
Signal Processing First
Lab 08: Frequency Response: Bandpass and Nulling Filters

Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment
and go over all exercises in the Pre-Lab section before going to your assigned lab session.

Verification: The Warm-up section of each lab must be completedduring your assigned Lab time and
the steps markedInstructor Verificationmust also be signed offduring the lab time. One of the laboratory
instructors must verify the appropriate steps by signing on theInstructor Verification line. When you have
completed a step that requires verification, simply demonstrate the step to the TA or instructor. Turn in the
completed verification sheet to your TA when you leave the lab.

Lab Report: It is only necessary to turn in a report on Section 3 with graphs and explanations. You are
asked tolabel the axes of your plots and include a title for every plot. In order to keep track of plots, include
your plot inlined within your report. If you are unsure about what is expected, ask the TA who will grade
your report.

1 Pre-Lab

The goal of this lab is to study the response of FIR filters to inputs such as complex exponentials and
sinusoids. In the experiments of this lab, you will usefirfilt() , or conv() , to implement filters and
freqz() to obtain the filter’s frequency response.1 As a result, you should learn how to characterize a
filter by knowing how it reacts to different frequency components in the input.

This lab also introduces two practical filters: bandpass filters and nulling filters. Bandpass filters can be
used to detect and extract information from sinusoidal signals, e.g., tones in a touch-tone telephone dialer.
Nulling filters can be used to remove sinusoidal interference, e.g., jamming signals in a radar.

1.1 Frequency Response of FIR Filters

The output orresponseof a filter for a complex sinusoid input,ejω̂n, depends on the frequency,ω̂. Often a
filter is described solely by how it affects different input frequencies—this is called thefrequency response.

For example, the frequency response of the two-point averaging filter

y[n] = 1
2x[n] + 1

2x[n− 1]

can be found by using a general complex exponential as an input and observing the output or response.

x[n] = Aej(ω̂n + φ) (1)

y[n] = 1
2Aej(ω̂n + φ) + 1

2Aej(ω̂(n− 1) + φ) (2)

= Aej(ω̂n + φ) 1
2

{
1 + e−jω̂

}
= Aej(ω̂n + φ) ·H(ejω̂) (3)

In (3) there are two terms, the original input, and a term that is a function ofω̂. This second term is the
frequency response and it is commonly denoted byH(ejω̂), which in this case is

H(ejω̂) = 1
2

{
1 + e−jω̂

}
(4)

1If you are working at home and do not have the functionfreqz.m, there is a substitute available calledfreekz.m in the
SP First toolbox.
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Once the frequency response,H(ejω̂), has been determined, the effect of the filter on any complex expo-
nential may be determined by evaluatingH(ejω̂) at the corresponding frequency. The output signaly[n],
will be a complex exponential whose complex amplitude has a constant magnitude and phase. The phase
describes the phase change of the complex sinusoid and the magnitude describes the gain applied to the
complex sinusoid.

The frequency response of a general FIR linear time-invariant system is

H(ejω̂) =
M∑

k=0

bke
−jω̂k (5)

In the example above,M = 1, andb0 = 1
2 andb1 = 1

2 .

1.1.1 MATLAB Function for Frequency Response

MATLAB has a built-in function calledfreqz() for computing the frequency response of a discrete-time
LTI system. The following MATLAB statements show how to usefreqz to compute and plot both the
magnitude (absolute value) and the phase of the frequency response of a two-point averaging system as a
function ofω̂ in the range−π ≤ ω̂ ≤ π:

bb = [0.5, 0.5]; %-- Filter Coefficients
ww = -pi:(pi/100):pi; %-- omega hat
HH = freqz(bb, 1, ww); %<--freekz.m is an alternative
subplot(2,1,1);
plot(ww, abs(HH))
subplot(2,1,2);
plot(ww, angle(HH))
xlabel(’Normalized Radian Frequency’)

For FIR filters, the second argument offreqz( , 1, ) must always be equal to1.2 The frequency
vectorwwshould cover an interval of length2π for ω̂, and its spacing must be fine enough to give a smooth
curve forH(ejω̂). Note: we will always use capitalHHfor the frequency response.

1.2 Periodicity of the Frequency Response

The frequency responses of discrete-time filters arealwaysperiodic with period equal to2π. Explain why
this is the case by stating a definition of the frequency response and then considering two input sinusoids
whose frequencies arêω andω̂ + 2π.

x1[n] = ejω̂n versus x2[n] = ej(ω̂ + 2π)n

Consult Chapter 6 for a mathematical proof that the outputs from each of these signals will be identical
(basically becausex1[n] is equal tox2[n].)
The implication of periodicity is that a plot of H(ejω̂) only needs to extend over the interval−π ≤
ω̂ ≤ π or any other interval of length 2π.

2If the output of thefreqz function is not assigned, then plots are generated automatically; however, the magnitude is given in
decibels which is a logarithmic scale. For linear magnitude plots a separate call toplot is necessary.

McClellan, Schafer, and Yoder,Signal Processing First, ISBN 0-13-065562-7.
Prentice Hall, Upper Saddle River, NJ 07458.c©2003 Pearson Education, Inc.

2



1.3 Frequency Response of the Four-Point Averager

In Chapter 6 we examined filters that average input samples over a certain interval. These filters are called
“running average” filters or “averagers” and they have the following form for theL-point averager:

y[n] =
1
L

L−1∑
k=0

x[n− k] (6)

(a) Use Euler’s formula and complex number manipulations to show that the frequency response for the
4-point running average operator is given by:

H(ejω̂) =
2 cos(0.5ω̂) + 2 cos(1.5ω̂)

4
e−j1.5ω̂ (7)

(b) Implement (7) directly in MATLAB . Use a vector that includes 400 samples between−π andπ for ω̂.
Since the frequency response is a complex-valued quantity, useabs() andangle() to extract the
magnitude and phase of the frequency response for plotting. Plotting the real and imaginary parts of
H(ejω̂) is not very informative.

(c) In this part, usefreqz.m in MATLAB to computeH(ejω̂) numerically (from the filter coefficients)
and plot its magnitude and phase versusω̂. Write the appropriate MATLAB code to plot both the
magnitude and phase ofH(ejω̂). Follow the example in Section 1.1.1. The filter coefficient vector for
the 4-point averager is defined via:

bb = 1/4*ones(1,4);

Note: the functionfreqz(bb,1,ww) evaluates the frequency response for all frequencies in the
vectorww. It uses the summation in (5), not the formula in (7). The filter coefficients are defined in
the assignment to vectorbb . How do your results compare with part (b)?

1.4 TheMATLAB FIND Function

Often signal processing functions are performed in order to extract information that can be used to make
a decision. The decision process inevitably requires logical tests, which might be done withif-then
constructs in MATLAB . However, MATLAB permits vectorization of such tests, and thefind function is
one way to do lots of tests at once. In the following example,find extracts all the numbers that “round” to
3:

xx = 1.4:0.33:5, jkl = find(round(xx)==3), xx(jkl)

The argument of thefind function can be any logical expression. Notice thatfind returns a list of indices
where the logical condition is true. Seehelp on relop for information.
Now, suppose that you have a frequency response:

ww = -pi:(pi/500):pi; HH = freqz( 1/4*ones(1,4), 1, ww );

Use thefind command to determine the indices whereHHis zero, and then use those indices to display the
list of frequencies whereHHis zero. Since there might be round-off error in calculatingHH, the logical test
should probably be a test for those indices where the magnitude (absolute value in MATLAB ) of HHis less
than some rather small number, e.g.,1 × 10−6. Compare your answer to the frequency response that you
plotted for the four-point averager in Section 1.3.
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2 Warm-up

The first objective of this warm-up is to use a MATLAB GUI to demonstrate nulling. This demo,dltidemo ,
is on theSP First CD-ROMunder Chapter 6 demos.

nkht
CD-ROM

Chap 6
Demo
DLTI

2.1 LTI Frequency Response Demo

Figure 1: Discrete-time LTI demo interface.

Thedltidemo illustrates the “sinusoid-IN gives sinusoid-OUT” property of discrete-time LTI systems.
In this demo, you can change the amplitude, phase and frequency of an input sinusoid,x[n], and you can
change the digital filter that processes the signal. Then the GUI will show the output signal,y[n], which is
also a sinusoid (at the same frequency). Figure 1 shows the interface for thedltidemo GUI. It is possible
to see the formula for the output signal, if you click on theTheoretical Answer button located at
the bottom-middle part of the window. The digital filter can be changed by choosing different options in the
Filter Specifications box in the lower right-hand corner.

In the Warm-up, you should perform the following steps with thedltidemo GUI:

(a) Set the input tox[n] = 1.5 cos(0.1π(n− 4))

(b) Set the digital filter to be a 9-point averager.

(c) Determine the formula for the output signal and write it in the form:y[n] = A cos(ω̂0(n− nd)).

(d) Usingnd for y[n] and the fact that the input signal had a peak atn = 4, determine the amount of delay
through the filter. In other words, how much has the peak of the cosine wave shifted?

Instructor Verification (separate page)
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(e) Now, determine the length of the averaging filter so that the output will be zero, i.e.,y[n] = 0. Use
the GUI to show that you have the correct filter to zero the output. If the length is more than 15, you
will have to enter the “Filter Specifications” with theuser Input option.

(f) When the output is zero, the filter acts as aNulling Filter, because it eliminates the input atω̂ = 0.1π.
Which other frequencieŝω are also nulled? Find at least one.

Instructor Verification (separate page)

2.2 Cascading Two Systems

More complicated systems are often made up from simple building blocks. In Fig. 2, two FIR filters are
shown connected “in cascade.”

- - -FIR
Filter #1

FIR
Filter #2

x[n] w[n] y[n]

Figure 2: Cascade of two FIR filters.

Assume that the system in Fig. 2 is described by the two equations

w[n] =
M∑
`=0

α`x[n− `] (FIR FILTER #1)

y[n] = w[n]− α w[n− 1] (FIR FILTER #2)

(a) Usefreqz() in MATLAB to get the frequency responses for the case whereα = 0.8 andM = 9.
Plot the magnitude and phase of the frequency response forFilter #1, and also forFilter #2. Which
one of these filters is alowpass filter?

(b) Plot the magnitude and phase of the frequency response of the overall cascaded system.

(c) Explain how the individual frequency responses in part(a) are combined to get the overall frequency
response in part(b). Comment on the magnitude combinations as well as the phase combinations.

Instructor Verification (separate page)

2.3 Deconvolution

In Lab 7, the two filters from Section 2.2 were used in an image deblurring experiment. You should now
re-interpret how that experiment worked by explaining what happensin the frequency domain.

(a) If a single filter has a frequency responseH(ejω̂) = 1, how is the output of the filtery[n] related to
the inputx[n]?

(b) Ideally, a “deconvolved” output should look exactly like the input prior to blurring. IfFilter #1
(in Fig. 2) has a frequency responseH1(ejω̂), andFilter #2 is H2(ejω̂), explain why the condition
H1(ejω̂)H2(ejω̂) = 1 will guarantee “perfectly deconvolution.”

(c) The filters in Section 2.2 do not perform a perfect deconvolution (for the caseα = 0.8 andM = 9).
Use the frequency response from Section 2.2(b) to explain deviations from a perfect result.

Instructor Verification (separate page)
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3 Lab Exercises

3.1 Nulling Filters for Rejection

Nulling filters are filters that completely eliminate some frequency component. If the frequency isω̂ = 0 or
ω̂ = π, then a two-point FIR filter will do the nulling. The simplest possible general nulling filter can have
as few as three coefficients. Ifω̂n is the desired nulling frequency, then the following length-3 FIR filter

y[n] = x[n]− 2 cos(ω̂n)x[n− 1] + x[n− 2] (8)

will have a zero in its frequency response atω̂ = ω̂n. For example, a filter designed to completely eliminate
signals of the formAej0.5πn would have the following coefficients because we would pick the desired
nulling frequency to bêωn = 0.5π.

b0 = 1, b1 = −2 cos(0.5π) = 0, b2 = 1.

(a) Design a filtering system that consists of thecascade of two FIR nulling filtersthat will eliminate the
following input frequencies:̂ω = 0.44π, andω̂ = 0.7π. For this part, derive the filter coefficients of
both nulling filters.

(b) Generate an input signalx[n] that is the sum of three sinusoids:

x[n] = 5 cos(0.3πn) + 22 cos(0.44πn− π/3) + 22 cos(0.7πn− π/4)

Make the input signal 150 samples long over the range0 ≤ n ≤ 149.

(c) Usefirfilt (or conv ) to filter the sum of three sinusoids signalx[n] through the filters designed
in part (a). Show the MATLAB code that you wrote to implement the cascade of two FIR filters.

(d) Make a plot of the output signal—show the first 40 points. Determine (by hand) the exact mathemat-
ical formula (magnitude, phase and frequency) for the output signal forn ≥ 5.

(e) Plot the mathematical formula determined in (d) with MATLAB to show that it matches the filter output
from firfilt over the range5 ≤ n ≤ 40.

(f) Explain why the output signal is different for the first few points. How many “start-up” points are
found, and how is this number related to the lengths of the filters designed in part (a)? Hint: consider
the length of a single FIR filter that is equivalent to the cascade of two length-3 FIRs.

3.2 Simple Bandpass Filter Design

The L-point averaging filter is a lowpass filter. Its passband width is controlled byL, being inversely
proportional toL. In fact, you can use the GUIdltidemo to view the frequency response for different
averagers and measure the passband widths. It is also possible to create a filter whose passband is centered
around some frequency other than zero. One simple way to do this is to define the impulse response of an
L-point FIR as:

h[n] =
2
L

cos (ω̂cn), 0 ≤ n < L

whereL is the filter length, and̂ωc is the center frequency that defines the frequency location of the passband.
For example, we would pick̂ωc = 0.44π if we want the peak of the filter’s passband to be centered at0.44π.
The bandwidth of the bandpass filter is controlled byL; the larger the value ofL, the narrower the bandwidth.
This particular filter is also discussed in the section on useful filters in Chapter 7 of the text.
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(a) Generate a bandpass filter that will pass a frequency component atω̂ = 0.44π. Make the filter length
(L) equal to 10. Since we are going to be filtering the signal defined in section 3.1(b), measure the
gain of the filter at the three frequencies of interest:ω̂ = 0.3π, ω̂ = 0.44π andω̂ = 0.7π.

(b) Thepassbandof the BPF filter is defined by the region of the frequency response where|H(ejω̂)| is
close to its maximum value. If we define the maximum to beHmax, then the passband width is defined
as the length of the frequency region where the ratio|H(ejω̂)|/Hmax is greater than1/

√
2 = 0.707.

Figure 3 shows how to define the passband and stopband. Note: you can use MATLAB ’s find
function to locate those frequencies where the magnitude satisfies|H(ejω̂)| ≥ 0.707Hmax.

Thestopbandof the BPF filter is defined by the region of the frequency response where|H(ejω̂)| is
close to zero. In this case, we will define the stopband as the region where|H(ejω̂)| is less than 25%
of the maximum.

Make a plot of the frequency response for theL = 10 bandpass filter from part (a), and determine the
passband width (at the 0.707 level). Repeat the plot forL = 20 andL = 40, so you can explain how
the width of the passband is related to filter lengthL, i.e., what happens whenL is doubled or halved.

0 0.5 1 1.5 2 2.5 3
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0.4
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Frequency (radians)

M
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BANDPASS FILTER (centered at 0.4π)

PASSBAND

STOPBAND STOPBAND

Figure 3: Passband and Stopband for a typical FIR bandpass filter. In this case, the maximum value is 1,
the passband is the region where the frequency response is greater than1/

√
2 = 0.707, and the stopband is

defined as the region where the frequency response is less than 25% of the maximum.

(c) Comment on the selectivity of theL = 10 bandpass filter. In other words, which frequencies are
“passed by the filter?” Use the frequency response to explain how the filter can pass one component
at ω̂ = 0.44π, while reducing or rejecting the others atω̂ = 0.3π andω̂ = 0.7π.

(d) Generate a bandpass filter that will pass the frequency component atω̂ = 0.44π, but now make the
filter length (L) long enough so that it will alsogreatly reduce frequency components at (or near)
ω̂ = 0.3π andω̂ = 0.7π. Determine thesmallestvalue ofL so that

• Any frequency component satisfying|ω̂| ≤ 0.3π will be reduced by a factor of 10 or more.3

• Any frequency component satisfying0.7π ≤ |ω̂| ≤ π will be reduced by a factor of 10 or more.

3For example, the input amplitude of the0.7π component is 22, so its output amplitude must be less than 2.2.
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This can be done by making the passband width very small.

(e) Use the filter from the previous part to filter the “sum of 3 sinusoids” signal from Section 3.1. Make a
plot of 100 points of the input and output signals, and explain how the filter has reduced or removed
two of the three sinusoidal components.

(f) Make a plot of the frequency response (magnitude only) for the filter from part (d), and explain how
H(ejω̂) can be used to determine the relative size of each sinusoidal component in the output signal.
In other words, connect a mathematical description of the output signal to the values that can be
obtained from the frequency response plot.
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Lab 08
INSTRUCTOR VERIFICATION PAGE

For each verification, be prepared to explain your answer and respond to other related questions
that the lab TA’s or professors might ask. Turn this page in at the end of your lab period.

Name: Date of Lab:

Part 2.1(d) Use thedltidemo to illustrate the operation of a 9-point averaging filter. Determine the amount
of delay through the filter, and write your answer in the space below.

Verified: Date/Time:

Part 2.1(f) Use thedltidemo to find a digital FIR filter that will null the input signal. Determine the filter
length, and write your answer in the space below.

Verified: Date/Time:

Part 2.2 Plot the frequency response of the two filters in the cascade combination, and then explain how
the magnitudes are combined and how the phases are combined to get the overall filter. Check the range of
frequencies(ω̂) used for the plot.

Verified: Date/Time:

Part 2.3 Explain how close the frequency response of the cascaded system is to the desired frequency re-
sponse for “ideal deconvolution.”

Verified: Date/Time:
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