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Signal Processing First
Lab 08: Frequency Response: Bandpass and Nulling Filters

Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment
and go over all exercises in the Pre-Lab section before going to your assigned lab session.

Verification: The Warm-up section of each lab must be completedng your assigned Lab time and

the steps markebhstructor Verificationmust also be signed offuring the lab time. One of the laboratory
instructors must verify the appropriate steps by signing onrtsieuctor Verification line. When you have
completed a step that requires verification, simply demonstrate the step to the TA or instructor. Turn in the
completed verification sheet to your TA when you leave the lab.

Lab Report: It is only necessary to turn in a report on Section 3 with graphs and explanations. You are
asked tdabel the axes of your plots and include a title for every plot. In order to keep track of plots, include

your plotinlined within your report. If you are unsure about what is expected, ask the TA who will grade

your report.

1 Pre-Lab

The goal of this lab is to study the response of FIR filters to inputs such as complex exponentials and
sinusoids. In the experiments of this lab, you will dis8lt() , orconv() , toimplement filters and
freqz()  to obtain the filter's frequency responseAs a result, you should learn how to characterize a
filter by knowing how it reacts to different frequency components in the input.

This lab also introduces two practical filters: bandpass filters and nulling filters. Bandpass filters can be
used to detect and extract information from sinusoidal signals, e.g., tones in a touch-tone telephone dialer.
Nulling filters can be used to remove sinusoidal interference, e.g., jamming signals in a radar.

1.1 Frequency Response of FIR Filters

The output oresponsef a filter for a complex sinusoid input/“™, depends on the frequendy, Often a
filter is described solely by how it affects different input frequencies—this is callefighaency response
For example, the frequency response of the two-point averaging filter

yln] = 32[n] + 5[0 — 1]

can be found by using a general complex exponential as an input and observing the output or response.

z[n] = Aed (@1 +9) 1)
yln] = %Aej(dm—l—qb) + %Aej(@(”— 1) +9) )
_ Aedlon+ <Z>)% {1 + e—j@} — AJ (@ +0) | gy 3)

In (3) there are two terms, the original input, and a term that is a functiah dfhis second term is the
frequency response and it is commonly denoteditfy’“'), which in this case is

H(e®) = $ {14779} @)

LIf you are working at home and do not have the funcfi@yz.m, there is a substitute available calledekz.m in the
SP First toolbox.
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Once the frequency respongé(c’*), has been determined, the effect of the filter on any complex expo-
nential may be determined by evaluatiffe’“) at the corresponding frequency. The output sigyial,
will be a complex exponential whose complex amplitude has a constant magnitude and phase. The phase
describes the phase change of the complex sinusoid and the magnitude describes the gain applied to the
complex sinusoid.

The frequency response of a general FIR linear time-invariant system is

M
H(e?) =3 bpe™ 5)
k=0
In the example abovel/ = 1, andb, = & andb; = 3.

1.1.1 MaATLAB Function for Frequency Response

MATLAB has a built-in function callefteqz()  for computing the frequency response of a discrete-time
LTI system. The following M\TLAB statements show how to u§®gz to compute and plot both the
magnitude (absolute value) and the phase of the frequency response of a two-point averaging system as a
function of® inthe range-7 < © < 7

bb = [0.5, 0.5]; %-- Filter Coefficients

ww = -pi:(pi/100):pi; %-- omega hat

HH = freqz(bb, 1, ww); %<--freekz.m is an alternative

subplot(2,1,1);

plot(ww, abs(HH))

subplot(2,1,2);

plot(ww, angle(HH))

xlabel’Normalized Radian Frequency’)
For FIR filters, the second argumentfodéqz( -, 1, _ ) must always be equal tb.> The frequency
vectorwwshould cover an interval of lengthr for &, and its spacing must be fine enough to give a smooth
curve forH (/). Note: we will always use capitédHfor the frequency response.

1.2 Periodicity of the Frequency Response

The frequency responses of discrete-time filtersahneysperiodic with period equal t@x. Explain why
this is the case by stating a definition of the frequency response and then considering two input sinusoids
whose frequencies ateandw + 2.

zi[n] = eJwn versus x9[n] = eI (@ +2m)n

Consult Chapter 6 for a mathematical proof that the outputs from each of these signals will be identical
(basically because, [n] is equal tara[n].)

The implication of periodicity is that a plot of H(e/*) only needs to extend over the interval-m <

w < 7 or any other interval of length 2.

2If the output of thefreqz ~ function is not assigned, then plots are generated automatically; however, the magnitude is given in
decibels which is a logarithmic scale. For linear magnitude plots a separate glall tois necessary.
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1.3 Frequency Response of the Four-Point Averager

In Chapter 6 we examined filters that average input samples over a certain interval. These filters are called
“running average” filters or “averagers” and they have the following form forlthmint averager:

o = 7 > aln— & ©)

(a) Use Euler’'s formula and complex number manipulations to show that the frequency response for the
4-point running average operator is given by:

2c0s(0.5w) + 2 cos(1.5w) o150

: ™

H(ej‘:’) =

(b) Implement (7) directly in MTLAB . Use a vector that includes 400 samples betweerand for w.
Since the frequency response is a complex-valued quantitghsfg andangle() to extract the
magnitude and phase of the frequency response for plotting. Plotting the real and imaginary parts of
H (%) is not very informative.

(c) In this part, usdreqz.m in MATLAB to computeH (/) numerically (from the filter coefficients)
and plot its magnitude and phase versusWrite the appropriate MrLAB code to plot both the
magnitude and phase &f(e’“). Follow the example in Section 1.1.1. The filter coefficient vector for
the 4-point averager is defined via:

bb = 1/4*ones(1,4);

Note: the functiorfreqz(bb,1,ww) evaluates the frequency response for all frequencies in the
vectorww It uses the summation in (5), not the formula in (7). The filter coefficients are defined in
the assignment to vectbb. How do your results compare with part (b)?

1.4 TheMATLAB FIND Function

Often signal processing functions are performed in order to extract information that can be used to make
a decision. The decision process inevitably requires logical tests, which might be donié tiwith
constructs in MTLAB. However, MATLAB permits vectorization of such tests, and timel  function is
one way to do lots of tests at once. In the following examihe, extracts all the numbers that “round” to
3:
xx = 1.4:0.33:5, jkI = find(round(xx)==3), xx(jkI)

The argument of thBnd function can be any logical expression. Notice fivad returns a list of indices
where the logical condition is true. Skelp onrelop for information.
Now, suppose that you have a frequency response:

ww = -pi:(pi/500):pi; HH = freqz( 1l/4*ones(1,4), 1, ww );

Use thefind command to determine the indices whelidis zero, and then use those indices to display the
list of frequencies wherklHis zero. Since there might be round-off error in calculatitig the logical test
should probably be a test for those indices where the magnitude (absolute valueling) of HHis less
than some rather small number, elgx 10~%. Compare your answer to the frequency response that you
plotted for the four-point averager in Section 1.3.
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2 Warm-up

The first objective of this warm-up is to use aM.AB GUI to demonstrate nulling. This demdifidemo
is on theSP First CD-ROMunder Chapter 6 demos. CRROM

Chap 6
Demo
DLTI

2.1 LTI Frequency Response Demo

<} Discrete LTI {Linear Time Invariant) System Demo ver 2.00 jg[ _ |E||1|
Flot Options  Help

INPUT SIGNAL Magnitude of the Filter OUTPUT SIGNAL
cos{0.2xn ) P R NS S O O T
P SO WU N
e i i
£ gl ollle rﬂﬁ d‘h‘, ‘!ﬂ'
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I —
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DC Level=0 . u :
KIS — nermelized Frequency (af2s)

Theoretical Answer |

Figure 1: Discrete-time LTI demo interface.

Thedltidemo illustrates the “sinusoid-IN gives sinusoid-OUT” property of discrete-time LTI systems.
In this demo, you can change the amplitude, phase and frequency of an input sinfispiend you can
change the digital filter that processes the signal. Then the GUI will show the output gignalyhich is
also a sinusoid (at the same frequency). Figure 1 shows the interface titidleeno  GUI. It is possible

to see the formula for the output signal, if you click on tﬁ'@eoretical Answer \ button located at
the bottom-middle part of the window. The digital filter can be changed by choosing different options in the
] Filter Specifications \ box in the lower right-hand corner.

In the Warm-up, you should perform the following steps withdit&lemo  GUI:
(a) Setthe inputta[n] = 1.5cos(0.17(n — 4))
(b) Set the digital filter to be a 9-point averager.
(c) Determine the formula for the output signal and write it in the fogim] = A cos(wo(n — ng)).

(d) Usingng for y[n] and the fact that the input signal had a peak at 4, determine the amount of delay
through the filter. In other words, how much has the peak of the cosine wave shifted?

’ Instructor Verification (separate pag#)
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(e) Now, determine the length of the averaging filter so that the output will be zeroy[i.= 0. Use
the GUI to show that you have the correct filter to zero the output. If the length is more than 15, you
will have to enter the “Filter Specifications” with tlheser Input \option.

() When the output is zero, the filter acts aswaling Filter, because it eliminates the inputiat= 0.17.
Which other frequencies are also nulled? Find at least one.

’ Instructor Verification (separate pag#)

2.2 Cascading Two Systems

More complicated systems are often made up from simple building blocks. In Fig. 2, two FIR filters are
shown connected “in cascade.”

t[n] T yln]

Filter #1 Filter #2

Figure 2: Cascade of two FIR filters.

Assume that the system in Fig. 2 is described by the two equations

M

win] =Y a‘zln — ¢ (FIR FILTER #1)
=0

y[n] = w[n] — awln — 1] (FIR FILTER #2)

(a) Usefreqz() in MATLAB to get the frequency responses for the case where0.8 andM = 9.
Plot the magnitude and phase of the frequency respongsélfer #1, and also foiFilter #2. Which
one of these filters is wpass filte?

(b) Plot the magnitude and phase of the frequency response of the overall cascaded system.

(c) Explain how the individual frequency responses in part(a) are combined to get the overall frequency
response in part(b). Comment on the magnitude combinations as well as the phase combinations.

[ Instructor Verification (separate page)

2.3 Deconvolution

In Lab 7, the two filters from Section 2.2 were used in an image deblurring experiment. You should now
re-interpret how that experiment worked by explaining what hapjpetie frequency domain.

(a) If a single filter has a frequency responée’) = 1, how is the output of the filteg[n] related to
the inputz[n|?

(b) Ideally, a “deconvolved” output should look exactly like the input prior to blurring.Filfer #1
(in Fig. 2) has a frequency respongk (e’*), andFilter #2 is Hy(e/*), explain why the condition
H,(e7%)Hy(e7*) = 1 will guarantee “perfectly deconvolution.”

(c) The filters in Section 2.2 do not perform a perfect deconvolution (for theease.8 andM = 9).
Use the frequency response from Section 2.2(b) to explain deviations from a perfect result.

[ Instructor Verification (separate page)
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3 Lab Exercises

3.1 Nulling Filters for Rejection

Nulling filters are filters that completely eliminate some frequency component. If the frequehey sor
w = m, then a two-point FIR filter will do the nulling. The simplest possible general nulling filter can have
as few as three coefficients.df, is the desired nulling frequency, then the following length-3 FIR filter

y[n] = z[n] — 2 cos(@n)z[n — 1] + z[n — 2] (8)

will have a zero in its frequency responsecat w,,. For example, a filter designed to completely eliminate
signals of the formAe?%->™ would have the following coefficients because we would pick the desired
nulling frequency to bé&, = 0.57.

bp =1, by =—2cos(0.5m) =0, by=1.

(a) Design a filtering system that consists of ttascade of two FIR nulling filtethat will eliminate the
following input frequencies® = 0.44w, andw = 0.77. For this part, derive the filter coefficients of
both nulling filters.

(b) Generate an input signa[n| that is the sum of three sinusoids:
x[n] = 5co0s(0.3mn) + 22 cos(0.447wn — w/3) + 22 cos(0.7mn — w/4)
Make the input signal 150 samples long over the rahgen < 149.

(c) Usefirfilt (or conv ) to filter the sum of three sinusoids signah] through the filters designed
in part (a). Show the MTLAB code that you wrote to implement the cascade of two FIR filters.

(d) Make a plot of the output signal—show the first 40 points. Determine (by hand) the exact mathemat-
ical formula (magnitude, phase and frequency) for the output signal for5.

(e) Plotthe mathematical formula determined in (d) withtAB to show that it matches the filter output
from firfilt over the rangé < n < 40.

(f) Explain why the output signal is different for the first few points. How many “start-up” points are
found, and how is this number related to the lengths of the filters designed in part (a)? Hint: consider
the length of a single FIR filter that is equivalent to the cascade of two length-3 FIRs.

3.2 Simple Bandpass Filter Design

The L-point averaging filter is a lowpass filter. Its passband width is controlled bigeing inversely
proportional toL. In fact, you can use the GUllitidemo to view the frequency response for different
averagers and measure the passband widths. It is also possible to create a filter whose passband is centered
around some frequency other than zero. One simple way to do this is to define the impulse response of an
L-point FIR as:

2
hln] = 7 cos (Wen), 0<n<L

wherel is the filter length, and. is the center frequency that defines the frequency location of the passband.
For example, we would pick. = 0.447 if we want the peak of the filter's passband to be centeréd!dir.

The bandwidth of the bandpass filter is controlledyhe larger the value df, the narrower the bandwidth.
This particular filter is also discussed in the section on useful filters in Chapter 7 of the text.
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(a) Generate a bandpass filter that will pass a frequency componéntdt44w. Make the filter length
(L) equal to 10. Since we are going to be filtering the signal defined in section 3.1(b), measure the
gain of the filter at the three frequencies of interést= 0.37, @ = 0.447 and®w = 0.77.

(b) Thepassbandf the BPF filter is defined by the region of the frequency response WHErE®)| is
close to its maximum value. If we define the maximum tahg,, then the passband width is defined
as the length of the frequency region where the rgi¢e’>)|/ Hy,.x is greater thar /v/2 = 0.707.
Figure 3 shows how to define the passband and stopband. Note: you canausesh$ find
function to locate those frequencies where the magnitude satifi@s”)| > 0.707 Hppax.

The stopbandof the BPF filter is defined by the region of the frequency response Whgre®)| is
close to zero. In this case, we will define the stopband as the region Wiiér&”)| is less than 25%
of the maximum.

Make a plot of the frequency response for the- 10 bandpass filter from part (a), and determine the
passband width (at the 0.707 level). Repeat the ploLfer 20 and L = 40, so you can explain how
the width of the passband is related to filter lengjth.e., what happens whenis doubled or halved.

BANDPASS FILTER (centered at 0.4)

1 % % \ % % % %
8F """"""""" ,/ "\F%A‘SSBA‘I\@D """"""" """""""""
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Figure 3. Passband and Stopband for a typical FIR bandpass filter. In this case, the maximum value is 1,
the passband is the region where the frequency response is greatef {fae- 0.707, and the stopband is
defined as the region where the frequency response is less than 25% of the maximum.

(c) Comment on the selectivity of the = 10 bandpass filter. In other words, which frequencies are
“passed by the filter?” Use the frequency response to explain how the filter can pass one component
atw = 0.44x, while reducing or rejecting the othersiat= 0.37 andw = 0.77.

(d) Generate a bandpass filter that will pass the frequency componentai.44, but now make the
filter length (L) long enough so that it will alsgreatly reduce frequency components at (or near)
w = 0.37 andw = 0.77. Determine thesmallestvalue of L so that
e Any frequency component satisfying| < 0.37 will be reduced by a factor of 10 or mofe.
¢ Any frequency component satisfyifigrm < || < = will be reduced by a factor of 10 or more.

3For example, the input amplitude of tA&77 component is 22, so its output amplitude must be less than 2.2.
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This can be done by making the passband width very small.

(e) Use the filter from the previous part to filter the “sum of 3 sinusoids” signal from Section 3.1. Make a

plot of 100 points of the input and output signals, and explain how the filter has reduced or removed
two of the three sinusoidal components.

() Make a plot of the frequency response (magnitude only) for the filter from part (d), and explain how
H (e7*) can be used to determine the relative size of each sinusoidal component in the output signal.

In other words, connect a mathematical description of the output signal to the values that can be
obtained from the frequency response plot.
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Lab 08
INSTRUCTOR VERIFICATION PAGE

For each verification, be prepared to explain your answer and respond to other related questions
that the lab TA’s or professors might ask. Turn this page in at the end of your lab period.

Name: Date of Lab:

Part 2.1(d) Use thdltidemo  toillustrate the operation of a 9-point averaging filter. Determine the amount
of delay through the filter, and write your answer in the space below.

Verified: Date/Time:

Part 2.1(f) Use théltidemo to find a digital FIR filter that will null the input signal. Determine the filter
length, and write your answer in the space below.

Verified: Date/Time:

Part 2.2 Plot the frequency response of the two filters in the cascade combination, and then explain how
the magnitudes are combined and how the phases are combined to get the overall filter. Check the range of

frequenciegw) used for the plot.

Verified: Date/Time:

Part 2.3 Explain how close the frequency response of the cascaded system is to the desired frequency re-
sponse for “ideal deconvolution.”

Verified: Date/Time:
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