 9.11: The graphs of � and � variation for the five test circuits. Notice that the two IBM-circuits require a
very high � -value.

9.4 Experiments for Final Placement 185

� - / Test Results

Circuit � / Netlength

primary2 15 0.25 3,880,407
15 0.15 3,890,716

industry2 15 0.25 18771364
35 0.25 18971844

industry2g 15 0.25 22,711,505
10 0.25 22,796,868

clk 1000 0.25 7,873,715
1000 0.15 7,901,372

decoder 1000 0.25 12,762,874
1000 0.15 12,876,283

Table 9.12: Results of the test with combination of � and � . The reported results are best (first row) and second
best (second row) for each combination.

Reset Test Results

Circuit No reset 1 iter. 5 iter. 10 iter. 25 iter. 50 iter.

primary2 3,891,247 3,936,387 3,920,714 3,935,509 3,895,359 3,838,567
industry2 18,292,890 18,177,942 18,139,355 18,171,417 18,151,144 18,292,890

Table 9.13: Results of the reset tests. Columns are with reset after specified number of iterations. Best netlengths
after 1 hour is reported for each circuit with the 6 different reset intervals.

Comment on / It may be that the reason the heuristic performs best with / � �%�
 �
is that it does fewer legalizations and therefore has more time to optimize. This could
explain why the heuristic performs almost equally with / � �%� �&� .

Tuning Reset Interval

The final parameter we will test of the final placement is the number of legalization
iterations between reset of the heuristic. This is a hard value to determine. If set too
high the heuristic will fall into a local minimum and never escape. If set too low the
final placement will never descent into local-minimum.

We conduct this test on only two circuits; primary2 and industry2. Again we assume
that the heuristic will behave relatively equal on all circuits and since this has to do
with the simulated annealing we expect equal behavior for the standard- and general-
cell circuits also. We set the parameters as above and let the heuristic run 1 hour on the
two circuits for different values of 4 . We choose 4 from the set 4 - �
 �&�	�����&���%��
 �����	���
(
 means no reset). The results of the two tests are shown in table 9.13.

9.4 Experiments for Final Placement 186

Final Placement of Small Standard-Cell Circuits
Circuit Clean-up 1 min. 5 min. 10 min. 30 min. 60 min
primary1 1,101,678 1,055,982 1,024,931 1,018,437 1,011,761 994,349
struct 912,683 849,726 804,643 795,115 787,087 785,655
industry1 1,409,059 1,331,902 1,293,420 1,293,420 1,293,420 1,293,420

Table 9.14: Netlength results of the small MCNC standard-cell circuits during final placement. Clean-up column
is the netlength after clean-up step.

The results are not conclusive. For the primary2 circuit it seems that a reset interval
of anything less than 50 is too short. For the industry2 circuit we should note that
the 50th iteration is never reached for test of the 50 iterations reset interval. Therefore
less than 50 iterations may be necessary for the industry2 circuit, so that it does not
fall into a local minimum without ever resetting. The best result for the test involving
industry2 is achieved with an interval of 5-10 iterations.

Reset interval choice To accommodate for the inconclusive results of the
reset test we reset every 50th legalization iteration for the small circuits
(primary1, primary2, struct, industry1) and every 10th iteration for the
larger circuits (all other).

Comment on choice of reset interval The test is non-conclusive and to determine
the perfect reset interval more tests would need to be conducted. Unfortunately time
did not allow us to do this.

9.4.2 Final Placement Results

We now present the final placement results with our final placement heuristic pa-
rameter values defined according to the previous discussion. We have divided the
benchmark circuits into several groups.

Small instances The first group consists of the small standard-cell circuits primary1,
struct and industry1. For these circuits we let the final placement heuristic run for 60
minutes. The results are listed in table 9.14.

The results are certainly promising. Most improvement seem to lie within the first half
hour. Unfortunately the placement heuristic does not improve the industry1 circuit
after 10 minutes. This could be explained with the fact that the placement heuristic is
not completely tuned for the industry1 circuit.

9.4 Experiments for Final Placement 187

Final Placement of Medium Sized Standard-Cell Circuits

Circuit Clean-up 5 min. 10 min. 30 min. 60 min. 3 Hours

primary2 4,168,973 3,969,689 3,922,070 3,866,628 3,838,567 3,795,604
biomed 4,566,847 4,274,733 4,159,376 4,009,024 3,945,261 3,843,981
industry2 19,529,866 19,055,008 18,873,235 18,457,240 18,171,417 18,073,560
industry3 52,621,272 51,694,906 50,517,583 48,997,745 48,669,067 48,327,737
avqsmall 8,294,763 8,294,763 8,294,763 8,294,763 8,134,807 7,853,757
avqlarge 8,974,081 8,974,081 8,974,081 8,974,081 8,768,265 8,500,176

Table 9.15: Netlength results of the medium sized MCNC standard-cell circuits during final placement. Clean-up
column is the netlength after clean-up step.

Medium sized instances The second group consists of the medium sized standard-
cell circuits primary2, biomed, industry2, industry3, avqsmall and avqlarge. For these
circuits we let the placement heuristic run for 3 hours. The results are listed in table
9.15.

For the two smaller circuits primary2 and biomed the heuristic seems to perform well
and there is improvement even during the last 2 hours although most improvement
lies within the first our. For the slightly larger circuits, industry2 and industry3, im-
provement is good. Once again most improvement is within the first hour. The results
are not as promising for the final two circuits. Here the placement heuristic does not
improve on the initial solution from the clean-up step for the first half-hour. This
could be explained by the fact that the placement heuristic is not tuned for the two
avq circuits and that the simulated annealer is accepting many non-improving moves
at random.

General-cell instances The third group consists of the general-cell circuits indus-
try2g, industry3g and ami33k. Although they share order of modules with the medium
sized circuits, different orientations are allowed during the local search, and we deem
that they require double running time to compensate for that. Therefore we let the
placement heuristic run for 6 hours on these circuits. The results are listed in table
9.16

The results for the three standard-cell based instances are quite good. The primary2g
has
	��� higher netlength than the corresponding primary2 circuit. The industry2g
has only 13 � higher netlength than its standard-cell counterpart in spite of the fact
that it is a larger instance. The industry3g has netlength only � � � higher netlength
than industry3. There is little improvement after the first hour and it appears that
the general-cell circuits share running time with the standard-cell circuits. From this
we can conclude that the extra solution space due to orientation search does not slow
the heuristic down considerably. Also improvement of the industry2g and industry3g
circuit are same order of magnitude as it were for industry2 and industry3.

9.4 Experiments for Final Placement 188

Final Placement of General-Cell Circuits
Circuit Clean-up 10 min. 30 min. 60 min. 3 Hours 6 Hours

primary2g 4,737,722 4,561,091 4,559,165 4,556,133 4,544,611 4,544,611
industry2g 22,364,797 21463804 20726576 20414968 20338670 20338670
industry3g 59,525,034 57,879,072 56,079,329 55,540,273 54,959,702 54,959,702
ami33k 132,442,156 132,442,156 133,138,107 132,588,774 132,010,166 132,010,166

Table 9.16: Netlength results of the general-cell circuits during final placement. Clean-up column is the netlength
after clean-up step.

Final Placement of Large Circuits

Circuit Clean-up 10 min. 60 min. 3 Hours 6 hours 9 Hours

golem3 167,805,962 165,376,161 163,742,469 161,338,611 160,219,553 -

clk 8,509,108 8,234,521 7,892,079 7,855,217 7,855,217 7,855,217
decoder 13,061,748 13,026,466 12,333,089 11,950,597 11,810,612 11,740,484
pu 140,576,463 140,576,463 140,576,463 136,529,938 128,231,982 128,508,781

Table 9.17: Netlength results of the large standard- and mixed-cell circuits during final placement. Clean-up
column is the netlength after clean-up step. Note that the golem3 circuit is only run for 6 hours.

Unfortunately the ami33k circuit has not been improved substantially during final
placement. It could be that our final placement heuristic is geared mostly towards
instances with fewer nets on each module or that the global placement of ami33k is
already quite good (see figure 5.6) and that our final placement can not improve it.
From [24] we know that there exist solutions to the ami33 circuit with netlengths in
the area of 40- 50.000 micron. Multiplying these values by 1024 we get about 50.000.000
micron so it appears that we are quite a distance from the optimal placement.

Large instances The fourth group consists of the large standard-cell circuit golem3
and the large mixed-cell IBM-circuits. For the golem3 circuit we the let the final place-
ment heuristic run for 6 hours. For each of the IBM-circuits we let the final placement
heuristic run for 9 hours. The results are listed in 9.17.

The results are not as promising as for the smaller instances. Improvement still occurs
in the last three hours for all circuits except clk. clk does not improve for the last eight
hours which clearly shows that the final placement heuristic is not tuned for the clk
instance. A similar observation holds for the pu circuit which does not improve for the
first 3 hours. Inspection of the results during this time revealed substantial “jumps”
in netlength which could mean that the simulated annealing is still in its early stages
or that the � -value is not set high enough.

9.4 Experiments for Final Placement 189

9.4.3 Development of Final Placement

Before comparing our results with those of other authors we briefly consider the de-
velopment of solutions during the final placement heuristic over time.

The purpose of this is to illustrate how the final placement works on the placements.
Therefore we have chosen a subset of circuits for which the previous results were
good and one for which the results were poor. The circuits we have chosen for this
demonstration are primary2, industry2, industry2g and clk.

On the graphs of figure 9.12 we have plotted the development of the netlength over
time for these four circuits. The netlength is reported at each legalization iteration.
The unconstrained netlength before legalization is also reported.

We suspect that the large frequently occurring jumps in netlength are due to the re-
set strategy. Under this assumption the graphs clearly shows that the reset interval
strategy does not work well for the placement circuits. Our assumption for the reset
strategy was that it would not increase netlength too much. This assumption holds.
At no time does the netlength seem to increase beyond its value of the first iterations.

The heuristic behaves best on the industry2 circuit because descent is allowed over
time. However it does not seem as though the circuit ever enters a local minimum
state. The other three circuits are constantly interrupted during their descents which
must mean that the reset interval is too short and results in too large changes in
netlength. This explains the poor result of the clk circuit; the heuristic actually comes
close to improvements but the complete descent is always interrupted.

The most surprising result is that the heuristic for industry2 and industry2g does not
seem to share behavior although they have almost common properties. This could
indicate that it is very hard to determine a good reset interval.

9.4.4 Comparison with Other Final Placement Results for the Circuits

Before concluding on our results we first present results of other writers. The specific
instances of the MCNC-benchmarks originates – as described in 5.1.4 – from [24]. Here
the circuits had been optimized with the TimberWolf Commercial12 v. 1.2 placement
tool and the placement tool XQ developed at IDMUB. The results of these previous
methods are enlisted in table 9.18 and are from [24].

No run times are given for the TimberWolf (TW) placement tool. The XQ placements
were conducted on an Intel Pentium II 500 Mhz. The stand-alone guided local search
(GLS) approach was based on a very simple global placement tool. GLS [24] was also
tested as improvement heuristic on the TimberWolf and XQ placements. The “best

12The commercial version numbering differ from the numbering in the articles and the commercial
versions also succeeds those of the articles.

9.4 Experiments for Final Placement 190

3.75e+06

3.8e+06

3.85e+06

3.9e+06

3.95e+06

4e+06

4.05e+06

4.1e+06

4.15e+06

4.2e+06

0 2000 4000 6000 8000 10000 12000

N
et

le
ng

th
 (

m
ic

ro
n)

Sec.

Final Placement (primary2)
Legal

Unconstrained

1.78e+07

1.8e+07

1.82e+07

1.84e+07

1.86e+07

1.88e+07

1.9e+07

1.92e+07

1.94e+07

1.96e+07

0 2000 4000 6000 8000 10000 12000

N
et

le
ng

th
 (

m
ic

ro
n)

Sec.

Final Placement (industry2)
Legal

Unconstrained

(a) (b)

2e+07

2.05e+07

2.1e+07

2.15e+07

2.2e+07

2.25e+07

0 5000 10000 15000 20000 25000

N
et

le
ng

th
 (

m
ic

ro
n)

Sec.

Final Placement (industry2g)
Legal

Unconstrained

7.8e+06

7.9e+06

8e+06

8.1e+06

8.2e+06

8.3e+06

8.4e+06

8.5e+06

8.6e+06

0 5000 10000 15000 20000 25000 30000 35000

N
et

le
ng

th
 (

m
ic

ro
n)

Sec.

Final Placement (clk)
Legal

Unconstrained

(c) (d)

Figure 9.12: Development of the final placement solutions over time for the four circuits primary2, industry2,
industry2g and clk. The ’legal’ value is the legal solution at this time as return by the legalization step. The
’unconstrained’ value is the netlength of the placement before legalization.

9.4 Experiments for Final Placement 191

Results of Other Final Placement Heuristics

TW XQ Run time Stand-alone Best
Circuit for XQ GLS GLS

struct 778,321 774,289 54 837,699 678,152
primary1 987,141 1,137,756 31 999,483 949,353
industry1 1,866,177 1,747,234 31 1,699,490 1,634,801
primary2 3,637,653 4,096,888 150 4,460,830 3,612,800
biomed 3,467,190 4,320,451 1254 6,044,120 3,442,250
industry2 14,455,858 16,906,936 1,142 22,925,755 14,288,855
industry3 42,652,420 48,740,536 1,260 75,425,997 42,582,937
avqlarge 6,877,290 8,546,128 1320 32,643,082 6,786,482
golem3 118,572,063 118,686,359 8400 315,954,658 113,514,220

clk - 5,286,747 - - 4,903,923
decoder - 7,781,409 - - 7,022,407
pu - 62,268,385 - - 52,414,317

Table 9.18: Results of other final placements of the specific MCNC instances that we use (See text)

GLS” results are the best of the improvement results. The stand-alone GLS and “best
GLS” run-times are 3 hours for the MCNC-circuits and 12 hours for the IBM-circuits
on an Intel Pentium III 800 MHz.

We should note that one cannot compare TimberWolf and XQ with this table. Firstly
XQ is geared towards large standard-cell instances with macros. Secondly no run-
times are reported for the TimberWolf heuristic. Thirdly XQ may also optimize other
objective functions than netlength (e.g congestion).

Also please note that several of the placements after our clean-up step from table 9.7
are actually quite close or better than some of the reported placements with run times
that are comparable to those of XQ, but our tests are conducted on a machine with
double clock frequency.

We now compare these results with ours. We have listed all circuits in table 9.19 along
with the difference in percent between our final placement results, our initial results,
the results of TimberWolf and the results of XQ. We have not listed the results of the
GLS heuristic because the interesting results of GLS are improvements of the Timber-
Wolf and XQ placements.

Discussion on improvement For all circuits except ami33k the final placement im-
proves the solution of the clean-up step with between 4 and 10 � . From table 9.6
we know that at least primary2 and industry2 are close to a swap-neighborhood mini-
mum after clean-up. The relaxation based local search of our final placement can easily
produce solution below the values of table 9.6. We feel that the ��" ����� improvements

9.4 Experiments for Final Placement 192

Comparison with other authors
Circuit Clean-up TimberWolf XQ Circuit Clean-Up TimberWolf XQ

Solution Solution

primary1 90.3 � 100.7 � 87 � primary2 91.0 � 104.3 � 92.6 �
biomed 84.1 � 110.8 � 88.9 � struct 86.1 � 100.9 � 101.4 �
industry1 91.8 � 69.3 � 74.0 � primary2g 95.9 � - -
industry2 93.0 � 125.0 � 106.9 � industry2g 90.9 � - -
industry3 91.8 � 113.3 � 99.2 � industry3g 92.3 � - -
avqsmall 94.7 � - - avqlarge 94.7 � 123.5 � 99.5 �
golem3 94.5 � 135.1 � 135.0 � clk 92.3 � - 148.6 �
decoder 90.0 � - 167.2 � pu 91.4 � - 206.4 �
ami33k 99.7 - -

Table 9.19: Comparison with other authors based on table 9.18. The Clean-Up columns is comparison with the
clean-up initial solution. Percentages are calculated as

��� ������� ����	 ��	 �
�� 	
	��
�

�
��
	
����	�	����
 so less is better.

during final placement are quite good considering that this is a preliminary new place-
ment method and that the simulated annealing method has not been well-tuned.

Comparison with TimberWolf and XQ For the small and medium sized circuits our
final placement results are certainly comparable with both XQ and TimberWolf. The
worst of these lie within 25 � percent of the results of XQ and TimberWolf.

For the industry1 circuit the result is significantly better than either XQ and Tim-
berWolf. Based on the fact that the result of industry1 after the clean-up step is al-
ready better than these results we can only assume our global placement algorithm
has found a better initial solution than those of XQ and TimberWolf.

For primary1, biomed, primary2, industry3 and avqlarge our results are better than
those produced by TimberWolf. Of course it should be noted that our run times are
substantially higher.

For the golem3 circuit our result is more than 35 � worse than that of either of the
two other placement heuristics. The results are even worse for the IBM-circuits which
are between almost 50 and 100 � higher than those of XQ. This could be explained by
the fact that XQ is geared towards large instances of standard-cells and our placement
heuristic is geared towards medium sized instances of general-cells.

9.4.5 Conclusion on Final Placement

Our final placement results are in general good. The results are comparable with the
results of commercial placers and even with the results of section 3.3 which may be
for slightly different instances. Specifically we have spacing between modules (except
for the ami33k circuit). This is not the case in several of the results of section 3.3.

9.4 Experiments for Final Placement 193

Several other conclusions can be drawn from the test results of the previous para-
graphs:

� General-cell circuits Our final placement heuristic is capable of placing very
large general-cell instances. The final placement of the general-cell instances
have netlength within 20 � of their standard-cell counterparts and two of the
three are less than 15 � above their counterparts. This is definitely a success
since we have succeeded in placing and improving general-cell circuits to high
quality within reasonable time.

� Legalization The small changes of the graphs of section 9.4.3 between solutions
of subsequent iterations could signify that the legalization algorithm does not
miss good solutions of the final placement combinatorial search. This is a sur-
prise considering the simple legalization criteria we imposed on the final place-
ment algorithm

� Large circuits The new final placement algorithm does improve the large IBM-
circuits 10 � during 9 hours but placements are still not comparable to those of
XQ.

� Speed It should also be mentioned that our final placement is slow. For the
medium sized test circuit less than half a million nets have been picked for re-
laxation based local search after three hours. For the industry2 circuit 352256
nets had been searched at the end of final placement. 103758 of those had re-
sulted in improvements of the objective function. The major bottleneck is likely
the semi-legalization step which searches a very large neighborhood.

� Cleaning up random accepts The fact that almost a third of the nets of the in-
dustry2 test results in improvement could signify that much of the work done
by the relaxation based local search goes to cleaning up poor random accepts of
the simulated annealer.

� Ill-tuned Simulated Annealing Many of the results and the graphs of 9.4.3 sig-
nify that the simulated annealer is far from well-tuned and may not have optimal
coolage and reset strategies. These strategies were determined through prelim-
inary tests where they worked well. Unfortunately they did not scale well with
circuit size and time.

The simulated annealer was a last minute attempt to escape the local minima
we encountered otherwise. Unfortunately tests show that it is too hard to con-
trol e.g. the reset strategy. Our assumptions that the simulated annealer would
function equally on small and large circuits seem over-idealized and it is not un-
likely that the start time � � and coolage value � depends on some properties of
the placement instance.

9.4 Experiments for Final Placement 194

Our simulated annealer could certainly be tuned much better than the prelimi-
nary tuning of this section. One of the major problems with our tuning is that
we only consider early iterations and that the values of � � and � are based on
three small circuits. Not surprisingly it seems that the heuristic performs well
on these circuits during the first 10 minutes which was exactly the run time for
the tuning tests of � � and � .

While the simulated annealing strategy may have failed it does seem as though the
relaxation based local search makes up for this and we believe that it is the main reason
for the high quality placements produced after all.

Based on the fact that this is a preliminary prototype of a new final placement heuristic
the results are extremely good.

The final placement results are shown on the following pages. Please note the com-
pactness of the circuits primary2g, industry2g and industry3g.

9.4 Experiments for Final Placement 195

primary1 struct

industry1 primary2

biomed industry2

industry3 avqsmall

9.4 Experiments for Final Placement 196

primary2g

industry2g

9.4 Experiments for Final Placement 197

industry3g

avqsmall

9.4 Experiments for Final Placement 198

avqlarge

ami33k

9.4 Experiments for Final Placement 199

golem3

clk

9.4 Experiments for Final Placement 200

decoder

pu

201

10 Conclusion

To summarize the previous sections have considered several topics:

� We have presented a thorough and extensive survey of placement techniques of
the last decade.

� We have presented a very fast legalization algorithm which can legalize even
very large circuits consisting of general-cells within seconds and we have im-
proved an existing sequence-pair based placement method by allowing fixed
modules and placement area during the placement. The new sequence-pair
based placement also produce more compact placements than those of the pre-
vious sequence-pair based placement algorithms.

� We have created global placement heuristic which combined with its clean-up
step produces results of small and medium sized circuits which seem compara-
ble to those of recent global placement heuristics. This is a good result consid-
ering that our new global placement heuristic differs from previously published
ideas and is only a preliminary prototype with much room for improvement.

� We have created a new final placement heuristic which is capable of improving
results produced by our new global placement to produce results comparable to
those of previously published and commercial placers. The new final placement
is controlled by simulated annealing and the simulated annealing parameters
and strategies do not seem ideal. In spite of this the placement heuristic is ca-
pable of producing quite good results which signify that the underlying ideas
are good. The simulated annealer was added in last minute and was not well-
tuned. A well-tuned and better control method of the relaxation based local
search would probably produce even better results.

In general most of our work has been successful and we are confident that further
improvements could be added to the described successful new placement techniques
both in terms of speed of the heuristic and in terms of quality of solutions.

We have reached our main goal of being able to place general-cell circuits with high
quality and it seems that we have removed at least some of the barriers between
general-cells and standard-cells. With further work the new placement techniques
may render general-cell placement a viable alternative to standard-cell placement over
time.

A crucial subject for practical applications that we have not dealt with however is
routability and congestion of our final placements. These properties could be tested
with commercial routers to determine if the compact placements produced by the
sequence-pair legalization can in fact be routed and used in practice.

10.1 Future Directions 202

10.1 Future Directions

Although we have covered substantial material in this thesis there is plenty of di-
rections for future work. Our suggestions for future work is divided into the main
elements of this thesis; legalization, global placement and final placement.

10.1.1 Future Work – Legalization

Future work of legalization and sequence-pair placement may consider some of the
following topics.

� Area considerations One of the main flaws of the sequence-pair legalization
technique seems to be that it does not consider area of the modules. This is
likely the main reason why the simple standard-cell legalizer outperforms our
sequence-pair legalizer in some cased. A new sequence-pair conversion which
considers area may be able to legalize severely overlapping placements better
than our current.

� Better sliding scheme The sliding scheme of the extended envelope based place-
ment (see section 4.4.2) may be improved to produce even more compacted
placements.

� Improved constraint handling The constraints imposed by VLSI-instances –
limited area and fixed modules – could probably be more elegantly dealt with
than we do in the extended envelope sequence-pair placer (see section 4.4.2).

� Placement extensions In VLSI-placement some modules could be constrained
to certain regions and some modules may have rectilinear shapes. The extended
envelope placement algorithm could probably be extended to handle these extra
requirements.

� 3D sequence-pair Although integrated circuits are currently two-dimensional,
IBM has taken steps towards three-dimensional circuits (see [92]). Also in [28] a
device nick named “gadget printer” is presented. The “gadget printer” can print
electronic devices in three dimensions. Therefore new three-dimensional place-
ment algorithms are needed. The quadratic formulations are straight-forward to
extend to three dimensions, but it does seem less obvious how the sequence-pair
representation should be extended to accommodate any extra dimensions.

10.1.2 Future Work – Global Placement

Our global placement algorithm is far from ideal and future work may deal with some
of these topics.

10.1 Future Directions 203

� Congestion and routability The global placement could be extended to account
for these two elements.

� Improved artificial net scheme The tests reveal that global placement never re-
ally converges. A new scheme which has better convergence properties should
be devised.

10.1.3 Future Work – Final Placement

The new final placement heuristic is already in its preliminary state quite promising
but there is certainly room for improvement. Future work may deal with these topics
of final placement:

� Faster semi-legalization The main bottleneck for our final placement seems to
be semi-legalization. Therefore a new form of semi-legalization may improve
run times substantially.

� Improved � handling Based on the experience we have gathered during our
work with the new final placement algorithm better strategies for handling the
overlap penalty � could be devised. During later iterations there is little overlap
penalty in the objective function. This is likely because the improving moves
that exist at this stage are all very small and not sufficiently good to account for
the loss in objective value due to overlap penalty.

� Improved legalization criteria Our simple legalization criteria – number of mo-
ves in the placement – is very crude and may miss good placements. A method
which could legalize good placements at the right time during local search may
improve solution quality.

� Improved Sub-circuit Handling For our tests we have set the sub-circuit size to
10. However it is possible that varying this size would improve the performance
of final placement since in some cases the sub-circuit size may help to escape
local minimum. In other cases smaller sub-circuits may be sufficient to move
towards good solutions.

� Better relaxed local search control Although it does allow us to escape local
minimum, the preliminary simulated annealing heuristic does not seem to con-
trol the relaxation based local search well. A better overall control of relaxation
based local search would likely improve this. In any event the reset and coolage
strategies needs rethinking. A first step towards better control would be to iden-
tify the local minima imposed by the relaxed local search.

� Congestion and routability An objective function based on congestion would
probably make the placement heuristic more suitable for practical use.

10.2 Epilogue 204

� Large macros A subject which we have not discussed is optimizing large macros
in the placement. This is difficult to do with the swap-based neighborhood and
presents many new problems.

10.2 Epilogue

During the previous many months my experience with the VLSI-layout problem has
increased manifold. It has been educational but often hard. The major breakthroughs
during this thesis came with the discovery of the � -parameter of the placement-to-
sequence-pair algorithms and relaxed local search with semi-legalization. Although
these ideas may seem obvious it took a substantial amount of thinking and rethinking
before they took the form in my mind that they have in their current state.

One of the hardest parts of the thesis was to discover the strength and weaknesses
of the legalization algorithms and to come up with methods that would balance the
amount of overlap in the placements.

The simulated annealer for Relaxed Local Search was implemented in very last minute
as a last resort for escaping local minima. I therefore had little time to improve on it.
Its present outline came from initial short-lasting tests which did not scale well with
the final tests. Other and better suited simulated annealing strategies exists and could
be tested in the future.

For future local search methods for final placement I believe the right direction to
move in is based on relaxation based local search. It seems to be a general trend
among successful approaches that some form of large scale relaxation occurs during
optimization.

The VLSI-layout problem is more complex than it seems and there is certainly plenty
of room for future ideas. As a rule of thumb however it appears that if you can think
of a reason why your idea may not work in practice, it will not work in practice. If
you can not think of a reason, there is still a good chance that it will not work anyway.

In any event I hereby encourage others to engage at this problem. There are still many
unanswered questions in the field.

REFERENCES 205

References

[1] C. J. Alpert, T. F. Chan, D. J. H. Huang, A. B. Kahng, I. L. Markov, P. Mulet,
and K. Yan. Faster minimization of linear wirelength for global placement. In
Proceedings of 1997 International Symposium on Physical Design, pages 4–11, 1997.

[2] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: A survey.
Integration, the VLSI Journal, 19:1–80, December 1995.

[3] S. Areibi, Matt Thompson, and Anthony Vanelli. A utility-based iterative im-
provement heuristic for standard cell placement. In Proceedings of First Interna-
tional Conference on Engineering and Reconfigurable Systems and Algorithms, 2001.

[4] R. Baldick, A. B. Kahng, A. A. Kennings, and I. L. Markov. Efficient optimization
by modifying the objective function: Application to timing-driven vlsi layout.
IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
48(8):947–956, 2001.

[5] Florin Balsa. Symmetry within the sequence-pair representation in the context
of placement for analog design. In IEEE Transactions on CAD of IC’s and Systems,
volume 19, pages 721–731, 2000.

[6] U. Brenner and J. Vygen. Faster optimal single-row placement with fixed order-
ing. In Proceedings of Design, Automation and Test in Europe, pages 117–121, 2000.

[7] U. Brenner and J. Vygen. Worst–case ratios of networks in the rectilinear plane.
Submitted to publication 2000, 2000.

[8] J.D. Burden and R.L. Faires. Numerical Analysis. Brooks/Cole Publishing Com-
pany, sixth edition edition, 1997.

[9] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L . Markov, and A. Zelikovsky. On
wirelength estimations for row-based placement. In Proceedings of ACM/IEEE
International Symposium on Physical Design, pages 4–11, 1998.

[10] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Design and implementation of
move-based heuristics for vlsi hypergraph partitioning. ACM Journal of Experi-
mental Algorithms, 5, 2000.

[11] Y. Chung, Y. Chang, G. Wu, and S. Wu. B*-tree: A new representation for non-
slicing floorplans. In Proceedings of Design Automation Conference, pages 458–463,
2000.

[12] F.R.K. Chunk and R.L. Graham. On steiner trees for bounded point sets. Geom.
Dedicata, (11):353–361, 1981.

REFERENCES 206

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

[14] A. Dasdan and C. Aykanat. Two novel multiway circuit partitioning algorithms
using relaxed locking. IEEE Transactions on Computer-Aided Design, 16, Februar
1997.

[15] K. Doll, F. Johannes, and G. Sigl. Domino: Deterministic placement with hill-
climbing capabilities. In Proceedings of VLSI, pages 3b.1.l–3b.1.10, 1991.

[16] K. Doll, F. Johannes, and G. Sigl. Accurate net models for placement improve-
ment by network flow methods. In Proceedings of the 1992 IEEE/ACM international
conference on Computer-aided design, pages 594 – 597, 1992.

[17] K. Dowsland. Simulated annealing. In Colin Reeves, editor, Modern Heuristic
Techniques for Combinatorial Problems., pages 20–63. Oxford: Blackwell, 1993.

[18] A. Dunlop, V. Agrawal, D. Deutsch, M. Juki, P. Kozak, and M. Wiesel. Chip
layout optimization using critical path weighting. In Proceedings of ACM/IEEE
Design Automation Conference, 1984.

[19] H. Eisenmann and F. M. Johannes. Generic global placement and floor planning.
In Proceedings of the 35th annual conference on Design automation conference, pages
259–274, 1998.

[20] H. Etavil, S. Areibi, and Anthony Vannelli. Attractor-repeller approach for
global placement. In Proceedings of the 1999 IEEE/ACM international conference
on computer-aided design, pages 20 – 24, 1999.

[21] O. Faroe, D. Pisinger, and M. Zachariasen. Local search for final placement in
VLSI design. In Proceedings of ICCAD, pages 565–572, 2001.

[22] S. Fekete and J. Schepers. On more-dimensional packing i-iii. Koln University
technical reports 97-288, 97-289, 97-290, 1997.

[23] C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving net-
work partitions. In Proceedings of ACM/IEEE Proceedings 19th Design Automation
Conference, pages 175–181, 1982.

[24] O. Færø. Placement of modules in vlsi-layout. Master’s thesis, University of
Copenhagen, DIKU, 2000.

[25] M. Frederiksen. Parallel region-based vlsi placement with multiple objectives.
Master’s thesis, University of Copenhagen, DIKU, 2002.

[26] K. Fujiyoshi and H. Murata. Arbitrary convex and concave rectilinear block pack-
ing using sequence-pair. In Proceedings of the 1999 international symposium on Phys-
ical design, pages 103–110, 1999.

REFERENCES 207

[27] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem.
Journal of the ACM, (35):921–940, 1988.

[28] Duncan Graham-Rowe. “gadget printer” promises industrial revolution. New-
Scientist.Com, (http://www.newscientist.com/news/ news.jsp?id=ns99993238),
2003.

[29] L. K. Grover. A new simulated annealing algorithm for standard cell placement.
In Proceedings of International Conference on Computer-Aided Design, pages 378–380,
1986.

[30] L. K. Grover and S. Mallela. Clustering based simulated annealing for standard
cell placement. In Proceedings of 25th Design Automation Conference, pages 312–317,
1988.

[31] P. Guo, C. Cheng, and T. Yoshimura. An o-tree representation of non-slicing
floorplan and its applications. In Proceedings of the 36th ACM/IEEE conference on
Design automation conference, pages 268–273, 1999.

[32] L. Hagen and A. B. Kahng. A new approach to effective circuit clustering. In
Proceedings of International Conference on Computer-Aided Design, pages 422–427,
1992.

[33] L. W. Hagen, D. J. Huang, and A. B. Kahng. On implementation choices for
iterative improvement partitioning methods. Proc. European Design Automation
Conference, pages 144–149, 1995.

[34] K. M. Hall. An r-dimensional quadratic placement algorithm. Management Sci-
ence, 17(3):219 – 229, 1970.

[35] M. R. Hestenes and E. Stiefel. Methods of conjugate gradient for solving linear
systems. Journal of Research of the National Bureau of Standards, pages 409 – 436,
1952.

[36] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, and C. Cheng. Corner block list: An
effective and topological representation of non-slicing floorplan. In Proceedings of
the 2000 IEEE/ACM international conference on Computer-aided design, pages 8 – 12,
2000.

[37] B. Hu and M. Marek-Sadowska. Far: Fixed point addition and relaxtion based
placement. In Proceedings of 2002 International Symposium on Physical Design, pages
161–166, 2002.

[38] S. Hur and J. Lillis. Relaxation and clustering in a local search framework: Ap-
plication to linear placement. In Proceedings of the 36th ACM/IEEE conference on
Design automation conference, pages 360–366, 1999.

REFERENCES 208

[39] S. Hur and John Lillis. Mongrel: Hybrid techniques for standard cell placement.
In Proceedings of the International Conference on Computer Aided Design, pages 165 –
170, 2000.

[40] F. K. Hwang. On steiner minimal trees with rectilinear distance. Siam Journal of
Applied Mathematics, (January):104–114, 1976.

[41] S. Imahori, M. Yagiura, and T. Ibaraki. Local seach algorithms for the rectangle
packing problem with general spatial cost. In I.H. Osman and J.P. Kelly, editors,
Meta-Heuristics: Theory and Applications, pages 63–82. Kluwer Academic Publish-
ers, Boston, 1996.

[42] M. Jackson and E. Kuh. In Proceedings of ACM/IEEE Design Automation Conference,
volume 26, pages 370 – 375, 1989.

[43] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by
simulated annealing: An experimental evaluation, part 1, graph partitioning. Op-
erations Research, 37:865–892, 1989.

[44] A. Kahng, P. Tucker, and A. Zelikovsky. Optimization of linear placements for
wirelength minimization with free sites. In Proceedings of the Asia and South Pacific
Design Automation Conference, pages 241–244, 1999.

[45] M. Z. Kang and W. W. Dai. Arbitrary rectilinear block packing based on sequence
pair. In Proceedings of the 1998 IEEE/ACM international conference on CAD, pages
259–266, 1998.

[46] A. A. Kennings and I. L. Markov. Analytic minimization of half perimeter wire-
length. In Proceedings of the 2000 Conference on Asia and South Pacific Design Au-
tomation, pages 179–184, 2000.

[47] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. Bell Systems Technical Journal, 49:291–307, 1970.

[48] S. Kirkpatrick, C Gelatt, and M. Vecchi. Optimization by simulated annealing.
Science, (4598):671–680, 1983.

[49] J. M. Kleinhans, G. Sigl F. M. Johannes, and K. J. Antreich. Gordian: Vlsi place-
ment by quadratic programming and slicing optimization. IEEE Transactions on
Computer-Aided-Design of Integrated Circuits and Systems, (10):356–365, 1991.

[50] K. Kozminski. Benchmarks for layout synthesis - evolution and current status. In
proceedings of ACM/IEEE Design Automation Conference, pages 265–270, 1991.

[51] C. Kring and K. Newton. A cell-replicating approach to mincut-based circuit
partitioning. IEEE Intl. Conf. on Computer Aided Design, pages 2–5, 1991.

REFERENCES 209

[52] B. Krishnamurthy. An improved min-cut algorithm for partitioning vlsi net-
works. IEEE Transactions on Computing, 33:438–446, May 1984.

[53] J. Lai, M. Lin, T. Wang, and L. Wang. Module placement with boundary con-
straints using the sequence-pair representation. In Proceedings of the conference on
Asia South Pacific Design Automation Conference, pages 515–520.

[54] T. Lengauer. Combinatorial Algorithms for Integrated Circuits. Wiley-Teubner, 1990.

[55] C. Lin. A more efficient sequence pair pertubation scheme. In IEEE Proceedings
RISC 99, pages 295–300, 1999.

[56] J. Lin and Y. Chang. Tcg: A transitive closure graph-based representation for non-
slicing floorplans. In Proceedings of Design Automation Conference, pages 764 – 769,
2001.

[57] P. Madden. Reporting of standard cell placement results. IEEE Trans. Computer
Aided Design of Integrated Circuits and Systems, 21(2):240 – 247, 2002.

[58] I. I. Mahmoud, K. Asakura, T. Nishibu, and T. Ohtsuki. Experimental appraisal
of linear and quadratic objective functions effect on force direction method for
analog placement. In IEICE Transactions on Fundamentals of Electronics Communi-
cations and Computer Sciences, number 4, pages 710–725, 1994.

[59] S. Martello, D. Pisinger, and D. Vigo. The three-dimensional bin packing problem.
Operations Research, (48):256–267, 2000.

[60] J. McClellan, R. Schafer, and M. Yoder. DSP First - A Multimedia Approach. Prentice
Hall, 1999.

[61] F. Mo, A. Tabbara, and R. K. Brayton. A force-directed macro-cell placer. In Pro-
ceedings of International Conference on Computer-Aided Design, number 4A.3, 2000.

[62] H. Murata, K. Fujiyoshi, and M. Kaneko. Vlsi/pcb placement with obstacles
based on sequence pair. In Proceedings of the 1997 international symposium, pages
27–31, 1997.

[63] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Vlsi module placement
based on rectangle-packing by the sequence-pair. In IEEE Transactions on CAD,
volume 15, pages 1518–1524, 1996.

[64] H. Murata and E. Kuh. Sequence-pair based placement method for
hard/soft/pre-placed modules. In Proceedings of the 1998 international symposium
on Physical design, pages 167–172, 1998.

[65] Sudip Nag and Kamal Chaudhary. Post-placement residual-overlap removal
with minimal movement. In Proceedings of Design Automation and Test in Europe,
pages 581–587, 1999.

REFERENCES 210

[66] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani. Module placement on
bsg-structure and ic layout applications. In Proceedings of the 1996 IEEE/ACM
international conference on Computer-aided design, pages 484–491, 1996.

[67] S. Olsen. Forelæsningsnoter til Billedbehandling.
http://www.diku.dk/forskning/image/teaching/Courses/e99.101/, 1999.

[68] H. Onodera, K. Fujiyoshi, and K. Tamaru. Branch and bound placement for build-
ing block layout. In Proceedings of the 28th conference on ACM/IEEE desing automa-
tion conference, pages 433–439, 1991.

[69] J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations
Research, (41):338–350, 1993.

[70] Y. Pang, C. Cheng, K. Lampaert, and W. Xie. Rectilinear block packing using o-
tree representation. In Proceedings of the 2001 international symposium on Physical
design, pages 156 – 161, 2001.

[71] P. Parakh, R. Brown, and K. Sakallah. Congestion driven quadratic placement. In
Proceedings of the 35th annual conference on Design automation conference, pages 275
– 278, 1998.

[72] D. Pisinger. From sequence pair to semi-normalized placement in 	%a 9
�
���
�
��� 9 f

time. Submitted ICCAD 2002, 2002.

[73] Ken Popovich. Intel looks to 1 billion-transistor chip. eWeek,
(http://www.eweek.com/article2/0,3959,636064,00.asp), 2002.

[74] J. K. Reid. On the methods of conjugate gradient for the solution of large sparse
systems of linear equations. In Large Sparse Sets of Linear Equations, pages 231–254.
Academic Press, 1971.

[75] L. A. Sanchis. Multiple-way network partitioning. IEEE Transactions on Comput-
ers, 38(1):62–81, 1989.

[76] M. Sarrafzadeg and M. Wang. Nrg: Global and detailed placement. In Proceedings
of International conference on Computer-Aided Design, pages 532 – 537, 1997.

[77] J. Schewchuk. An introduction to the conjugate gradient method with-
out the agonizing pain. Technical report, CS, Carnegie Mellon University,
http://www.cs.cmu.edu/ jrs/jrspapers.html, 1994.

[78] C. Sechen and K. W. Lee. An improved simulated annealing algorithm for row-
based placement. In Proceedings of International Conference on Computer-Aided De-
sign., pages 478–481, 1987.

REFERENCES 211

[79] G. Sigl, K. Doll, and F. M. Johannes. Analytical placement: A linear or a quadratic
objective function. In Proceedings of 28th ACM/IEEE Design Automation Conference,
pages 427–432, 1991.

[80] W. Sun and Carl Sechen. Efficient and effective placement for very large circuits.
In Proceedings of International Conference on Computer Aided Design, pages 170–177,
1993.

[81] X. Tang, R. Tian, and D. F. Wong. Fast evaluation of sequence pair in block place-
ment by longest common subsequence computation. In Proceedings of the confer-
ence on Design, automation and test in Europe, pages 106–111, 2000.

[82] X. Tang and D. F. Wong. Fast-sp: a fast algorithm for block placement based on
sequence pair. In Proceedings of the conference on Asia South Pacific Design Automa-
tion Conference, pages 521–526, 2001.

[83] R. Tsay, E. S. Kuh, and C. Hsu. Proud: A fast sea of gates placement algorithm.
In Proceedings of the 26th ACM/IEEE Conference on Design Automation, pages 318 –
323, 1988.

[84] P. van Emde Boas, R. Kaas, and E. Zulstra. Design and implementation of an
efficient priority queue. Mathematical Systems Theory, 10(2), 1977.

[85] C. Voudouris and E. Tsang. Guided local search and its application to the trav-
eling salesman problem. European Journal of Operational Research, (113):469–499,
1999.

[86] J. Vygen. Algorithms for large-scale flat placement. In Proceedings of ACM/IEEE
Design Automation Conference, pages 746–751, 1997.

[87] J. Vygen. Plazierung im vlsi-design und ein zweidimensionales zerlegungsprob-
lem, 1997.

[88] J. Vygen. Algorithms for detailed placement of standard cells. In Proceedings of
Design, Automation and Test in Europe 1998, pages 321 – 324, 1998.

[89] M. Wang and X. Yang M. Sarrafzadeh. Dragon2000: Standard-cell placement tool
for large industry circuits. In Proceedings of International Conference on Computer
Aided Design, pages 260 – 263, 2000.

[90] D. Warme, P. Winter, and M. Zachariasen. Exact algorithms for plane steiner tree
problems: A computational study. In Ding-Zhu Du, editor, Advances in Steiner
Trees, pages 81–116. Kluwer Academic Publishers, 2000.

[91] B. X. Weiss and D. A. Mlynsky. A graphtheoretic approach to the relative place-
ment problem. In Proceedings of IEEE Transactions on Circuits and Systems, pages
286–293, 1988.

REFERENCES 212

[92] (WWW). Ibm creates new dimension for high-performance chips. IBM Research
News, (http://www.research.ibm.com/resources/news/ 20021111_3d_ic.shtml),
2002.

[93] J. Xu, P. Guo, and C. Cheng. Rectilinear block placement using sequence-pair. In
Proceedings of the 1998 international symposium on Physical design, pages 173–178,
1998.

[94] C. W. Yeh, C. K. Cheng, and T. T. Lin. A probabilistic multicommodity-flow so-
lution to circuit clustering problems. In Proceedings of International Conference on
Computer-Aided Design, pages 428–431, 1992.

213

A Unsuccessful approaches

This section is devoted to people who intend to create their own heuristic for solving
the placement problem. It describes some of the many methods we tried during the
writing of this thesis which did not work well. Although negative results are not
commonly a part of a scientific text we have included them so that others may avoid
wasting the time we did. Also the section may serve as an inspiration. What did not
work out for us may work for others with simple modifications. In most cases we
have included what we believe is the explanation for the poor results.

The approaches have been grouped in three main parts; sequence-pair related ap-
proaches, global placement approaches and local search approaches.

It should be noted that methods presented below are sketchy but in most cases various
modifications and enhancements as well as parameter adjustments were attempted
without any luck. Should you find inspiration in the mentioned methods we wish
you the best of luck.

A.1 Unsuccessful Sequence-Pair Conversions

Various methods were attempted at converting the sequence-pair placement to make it
handle uneven distributions of modules better by interpreting placements differently:

� Polar coordinates One method used polar coordinates The modules ordered by
distance from origin was interpreted as the � -sequence and the angle as the � -
sequence.

� Percentile distance Another method using percentile distance along the � -dia-
gonals of algorithm 4.1 instead of absolute coordinates to determine the M -se-
quence.

� Partition based sequence-pair A partition based placement-to-sequence-pair
converter which could be used for placements with much overlap was also ex-
amined. The idea was to bi-sect as a common partitioner but the constructed
floor-plan was put into a sequence-pair since this is relatively easy to do. The
purpose of this attempt was to account for the area of modules.

� Area based Here modules were given two values depending on how much area
of other modules was below and left of them and above and left of them. The
modules were then sorted according to these two values to give respectively the
M - and � -sequences.

� Connection based sequence-pair transform We also tried to use the connec-
tion graph for conversion. By using diagonals one of four relations – left, right,

A.1 Unsuccessful Sequence-Pair Conversions 214

above, lower – was retrieved for any two connected modules. A new graph
was constructed in which each node corresponded to a module or an IO-pin and
four types of edges (left, right, above, lower) were added to this graph between
connected components of the connection-graph of the circuit depending on their
internal relation. The graph was then converted to a sequence-pair using topo-
logical sorting (see e.g. [13]) based on the edge-types, such that the top-right
module was last in the M -sequence and the lower-right module last in the �
sequence. This can be done by doing a topological sort on up/right edges for
the M -sequence and lower-right edges for the � sequence. In other words only
connected components were used when constructing the sequence-pair.

In all cases the results were poor – presumably because there is too much inconsistency
between capture of the placements and repositioning. The area based method did
show some potential but did not handle modules that were close to each other well.
The connection method was able to determine connected components and place them
close to each other. Unfortunately it was unable to detect the right clusters to be placed
next to each other. Modules which were placed far from each other but connected
could end up next to each other and drag other modules with them in an obvious
wrong direction.

One of the main problems of the placement-to-sequence-pair algorithm is that mod-
ules are often distributed unevenly on the placement area. Therefore we tried several
module-spreading methods:

� Partitioning for spreading One method was based on a recursive bi-partitioning
scheme. In each step the partitions were assigned modules such the sum of
the area of their modules was roughly half. The recursion stopped when a re-
gion contained � modules. When the entire bi-partitioning was completed the
modules were redistributed in each section of the real-estate described by the
bi-section.

� Dense area warping A second method was based on thin-plate-spline warping
functions. A warping function was constructed such that areas with many mod-
ules were spread out and areas with few modules were reduced under warping.
Unfortunately the warping method was far too difficult to control for it to work
in practice.

� Triangular spring system A third method used delaunay-triangulation to setup
connections between modules close to each other in the current placement. As-
suming that the distances between modules in general should be equal a auxil-
iary “spring-system” similar to that of the quadratic nets was constructed with
springs between nearby modules. The spring-system was put into equilibrium
in the hope that the distances between modules would even out.

A.2 Unsuccessful Global Placement Improvement Strategies 215

In all three cases the main problem was that the spreading of the modules occurred
independently of the objective function and that the relative positions which are im-
plicitly stored in the overlapping placement was also lost after spreading. In all three
cases the spread placements lead to worse results than no spreading with an appro-
priate � -value. However if the standard placement-to-sequence-pair algorithm was
not allowed to � -search, spreadings could some times produce better results.

A.2 Unsuccessful Global Placement Improvement Strategies

� Relaxation based method The first attempt at improving a legal solution was to
relax the overlapping constraints for a part of the circuit. A specific amount of
modules, say ����� , were moved to optimal positions without considering over-
lap. The resulting placement was then legalized. The results were poor pre-
sumably because legalization of the resulting massively overlapping placement
proved to difficult for our simple legalizer. Adjustments of the amount of mod-
ules to move did not achieve anything. Small percentages resulted in poor legal-
izations without an equal improvement in placement quality since few modules
were improved. Large percentages made the legalization too difficulty. Over
time the legalized placement began to differ substantially from the initial place-
ment and all information from it was lost. The end result was actually increas-
ingly worse legalized solutions. We also tried variants in which the modules
were slowly dragged to their optimal positions but the results were quite simi-
lar.

� Force-like method We attempted a force like method with increasing net-weights.
The method started with a legal placement and a quadratic program was set so
that the legal placement would be solution to the relaxed problem of the quadratic
program. At this point net-weights were increased for the longest nets until le-
galization of the relaxed problem differed from the initial legalized placement.
At this time net-weights were reset and the heuristic restarted. The problem
with this method seemed to be that it was too hard to control. Large increases
in weight altered the solution too much. Small increases made the method too
slow. Also increasing weight of long nets seemed only to increase length of the
shorter but less weighted nets thus increasing the total weight.

� Locking of closest modules Another method was to lock modules which moved
the least during the legalization step so that their position would be retained in
subsequent quadratic optimizations. The method would lock e.g. ����� of all
modules in each iteration. This did not work well. In general modules which
were positioned first during the sequence-pair placement step were locked. These
are often closest to the center of the gravity where most modules end up during
quadratic optimization. This is where there is most overlap and therefore the

A.3 Unsuccessful Final Placement Techniques 216

legalizer performs the worst retaining little information from the quadratic so-
lution. Also this did not spread out modules as was desired. Rather modules
from subsequent quadratic optimizations were positioned on top of the locked
modules making legalization impossible without moving the locked modules.
Since moving the locked modules made the solution differ more from the ini-
tial solution the result was increasingly bad solutions. Attempts with unlocking
strategies (e.g. � � worst positioned of the locked) did not improve the situation
notably.

� Net penalizing during global placement We tried various forms of increasing
weights of long nets (based on bounding box netlength) during global place-
ment so that they would decrease in length in the next iteration of the quadratic
placer. The biggest problem with this method is likely that the quadratic objec-
tive function is sufficiently close to the bounding-box formulations and altering
weights will have the opposite effect; increase length of connected nets.

� Loosening of nets We tried to loosen nets during initial iterations to spread the
modules more. Preliminary tests convinced us that the method dealt too lit-
tle with actual non-overlapping placements and in general only increased net
lengths.

A.3 Unsuccessful Final Placement Techniques

� Relaxation cycles The initial approach for relaxation was similar to the final
method; to extract a subset of the modules and solving the unconstrained place-
ment problem for these. Rather than simply placing them at their relaxed posi-
tion we required that the modules interchanged positions. Specifically: 1) The
relaxed placement was constructed. 2) A set of candidate new positions were
constructed from the old positions of the relaxed modules. 3) For each module
the closest of the candidate positions to its relaxed position was chosen (much
like semi-legalization). If the new placement resulted in an improvement in
netlength it was accepted. Otherwise rejected.

To increase the search space part permutations were considered. Any permu-
tation consist of a set of sequences of the form I V � I � ��������� I � � I V . Such a
sequence may be considered a cycle of moves since I � moves back to where
I V was. Now the permutation arising from placing the relaxed modules was
searched for such cycles and each cycle was placed individually. If any cycle
improved the netlength it was accepted. The biggest problem with this method
seemed to be that of extracting suited sub circuits.

We tried both to extract strongly connected modules and modules which lay
close to each other. Neither method worked very well. In general only few cycles
resulted in an improvement. Presumably because the candidate positions were

A.3 Unsuccessful Final Placement Techniques 217

far from the relaxed placements or modules piled together on top of each other.
One might attempt to improve the semi-legalization by constructing an assign-
ment problem which can be used to minimize total movement from relaxed to
semi-legalized position. We rejected this method because solution methods for
assignment problems have cubic running times. However for small sub circuits
this may not be a problem.

� � -moves Another interesting idea was the � -move idea. A simple local search
heuristic may swap two modules if the swap improves the total netlength and
otherwise reject it. In heuristics for other problems e.g. the traveling salesman
problem and to some extend graph partitioning a deeper search space improves
the heuristics. Since simple swapping can improve a global solution by say 10-15
� one might assume that adding moves in which � modules or more are moved
in one step may improve the solution by a few percent.

The method was implemented such that whenever the local search heuristic
could not improve the solution by swapping two modules higher order moves
where considered. The moves were conducted such that if no improving swaps
for module I could be found the best 9 � swaps I � � V ��������� I � � 7 � were se-
lected. Now it was checked whether a module
 could be found such that moves:
I � � F , � F �
 ,
 � I would improve the netlength for various � � G � 9 � . If
no such module combination � F �
 was found the 98V best
 ’s were chose and the
heuristic now attempted to find a

�
such that I � � F , � F �
 J ,
 J � �

,
� � I for� � G � 9 � , � � L � 98V . The procedure could continue like this for up to � long

sequences. The 9 ’s were chosen decreasingly.

Unfortunately including the � -moves hardly improves the solution quality. At-
tempts with
 - � - moves improved the solutions by less than 1 percent compared
to the simple swapping heuristic. The price was a substantially increased compu-
tational time. Even if the run time could be reduced it does not seem profitable
to go down this path. The biggest problem is that it was hard to find improving
moves of 3 or more modules and in most cases the improvement of the higher
order moves was also very small.

� Guided local search variations Several different approaches based on guided
local search were attempted. Firstly the guided local search based placement
technique of [24] without overlapping features and with a swap-neighborhood
was attempted. Unfortunately it appears that the reason the method was able
to function well was because no-overlap constraints were relaxed during local
search.

Another approach was geared towards the relaxation based local search. Here
we tried to give nets features if they violated some estimate of minimum size for
the nets. This did not work well. Presumably because good solutions can easily
contain nets with cover a large area and because we did have an easy way to

A.3 Unsuccessful Final Placement Techniques 218

reduce size of nets with swap-based neighborhood.

� � -adjustments We also tried to adjust � during relaxed local search. Whenever a
local minimum was detected – if only few improving moves could be conducted
– � was lowered slightly. On the other hand if may improving moves could be
conducted � was raised slightly. The problem with strategy is that there seem to
be a lower limit for acceptable values of � . If � falls below this limit placements
will have too much overlap.

� Local minima escape by relaxation Another strategy was to use the large neigh-
borhood solely for escaping local minima imposed by the swap-based local search.
Unfortunately the problem with this strategy is that the relaxation based local
search works best if the solution is not at a complete local minimum with re-
spect to the swap-based neighborhood.

219

B Comparison of Standard and Extended Semi-Normalized
Compaction

In this section we investigate if the extended envelope can compact general-cell cir-
cuits faster than the standard semi-normalized placement algorithm for sequence-
pair. In order to test this both the standard and the extended envelope sequence-pair
method were implemented in a simulated annealing framework as shown in algo-
rithm B.1.

Algorithm B.1: Simulated annealing for compaction
Choose initial random sequence-pair a � � � f ;
� ��
�� � 	 ��� � G 	 9 � DoPlacement a � � � f ;
	 � � � I@4�� 	 ;�3I
�� � 	 ��� � G 	 9 � � ��
�� � 	 ��� � G 	 9 ;
while 	 GdC �

�
� I@P 	 G C � do

Move a � � � f ;
� � 4	4���9 � � 	 ��� � G 	 9 � DoPlacement a � � � f ;
�
�
 � , � � false ;
if � � 4 4��&9 � � 	 ��� � G 	 9

�
� ��
�� � 	 ��� � G 	 9 then

� � 4	4���9 � � 	 ��� � G 	 9 � � �
�� � 	 ��� � G 	 9 ;
�
�
 � , � � true;

else

 �[T Random number from T �%�&� X X ;� � � � I �[a � � 4 4��&9 � � 	 ��� � G 	 9 " �3I
�� � 	 ��� � G 	 9 f � �3I
�� � 	 ��� � G 	 9 ;
p = �

����� � � �	�
� ;
if s < p then

�
�
 � , � � true;
if �
�
 � , � then

T = T + 1;
else

UndoMove(A, B)

In order to determine the optimal constant � a range of tests were made on each of
the five small MCNC-benchmarks.

Values of � are chosen from the set:

� � � ���&���%�&�&����
	�%��
 ���
	�����!��� �!�%� �	�%�&���!�%���&
����&���	���&� �	�%��
	���%�
	�!�%�$�!� �����!� �%�

For each value of � 25 different runs were made on each circuit lasting ���%�&�&���&�&����
	�
and �	� seconds for respectively apte, xerox, hp, ami33 and ami49. The average result
for each � is compared with the best run of each circuit and is this is shown on figure
B.1.

B.1 Area Compaction Results 220

1

1.01

1.02

1.03

1.04

1.05

1.06

1 10 100 1000

A
re

a/
B

es
ta

re
a

K

Normal envelope
apte

xerox
hp

ami33
ami49

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1 10 100 1000

A
re

a/
B

es
ta

re
a

K

Extended envelope
apte

xerox
hp

ami33
ami49

(a) (b)

Figure B.1: Comparison of the standard and the extended sequence envelope placement algorithm for compaction
of small general-cell circuits. (A) Standard envelope. (B) Extended envelope. For a variety of test values for � 25
different runs were made. The average result of the 25 runs is plotted for each value of � . The average resulting
area is divided with the total best achieved.

Circuit Standard - Area(Sec.) / K Extended - Area(Sec.) / K

apte 47.07 (0) / 500 46.92 (0.02) / 500
xerox 19.80 (0.01)/ 100 19.80 (0.07) / 150
hp 8.947 (0.03)/ 400 8.847 (0.03) / 500
ami33 1.168 (5.75)/ 10 1.181 (3.61) / 40
ami49 36.16 (44.4)/ 20 36.23 (42.4) / 5

Table B.1: Best results from all runs on both the standard and extended envelope methods. Note that
these results are also the best reported (see table 3.2).

B.1 Area Compaction Results

The best results for each circuit is displayed in table B.1. Note that quality, time and
value of � is close to equal for the two methods. In order to compare the two methods
we have shown how the area develops in the best run of each circuit both extended
and normal envelope figure B.2. In general it would seem that the extended method
has a slightly steeper descent, but there is a longer period between improvements than
for the standard method. This could be explained by the fact that measurements have
shown that decoding a sequence-pair takes almost four times longer with extended-
envelope method than the normal method.

Conclusion on results In general the extended envelope does not improve the com-
paction over the standard envelope. This can be explained by the fact that the ex-
tended envelope uses almost four times as much time to decode a sequence-pair as

B.1 Area Compaction Results 221

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1 10 100

A
re

a/
B

es
ta

re
a

Sec.

Normal envelope
apte

xerox
hp

ami33
ami49

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1 10 100

A
re

a/
B

es
ta

re
a

Sec.

Extended envelope
apte

xerox
hp

ami33
ami49

(a) (b)

Figure B.2: Comparison of best run of the standard and the extended sequence envelope placement algorithm for
compaction of small general-cell circuits. The graph shows how the area develops during the best run of each circuit
of 60 seconds. (A) Standard envelope. (B) Extended envelope.

the standard method. So while the methods share asymptotic running time the con-
stants of the extended envelope are larger because of the extra compaction consider-
ations involved. Also the sequence-pairs of the later steps of the simulated annealing
compaction may already be very compact and no extra gain comes from the extended
envelope.

We therefore conclude that the new method may in general produce more compact
placements than the standard method, but for simulated annealing driven compaction
both methods perform equally well.

222

C Formulations for Unconstrained Optimization

In this section we present the details on how to formulate the unconstrained placement
problems based on quadratic clique and star netlengths. and linear bounding box
netlengths.

C.1 Matrix Formulations of Quadratic Netlengths

Both of the two popular quadratic netlength formulations; clique and star can be
rewritten with matrix formulation. The following lemma will simplify the subsequent
discussion.

Lemma C.1. The quadratic clique netlength and the quadratic star netlength may be expressed
as a sum of two independent functions of respectively the P - and R -coordinates of absolute
coordinates of the pins.

Proof. This easily proven since we have:

��� � a 9 f �
�

 9
 "�
 �+ � 7
�

) � 7
� a P a
 a , f�f � ����� O a
 a , f�fH" P a
 a'/!f�f8" ����� O a'/!f�f �

� a R a
 a , f�f�� ����� Q a
 a , f�f " R a
 a'/ f�f8" ����� Q a'/!f�f � �
� �

 9
 "�
 �+ � 7

�

) � 7
a P a
 a , f�f ������� O a
 a , f�fH" P a
 a'/ f�f8" ����� O a'/ f�f �

� �

 9
 ";
 �+ � 7

�

) � 7
a R a
 a , f�f � ����� Q a
 a , f�f " R a
 a'/ f�f8" ����� Q a'/!f�f �

� ��� � O a 9 f�� � � � Q a 9 f � (C.1)

with � � � O a 9 f and ��� � Q a 9 f defined appropriately, similarly we can write

� 	 � a 9 f � � 	 � O a 9 f � � 	 � Q a 9 f � (C.2)

with

� 	 � O a 9 f �
�
+ � 7
a P a
 a , f�f � ����� O a , f "
�� � O a 9 f�f � � (C.3)

and � 	 � Q a 9 f defined similarly where � 	 � O a 9 f is independent of the function R and
� 	 � Q a 9 f is independent of P .

Since the functions in respectively P - and R -coordinate are completely symmetric and
minimizing their sum is equivalent to minimizing each function separately we will
only discuss minimization of the P -component functions in the following.

C.1 Matrix Formulations of Quadratic Netlengths 223

Again we need a little auxiliary notation. In the following theorem we let

��6a 9 f8�
� a 9 f

 9 +
 "
 (C.4)

Theorem C.1. If � � � � ���	��
�������� �
 � is a map of the
 free modules of a circuit then the
P -coordinate of each module can be expressed as a vector
� - 1 � and the P -component of the
total clique netlength of a placement can be expressed using matrix-notation as:

�

7 � �
� � � O a 9 f �
�
 �
� ���

� � � (C.5)

where � is an
�A
 matrix,
� - 1 � and � - 1 are defined as follows:

 F J �
�
���
��
�

� �F�� V � 7	��� � + � 7
�
� + ������� �
�
� + � � � F

�) � 7)
	� +
�� � 9 f

�
� G � L

"#
 � 7 � �
� + � 7� �

�
� + � � � F

�) � 7� �
�
�) � � ��J

��6a 9 f G � G �� L
� F � � �

7 ���
�
+ � 7� �
�
� + � � � F

��6a 9 f
� �
) � 7)
	� +
a������ O a , fH" ����� O a'/!f�f��

�

) � 7
�
�) � ���

P a
 a'/!f�f �

� � �

7 � �
�
+ � 7

�

) � 7)�	� +
�� a 9 f

� ����� O a , f � � ����� O a'/!f � ";
 ����� O a , f������ O a'/!f � �

� �
7 � �

�
+ � 7

�
� + � ���

�

) � 7)�	� +
P a
 a , f�f �� a 9 f

� a������ O a , f " ����� O a'/!f�f � ";
 �
7 � �

�
+ � 7

�
� + � ���

�

) � 7
�
�) � ���)�	� +

�� a 9 f P a
 a'/!f�f P a
 a , f�f �

 �
7 � �

�
+ � 7

�
� + � ���

�

) � 7)�	� +
��6a 9 f P a
 a , f�f �

(C.6)

C.1 Matrix Formulations of Quadratic Netlengths 224

Proof. Expanding the matrix-formulation of (C.5) we get:

�
 �
� ���

� ���
� ��
F�� V

��
J � V 	P F 	P J
 FKJ � � 	P ���

�
 ��
F�� V

�

7	���
�
+ � 7

�
� + ������� �
�
� + � � � F

�

) � 7)
	� +
	P �

F ��6a 9 fW";

��
F�� V

��
J � VJ 	� F

�

7 � �
�
+ � 7

�
� + ������� �
�
� + � � � F

�

) � 7
�
�) ������� �
�
�) � � ��J

	P F 	P J ��6a 9 f����

� ���
�
 �

7 � �
�
+ � 7

�
� + ������

�

) � 7)�	� +
��6a 9 f P a
 a , f�f � "
 �

7 � �
�
+ � 7

�
� + ������

�

) � 7
�
�) ������)
	� +

��6a 9 f P a
 a , f�f P a
 a'/!f�f �

� ��
F�� V 	P F �7	� �

�
+ � 7

�
� + ������� �
�
� + � � � F

��6a 9 f
� �
) � 7)
	� +
a������ O a , fW" ����� O a'/ f�fH"

�

) � 7
�
�) � ���

P a
 a'/!f�f � ���

�
 �
7 � �

�
+ � 7

�
� + ������

�

) � 7)�	� +
�6a 9 f P a
 a , f�f � "
 �

7 � �
�
+ � 7

�
� + ������

�

) � 7
�
�) ������)
	� +

��6a 9 f P a
 a , f�f P a
 a'/!f�f �

� �
7 � �

�
+ � 7

�
� + ������

�

) � 7)�	� +
P a
 a , f�f �� a 9 f

� a������ O a , fW" ����� O a'/!f�f � " � �
7 � �

�
+ � 7

�
� + ������

�

) � 7
�
�) � ���

P a
 a , f�f �� a 9 f P a
 a'/!f�f �

�

7 � �
�
+ � 7

�

) � 7)�	� +
�� a 9 f

� ����� O a , f � � ����� O a'/!f � "
 ����� O a , f������ O a'/!f � �

� �
7 � �

�
+ � 7

�
� + � ���

�

) � 7)�	� +
P a
 a , f�f �� a 9 f

� a������ O a , fW" ����� O a'/!f�f � ";
 �
7 � �

�
+ � 7

�
� + � ���

�

) � 7
�
�) � ���)�	� +

�� a 9 f P a
 a'/!f�f P a
 a , f�f �

 �
7 � �

�
+ � 7

�
� + � ���

�

) � 7)�	� +
��6a 9 f P a
 a , f�f �

(C.7)

� �

7 � �
�
+ � 7

�

) � 7)�	� +
�� a 9 f

�
 P a
 a , f�f � "�
 P a
 a , f�f P a
 a'/!f�f �;� P a
 a , f�f a������ O a , fW" ����� O a'/!f�f��

����� O a , f � � ����� O a'/!f � ";
 ����� O a'/!f������ O a , f �
� �

7 � �
��6a 9 f

�
+ � 7

�

) � 7)
	� +
a P a
 a , f�f � ����� O a , f " P a
 a'/!f�f " ����� O a'/!f�f �

� �

7 � �
� � � O a 9 f (C.8)

Note that we use the fact that a P a
 a , f�f � ����� O a , fW" P a
 a , f�f8" ����� O a , f�f � � �

C.1 Matrix Formulations of Quadratic Netlengths 225

A similar result holds for the star netlength:

Theorem C.2. Let � � � � ���	��
�������� �
 � be a map of the
 free modules of a circuit and� � � � �
 � �	������� � � � be a map of the � "
 nets. Now the P -coordinate of modules and star
points can be expressed as a vector
� - 1
 where the P -coordinate of the module C is 	P � � = �
and the P -coordinate of the net 9 is 	P � � 7 � . Further the P -component of the total star netlength
of a placement can be expressed using matrix-notation as:

�

7 � �
� 	 � O a 9 f �
�
 �
� ���

� ��� (C.9)

where � is an �.A � matrix,
� - 1
 and � - 1 are defined as follows:

YF J �

�
��������������
�������������
�

�
7	���

� + � 7
�
� + ������� �
�
� + � � � F

�6a 9 f
�
� G � L
���� G �

� 7 � �
� � 7 � � F

� + � 7 � a 9 f
�
� G � L
���� G �

� 7	���
� � 7 � ��J

� + � 7
�
� + ���� �� �
�
� + � � � F

" �6a 9 f
�
� G �

���� L �

� 7 � �
� � 7 � � F

� + � 7
�
� + ������� �
�
� + � � ��J

" �6a 9 f
�
� L �

���� G �

� � � �
 ���
�
�

� F �
�
���
��
�

�
7	���

� + � 7
�
� + ������� �
�
� + � � � F

����� O a , f � 	 4 G �
 a
�
�
 �
� �

�
�

� � �

�

 f

"#
 � + � � �
� � F � ����� O a , fW";
 � + ��� �

� � F �
�
� + � ���

P a
 a , f�f � 	 4 G �
 a
�
�
 �
� �

� ��
 � f

� � �

7 � �
� �
+ � 7

�
� + � ���

� a 9 f a P a
 a , f�f � �
 P a
 a , f�f������ O a , f�f��
�
+ � 7

����� O a , f � �
(C.10)

C.1 Matrix Formulations of Quadratic Netlengths 226

Proof. Again we use the matrix formulation C.9

�
 �
� ���

� ���

�
�
F�� V

�
J � V 	P F
 F L 	P J ���

� � �

� ��
F�� V

�

7 � �
�
+ � 7

�
� + ������� �
�
� + � � � F

� a 9 f 	P �

F �

�
F�� � 2 V

�

7	���
� � 7 � � F

�
+ � 7

� a 9 f 	P �

F

"#

�
F�� � 2 V

��
J � V

�

7 � �
� � 7 � � F

�
+ � 7

�
� + ������� �
�
� + � � ��J

� a 9 f 	P F 	P J ���

� ���
� �

7 � �
�
+ � 7

�
� + ������

� a 9 f P a
 a , f�f � � �

7 � �
�
+ � 7

� a 9 f
�� � O a 9 f � "�
 �
7	���

�
+ � 7

�
� + ������

�6a 9 f P a
 a , f�f
�� � O a 9 f��

�
F�� V

� F'P F ���
� �

7 � �
�
+ � 7

�
� + ������

� a 9 f P a
 a , f�f � � �

7 � �
�
+ � 7

� a 9 f
�� � O a 9 f � "�
 �
7	���

�
+ � 7

�
� + ������

�6a 9 f P a
 a , f�f
�� � O a 9 f��

��
F�� V
P F

�

7 � �
�
+ � 7

�
� + ������� �
�
� + � � � F

����� O a , f��
��
F�� � 2 V P F

� "�
 �
+ ��� �

� � F �
����� O a , f ";

�
+ ��� �

� � F �
�
� + � ���

P a
 a , f�f � ���

� �

7 � �
�
+ � 7

�
� + ������

� a 9 f P a
 a , f�f � � �

7 � �
�
+ � 7

� a 9 f
�� � O a 9 f � "�
 �
7	���

�
+ � 7

�
� + ������

�6a 9 f P a
 a , f�f
�� � O a 9 f��

 �
7 � �

�
+ � 7

�
� + ������

P a
 a , f�f������ O a , fW"�

�

7	���
�
+ � 7

�� � O a 9 f������ O a , fW"�

�

7	���
�
+ � 7

�
� + � ���

�� � O a 9 f P a
 a , f�f ���

� �

7 � �
�
+ � 7

�
� + ������

� a 9 f P a
 a , f�f � � �

7 � �
�
+ � 7

� a 9 f
�� � O a 9 f � "�
 �
7	���

�
+ � 7

�
� + ������

�6a 9 f P a
 a , f�f
�� � O a 9 f��

 �
7 � �

�
+ � 7

�
� + ������

P a
 a , f�f������ O a , fW"�

�

7	���
�
+ � 7

�� � O a 9 f������ O a , fW"�

�

7	���
�
+ � 7

�
� + � ���

�� � O a 9 f P a
 a , f�f �

�

7 � �
� �
+ � 7

�
� + � ���

� a 9 f a P a
 a , f�f � �
 P a
 a , f�f������ O a , f�f��
�
+ � 7

����� O a , f � �

� �

7 � �
� a 9 f a P a
 a , f�f � ����� O a , f "
�� � O a 9 f�f �

� �

7 � �
� 	 � O a 9 f (C.11)

C.1 Matrix Formulations of Quadratic Netlengths 227

To solve the unconstrained quadratic problems it is important that the matrices � from
(C.5) and (C.9) are symmetric and positive definite.

Definition C.1. Positive definite matrix. Let � be a square 9 A 9 matrix, then � is
positive definite if and only if P
 �#P � � for any vector P �� � .

Therefore we prove:

Theorem C.3. The matrices � from (C.5) and (C.9) are symmetric and positive definite if
every connected component of the connection graph of the circuit � contains at least one fixed
module.

Proof. Symmetry comes from the definition of � in theorem C.1 and theorem C.2.

To prove that the matrices are positive definite we define an auxiliary circuit � ! similar
to � but with fixed modules and all pins on fixed modules having their coordinates
and offsets set to a'�%�$��f . It is easy to see that both � and � for the auxiliary circuit in
(C.5) and (C.9) are � and 0 respectively. On the other hand � for � and � ! must be
equal since the location of fixed modules and pins do not affect � .

From theorem C.1 and C.2 we know that the netlength of � ! can be expressed as
�
 �
� .
Since the clique and star netlength can only be positive or zero regardless of
� we
know that
�
 �
� 5 � for
� - 1 � ��� � � . This proves that � is positive semidefinite.

Now assume
� �� � . I.e. at least one module is not placed at a'�%�$��f . Call this module
I . Since we assumed all connected components contain at lest one fixed module then
I is directly connected or indirectly connected to a fixed module C � . If I is directly
connected to a fixed module C � then, since all fixed modules are placed at a'�%�$��f , the
net containing both I and C � has positive netlength. If I is not directly connected to
C � then there must be a number of intermediate modules � V �������&� � 7 with nets (edges)
� F such that C � � � V -�� V , � V � � � -�� � , � 7 � V � � 7 -�� 7 and � 7 � I .
We have already proven the statement for 9 � � . For 9 � � there are two cases. Either
all � F , G

�
9 are placed at a'�%�$��f in which case the net (edge) � 7 must have positive

netlength (� 7 - � 7). Otherwise pick the module � F with smallest G that is not placed ata'�%�$��f . Now the netlength of the net (edge) � F is positive since � F � V -�� F and � F - � F and
� F � V is placed at a'�%�$��f .
This proves that
�
 �
� � � for
� �� � .

Actually the “if” can be replaced with “if and only if” in the theorem (see [24]) but it
is of no importance to us.

C.2 Minimizing linear Bounding-Box Netlength 228

C.2 Minimizing linear Bounding-Box Netlength

The unconstrained linear bounding box netlength formulation can also be minimized
efficiently using network-flow techniques. First we look at the linear program formu-
lation of the bounding box netlength when overlap constraints are omitted.

C.2.1 Linear Program for BB-netlength

A linear program for the BB-netlength can be formulated as:� �
� �

7	��� �6a 9 f a P 7 " P 7 � R 7 " R 7 f� �����
 � � � � �
P 7 " P a
 a , f�f 5 ����� O a , f 9B- � � , - 9 �
 a , f �- �

P a
 a , f�f " P 7 5 " ����� O a , f 9B- � � , - 9 �
 a , f �- �
P 7 5

�

�� + � 7 a P a
 a , f�f � ����� O a , f�f 9B- � �
 a , f - �" P 7 5 "
� �
� + � 7 a P a
 a , f�f � ����� O a , f�f 9B- � �
 a , f - �

R 7 " R a
 a , f�f 5 ����� Q a , f 9B- � � , - 9 �
 a , f �- �
R a
 a , f�f " R 7 5 " ����� Q a , f 9B- � � , - 9 �
 a , f �- �

R 7 5
�

�� + � 7 a R a
 a , f�f ������� Q a , f�f 9B- � �
 a , f - �" R 7 5 "
� �
� + � 7 a R a
 a , f�f � ����� Q a , f�f 9B- � �
 a , f - �

(C.12)

The variables P 7 , P 7 , R 7 and R 7 describe bounds for each net 9�- � and the variables
P a C f and R a C f describe the lower left coordinate of each module C - � . All variables
are free. Note also the third, fourth, seventh and eight constraint. These represent the
pins of the fixed modules.

Since the P -part of objective function and its constraints is completely independent
of the R -part the linear program can be split in an P - and R -formulation that can be
minimized separately.

Concentrating on the P -part of the linear program we now add constants

CDI@P 7 �
�

��+ � 7 a P a
 a , f�f � ����� O a , f�f (C.13)

C G 9 7 �
� �
�+ � 7
a P a
 a , f�f � ����� O a , f�f (C.14)

and a variable 	 � which is fixed to zero and get:� �
� �

7 � � � a 9 f a P 7 " P 7 f�&� � �
P 7 " P a
 a , f�f 5 ����� O a , f 9 - � � , -D9 �
 a , f �- �

P a
 a , f�f " P 7 5 " ����� O a , f 9 - � � , -D9 �
 a , f �- �
P 7 " 	 � 5 CDI@P 7 9 - �" P 7 � 	 � 5 " C Gd9 7 9 - �

	 � � �

(C.15)

C.2 Minimizing linear Bounding-Box Netlength 229

2

x 1

b

3

1

min min1 2 min31maxmax2

d

c

max3

x x2x 2 3 3x , x ,1

x(a) x(b) x(c), x(d)

a

Figure C.1: Example of the variables and constants of the linear program in (C.15). The figure illustrates a case
with three nets (

� � � � �) and four free modules (� � � ��� � �). The pale-shaded modules are fixed and the dark shaded
modules are free. The net

�
connects to modules � , � and � , the net

�
connects with modules

�
and � and net�

connects with � and � . All pins are at the center of the modules. The constants ��� 	 � , ��� 	 � and ��� 	 � are
the x-coordinates of the leftmost pin on the fixed modules of respectively net

�
,
�

and
�
. Similarly � � � � , � � � �

and � � � � are the coordinates of the rightmost pin of each net. The variables � � � � , � � � � , � � � � and � � � � are the left
coordinates of each module � � � ��� and � . Finally the variables � � , � � and � � and � � , � � and � � are the x-coordinates
of respectively the lower and upper boundaries of each net.

C.2 Minimizing linear Bounding-Box Netlength 230

Figure C.1 shows the meaning of the constants and variables.

The linear program formulation becomes interesting when dualized. Dualizing (C.15)
we get:�

�� �
7	���

� + � 7�� � � + ���� � ����� O a , f a � + 7 " � + 7 f�� � 7 � � a CDI@P 7 � 7 " C G 9 7 � 7 f��� � �
� + � 7 � + 7 � � 7 � � a 9 f 9 - �" � + � � �

� � = � � + 7 � + � �
� + � � �

� � = � � + 7 � + � � � C - � ! �
" � + � 7 � + 7 " � 7 � " � a 9 f 9 - �

" � 7 � � � 7 �
�
7 � � � 7 � � � � � 9 - �

� + 7 � � + 7 � � 7 � � 7 5 �%� 9B- � � , - 9 +� � � �

(C.16)

Here two dual variables � + 7 and � + 7 have been introduced for each pin , not on a fixed
module. These correspond to the first two constraints of (C.15). For each net there are
dual variables � 7 and � 7 corresponding to the third and fourth constraint of (C.15).
Finally the variable

� � correspond to the last constraint and is free.

C.2.2 Network Flow Interpretation

The linear program of (C.16) corresponds to a uncapacitated minimum-cost network
flow problem with negative costs. To see this do the following:

� Add two nodes 9 � and 9
 for each net 9B- � .

� Add a node C for each module C - � ! �
� Add two edges for each pin , -D9 . One from 9 � to
 a , f and one from
 a , f to 9
 .
� Add an extra node

� � and edges from
� � to 9
 and from 9 � to

� � for each net 9 .

� Set supply of each node 9 � to � a 9 f and 9
 to " �6a 9 f (demand).

� For each edge corresponding to a pin , connecting net 9 with module C set costs
for � a 9 � �
 a , f�f3��" ����� O a , f and � a
 a , f � 9
 f3� ����� O a , f .

� Set costs for edges a 9
 � � ��f to � a 9
 � � ��f3� C Gd9 7 ,
� and costs for edges a � �	� 9 � f to � a � �	� 9 � f8��" CDI@P 7 .

Now solving (C.16) corresponds to solving the above minimum-cost network flow
problem. Note that the dual variables � + 7 , � + 7 , � 7 and � 7 corresponds to flow on each
edge. Although the dual variable

� � corresponding to free demand/supply at the
node

� � is free it is easy to see from the flow interpretation that any legal solution will
require it to be zero since supply and demand must be equal. Figure C.2 shows how
the problem of figure C.1 can be transformed to a network problem.

C.2 Minimizing linear Bounding-Box Netlength 231

1

2

3 3

2

1

a

b

d

c

d0

w(3)

w(2)

w(1)

−w(3)

−w(2)

−w(1)

3 32

2

Nets
Modules

Nets

x

1

s

s

s

t

t

t

x
−Offset Offset

−max
−max

1−max

min

min

min

Figure C.2: The network of figure C.1. There are two nodes for each net and one node for each module. The net
nodes

�
� , � � and

� � have supply �
��� � , �

� � � and �
� � � respectively. Similarly the nodes

�
� ,
�
� and

�
� have demand

�
��� � , �

� � � and �
� � � . The edge cost between a net supply node and module is the offset of the pin connecting the

net with module. Similarly the edge cost between a module and net demand node is the negative offset of pin. These
have been left out to for clarity. Between each net supply and demand node are edges to a node � � The costs on each
of these edges corresponds to leftmost and rightmost coordinates of pins connected to fixed modules of the respective
nets. section C.2.2

C.2 Minimizing linear Bounding-Box Netlength 232

a b c

Figure C.3: If the ordering of the modules is fixed so that � must be left of
�

and
�

left of � and the modules are
not allowed to overlap then minimizing the linear bounding box netlength can also be solved with network flow
methods.

C.2.3 No-overlap constraints and Fixed Module Sequence

Assume now that the sequence of modules from left to right is fixed and that the
modules are not allowed to overlap. For a module � with left adjacent module I and
right adjacent module
 (see figure C.3) this adds constraints

P
 " P � 5 � �
P � " P
 5 �

to the linear program (C.15). Indeed these can also be dualized and will contribute to
two more uncapacited edges with costs � � and �
 in the network flow problem. This
shows that this problem is also solvable with network flow methods.

233

D Semi-Convex Functions

In this appendix we describe a number of properties for a special kind of piece-wise
linear functions. We have found no literature on this subject and have therefore the-
orized on our on. We have called this special kind of linear functions semi-convex
functions. And we begin with the following definition.

Definition D.1. Slope of linear function The slope of a linear function �8a P f defined
on an interval S is

� � � �8a P]V f " �8a P �&f
P]V " P �

� (D.1)

for P\V � P � -�S and P\V �� P � .

Since �8a P f is linear the slope is independent of P V and P � .
Definition D.2. Slope of a continuous piece-wise linear function For a piece-wise
continuous linear function �8a P f � 1 � 1 defined as:

�8a P f8�

�
����
���
�
� V a P f � ��� P - X 	P � � 	P]V X� � a P f � ��� P - X 	P V � 	P � X
� � � � � � � � �
� � a P f � ��� P - X 	P � � V � 	P � T

� (D.2)

with 	P � �
 and 	P � �
 the slope � � a P f at P is defined as � �J for P - X 	P J � V � 	P J X .
Lemma D.1. For a continuous function

� a P f � 1 � 1 which is the sum of two continuous
piece-wise linear functions �8a P f ��1 � 1 and � a P f �%1 � 1 ,

� a P f�� �8a P f�� � a P f , we have� � a P f�� � � a P f�� � � a P f .
Proof.

� a P f is piece-wise linear since it is the sum of two piece-wise linear functions
therefore

� a P f consists of piece-wise linear functions
� J defined on intervals X 	P J � V � 	P J X .

If P - X 	P J � V � 	P J X for some interval L then
� � a P f is defined as the slope of the linear

function
� J . Since

� a P f is a sum of piece-wise linear functions, we must have
� J a P f �� F a P f�� � � a P f for appropriate G and � . As

� J a P f is linear we may choose P � � P V - X 	P�J � V � 	P%J X ,
P � �� P V and we have that:

� �J �
� J a P\V fH" � J a P �&f
P\V " P �

� � F a P]V f�� � � a P\V fW" � F a P ��fW" � � a P ��f
P]V " P �� � �F � � ��� � � a P f�� � � a P f � (D.3)

Since � � a P f and � � a P f are independent of L we may write
� � a P f�� � � a P f�� � � a P f .

234

We now introduce a property for continuous linear functions which we call semi-
convex.

Definition D.3. Semi-convex A function �8a P f is said to be semi-convex if:

1. �8a P f is piece-wise linear,

2. �8a P f is continuous,

3. � � a P f 5 � � a P ��f for all P�5 P � , and

4. �8a P f �
 for P � "
 and P ��
 .

Lemma D.2. The sum of two semi-convex functions is also semi-convex.

Proof. Assume a piece-wise linear function
� a P f��\1 � 1 is the sum of semi-convex

functions �8a P f ��1 � 1 and � a P f �<1 � 1 . We must prove the four conditions of
definition D.3.

1, 2. The sum of two continuous and piece-wise linear functions is continuous and
piece-wise linear.

3. Since
� � a P f�� � � a P f���� � a P f we have

� � a P f�� � � a P f���� � a P f 5 � � a P ��f���� � a P ��f8� � � a P �&f � (D.4)

for P 5 P � .
4. Since �8a P f �
 and � a P f �
 for P �
 and P�� "
 we have

� a P f0� �8a P f �
� a P f �
 for P ��
 and P � "
 .

Semi-convex functions have the following useful property:

Lemma D.3. Assume �8a P f is semi-convex then:

�8a P � � � fH" �8a P � f
P � � � " P � 5 � � a P ��f (D.5)

for P � - 1 and
� � � , and

�8a P � f " �8a P � " � f
P � " a P ��" � f � � � a P �&f � (D.6)

for P � - 1 and
� � � .

Proof. Assume that �8a P f is broken into its linear components � F a P f defined on intervals
X 	P F � V � 	P F X . Now let P � - X 	P J � V � 	P J X and P � � � - X 	P � � V � 	P � X . Since �8a P f is continuous and

235

f j f
f

f

x

f j+1
j+2

j+3

j+4 kf=

f(x)

0 xj xj+1 xj+2 xj+3 x0+h

Figure D.1: The expansion of � � � � from � � in lemma D.3.

piece-wise linear we have �8a P f0� � �J � V ��a P " P J � V f � �8a P J � V f for P - X P J � V � P J X , so we
can expand �8a P �&f from P � (see figure D.1) and get:

�8a P � � � f � �8a P �&f��
� � V�

F���J 2 V
� �F �@a 	P F " 	P F � V f�� � �J �@a 	P J " 	P �&f�� � �� ��a 	P � � � " 	P � � V f

5 �8a P �&f���� �J
�� � � V�

F���J 2 V
� a 	P F " 	P F � V f�� a 	P J " P ��f�� a P � � � " 	P � � V f���

� �8a P �&f���� �J a P � � � " P �&f � (D.7)

since � �J � � �F for G � L . Using this relation we get

�8a P � � � f " �8a P �&f
P � � � " P � 5 � �J � � � a P ��f � (D.8)

which proves the first statement. The second statement is proven similarly.

The previous lemma allows us to prove the following nice property for semi-convex
functions.

Lemma D.4. Assume �8a P f ��1 � 1 is semi-convex. Then for P � - 1 and �8a P �&f.�
 there
exists P � and P � such that �8a P f �
 for P - 1 ! T P �d� P � X , and �8a P f �
 for P�- T P �d� P � X .

Proof. Since �8a P f �
 for P � "
 and P �
 we can choose

P � �
�

�� � P �
 �8a P f �
 �����

� �
P
�
P � �

P � �
� �
� � P �

 �8a P f �
 � ���

���
P � P � � (D.9)

By this choice we have �8a P f �
 for P - 1 ! T P ��� P � X , so we must prove �8a P f �
 for
P - T P � � P � X . Assume that there exists P � such that �8a P � f �
 and P � - X P ��� P � T . Now

236

choose
� V � � such that �8a P �3" � V f��
 and

�
� � � such that �8a P � � �

� f��
 . � V and
�

�

exist since �8a P � f��
 and P �
�
P � , and �8a P � f��
 and P � � P � .

This gives us:

�8a P � � �
� fW" �8a P �&f

P � � �
� " P �

� �%�
�8a P �&fW" �8a P ��" � V f
P � " a P � " � V f

� �%�

since �8a P � f �
 , �8a P � " � V f �
 and �8a P � � �
� f��
 . Which means

�8a P � � �
� f " �8a P �&f

P � � �
� " P �

� �8a P �&f " �8a P ��" � V f
P � " a P ��" � V f (D.10)

This contradicts lemma D.3 which says:

�8a P �&fW" �8a P �<" � V f
P � " a P � " � V f 5

�8a P � � �
� f " �8a P �&f

P � � �
� " P �

� (D.11)

Therefore no such P � can exist if �8a P f is semi-convex.

237

E User manual

This is the user manual for the G/Flegal global- and final-placement program. The
complete source-code is available at

www.diku.dk:/hjemmesider/studerende/jegeblad/vlsi.zip

E.1 Compiling G/FLegal

A tmake project-file is provided with G/FLegal which can be used to create a reg-
ular makefile. The tmake-file, gflegal.pro, requires tmake which is available at
www.trolltech.com. Within the tmake-file are several parameters that can be ad-
justed. These should be self-explanatory. Gcc v. 3.0 or higher is required for compila-
tion. Also required is QT v. 2.3 or higher. QT for Linux and Windows is available at
www.trolltech.com. Finally for relaxation based local search either CPlex or GLPK
is required. GLPK is available at www.gnu.org/software/glpk/glpk.html.

E.2 Invoking G/FLegal

The program can run in both interactive graphical mode and in non-interactive command-
line mode. We will only describe the command-line mode here. The standard command-
line format is:

GFLegal [inputfile] [option-1] ... [option-n]

where [inputfile] is the filename of the VLSI G/FLegal should optimize. Accept-
able files may be YAL-format, the XML-format of [25] or our own properiatary and
binary RAW-format. Options often accept a parameter value which should follow the
option (no space). Example:

GFLegal primary2.xml -Oregionnet -Aauto

E.2.1 Command-line Options to Determine Operation-Mode

G/Flegal can run in two basic modes: non-interactive and interactive. G/Flegal can
also be invoked to create new files and save best solutions. The possible options are
shown in

E.2 Invoking G/FLegal 238

Option Meaning
-help Displays a list of command-line options and their meaning
-n Non-interactive mode (default mode is interactive)
-r Convert instance to RAW-format once loaded and exit
-s Output statistics of circuit
-newcopy Create a

 A

 tiled copy of the instance as described in section 5.3

and saves it. Parameter is output-filename.
-makegeneral Converts a standard-cell instance to a general-cell instance as described

in section 5.3
-right Moves the right boundary and all pins on it , � to the right. , is param-

eter
-play Play mode. Allows the user to do more things during interactive mode.
-savebest Saves the best solution encountered during optimization. Parame-

ter is a tag to appended the instance name and the output-format is
[filname]_[parameter]_best.raw.

-savetenth Saves solutions at every tenth iteration to an individual file. output-
name is [filename]_[parameter]_[iteration].raw

-savelast Saves the last solution. [filename]_[parameter]_last.raw
-savebestsp Saves the best solution encountered during legalization. Output-name

is [filename]_[parameter]_bestsp.raw
-I Stops the optimization after 9 iterations. 9 is parameter
-seconds Stops the optimization after 9 seconds. 9 is parameter

E.2.2 Command-line Parameters for Optimization

G/FLegal contains numerous parameters for optimization. These are

E.2 Invoking G/FLegal 239

Option Meaning
-O Optimization method. Determines which method G/FLegal optimizes

by. Documented methods are generic (Force-based method by Eisen-
mann and Johannes [19]), regionnet (the optimization method of
section 7). simpleswap (the clean-up step of global placement) and
relaxedls (relaxation based local search of section 8). G/Flegal also
include a number of undocumented optimization methods which were
used during preliminary testing and may be in a unstable state with the
current implementation.

-S Sequence-pair origin placement strategy. Parameters are lowerleft

(place modules in lower-left corner of placement area), centersim
(place modules in center of placement area. Split modules in four re-
gions at the center of the placement area). centermed (place modules
in center of placement area. Split modules in four approximately equal
size groups based before placing).

-E Sequence-pair layout technique. envelope uses the standard enve-
lope of Pisinger [72]. envelopeext uses our extended envelope tech-
nique. lcs uses the longest common sub-sequence method to place
modules.

-Q Chooses quadratic function. Parameters are clique, star
-linearization Enables or disables linearization scheme
-densitygrid Determines the grid resolution of Eisenmann and Johannes’ force based

approach. Parameter is resolution level 9 . Grid will have resolution
�7 .
-seed Random seed to use
-areatest Does area compaction tests.
-areaopt Does one run of area compaction.
-A Set value of � in sequence-pair algorithm or select auto to search

through 20 different values of � for each legalization.
-gamma Set value of � in augmented objective function.
-delta Set value of

�
for global placement.

-omega Set value of � for global placement.
-sak Set simulated annealing coolage value.
-sastart Set simulated annealing start time.
-legmoves Set the fraction of modules to be moved before legalization in each step.
-resetinterval Number of iterations between reset of simulated annealing.
-grow Grow modules during regionnets optimization.

E.2.3 Command-line Options for Debug-Output

G/Flegal also contains debug output. This can be turned on but it requires that the
program has been compiled with -DDEBUG. The debug options are

E.2 Invoking G/FLegal 240

Option Meaning
-nomessages During non-interactive mode some extra messages are output. This

option turns off these messages.
-debug Outputs various debug information. Debug information has been split

into several groups. all Gives all debug output. algorithm gives
output from algorithms. optimization gives output from the opti-
mization process. timer gives varous run-times. gui gives output
from the graphical user interface. none gives no debug output.

