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Abstract

We introduce the notion of discrimination as a generalization of
both sorting and partitioning and show that discriminators (discrim-
ination functions) can be defined generically, by structural recursion
on representations of ordering and equivalence relations.

Discriminators improve the asymptotic performance of generic com-
parison-based sorting and partitioning, and can be implemented not
to expose more information than the underlying ordering, respectively
equivalence relation. For a large class of order and equivalence repre-
sentations, including all standard orders for regular recursive first-order
types, the discriminators execute in worst-case linear time.

The generic discriminators can be coded compactly using list com-
prehensions, with order and equivalence representations specified using
Generalized Algebraic Data Types (GADTs). We give some examples
of the uses of discriminators, including most-significant-digit lexico-
graphic sorting, type isomorphism with an associative-commutative
operator, and database joins. Full source code of discriminators and
their applications is included.

We argue that built-in primitive types, notably pointers (refer-
ences), should come with efficient discriminators, not just equality
tests, since they facilitate the construction of discriminators for ab-
stract types that are both highly efficient and representation indepen-
dent.

∗Submitted to JFP. Revised version. This work has been partially supported by the
Danish Research Council for Nature and Universe (FNU) under the grant Applications
and Principles of Programming Languages (APPL) and by the Danish National Advanced
Technology Foundation under the grant 3rd generation Enterprise Resource Planning Sys-
tems (3gERP).
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1 Introduction

Sorting is the problem of rearranging an input sequence according to a
given total preorder.1 Partitioning is the problem of grouping elements of a
sequence into equivalence classes according to a given equivalence relation.

From a programming perspective we are interested in not having to
produce hand-written code for each and every total preorder and equivalence
relation one may encounter, but to be able to do this generically : Specify a
total preorder or equivalence relation and automatically generate a sorting,
respectively partitioning function, that is both

• efficient : it uses few computational resources, in particular it executes
fast; and

• representation independent : its result is independent of the particular
run-time representation of the input data.

Efficiency seems an obviously desirable property, but why should we be con-
cerned with representation independence? The general answer is: Because
“data” are not always represented by the “same bits”, for either computa-
tional convenience or for lack of canonical representation.

Efficiency and representation independence are seemingly at odds with
each other. To illustrate this, let us consider the problem of pointer discrim-
ination: finding all the duplicates in an input sequence of pointers; that is,
partitioning the input according to pointer equality. This is the problem
at the heart of persisting (“pickling”) pointer data structures onto disk,
contracting groups of isomorphic terms with embedded pointers, computing
joins on data containing pointers, etc.

Let us try to solve pointer discrimination in ML.2 Pointers are mod-
eled by references in ML, which have allocation, updating, dereferencing
and equality testing as the only operations. Representing references as ma-
chine addresses at run time, the limited set of operations on ML references
guarantees that program execution is semantically deterministic in the pres-
ence of nondeterministic memory allocation, and even in the presence of
copying garbage collection. In this sense, ML references are representation
independent : Their operations do not “leak” any observable information
about which particular machine addresses are used to represent references
at run-time, giving heap allocator and garbage collector free reign to allo-
cate and move references anywhere in memory at any time, without the risk
of affecting program semantics.

Having only a binary equality test carries the severe disadvantage, how-
ever, that partitioning a list of n references requires Θ(n2) equality tests,

1A total preorder is a binary relation R that is transitive and total, but not necessarily
antisymmetric.

2We use the term ML as a proxy for Standard ML, CaML or any language in the ML
family.
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which follows from the impossibility of deciding in subquadratic time whether
a list of atoms contains a duplicate.

Proposition 1.1 Let T be a type with at least n distinct elements whose
only operation is an equality test. Deciding whether a list of n T -values
contains a duplicate requires at least

(
n
2

)
applications of the equality test in

the worst case.

proof (By adversary) Assume the problem can be solved using fewer than(
n
2

)
equality tests. Consider input [v1, . . . , vn] with pairwise distinct input

values v1, . . . , vn. Then there is a pair vi, vj for some i, j with i 6= j, for
which no equality test is applied. Change the input by replacing vi with vj .
Now all equality tests performed for the original input give the same result,
yet the changed input has a duplicate, whereas the original input does not.
2

An alternative to ML references is to abandon all pretenses of guar-
anteeing representation independence and leaving it in the hands of the
developers to achieve whatever level of semantic determinacy is required.
This is the solution chosen for object references in Java, which provides a
hash function on references.3 Hashing supports efficient associative access
to references. In particular, finding duplicate references can be performed
by hashing references into an array and processing the references mapped to
the same array bucket one bucket at a time. The price of admitting hashing
on references, however, is loss of lightweight implementation of references
and loss of representation independence: it complicates garbage collection
(e.g. hash values must be stored for copying garbage collectors) and makes
execution potentially nondeterministic. Computationally, in the worst case
it does not even provide an improvement: All references may get hashed to
the same bucket, and unless the hashing function is known to be perfect,
pairwise tests are necessary to determine whether they all are equal.

It looks like we have a choice between a rock and a hard place: Either we
can have highly abstract references that admit a simple, compact machine
address representation and guarantee deterministic semantics, but incur pro-
hibitive complexity of partitioning-style bulk operations (ML references); or
we can give up on light-weight references and entrust deterministic program
semantics to the hands of the individual developers (Java references).

The problem of multiple run-time representations of the same semantic
value is not limited to references. Other examples are abstract types that
do not have an unchanging “best” run-time representation, such as sets and
bags (multisets). For example, it may be convenient to represent a set by any

3We use Java as a proxy for any language that allows interpreting a pointer as a
sequence of bits, such as C and C++, or provides a hashing-like mapping of references to
integers, such as Java and C#.
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list containing its elements, possibly repeatedly. The individual elements in
a set may themselves have multiple representations over time or at the same
time; e.g., if they are references or are themselves sets. The challenge is how
to perform set discrimination efficiently such that the result does not leak
information about the particular lists and element representations used to
represent the sets in the input.

In this paper we show that execution efficiency and representation in-
dependence for generic sorting and partitioning can be achieved simultane-
ously. We introduce a bulk operation called discrimination, which general-
izes partitioning and sorting: It partitions information associated with keys
according to a specified equivalence, respectively ordering relation on the
keys. For ordering relations, it returns the individual partitions in ascend-
ing order.

As Proposition 1.1 and the corresponding well-known combinatorial lower
bound of Ω(n log n) (Knuth 1998, Section 5.3.1) for comparison-based sort-
ing show, we cannot accomplish efficient generic partitioning and linear-time
sorting by using black-box binary comparison functions as specifications of
equivalence or ordering relations. Instead, we show how to construct efficient
discriminators by structural recursion on specifications defined composition-
ally in an expressive domain-specific language for denoting equivalence and
ordering relations.

Informally, generic top-down discrimination for ordering relations can be
thought of as filling in the empty square in the diagram below:

Sorting comparison-based distributive

Fixed order Quicksort, Mergesort, etc.,
with inlined comparisons

Bucketsort, Counting sort,
Radixsort

Generic Comparison-parameterized
Quicksort, Mergesort, etc.

In particular, it extends distributive worst-case linear-time sorting algo-
rithms to all standard orders on all regular recursive first-order types, in-
cluding tree data structures.

The main benefit of generic discrimination is not for sorting, however,
but for partitioning on types that have no natural ordering relation or where
the ordering is not necessary: It can reduce quadratic time partitioning
based on equality testing to linear time, without leaking more information
than pairwise equivalences in the input.

1.1 Contributions

In this paper we develop the notion of discrimination as a combination of
both partitioning and sorting. Discrimination can also be understood as a
generalization of binary equivalence testing and order comparisons from 2
to n arguments.
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We claim the following as our contributions:

• An expressive language of order and equivalence representations for
denoting ordering and equivalence relations, with a domain-theoretic
semantics.

• Purely functional generic definitions of efficient order and equivalence
discriminators.

• Representation independence without asymptotic loss of efficiency:
The result of discrimination depends only on the pairwise comparisons
between keys, not their particular values.

• A general theorem that shows that the discriminators execute in worst-
case linear time on fixed-width RAMs for a large class of order and
equivalence representations, including all standard orders and equiva-
lences on regular recursive first-order types.

• A novel value numbering technique for efficient discrimination for bag
and set orders and for bag and set equivalences.

• Transparent implementation of generic discrimination in less than 100
lines of Glasgow Haskell, employing list comprehensions and Gener-
alized Algebraic Data Types (GADTs), and with practical perfor-
mance competitive with the best comparison-based sorting methods
in Haskell.

• Applications showing how worst-case linear-time algorithms for non-
trivial problems can be derived by applying a generic discrimina-
tor to a suitable ordering or equivalence representation; specifically,
generalized lexicographic sorting, type isomorphism with associative-
commutative operators, and generic equijoins.

• The conclusion that built-in ordered value types and types with equal-
ity, specifically reference types, should come equipped with an order,
respectively equality discriminator to make their ordering relation, re-
spectively equality, efficiently available.

This article is based on Henglein (2008), though with essentially all as-
pects reworked, and with the following additional contributions: the do-
main theoretic model of ordering and equivalence relations; the notion of
rank and associated proof principle by structural induction on ranks; the
ordinal numbering technique for bag and set orders as well as for bag and
set equivalences; the explicit worst-case complexity analysis yielding linear-
time discriminators; the definition and semantics of equivalence represen-
tations; the definition of generic equivalence discriminator disc (not to be
confused with the disc of Henglein (2008), which, here, is named sdisc);
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the highly efficient basic equivalence discriminator generator discNat; the
definition, discussion and proof of representation independence; the appli-
cation of equivalence discrimination to type AC-isomorphism and database
joins; the empirical run-time performance evaluation and comparison with
select sorting algorithms; the analysis and dependency of comparison-based
sorting on the complexity of comparisons; and some minor other additions
and removals.

1.2 Overview

After notational prerequisites (Section 2) we define basic notions: ordering
and equivalence relations (Section 3, and discrimination (Section 4).

Focusing first on ordering relations, we show how to construct new or-
dering relations from old ones (Section 5) and how to represent these con-
structions as potentially infinite tree data structures (Section 6). We then
define order discriminators by structural recursion over order representations
(Section 7 and analyze their computational complexity (Section 8).

Switching focus to equivalence relations, we show how to represent the
compositional construction of equivalence relations(Section 9), analogous to
the development for ordering relations. This provides the basis for generic
equivalence discrimination (Section 10). We analyze the representation in-
dependence properties of the discriminators (Section 11) before illustrating
their use on a number of paradigmatic applications (Section 12). We show
that the practical performance of our straightforwardly coded discriminators
in Haskell is competitive with sorting (Section 13) and discuss a number of
aspects of discrimination (Section 14) before offering conclusions as to what
has been accomplished and what remains to be done.

On first reading the reader may want to skip to Sections 6, 7, 12 and
13 to get a sense of discrimination, its applications and performance from a
programming point of view.

2 Prerequisites

2.1 Basic mathematical notions

Let R,Q ⊆ T × T be binary relations over a set T . We often use infix
notation: xR y means (x, y) ∈ R. The inverse R−1 of R is defined by
xR−1 y if and only if y Rx. The restriction R|S of R to a set S is defined as
R|S = {(x, y) | (x, y) ∈ R ∧ x ∈ S ∧ y ∈ S}. R×Q is the pairwise extension
of R and Q to pairs: (x1, x2)R×Q (y1, y2) if and only if x1Ry1 and x2Qy2.
Similarly, R∗ is the pointwise extension of R to lists: x1 . . . xmR

∗ y1 . . . yn if
and only if m = n and xiRyi for all i = 1 . . . n. We write ~x ∼= ~y if ~y is a
permutation of the sequence ~x.
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We assume a universe of discourse U , which contains all objects of in-
terest. A regular recursive first-order type is a formal term for denoting a
set of values. Such types are built from unit (1), product (×), and sum (+)
constructors; type variables and µ-abstraction for recursive definition; the
integers Int. They are inhabited by finite values generated by the grammar

v ::= c | () | inl v | inr w | (v, v′) | fold(v)

where c ∈ Int is an integer constant. In applications, other primitive types
and constants may be added.

Recursive types are interpreted iso-recursively: All values of a recursive
type are of the form fold(v), mimicking Haskell’s way of defining recursive
types by way of newtype and data declarations. E.g., the list type construc-
tor is defined as T ∗ = µt. 1 + T × t, where we define [] = fold(inl ()) and
x :: ~x = fold(inr (x, ~x) and use the notational convention [x1, . . . , xn] = x1 ::
. . . :: xn :: [].

Type recursion is interpreted inductively. In particular, all lists and trees
that can occur as keys are finite in this paper. For emphasis, we note that
these types denote sets without any additional structure, such as an element
representing nontermination. We allow ourselves to use types also in place of
the sets they denote. (Only in Section 8 we treat types as syntactic objects;
otherwise they can be thought of as set denotations.)

We use Big-O notation in the following sense: Let f and g be functions
from some set S to R. We write f = O(g) if there are constants a, b ∈ R
such that f(x) ≤ a · g(x) + b for all x ∈ S.

We assume basic knowledge of concepts, techniques and results in domain
theory, algorithmics and functional programming.

2.2 Haskell notation

To specify concepts and simultaneously provide an implementation for ready
experimentation, we use the functional core parts of Haskell (Peyton Jones
2003) as our programming language, extended with Generalized Algebraic
Data Types (GADTs), as implemented in Glasgow Haskell (Glasgow Haskell).
GADTs provide a convenient type-safe framework for shallow embedding of
little languages (Bentley 1986), which we use for a type-safe coding of or-
dering and equivalence representation as potentially infinite trees. Hudak
et al. (1999) provide a brief and gentle introduction to Haskell, but as we
deliberately do not use monads, type classes or any other Haskell-specific
language constructs except for GADTs, we believe basic knowledge of func-
tional programming is sufficient for understanding the code we provide.

We are informal about the mapping from Haskell notation to its seman-
tics. As a general convention, we use fixed-width font identifiers for Haskell
syntax and write the identifier in italics for what is denoted by it. We use
Haskell’s built-in types and facilities for defining types, but emphasize that

7



keys drawn from these types here are assumed to be belong to the inductive
subset of their larger, coinductive interpretation in Haskell. In particular,
only finite-length lists can be keys here.

Haskell’s combination of compact syntax, support for functional compo-
sition, rich type system, and comparatively efficient implementation consti-
tute what appears to us to presently be the best available uniform framework
for supporting the semantic, algorithmic, programming, application and em-
pirical aspects of generic discrimination developed in this paper. It should
be emphasized, however, that this paper is about generic discrimination,
with Haskell in a support role. The paper is not about Haskell in particu-
lar, nor is it about developing generic top-down discrimination specifically
for Haskell. We hope, however, that our work informs future language and
library designs, including the Haskell lineage.

2.3 Disclaimer

This paper emphasizes the compositional programming aspects of top-down
generic discrimination. It addresses semantic, algorithmic, empirical and
application aspects in support of correctness, expressiveness, and computa-
tional efficiency, but we avoid detailed descriptions of mathematical concepts
and only sketch proofs. A proper formalization of the results claimed here in
the sense of being worked out in detail and, preferably, in machine-checkable
form is not only outside the scope and objective of this paper, but also what
we consider a significant challenge left for future work.

3 Ordering and equivalence relations

Before we can introduce discriminators we need to define what exactly we
mean by ordering and equivalence relations.

3.1 Ordering relations

Definition 3.1 [Definition set] The definition set def(R) of a binary rela-
tion R over S is defined as def(R) = {x ∈ S | (x, x) ∈ R}. 2

Definition 3.2 [Ordering relation] A binary relation R ⊆ S × S is an or-
dering relation over S if for all x, y, z ∈ S:

1. ((x, y) ∈ R ∧ (y, z) ∈ R)⇒ (x, z) ∈ R (transitivity), and

2. ((x, x) ∈ R ∨ (y, y) ∈ R) ⇒ ((x, y) ∈ R ∨ (y, x) ∈ R) (conditional
comparability).

2
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Note that the condition for comparability is disjunctive: Only one of x, y
must relate to itself before it relates to every element in S. An alternative is
replacing is by a conjunction ((x, x) ∈ R∧(y, y) ∈ R). The present definition
is stronger, and we use it since it is noteworthy that the order constructions
of Section 5 are closed under this definition.

Not insisting on reflexivity in the definition of ordering relations is im-
portant for being able to treat them as pointed directed complete partial
orders (dcpos) below.

A word on nomenclature: An ordering relation is not necessarily an-
tisymmetric, so it is a kind of preorder, though not quite, since it is not
necessarily reflexive on all of S, only on a subset, the definition set. Anal-
ogous to the use of “partial” in partial equivalence relations, we might call
it a partial preorder. This would confuse it with “partial order”, however,
where “partial” is used in the sense of “not total”. Note that conditional
comparability implies totality on the definition set, and we would end up
with something called a partial total preorder, which is not attractive. For
this reason we just call our orders “ordering relations”. Formally, an or-
der is the pair consisting of a set and an ordering relation over that set;
analogously for equivalence. We informally use “order” and “equivalence”
interchangeably with ordering relation and equivalence relation, however.

For ordering relations we use the following notation:

x ≤R y ⇔ (x, y) ∈ R
x ≥R y ⇔ y ≤R x
x <R y ⇔ (x, y) ∈ R ∧ (y, x) 6∈ R
x ≡R y ⇔ (x, y) ∈ R ∧ (y, x) ∈ R
x >R y ⇔ y <R x

x#R y ⇔ (x, y) 6∈ R ∧ (y, x) 6∈ R

Definition 3.3 [Domain of ordering relations over S] The domain of order-
ing relations over S is the pair (Order(S),v) consisting of the set Order(S)
of all ordering relations over S, and the binary relation v defined by R1 v R2

if and only if x <R1 y =⇒ x <R2 y and x ≡R1 y =⇒ x ≡R2 y for all x, y ∈ S.
2

Proposition 3.4 (Order(S),v) is a pointed dcpo.

proof Let D be a directed set of ordering relations. Then the set-theoretic
union

⋃
D is an ordering relation on S. Furthermore, it is the supremum

of D. Observe that the empty set is an ordering relation. It is the least
element of Order(S) for any S. 2

Note that v is a finer relation than set-theoretic containment: R1 v
R2 =⇒ R1 ⊆ R2, but not necessarily conversely. For example, {(x1, x2)} ⊆
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{(x1, x2), (x2, x1)}, but {(x1, x2)} 6v {(x1, x2), (x2, x1)}. Intuitively, v dis-
allows weakening a strict inequality x <R1 y to a nonstrict x ≤R2 y. This
will turn out to be crucial for ensuring that the lexicographic product order
construction in Section 5 is monotonic.

3.2 Equivalence relations

Definition 3.5 [Equivalence relation] A binary relation E ⊆ S × S is an
equivalence relation over S if for all x, y, z ∈ S:

1. ((x, y) ∈ E ∧ (y, z) ∈ E)⇒ (x, z) ∈ E (transitivity), and

2. (x, y) ∈ E ⇒ (y, x) ∈ E (symmetry).

2

This is usually called a partial equivalence relation (PER), since reflexivity
on S is not required. Since a PER always induces an equivalence relation on
its definition set, however, we simply drop the “partial” and call all PERs
simply equivalence relations hence.

We write x ≡E y if (x, y) ∈ E and x 6≡E y if (x, y) 6∈ E.

Definition 3.6 [Domain of equivalence relations over S] The domain of
equivalence relations over S is the pair (Equiv(S),⊆) consisting of the set
Equiv(S) of all partial equivalence relations on S, together with subset con-
tainment ⊆. 2

Proposition 3.7 (Equiv(S),⊆) is a pointed dcpo.

proof Let D be a directed set of equivalence relations Then the set-
theoretic union

⋃
D is an equivalence relation over S. Furthermore, it is the

supremum of D. Observe that the empty set is an equivalence relation. It
is the least element for Equiv(S) for any S. 2

Each ordering relation canonically induces an equivalence relation:

Proposition 3.8 Let R be an ordering relation. Then ≡R is the largest
equivalence relation contained in R.

4 Discrimination

Sorting, partitioning and discrimination functions can be thought of as vari-
ations of each other. The output of a sorting function permutes input keys
according to a given ordering relation. A partitioning function groups the
input keys according to a given equivalence relation. A discrimination func-
tion (discriminator) is a combination of both, though with a twist: Its input
are key-value pairs, but only the value components are returned in the out-
put.
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Definition 4.1 [Values associated with key] Let ~x = [(k1, v1), . . . , (kn, vn)].
Let R be an ordering or equivalence relation. Then the values associated
with k under R in ~x is the list

vals~xR(k) = map snd (filter (pR(k)) ~x)

where pR(k)(k′, v′) = (k ≡R k′). 2

Note that the values in vals~xR(k) are listed in the same order as they occur
in ~x.

Definition 4.2 [Discrimination function] A partial function D : (S×U)∗ ↪→
U∗∗ is a discrimination function for equivalence relation E if E is an equiv-
alence relation over S, and

(a) concat (D(~x)) ∼= map (map snd) ~x for all ~x = [(k1, v1), . . . , (kn, vn)]
where ki ∈ def(E) for all i = 1 . . . n (permutation property);

(b) if D(~x) = [b1, . . . , bn] then ∀i ∈ {1, . . . , n}. ∃k ∈ map fst ~x . bi ∼=
vals~xR(k) (partition property);

(c) for all binary relations Q ⊆ U × U , if ~x (id ×Q)∗ ~y and both D(~x) and
D(~y) are defined, then D(~x)Q∗∗D(~y) (parametricity property).

A discrimination function is also called discriminator.
We call a discriminator stable if it satisfies the partition property with ∼=

replaced by =; that is, if each block in D(~x) contains the value occurrences
in the same positional order as in ~x. 2

Definition 4.3 [Order discrimination function] A discriminator D : (S ×
U)∗ ↪→ U∗∗ for E is an order discrimination function for ordering relation
R if E = (≡R) and the groups of values associated with a key are listed in
ascending key-order (sorting property); that is, for all ~x, k, k′, i, j, if D(~x) =
[b1, . . . , bm] and vals~xR(k) = bi ∧ vals~xR(k′) = bj ∧ k ≤R k′ then =⇒ i ≤ j. An
order discrimination function is also called order discriminator. 2

What a discriminator does is surprisingly complex to define formally,
but rather easily described informally: It treats keys as labels of values and
groups together all the values with the same label in an input sequence.
The labels themselves are not returned. Two keys are treated as the “same
label” if they are equivalent under the given equivalence relation. The para-
metricity property expresses that values are treated as satellite data, as in
sorting algorithms (Knuth 1998, p. 4) (Cormen et al. 2001, p. 123) (Henglein
2009, p. 555). In particular, values can be passed as pointers that are not
dereferenced during discrimination.
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A discriminator is stable if it lists the values in each group in the same
positional order as they occur in the input. A discriminator is an order
discriminator if it lists the groups of values in ascending order of their labels.

Definitions 4.2 and 4.3 fix to various degrees the positional order of the
groups in the output and the positional order of the values inside each group.
For order discriminators the positional order of groups is fixed by the key
ordering relation, but the positional order inside each group may still vary.
Requiring stability fixes the positional order inside each group. In particular,
for a stable order discriminator the output is completely fixed.

Example 4.4 Let Oeo be the ordering relation on integers such that xOeo y
if and only if x is even or y is odd; that is, under Oeo all the even numbers are
equivalent and they are less than all the odd numbers, which are equivalent
to each other. We denote by Eeo the equivalence induced by Oeo: Two
numbers are Eeo-equivalent if and only if they are both even or both odd.

Consider

~x = [(5, ”foo”), (8, ”bar”), (6, ”baz”), (7, ”bar”), (9, ”bar”)].

A discriminator D1 for Eeo may return

D1(~x) = [[”foo”, ”bar”, ”bar”], [”bar”, ”baz”]] :

”foo” and ”bar” are each associated with the odd keys in the input, with
”bar” being so twice; likewise ”baz” and ”bar” are associated with the even
keys.

Another discriminator D2 for Eeo may return the groups in the opposite
order:

D2(~x) = [[”bar”, ”baz”], [”foo”, ”bar”, ”bar”]],

and yet another discriminator D3 may return the groups ordered differently
internally (compare to D1):

D3(~x) = [[”bar”, ”foo”, ”bar”], [”baz”, ”bar”]].

Note that D3 does not return the values associated with even keys in the
same positional order as they occur in the input. Consequently, it is not
stable. D1 and D2, on the other hand, return the values in the same order.

Let us apply D1 to another input:

~y = [(5, 767), (8, 212), (6, 33), (7, 212), (9, 33)].

By parametricity we can conclude that

D1(~y) = [[767, 212, 33], [212, 33]]

or
D1(~y) = [[767, 33, 212], [212, 33]].
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To see this, consider

Q = {(”foo”, 767), (”bar”, 212), (”baz”, 33), (”bar”, 33)}.

We have ~y (id ×Q)∗ ~x, and thus D1(~y)Q∗∗D1(~x) by the parametricity prop-
erty of discriminators. Recall thatD1(~x) = [[”foo”, ”bar”, ”bar”], [”bar”, ”baz”]].
Of the 8 possible values that are Q∗∗-related to D1(~x), corresponding to a
choice of 212 or 33 for each occurrence of ”bar”, only the two candidates
above satisfy the partitioning property required of a discriminator.

An order discriminator for Oeo must return the groups in accordance
with the key order. In particular, the values associated with even-valued
keys must be in the first group. Since D2(~x) returns the group of values
associated with odd keys first, we can conclude that D2 is not an order
discriminator for Oeo.

2

5 Order constructions

Types often come with implied standard ordering relations: the standard
order on natural numbers, the ordering on character sets given by their
numeric codes, the lexicographic (alphabetic) ordering on strings over such
character sets, and so on. We quickly discover the need for more than one
ordering relation on a given type, however: descending instead of ascending
order; ordering strings by their first 4 characters and ignoring the case of
letters, etc.

We provide a number of order constructions, which are the basis of an
expressive language for specifying such ordering relations. The following are
ordering relations:

• The empty relation ∅, over any set S.

• The trivial relation S × S, over any set S.

• For nonnegative n, the standard order

[n] = {(k, l) | 0 ≤ k ≤ l ≤ n}

over any S such that {0, . . . , n} ⊆ S ⊆ Z.

Given R1 ∈ Order(T1), R2 ∈ Order(T2), f ∈ T1 → T2, the following are also
ordering relations:

• The sum order R1 +L R2 over T1 + T2, defined by

x ≤R1+LR2 y ⇔


(x = inl x1 ∧ y = inr y2)∨
(x = inl x1 ∧ y = inl y1 ∧ x1 ≤R1 y1)∨
(x = inr x2 ∧ y = inr y2 ∧ x2 ≤R2 y2)
for some x1, y1 ∈ T1, x2, y2 ∈ T2.
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The subscript in +L (for “left”) indicates that all the left elements are
smaller than the right elements. Left elements are ordered according
to R1, and right elements are ordered according to R2.

• The lexicographic product order R1 ×L R2 over T1 × T2, defined by

(x1, x2) ≤R1×LR2 (y1, y2)⇔ x1 <R1 y1 ∨ (x1 ≡R1 y1 ∧ x2 ≤R2 y2).

The subscript in ×L (here for “lexicographic”) indicates that the first
component in a pair is the dominant component: it is compared first,
and only if it is equivalent with the first component of the other pair,
the respective second components are compared.

• The preimage f−1(R2) of R2 under f , over T1, defined by

x ≤f−1(R2) y ⇔ f(x) ≤R2 f(y).

• The lexicographic list order [R1], over T ∗1 , defined by

[x1, . . . , xm] ≤[R1] [y1, . . . , yn]⇔
∃i ≤ m+ 1. ((i = m+ 1) ∨ xi <R1 yi) ∧ ∀j < i. xj ≡R1 yj

• The lexicographic bag order 〈R1〉, over T ∗1 , defined by

~x ≤〈R1〉 ~y ⇔ [x′1, . . . , x
′
m] ≤[R1] [y′1, . . . , y

′
n]

where ~x ∼= [x′1, . . . , x
′
m], ~y ∼= [y′1, . . . , y

′
n] such that x′1 ≤R1 . . . ≤R1 x

′
m

and y′1 ≤R1 . . . ≤R1 y
′
n. In words, it is the ordering relation on lists of

type T1 that arises from first sorting the lists in ascending order before
comparing them according to their lexicographic list order.

• The lexicographic set order {R1}, over T ∗1 , defined by

~x ≤{R1} ~y ⇔ [x′1, . . . , x
′
k] ≤[R1] [y′1, . . . , y

′
l]

where x′1 <R1 . . . <R1 x
′
k and y′1 <R1 . . . <R1 y

′
l are maximal length

proper R1-chains of elements from ~x and ~y, respectively. In words, it
is the ordering relation on lists of type T1 that arises from first unique-
sorting lists in ascending order, which removes all ≡R1-duplicates, be-
fore comparing them according to their lexicographic list order.

• The inverse R−11 , over T1, defined by

x ≤R−1
1
y ⇔ x ≥R1 y.

14



Observe that the Cartesian product relation R1 ×R2 over T1 × T2, with
pointwise ordering does not define an ordering relation. It satisfies transitiv-
ity (it is a preorder on its definition set), but not conditional comparability.

Given dcpos D1, D2, recall that [D1 → D2] denotes the dcpo of contin-
uous functions from D1 → D2, ordered pointwise.

Theorem 5.1 Let T1, T2 be arbitrary sets. Then:

×L ∈ [Order(T1)×Order(T2)→ Order(T1 × T2)]
+L ∈ [Order(T1)×Order(T2)→ Order(T1 + T2)

.−1 ∈ (T1 → T2)→ [Order(T2)→ Order(T1)]

[.] ∈ [Order(T1)→ Order(T ∗1 )]

〈.〉 ∈ [Order(T1)→ Order(T ∗1 )]

{.} ∈ [Order(T1)→ Order(T ∗1 )]

proof By inspection. We require v as the domain relation on ordering
relations since ×L is nonmonotonic in its first argument under set contain-
ment ⊆. 2

Corollary 5.2 Let F ∈ Order(T ) → Order(T ) be a function built by com-
posing order constructions in Theorem 5.1, the argument order and given
ordering relations (“constants”). Then F ∈ [Order(T ) → Order(T )] and
thus F has a least fixed point µF ∈ Order(T ).

6 Order representations

In this section we show how to turn the order constructions of Section 5 into
a domain-specific language of order representations. These will eventually
serve as arguments to a generic order discriminator.

6.1 Basic order constructors

Definition 6.1 [Order representation] An order representation over type T
is a value r of type Order T constructible by the generalized algebraic data
type in Figure 1, where all arguments f : T1 → T2 to MapO occurring in a
value are total functions (that is, f(x) 6= ⊥ for all x ∈ T1) and T1, T2 are
regular recursive first-order types. 2

Order representations are not ordering relations themselves, but tree-like
data structures denoting ordering relations. We allow infinite order rep-
resentations. As we shall see, such infinite trees allow representation of
ordering relations on recursive types.

15



data Order t where

NatO :: Int → Order Int

TrivO :: Order t

SumL :: Order t1 → Order t2 → Order (Either t1 t2)

ProdL :: Order t1 → Order t2 → Order (t1, t2)

MapO :: (t1 → t2) → Order t2 → Order t1

ListL :: Order t → Order [t]

BagO :: Order t → Order [t]

SetO :: Order t → Order [t]

Inv :: Order t → Order t

Figure 1: Order representations

An order expression is any Haskell expression, which evaluates to an
order representation. This gives us 3 levels of interpretation: A Haskell order
expression evaluates to an order representation, which is a data structure
that denotes an ordering relation. Note that not all Haskell expressions of
type Order T are order expressions, but henceforth we shall assume that all
expressions of type Order T that we construct are order expressions.

6.2 Definable orders

Using the order constructors introduced, many useful orders and order con-
structors are definable.

The standard order on the unit type () is its trivial order, which is also
its only order:

ordUnit :: Order ()

ordUnit = TrivO

The standard ascending order on 8-bit and 16-bit nonnegative numbers
are defined using the NatO-order constructor:4

ordNat8 :: Order Int

ordNat8 = NatO 255

ordNat16 :: Order Int

ordNat16 = NatO 65535

We might want to use

ordInt32W :: Order Int

ordInt32W = MapO tag (SumL (NatO 2147483648) (NatO 2147483647))

where tag i = if i < 0 then Left (-i) else Right i

4Somewhat unconventionally, NatO n denotes the ascending standard ordering rela-
tion on {0 . . . n}, not {0 . . . n − 1}. This reflects the Haskell convention of specifying
intervals in the same fashion; e.g. newArray (0, 65535) [] allocates an array indexed by
[0 . . . 65535]. Using the same convention avoids the need for computing the predecessor in
our Haskell code in a number of cases.
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to denote the standard ordering on 32-bit 2s-complement integers. (Note
that 231 = 2147483648.) This does not work, since 2147483648 is not a 32-bit
2s-complement representable integer, however. (Because NatO has type Int

-> Order Int, where Int denotes the 32-bit 2s-complement representable
integers, its argument has to be a 32-bit integer.) Since the arguments of
NatO are used by our basic discriminator as the size of a table to be allocated
at run-time, even if 2147483648 were acceptable, large argument values to
NatO would be unusable in practice. Instead we use the following order
representation for the standard order on Int:

ordInt32 :: Order Int

ordInt32 = MapO (splitW ◦ (+ (-2147483648))) (ProdL ordNat16 ordNat16)

splitW :: Int → (Int, Int)

splitW x = (shiftR x 16 .&. 65535, x .&. 65535)

Here we first add −231, the smallest representable 32-bit 2s complement
integer, and then split the resulting 32-bit word into its 16 high-order and
low-order bits. The lexicographic ordering on such pairs, interpreted as
16-bit nonnegative integers, then yields the standard ordering on 32-bit 2s-
complement integers. As we shall see, ordInt32 yields an efficient discrim-
inator that only requires a table with 216 = 65536 elements.

The standard order on Boolean values is denotable by the canonical
function mapping Bool to its isomorphic sum type:

ordBool :: Order Bool

ordBool = MapO bool2sum (SumL ordUnit ordUnit)

where bool2sum :: Bool → Either () ()

bool2sum False = Left ()

bool2sum True = Right ()

Analogously, the standard alphabetic orders on 8-bit and 16-bit charac-
ters are definable by mapping them to the corresponding orders on natural
number segments:

ordChar8 :: Order Char

ordChar8 = MapO ord ordNat8

ordChar16 :: Order Char

ordChar16 = MapO ord ordNat16

As an illustration of a denotable nonstandard order, here is a definition
of evenOdd, which denotes the ordering Oeo from Example 4.4:

evenOdd :: Order Int

evenOdd = MapO (‘mod‘ 2) (NatO 1)

The SumL order lists left elements first. What about the dual order
constructor, where right elements come first? It is definable:

sumR :: Order t1 → Order t2 → Order (Either t1 t2)

sumR r1 r2 = Inv (SumL (Inv r1) (Inv r2)
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An alternative definition is

sumR’ r1 r2 = MapO flip (SumL r2 r1)

where flip :: Either t1 t2 → Either t2 t1

flip (Left x) = Right x

flip (Right y) = Left y

Similarly, the lexicographic product order with dominant right component
is definable as

pairR :: Order t1 → Order t2 → Order (t1, t2)

pairR r1 r2 = MapO swap (ProdL r2 r1)

where swap :: (t1, t2) → (t2, t1)

swap (x, y) = (y, x)

The refinement of the equivalence classes of one order by another order is
definable as follows:

refine :: Order t → Order t → Order t

refine r1 r2 = MapO dup (ProdL r1 r2)

where dup x = (x, x)

For example, the nonstandard total order on 16-bit nonnegative integers,
where all the even numbers, in ascending order, come first, followed by all
the odd numbers, also in ascending order, is denoted by refine evenOdd

ordNat16.

6.3 Lexicographic list order

For recursively defined data types, order representations generally need to
be recursively defined, too. We first consider ListL, the lexicographic list
order constructor, and show that it is actually definable using the other
order constructors. Then we provide a general recipe for defining orders on
regular (nonnested) inductive data types.

Consider the type T ∗ of lists with elements of type T with an element
ordering R denoted by order representation r. We want to define a represen-
tation of the lexicographic list order [R]. We use Haskell’s standard list type
constructor [T], with the caveat that only T ∗, the finite lists, are intended,
even though Haskell lists may be infinite.

We know that [t] is isomorphic to Either () (t, [t]), where

fromList :: [t] → Either () (t, [t])

fromList [] = Left ()

fromList (x : xs) = Right (x, xs)

is the “unfold”-direction of the isomorphism. Assume we have a represen-
tation of r′ of [R] and consider two lists ~x, ~y where ~x ≤[R] ~y. Applying
fromList to them we can see that the respective results are ordered accord-
ing to SumL ordUnit (ProdL r r′). Conversely, if they are ordered like
that, then ~x ≤[R] ~y.

This shows that we can define r′ = listL r where
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listL :: Order t → Order [t]

listL r = MapO fromList (SumL ordUnit (ProdL r (listL r)))

As an illustration of applying listL, the standard alphabetic order
ordString8 on String = [Char], restricted to 8-bit characters, is deno-
table by applying listL to the standard ordering on characters:

ordString8 :: Order String

ordString8 = listL ordChar8

6.4 Orders on recursive data types

The general recipe for constructing an order representation over recursive
types is by taking the fixed point of an order constructor: Let p ∈ [Order(T )→
Order(T )] and take its least fixed point r = p(r). By Proposition 5.2 and
standard domain-theoretic techniques (Abramsky and Jung 1992, Lemma
2.1.21) this r exists and denotes the least fixed point of the function on
ordering relations represented by p.

As an example, consider the type of node-labeled trees

data Tree v = Node (v, [Tree v])

with unfold-function

unNode :: Tree v → (v, [Tree v])

unNode (Node (v, ts)) = (v, ts)

The standard order on trees can be defined as

tree :: Order t → Order (Tree t)

tree r = Map unNode (ProdL r (ListL (tree r)))

It compares the root labels of two trees and, if they are r-equivalent, lex-
icographically compares their children. This amounts to ordering trees by
lexicographic ordering on their preorder traversals. Note that tree r de-
notes the least fixed point of

λr′. Map unNode (ProdL r (ListL r′)).

As an example of a nonstandard order on trees, consider the level-k order
treeK k on trees:

treeK :: Int → Order t → Order (Tree t)

treeK 0 r = TrivO

treeK k r = Map unNode (ProdL r (ListL (treeK (k-1) r)))

It is the same as tree, but treats trees as equivalent if they are the same
when “cut off” at level k.

Another example of an ordering relation on trees for a given node order-
ing is
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treeB :: Order t → Order (Tree t)

treeB r = MapO unNode (ProdL r (BagO (treeB r)))

It treats the children of a node as an unordered bag in the sense that any
permutation of the children of a tree results in an equivalent tree. Finally,

treeS :: Order t → Order (Tree t)

treeS r = MapO unNode (ProdL r (SetO (treeS r)))

treats multiple equivalent children of a node as an unordered set: multiple
children that turn out to be equivalent, are treated as if they were a single
child.

Whether children of a node are treated as lists, bags or sets in this sense
is not built into the data type, but can be freely mixed. For example

tree1 r = MapO unNode (ProdL r (ListL tree2 r))

tree2 r = MapO unNode (ProdL r (BagO tree3 r))

tree3 r = MapO unNode (ProdL r (SetO tree1 r))

interprets nodes at alternating levels as lists, bags and sets, respectively.

6.5 Denotational semantics of order representations

So far we have informally argued that each order representation denotes an
ordering relation. In this section we provide the mathematical account of
this. Basically, we do this by interpreting each order constructor as the cor-
responding order construction. Since order representations can be infinite
trees, we need to be a bit careful. We can leverage our domain-theoretic
framework: We approximate each order representation by cutting it off at
level k, show that the interpretations form an ω-chain, and define the in-
terpretation of a order representation as the supremum of its level-k ap-
proximations. Even though, domain-theoretically, the development below is
entirely standard, we provide an explicit account of it as it forms the basis
of the definition of rank, which provides the basis for inductive proofs for
structurally recursively defined functions on order representations.5

Definition 6.2 [Level-k approximation of order representation] The level-k
approximation r|k of order representation r is defined as follows:

r|0 = ⊥
(NatO m)n+1 = NatO m

TrivOn+1 = TrivO

(SumL r1 r2)n+1 = SumL r1|n r2|n
(ProdL r1 r2)n+1 = ProdL r1|n r2|n

(MapO f r)n+1 = MapO f r|n
5This can be thought of as Scott induction, extended to make statements about termi-

nation.
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(ListL r)n+1 = ListL r|n
(BagO r)n+1 = BagO r|n
(SetO r)n+1 = SetO r|n
(Inv r)n+1 = Inv r|n

for all m,n ≥ 0, where ⊥ denotes error or nontermination, as in Haskell. 2

Note that r|n is a finite tree of maximum depth n.
Recall the definition of order constructions from Section 5.

Definition 6.3 [Ordering relation denoted by order representation] LetO[[r]]
on finite order representations r be defined inductively as follows:

O[[⊥]] = ∅
O[[NatO m]] = [m]

O[[TrivO :: Order T]] = T × T
O[[SumL r1 r2]] = O[[r1]] +L O[[r2]]

O[[ProdL r1 r2]] = O[[r1]]×L O[[r2]]

O[[MapO f r]] = f−1(O[[r]])

O[[ListL r]] = [O[[r]]]

O[[BagO r]] = 〈O[[r]]〉
O[[SetO r]] = {O[[r]]}
O[[Inv r]] = O[[r]]−1

The ordering relation denoted by a possibly infinite order representation is

O[[r]] =
⋃
n≥0
O[[r|n]].

2

Theorem 6.4 Let r be an order representation over type T. Then O[[r]] is
an ordering relation over T .

proof We have O[[r|n]] v O[[r|n+1]] for all n ≥ 0, and
⋃
n≥0O[[r|n]] is the

supremum. 2

The level-k approximations provide a finitary stratification of the pairs
and the elements in the definition set of the ordering relation denoted by a
order representation.

Definition 6.5 [Rank] Let r ∈ Order T. Let x, y ∈ T , not necessarily
distinct. The rank of x and y under r is defined as

rank r(x, y) = min{n | (x, y) ∈ O[[r|n]] ∨ (y, x) ∈ O[[r|n]]}

with rank r(x, y) = ∞ if x#O[[r]] y. Finally, define the rank of x under r by
rank r(x) = rank r(x, x). 2
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comp :: Order t → t → t → Ordering

comp (NatO n) x y = if 0 ≤ x && x ≤ n && 0 ≤ y && y ≤ n

then compare x y

else error "Argument out of range"

comp TrivO _ _ = EQ

comp (SumL r1 _) (Left x) (Left y) = comp r1 x y

comp (SumL _ _) (Left _) (Right _) = LT

comp (SumL _ _) (Right _) (Left _) = GT

comp (SumL _ r2) (Right x) (Right y) = comp r2 x y

comp (ProdL r1 r2) (x1, x2) (y1, y2) =
case comp r1 x1 y1 of { LT → LT ;

EQ → comp r2 x2 y2 ;

GT → GT }

comp (MapO f r) x y = comp r (f x) (f y)

comp (BagO r) xs ys = comp (MapO (csort r) (listL r)) xs ys

comp (SetO r) xs ys = comp (MapO (cusort r) (listL r)) xs ys

comp (Inv r) x y = comp r y x

lte :: Order t → t → t → Bool

lte r x y = ordVal == LT | | ordVal == EQ

where ordVal = comp r x y

csort :: Order t → [t] → [t]

csort r = sortBy (comp r)

cusort :: Order t → [t] → [t]

cusort r = map head ◦ groupBy (lte (Inv r)) ◦ sortBy (comp r)

Figure 2: Generic comparison, sorting and unique-sorting functions

Observe that rank r(x, y) = rank r(y, x); rank r(x, y) < ∞ if and only if
(x, y) ∈ O[[r]]∨(y, x) ∈ O[[r]]; and rank r(x) <∞ if and only if x ∈ def(O[[r]]).
Note also that the rank of a pair not only depends on the ordering relation,
but on the specific order representation to denote it.

Proposition 6.6 rank r(x, y) ≤ min{rank r(x), rank r(y)}

proof If (x, x) ∈ O[[r|n]] ∨ (y, y) ∈ O[[r|n]] then (x, y) ∈ O[[r|n]] ∨ (y, x) ∈
O[[r|n]] by conditional comparability. Thus rank r(x, y) ≤ rank r(x) and
rank r(x, y) ≤ rank r(y) by definition of rank. 2

The level-k approximations allow us to treat order representations as if
they were finite and prove results about them by structural induction. For
example, consider the functions comp, lte, csort and cusort as defined
in Figure 2. We can prove that comp implements the 3-valued comparison
function, lte the Boolean version of comp, csort a sorting function, and
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type Disc k = forall v. [(k, v)] → [[v]]

sdisc :: Order k → Disc k

sdisc _ [] = []

sdisc _ [(_, v)] = [[v]]

sdisc (NatO n) xs = sdiscNat n xs

sdisc TrivO xs = [[ v | (_, v) ← xs ]]

sdisc (SumL r1 r2) xs = sdisc r1 [ (k, v) | (Left k, v) ← xs ]

++ sdisc r2 [ (k, v) | (Right k, v) ← xs ]

sdisc (ProdL r1 r2) xs =
[ vs | ys ← sdisc r1 [ (k1, (k2, v)) | ((k1, k2), v) ← xs ],

vs ← sdisc r2 ys ]

sdisc (MapO f r) xs = sdisc r [ (f k, v) | (k, v) ← xs ]

sdisc (ListL r) xs = sdisc (listL r) xs

sdisc (BagO r) xs = sdiscColl updateBag r xs

where updateBag vs v = v : vs

sdisc (SetO r) xs = sdiscColl updateSet r xs

where updateSet [] w = [w]

updateSet vs@(v : _) w = if v == w then vs else w : vs

sdisc (Inv r) xs = reverse (sdisc r xs)

Figure 3: Generic order discriminator sdisc

cusort a unique-sorting function, in each case for the order denoted by
their respective first arguments. For comp, we specifically have:

Proposition 6.7 For all order representations r :: Order T and x, y ∈ T
we have

comp r x y =


LT if x <O[[r]] y

EQ if x ≡O[[r]] y
GT if x >O[[r]] y

⊥ if x#O[[r]] y

proof (Idea) We can prove by induction on n that the 4 functions have
the desired properties for all order representations r|n; e.g., comp r|n x y =
EQ ⇔ x ≡O[[r|n]] y. This works since each of the functions, when applied to
r|n+1 on the left-hand side of a clause, is applied to order representation(s)
r′|n on the respective right-hand side. From this the result follows for infinite
r. 2

7 Generic order discrimination

Having defined and illustrated an expressive language for specifying orders
we are now in a position to define the generic order discriminator sdisc.
See Figure 3.
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sdiscNat :: Int → Disc Int

sdiscNat n xs = filter (not ◦ null) (bdiscNat n update xs)

where update vs v = v : vs

bdiscNat :: Int → ([v] → v → [v]) → [(Int, v)] → [[v]]

bdiscNat (n :: Int) update xs =
map reverse (elems (accumArray update [] (0, n-1) xs))

Figure 4: Bucket-sorting discriminator sdiscNat

The type

type Disc k = forall v. [(k, v)] → [[v]]

of a discriminator is polymorphic to capture its value parametricity property.
The clauses for the empty argument list, the trivial order, sum order,

preimage and inverse are self-explanatory. The innocuous-looking clause

sdisc _ [(_, v)] = [[v]]

is important for practical efficiency: A call to sdisc with a singleton input
pair returns immediately without inspecting the key. This ensures that only
distinguishing parts of the keys need to be inspected during execution. In
the specific case of alphabetic string sorting, this implements the property
of most-significant digit first (MSD) lexicographic sorting of only inspecting
the minimum distinguishing prefix of its input.

7.1 Basic order discrimination

The clause

sdisc (NatO n) xs = sdiscNat n xs

in the definition of sdisc invokes the basic order discriminator sdiscNat

n for keys in the range {0, . . . , n}. Our implementation of sdiscNat uses
bucket sorting, presented in Figure 4. The function call bdiscNat n update ~x
allocates a bucket table T [0 . . . n] and initializes each element T [i] to the
empty list. It then iterates over all (k, v) ∈ ~x, appending v to the contents
of T [k]. Finally, it returns the lists T [k] in index order k = 0 . . . n. Each list
returned contains the values associated with the same k in the input. Since
such lists may be empty, sdiscNat removes any empty lists. Traversing in
index order ensures that groups of values associated with the same key are
returned in ascending key order, as required of an order discriminator.

Apart from order representations involving TrivO, all calls to any order
discriminator eventually result in—potentially many—leaf calls to sdiscNat.
Thus the performance of sdiscNat is crucial for the performance of nearly
every discriminator. Ours is a very simple implementation, but we empha-
size that sdisc is essentially parameterized in sdiscNat: Dropping in any
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high-performance implementation essentially bootstraps its performance via
sdisc to order discrimination for arbitrary denotable ordering relations.

The code in Figure 4 implements the appending of a value to the contents
of a table bucket by actually prepending it and eventually reversing it. We
remark that eliding the final reversing of the elements of the array results in
a reverse stable order discriminator. It can be checked that reverse stable
discriminators can also be used in the remainder of the paper, saving the
cost of list reversals. We shall stick to stable discriminators for clarity and
simplicity, however.

7.2 Lexicographic product order discrimination

Consider now the clause

sdisc (ProdL r1 r2) xs =
[ vs | ys ← sdisc r1 [ (k1,(k2,v)) | ((k1,k2),v) ← xs ],

vs ← sdisc r2 ys ]

in Figure 3 for lexicographic product orders. First, each key-value pair is
reshuffled to associate the second key component with the value originally
associated with the key. Then the reshuffled pairs are discriminated on
the first key component. This results in a list of groups of pairs, each
consisting of a second key component and an associated value. Each such
group is discriminated on the second key component, and the concatenation
of all the resulting value groups is returned. Note how well the type of
discriminators fits the compositional structure: We exploit the ability of
the discriminator on the first key component to work with any associated
values, and discarding the keys in the output of a discriminator makes the
second key component discriminator immediately applicable to the output
of the first key component discriminator.

7.3 Lexicographic list order discrimination

Lexicographic list order discrimination is implemented by order discrimina-
tion on the recursively defined order constructor listL in Section 6.3:

sdisc (ListL r) xs = sdisc (listL r) xs

It is instructive to follow the execution of sdisc (listL r), since it
illustrates how an order representation functions a control structure for in-
voking the individual clauses of sdisc.

Example 7.1 Let us trace the execution of sdisc ordString8 on input

~x0 = [("bac", 1), ("ac", 2), ("cab", 3), ("", 4), ("ac", 5)].
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sdisc string8 ~x0 =
sdisc (ListL ordChar8) ~x0 =
sdisc (listL ordChar8) ~x0 =
sdisc (MapO fromList (SumL ordUnit (ProdL ordChar8 (listL ordChar8)))) ~x0 =
sdisc (SumL ordUnit (ProdL ordChar8 (listL ordChar8))) ~x1 =
sdisc ordUnit ~x2 ++ sdisc (ProdL ordChar8 (listL ordChar8)) ~x3

where

~x1 = [(Right (’b’, "ac"), 1), (Right (’a’, "c"), 2),

(Right (’c’, "ab"), 3), (Left (), 4), (Right (’a’, "c"), 5)]

~x2 = [((), 4)]

~x3 = [((’b’, "ac"), 1), ((’a’, "c"), 2), ((’c’, "ab"), 3), ((’a’, "c"), 5)]

Since ~x2 is a singleton list, the second claus of sdisc yields

sdisc ordUnit ~x2 = [[4]].

Let us evaluate sdisc (ProdL ordChar8 (listL ordChar8)) ~x3 then:

sdisc (ProdL ordChar8 (listL ordChar8)) ~x3 =
[ vs | ys <- sdisc ordChar8 ~x4, vs <- sdisc (listL ordChar8) ys] =
[ vs | ys <- sdisc (NatO 255) ~x5, vs <- sdisc (listL ordChar8) ys] =
[ vs | ys <- [[("c", 2), ("c", 5)], [("ac", 1)], [("ab", 3)]],

vs <- sdisc (listL ordChar8) ys] =
sdisc (listL ordChar8) [("c", 2), ("c", 5)] ++

sdisc (listL ordChar8) [("ac", 1)] ++

sdisc (listL ordChar8) [("ab", 3)] =
sdisc (listL ordChar8) [("", 2), ("", 5)] ++ [[1]] ++ [[3]] =
[[2, 5]] ++ [[1]] ++ [[3]] =
[[2, 5], [1], [3]]

where

~x4 = [(’b’, ("ac", 1)), (’a’, ("c", 2)), (’c’, ("ab", 3)), (’a’, ("c", 5))]

~x4 = [(98, ("ac", 1)), (97, ("c", 2)), (99, ("ab", 3)), (97, ("c", 5))]

Putting everything together we have

sdisc string8 ~x = [[4], [2, 5], [1], [3]].

2

7.4 Bag and set order discrimination

The bag order 〈R〉 on lists can be implemented by sorting each list accord-
ing to R and then applying the lexicographic order on the resulting lists.
Consequently, if r denotes R, we can denote 〈R〉 by bagO r where
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bagO r = MapO (csort r) (listL r)

and where csort is the generic comparison-based sorting function from Fig-
ure 2. This shows that, just like ListL, the order constructor BagO is re-
dundant in the sense that it is definable using the other order constructors,
and we could define

sdisc (BagO r) xs = sdisc (bagO r) xs

as we have done for the lexicographic list order ListL.
This typically6 yields an O(N logN) algorithm, where N is the size of

the input, for bag order discrimination.
We can do asymptotically better, however. The key insight is that, for

the final lexicographic list discrimination step in bag order processing, we
only need the ordinal number of an element of a key, not the element itself.
This avoids reprocessing of the elements after sorting each of the keys.

Definition 7.2 [Ordinal number] Let R be an ordering relation and K =
[k1, . . . , kn], ki ∈ def(R) for all i = 1, . . . , n. The ordinal number NK

R (ki)
of ki under R within K is the maximum number of pairwise R-inequivalent
elements k′ ∈ K such that k′ <R ki. 2

Example 7.3 1. Let K = [0, . . . , n] for n ≥ 0. Let R = [n]. Then
NK
R (k) = k for all k ∈ {0, . . . , n}.

2. Let K = [4, 9, 24, 11, 14] under the even-odd ordering Oeo in Exam-
ple 4.4. Then the ordinal number of 4, 24 and 14 is 0, and the ordinal
number of 9 and 11 is 1.

2

Our discrimination algorithm for BagO r works as follows:

(1) Given input [(~k1, v1), . . . , (~kn, vn)], with ~ki = [ki1, . . . , kimi ], sort the
~ki according to r, but return the ordinal numbers of their elements
under r within [k11, . . . , k1m1 , . . . kn1, . . . , knmn ], instead of the elements
themselves.

(2) Perform lexicographic list order discrimination on listL (NatO l), where
l is the maximal ordinal number of any element in ~k1 . . .~kn under r.

Step 1 is implemented efficiently as follows:

(a) Associate each key element kij with i, its key index.

(b) Discriminate the (key element, key index) pairs for r. This results in
groups of key indices associated with ≡r-equivalent key elements, listed
in ascending r-order. Observe that the j-th group in the result lists the
indices of all the keys that contain a key element with ordinal number
j. Let l be the maximal ordinal number of any key element.

6See Section 14 for the reason for the use of “typically” here.
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sdiscColl :: ([Int] → Int → [Int]) → Order k → Disc [k]

sdiscColl update r xss = sdisc (listL (NatO (length keyNumBlocks - 1))) yss

where

(kss, vs) = unzip xss

elemKeyNumAssocs = groupNum kss

keyNumBlocks = sdisc r elemKeyNumAssocs

keyNumElemNumAssocs = groupNum keyNumBlocks

sigs = bdiscNat (length kss) update keyNumElemNumAssocs

yss = zip sigs vs

Figure 5: Bag and set order discrimination

(c) Associate each key index with each of the ordinal numbers of its key
elements.

(d) Discriminate the (key index, ordinal number) pairs for NatO l. This
results in groups of ordinal numbers representing the key elements of
the same key, but permuted into ascending order. We have to be careful
to also return empty lists of ordinal numbers here, not just nonempty
lists.7 Since the groups are listed by key index, the groups of sorted
ordinal numbers are listed in the same order as the keys [~k1, . . . ,~kn] in
the original input.

Figure 5 shows our implementation of sdiscColl, which abstracts the
common steps for bag and set orders. For bag orders, sdiscColl is passed
the function

updateBag vs v = v : vs

as its first argument. Set order discrimination is similar to bag order dis-
crimination. The only difference is that we use

updateSet [] w = [w]

updateSet vs@(v : _) w = if v == w then vs else w : vs

instead of updateBag. The function updateSet eliminates duplicates in
runs of identical ordinal numbers associated with the same key index in
the computation of sigs. This is tantamount to unique-sorting the ordinal
numbers of the elements of each key in the input.

Example 7.4 Let us trace the execution of sdisc (BagO ordChar8) on
the input

xss = [("bac", 1), ("ac", 2), ("cab", 3), ("", 4), ("ac", 5)].

from Example 7.1.
In sdiscColl we first unzip the value components from the keys:

7This was pointed out by an anonymous referee.
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(kss, vs) = unzip xss

After this step we have

kss = ["bac", "ac", "cab", "", "ac"]

vs = [1, 2, 3, 4, 5]

(a) Next we perform a group numbering, which associates the key index
with each of the element occurrences:

elemKeyNumAssocs = groupNum kss

(Recall that "bac" is Haskell short-hand for [’b’, ’a’, ’c’].) After
this step we have

elemKeyNumAssocs = [(’b’, 0), (’a’, 0), (’c’, 0),

(’a’, 1), (’c’, 1),

(’c’, 2), (’a’, 2), (’b’, 2),

(’a’, 4), (’c’, 4) ].

(b) We discriminate these pairs according to the key element ordering ordChar8:

keyNumBlocks = sdisc ordChar8 elemKeyNumAssocs

which results in

keyNumBlocks = [ [0, 1, 2, 4], [0, 2], [0, 1, 2, 4] ]

in our example. The first group corresponds to key character ’a’, the
second to ’b’ and the third to ’c’. The elements of each group are the
indices, numbered 0, . . . , 4, of keys, in which a member of the particular
equivalence class occurs; e.g. 0 is the index of "bac" and 2 of "cab". So
the group [0, 2] in keyNumBlocks expresses that the equivalence class
represented by that group (the character ’b’) occurs once in the key
with index 0 ("bac") and once in the key with index 2 ("cab"), and in
no other keys. Note that 3 does not occur in keyNumBlocks at all, since
the key with index 3 is empty.

(c) Next we convert keyNumBlocks into its group number representation:

keyNumElemNumAssocs = groupNum keyNumBlocks,

which results in the binding

keyNumElemAssocs = [ (0, 0), (1, 0), (2, 0), (4, 0),

(0, 1), (2, 1),

(0, 2), (1, 2), (2, 2), (4, 2) ].

Each pair (i, j) represents an element containment relation: the key with
index i contains an element with ordinal number j. E.g., the pair (4,

0) expresses that the key with index 4, the second occurrence of "ac",
contains an element with ordinal number 0, the character ’a’.
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(d) We now discriminate these membership pairs:

sigs = bdiscNat 5 updateBag keyNumElemNumAssocs

This collects together all the characters, represented by their ordinal
numbers, that are associated with the same key. Each group thus rep-
resents a key from the input, but with each character replaced by its
ordinal number. Using bdiscNat ensures that the groups are returned
in the same order as the keys in kss and that empty value lists are
returned, too. Since bdisc is stable, it returns the ordinal numbers in
ascending order in each group. The resulting groups of ordinal numbers
in our example are

sigs = [ [0, 1, 2], [0, 2], [0, 1, 2], [], [0, 2] ].

Observe that they represent the original keys kss, but each key ordered
alphabetically into

["abc", "ac", "abc", "", "ac"]

and with ordinal numbers replacing the corresponding key elements.

Finally, we zip sigs with the value components vs from the original xss:

yss = zip sigs vs.

This gives

yss = [( [0, 1, 2], 1), ( [0, 2], 2), ( [0, 1, 2], 3), ([], 4), ([0, 2], 5) ]

Applying the list order discriminator

sdisc (listL (NatO (length keyNumBlocks - 1))) yss

where length keyNumBlocks - 1 = 2, the final output is

[ [4], [1, 3], [2, 5] ],

as desired. 2

Observe how bag and set order discrimination involves a discrimination
step on key elements, which may result in recursive discrimination of nodes
inside those elements, and two other discrimination steps on key indices and
lists of ordinal numbers, respectively, which do not recurse into the keys.

7.5 Correctness

Theorem 7.5 For each order representation r :: Order T, sdisc r is a
stable order discriminator for O[[r]] over T .
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proof (Sketch) By induction on n = max{rank r(ki) | i ∈ {1, . . . , n}},
where ~x = [(k1, v1), . . . , (kn, vn)] is the input to sdisc r. The case for rank
0 is vacuously true. For the inductive case, we inspect each clause of sdisc
in turn. In each case, the maximum rank of keys in a call to sdisc on the
right-hand side is properly less than the maximum rank of the keys in the
call on the left-hand side, which allows us to invoke the induction hypothesis,
and we can verify that the values in the result are grouped as required of a
stable order discriminator for O[[r]]. 2

8 Complexity

In this section we prove that sdisc from Figure 3 typically produces worst-
case linear-time order discriminators. In particular, it does so for the stan-
dard ordering relations on all regular recursive first-order types and thus
yields linear-time partitioning and sorting algorithms for each.

Our machine model is a unit-cost random access machine (RAM) (Tar-
jan 1983) with fixed word width, where values are stored in fully boxed
representation. It has basic instructions operating on constant-sized data.
In particular, operations on pairs (construction, projection), tagged val-
ues (tagging, pattern matching on primitive tags) and iso-recursive types
(folding, unfolding) each take constant time. Unit-cost means that pointer
operations and operations on “small” integers—integer values polynomially
bounded by the size of the input—take constant time. Random access means
that array lookups using small integers as indices also takes constant time.
Fixed word width means that the number of bits per word in RAM memory
is constant (think 32 or 64). In particular, it does not change depending on
the size of the input.8

We define the size of a value as follows.

Definition 8.1 [Size] The (tree) size of a value is defined as follows:

|c| = 1

|()| = 1

|inl v| = 1 + |v|
|inr w| = 1 + |w|
|(v, w)| = 1 + |v|+ |w|
|fold(v)| = 1 + |v|

2

8It might seem strange to allow dynamic word sizes. Such RAMs are, somewhat curi-
ously, not uncommon in algorithms papers, however.
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Note that the size function for pairs adds the size of each component
separately. This means that the size function measures the storage require-
ments of an unshared (unboxed or tree-structured) representation asymptot-
ically correctly, but not of shared data: A directed acyclic graph (dag) with
n elements may represent a tree of size Θ(2n). The size function will conse-
quently yield Θ(2n) even though the dag can be stored in space O(n). The
top-down (purely recursive) method embodied in our generic discriminators
in this paper gives asymptotically optimal performance only for unshared
data. Dealing with sharing efficiently requires bottom-up discrimination
(Paige 1991; Henglein 2003), which builds upon top-down discrimination.
Generic bottom-up discrimination is future work.

We write Tf (v) for the number of steps function f takes on input v.9

Definition 8.2 The set L of linear-time discriminable order representa-
tions is the set of all order representations r such that

Tsdisc r ([(k1, v1), . . . , (kn, vn)]) = O(n+
∑n

i=1 |ki|). 2

8.1 Nonrecursive orders

The question now is: Which order representations are linear-time discrim-
inable? Clearly, a function f must execute in linear time if the discriminator
for MapO f r is to do so, too. Interestingly this is sufficient to guarantee
that each finite order representation yields a linear-time discriminator.

Proposition 8.3 Let r be a finite order representation, where each function
occurring in r executes in linear time and produces an output of size linear
in its input. Then r is linear-time discriminable.

proof By structural induction on r. The key property is that a linear-time
executable function f used as an argument to MapO in r can only increase
the size of its output by a constant factor relative to the size of its input.
Note that the output size limitation does not follow from f executing in
linear time since it may produce a shared data structure with exponentially
larger tree size. 2

It is important to note that the constant factor in the running time
of sdisc r generally depends on r. So this result does not immediately
generalize to order representations for recursive types.

8.2 Recursive orders

To get a sense of when an infinite order representation yields a linear-time
order discriminator, let us investigate a situation where this does not hold.

Consider the order constructor flipflop

9Here, we use “function” in the sense of code implementing a mathematical function.
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flipflop :: Order t → Order [t]

flipflop r = MapO (fromList ◦ reverse)
(SumL ordUnit (ProdL r (flipflop r)))

It orders lists lexicographically, but not by the standard index order on
elements in the list. It first considers the last element of a list, then the
first, then next-to-last, second, next-to-next-to-last, third, etc. Applying
sdisc to flipflop ordChar8 yields a quadratic time discriminator. The
reason for this is the repeated application of the reverse function. We
can observe that also the comparison function comp (flipflop ordChar8)

takes quadratic time.
Let us look at the body of flipflop in more detail: We have an order

representation r which satisfies

r′ = MapO (fromList . reverse) (SumL ordUnit (ProdL r r′ )).

Executing sdisc r′ causes sdisc r′ to be executed recursively. The reason
for nonlinearity is that the recursive call operates on parts of the input that
are also processed by the nonrecursive code, specifically by the reverse

function.
The key idea to ensuring linear-time performance of recursive discrimi-

nators is the following: Make sure that the input can be (conceptually) split
such that the execution of the body of sdisc r′ minus its recursive calls to
the same discriminator sdisc r′ can be charged to one part of the input,
and its recursive call(s) to the other part. Charging means that we attribute
a constant amount of computation to constant amounts of the original in-
put. In other words, the nonrecursive computation steps are not allowed
to “touch” those parts of the input that are passed to the recursive call(s):
They may maintain and rearrange the pointers to those parts, but must not
dereference them. How can we ensure that this is obeyed? We insist that
the nonrecursive computation steps of sdisc r′ only manipulate pointers
to the parts passed to the recursive calls of sdisc r′ without dereferencing
or duplicating them. Intuitively, the nonrecursive code must be parametric
polymorphic in the original sense of Strachey (2000)!

The main technical complication is extending this idea to order repre-
sentations containing MapO. the presence of ensuring this as We do this by,
conceptually, splitting the input keys, viewed from their roots, into top-level
parts, which are are processed nonrecursively, and bottom-level parts, which
are passed to the recursive call(s).

To formalize this splitting idea we extend types and order represen-
tations with formal type variables t1, t2, ..., tn and order variables
r1, r2, ..., rn respectively. For simplicity, we restrict ourselves to adding
a single type variable t1 and a single order variable r1 of type Order t1

here:
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Definition 8.4 Let t1 be a distinct type variable and r1 a formal order
variable.

Then the types T ∞[t1] over t1 are the set of possibly infinite labeled
trees built from the signature

{A(0),×(2),+(2), 1(0), fold (1), t10}.

R∞[r1] is the set of typed labeled trees built from the constructors in
Definition 6.1 with an additional formal constructor r1 :: Order t1. Fur-
thermore, each f occurring in R ∈ R∞[r1] must have polymorphic type
∀t1.T1 → T2 for some T1, T2 ∈ T ∞[t1]. 2

We can now split the size of a value on type T ∈ T ∞[t1] into upper and
lower parts.

Definition 8.5 [Upper and lower sizes] Let T ∈ T ∞[t1]. The lower and
upper sizes |.|T , respectively |.|T , are defined as follows:

|v|t1 = 0

|c|A = 1

|()|1 = 1

|inl v|T1+T2 = 1 + |v|T1

|inr w|T1+T2 = 1 + |w|T2

|(v, w)|T1×T2 = 1 + |v|T1 + |w|T2

|fold(v)|µt.T = 1 + |v|T [(µt.T )/t]

|v|t1 = |v|
|c|A = 0

|()|1 = 0

|inl v|T1+T2 = |v|T1
|inr w|T1+T2 = |w|T2
|(v, w)|T1×T2 = |v|T1 + |w|T2
|fold(v)|µt.T = |v|T [(µt.T )/t]

2

Proposition 8.6 For all values v and types T ∈ T ∞[t1] we have |v| =
|v|T + |v|T whenever both sides are defined.

proof By complete (course of values) induction on |v|. 2

The key property for proving linear-time discriminability for infinite or-
der representations is that polymorphic functions occurring in MapO order
representations must be linear-time computable in a strong sense:
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Definition 8.7 [Strongly linear-time computable function] We say a func-
tion f :: ∀t1.T1 → T2 is strongly linear-time computable if

1. Tf (k) = O(|k|T1).

2. |f(k)|T2 = O(|k|T1).

3. |f(k)|T2 ≤ |k|T1 .

2

Note that the last condition is without O.
Here are some examples of linear-time computable functions:

• The identity function id :: ∀t1.t1→ t1.

• The list length function length :: ∀t1.[t1]→ Int.

• The list reverse function reverse :: ∀t1.[t1]→ [t1].

The argument duplication function dup :: ∀t1.t1 → t1 × t1, on the
other hand, is not linear-time computable: it violates the third condition in
Definition 8.7.

Since we measure the tree size of values, a function can produce outputs
of asymptotically larger size than its running time due to sharing. Consider
the function repFstElem :: ∀t.[t]→ [t], which takes as input [v1, . . . , vn] and

returns [

n︷ ︸︸ ︷
v1, . . . , v1] for n ≥ 1. Applying it to a list with a first element of

size m, followed by m elements of size 1 yields a result of size Θ(m2). It
satisfies Property 1 but not Property 2 (nor Property 3 for that matter).
This shows that Property 1 of Definition 8.7 does not imply Property 2.

We can now give a recipe for constructing order representations over
recursive types that yield linear-time discriminators:

1. Let T = µt1.T ′ be a recursive type with f : T → T ′[T/t1], f(fold(v)) =
v the unfold-part of the isomorphism between T and T ′[T/t1].

2. Find a finite order representation r′ :: Order T ′ containing only strongly
linear-time computable functions.

3. Define r :: Order T recursively by r = MapO f r′[r/r1].

Then R is linear-time discriminable. We sketch a proof of this below.

Definition 8.8 [T 1] Define T 1
sdisc r′[r/r1](~x) to be the execution time of

sdisc r′[r/r1](~x), but not counting any calls of the form sdisc r (~y). 2

Lemma 8.9 Let T = µt1.T ′. Let r :: Order T , r′ :: Order T ′ finite, and
let all functions f occurring in r′ be strongly linear-time computable. Then
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1. T 1
sdisc r′[r/r1](~x) = O(n+

∑n
i=1 |ki|T

′
) where ~x = [(k1, v1), . . . , (kn, vn)].

2. The bag of calls 〈sdisc r (~zj)〉j invoked during execution of sdisc r′[r/r1](~x)
has the property that

∑
j |~zj | ≤

∑n
i=1 |ki|T ′.

proof (Sketch) The proof is by structural induction on r′. The most
interesting cases are MapO f r′′, ListL r′′, BagO r′′, and SetO r′′.

• For MapO f r′′ the requirement of strong linear-time computability of
f is sufficient to make the induction step go through.

• For ListL r′′, consider the recursive applications of sdisc during eval-
uation of sdisc (ListL r′′) ~x. Let us charge the nonrecursive com-
putation steps of a call to sdisc r′′′ (for any r′′′) to the roots (only!)
of the keys in the input. (Recall that we assume a fully-boxed data
representation. The space requirement of each node of such a repre-
sentation is accounted for by the additive constant 1 in Definition 8.1.)
It is straightforward to check that each node is then charged with a
constant number of computation steps, since each node occurs at most
once as the root of a key in the input of a call to sdiscr′′′ for some
r′′′ during the evaluation of sdisc (ListL r′′) ~x.

• For BagO r′′, part 1 of the lemma follows from the fact that, by defini-
tion, sdisc (BagO r) consists of: one invocation of sdisc r, which,
inductively, executes in linear time in the aggregate size of the key
elements of the input; and the remaining steps, which are linear in the
size of the remaining nodes in the input. For Part 2 of the lemma it
is important that only the call to sdisc r operates on key elements,
and the final call sdisc (ListL . . . ) yss is on the ordinal numbers
of the key elements, not the key elements themselves.

• For SetO r′′ the argument is the same as for BagO r′′.

2

We can now apply Lemma 8.9 recursively.

Theorem 8.10 Let T = µt1. T ′ with f :: T → T ′[T/t1], f(fold(v)) = v,
the unfold-function from T . Let r :: Order T and finite r′ :: Order T ′ such
that

r = MapO f (r′[r/r1]).

Furthermore, let all functions occurring in r′ be strongly linear-time com-
putable.

Then r is linear-time discriminable.
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proof Consider sdisc r (~x) where ~y = [(f(k), v)|(k, v) ∈ ~x].

Tsdisc r(~x) = Tsdisc MapO f (r′[r/r1])(~x)

= Tsdisc r′[r/r1](~y) +O(
n∑
i=1

|ki|T
′
) by properties of f

= T 1
sdisc r′[r/r1](~y) +O(

n∑
i=1

|ki|T
′
) + all recursive calls to sdisc r

= O(
n∑
i=1

|ki|T
′
) +O(

n∑
i=1

|ki|T
′
) +

∑
j

Tsdisc r(~zj)

= O(

n∑
i=1

|ki|T
′
) +

∑
j

Tsdisc r(~zj)

where
∑

j |~zj | ≤
∑n

i=1 |ki|T ′ by Lemma 8.9. Since |~x| ≥
∑n

i=1 |ki| =
∑n

i=1 |ki|T
′
+∑n

i=1 |ki|T ′ we can see that the number of the execution steps excepting the
recursive ones to sdisc r is linear bounded by one part of the input, and
all the recursive calls of sdisc r can be attributed to the other part of the
input, with the same constant factor. Consequently, the whole execution is
linear bounded in the size of the keys in the input, and thus sdisc r is
linear-time discriminable. 2

Each regular recursive type T has a standard order rT denoted by a
canonical order representation: product types are ordered by ProdL, sum
types by SumL, Int by its standard order, t1 by r1, and a recursive type
T = µt1. T ′ by r = MapO f (r′[r/r1]) where r′ is the canonical order repre-
sentation for T ′ and f is the unfold function from T to T ′[T/t1].

Corollary 8.11 Let T be a regular recursive first-order type. Then rT , the
canonical order representation for T , is linear-time discriminable.

proof The conditions of Theorem 8.10 are satisfied. 2

We have observed that whenever a discriminator is superlinear, so is the
comparison function. We conjecture that sdisc has the same asymptotic
behavior as the generic binary comparison function comp (see Figure 2).

Conjecture 8.12 Let T ′comp r(n) = max{Tcomp r(x1)(x2) | |x1| + |x2| ≤ n}
and T ′sdisc r(n) = max{Tsdisc r([(k1, v1), . . . , (km, vm)]) |

∑m
i=1 |ki| ≤ n}.

Then T ′sdisc r = O(Tcomp r). 2

The conjecture expresses that discriminators are a proper generalization
of the corresponding comparison functions for all R, not just the linear-time
discriminable: They asymptotically execute within the same computational
resource bounds, but decide the ordering relation on m arguments (of ag-
gregate size n) instead of just 2 arguments (of combined size n).
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data Equiv t where

NatE :: Int → Equiv Int

TrivE :: Equiv t

SumE :: Equiv t1 → Equiv t2 → Equiv (Either t1 t2)

ProdE :: Equiv t1 → Equiv t2 → Equiv (t1, t2)

MapE :: (t1 → t2) → Equiv t2 → Equiv t1

ListE :: Equiv t → Equiv [t]

BagE :: Equiv t → Equiv [t]

SetE :: Equiv t → Equiv [t]

Figure 6: Equivalence representations

9 Equivalence representations

In the previous sections we have seen how to implement order discrimination
efficiently by structural recursion over order representations. In this section
we shall do the same for equivalences. The presentation is condensed where
the techniques are essentially the same as for order discrimination. We
emphasize that the practical benefits of equivalence discrimination are most
pronounced for references, which have no natural ordering relation, and for
problems where the output is not required to be ordered.

9.1 Equivalence constructors

As for ordering relations (Section 6) there are common constructions on
equivalence relations. The following are equivalence relations:

• The empty relation ∅, on any set S.

• The trivial relation S × S, on S.

• For each nonnegative n, the identity relation ≡[n] on {0, . . . n}.

Given E1 ∈ Equiv(T1), E2 ∈ Equiv(T2), f ∈ T1 → T2, the following are also
equivalence relations:

• The sum equivalence E1 +E E2, over T1 + T2, defined by

x ≡E1+EE2 y ⇔


(x = inl x1 ∧ y = inl y1 ∧ x1 ≡E1 y1)∨
(x = inr x2 ∧ y = inr y2 ∧ x2 ≡E2 y2)
for some x1, y1 ∈ T1, x2, y2 ∈ T2.

• The product equivalence E1 ×E E2, over T1 × T2, defined by

(x1, x2) ≡E1×EE2 (y1, y2)⇔ x1 ≡E1 y1 ∧ x2 ≡E2 y2.
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eq :: Equiv t → t → t → Bool

eq (NatE n) x y = if 0 ≤ x && x ≤ n && 0 ≤ y && y ≤ n

then (x == y)

else error "Argument out of range"

eq TrivE _ _ = True

eq (SumE e1 _) (Left x) (Left y) = eq e1 x y

eq (SumE _ _) (Left _) (Right _) = False

eq (SumE _ _) (Right _) (Left _) = False

eq (SumE _ e2) (Right x) (Right y) = eq e2 x y

eq (ProdE e1 e2) (x1, x2) (y1, y2) =
eq e1 x1 y1 && eq e2 x2 y2

eq (MapE f e) x y = eq e (f x) (f y)

eq (ListE e) xs ys = eq (listE e) xs ys

eq (BagE _) [] [] = True

eq (BagE _) [] (_ : _) = False

eq (BagE e) (x : xs’) ys =
case delete e x ys of Just ys’ → eq (BagE e) xs’ ys’

Nothing → False

where

delete :: Equiv t → t → [t] → Maybe [t]

delete e v = subtract’ []

where subtract’ _ [] = Nothing

subtract’ accum (x : xs) =
if eq e x v then Just (accum ++ xs)

else subtract’ (x : accum) xs

eq (SetE e) xs ys =
all (member e xs) ys && all (member e ys) xs

where member :: Equiv t → [t] → t → Bool

member _ [] _ = False

member e (x : xs) v = eq e v x | | member e xs v

Figure 7: Generic equivalence test
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• The preimage f−1(E2) of E2 under f , over T1, defined by

x ≡f−1(E2) y ⇔ f(x) ≡E2 f(y).

• The list equivalence ≡[E1], also written E∗1 , over T ∗1 , defined by

[x1, . . . , xm] ≡[E1] [y1, . . . , yn]⇔
m = n ∧ ∀1 ≤ j ≤ m. xj ≡E1 yj

• The bag equivalence ≡〈E1〉 on T ∗1 , over T ∗1 , defined by

~x ≡〈E1〉 ~y ⇔ ∃x
′.~x ∼= ~x′ ∧ ~x′ ≡[E1] ~y.

(Recall that ~x ∼= ~x′ means that ~x′ is permutation of ~x.)

• The set equivalence {E1} on T ∗1 , over T ∗1 , defined by

~x ≡{E1} ~y ⇔ (∀i.∃j. xi ≡E1 yj) ∧ (∀j.∃i. xi ≡E1 yj).

Treating the equivalence constructions as constructors, we can define
equivalence representations the same way we have done for order repre-
sentations. See Figure 6. Using domain-theoretic arguments as for order
representations (Theorems 5.1 and 6.4), each equivalence representation e,
whether finite or infinite, denotes an equivalence relation E [[e]].

Theorem 9.1 Let e be an equivalence representation. Then E [[e]] is an
equivalence relation.

Analogous to Proposition 6.7 it is possible to characterize E [[e]] by the
generic equivalence testing function eq :: Equiv t -> t -> t -> Bool

in Figure 7.

Proposition 9.2 For all equivalence representations e over T , x, y ∈ T

eq e x y =


True if x ≡O[[e]] y
False if x 6≡O[[e]] y ∧ (x ∈ def(e) ∨ y ∈ def(e))

⊥ if x 6≡O[[e]] y ∧ x 6∈ def(e) ∧ x 6∈ def(e)

9.2 Definable equivalence constructors

We can denote the identity relations (equality) on basic types:

eqUnit :: Equiv ()

eqUnit = TrivE

eqBool :: Equiv Bool

eqBool = MapE bool2sum (SumE eqUnit eqUnit)

where bool2sum :: Bool → Either () ()
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bool2sum False = Left ()

bool2sum True = Right ()

eqNat8 :: Equiv Int

eqNat8 = NatE 255

eqNat16 :: Equiv Int

eqNat16 = NatE 65535

eqInt32 :: Equiv Int

eqInt32 = MapE splitW (ProdE eqNat16 eqNat16)

eqChar8 :: Equiv Char

eqChar8 = MapE ord eqNat8

eqChar16 :: Equiv Char

eqChar16 = MapE ord eqNat16

Observe how equality representation eqInt32 on 32-bit integers is defined
in what appears to be a rather roundabout fashion: It splits integers into
their upper and lower 16-bits and then performs equality on these pairs
componentwise as unsigned 16-bit integers. (The function splitW is defined
in Section 6.2.) The reason for this is as before: To enable efficient basic
discrimination by using a bucket array indexed by 16-bit integers. This can
also be done using 8, 24, or any other number of bits, or any combination
thereof, but we shall restrict ourselves to 16-bit indexed arrays for simplicity.

The general recipe for defining equivalence representations on recursive
types is the same as for order representations in Section 6.4. In particular,
list equivalence is definable as follows:

listE :: Equiv t → Equiv [t]

listE e = MapE fromList (SumE eqUnit (ProdE e (listE e)))

where fromList is as in Section 6.3. Using listE we can define string
equality:

eqString8 :: Equiv String

eqString8 = list eqChar8

10 Generic equivalence discrimination

We can now give the complete definition of the generic equivalence discrim-
inator disc, which is indexed by equivalence representations; see Figure 8.
Let us look at the main differences to sdisc.

10.1 Basic equivalence discrimination

A basic equivalence discriminator is like the bucket-sorting based order dis-
criminator sdiscNat n from Figure 4, with the exception that it returns the

41



disc :: Equiv k → Disc k

disc _ [] = []

disc _ [(_, v)] = [[v]]

disc (NatE n) xs =
if n < 65536 then discNat16 xs else disc eqInt32 xs

disc TrivE xs = [map snd xs]

disc (SumE e1 e2) xs = disc e1 [ (k, v) | (Left k, v) ← xs ] ++
disc e2 [ (k, v) | (Right k, v) ← xs ]

disc (ProdE e1 e2) xs =
[ vs | ys ←disc e1 [ (k1, (k2, v)) | ((k1, k2), v) ← xs ],

vs ← disc e2 ys ]

disc (MapE f e) xs = disc e [ (f k, v) | (k, v) ← xs ]

disc (ListE e) xs = disc (listE e) xs

disc (BagE e) xs = discColl updateBag e xs

disc (SetE e) xs = discColl updateSet e xs

Figure 8: Generic equivalence discriminator disc

groups in the order the keys occur in the input, instead of ordered numer-
ically. It can be implemented as follows. When applied to key-value pairs
~x:

(1) Allocate a bucket table T [0 . . . n] and initialize each bucket to the empty
list. Allocate a variable K for holding key lists, also initialized to the
empty list.

(2) Iterate over all (k, v) ∈ ~x, appending v to T [k], and, if k is encountered
for the first time, append k to K.

(3) Iterate over all keys k ∈ K, outputting T [k].

Figure 9 shows an implementation in Haskell using the ST monad, which
allows encapsulating the imperative updates to a locally allocated array as
an observably side-effect free function. Even though the final index order
traversal is avoided, it still suffers from the same deficit as sdiscNat: Every
application discNatST n ~x results in the allocation and complete initial-
ization of a bucket table T [0 . . . n].

Paige and Tarjan (1987) employ the array initialization trick of Aho
et al. (1983) to get around complete table initialization. We can go one
step further: Avoid allocation of a new bucket table for each call altogether.
The key idea is to use a global bucket table T [0 . . . n], whose elements are
guaranteed to be empty lists before and after a call to the basic equivalence
discriminator.

We define a function discNat, which generates efficient basic equivalence
discriminators. A call to discNat n does the following:
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discNatST :: Int → Disc Int

discNatST n xs =
runST (

do table ← newArray (0, n) [] :: ST s (STArray s Int [v]) ;

ks ← foldM (λkeys (k, v) →
do vs ← readArray table k ;

case vs of [] → do writeArray table k [v] ;

return (k : keys) ;

_ → do writeArray table k (v : vs) ;

return keys )

[] xs ;

foldM (λvss k → do elems ← readArray table k ;

return (reverse elems : vss) )

[] ks

)

Figure 9: Basic equivalence discriminator, implemented using ST monad
Not used—too inefficient!

(1) Allocate a bucket table T [0 . . . n] and initialize each element to the empty
list.

(2) Return a function that, when passed key-value pairs ~x, executes the
following:

(a) Allocate a variable K for a list of keys, initialized to the empty list.

(b) Iterate over all (k, v) ∈ ~x, appending v to T [k] and, if k is encoun-
tered for the first time, appending k to K.

(c) Iterate over all keys k ∈ K, outputting T [k] and resetting T [k] to
the empty list.

Note that executing discNat n allocates a bucket table and returns a func-
tion, where each call reuses the same bucket table. The function requires
that the bucket table contain only empty lists before executing the first step
above (2a); it reestablishes this invariant in the final step (2c). The upshot
is that the function does not allocate a new table every time it is called and
executes in time O(|~x|), independent of n, instead of O(|~x| + n), which is
critical for practical performance.

The basic discriminator returned by a call to discNat n is neither reen-
trant nor thread-safe nor resilient to exceptions thrown during its execution
due to the possibility of unsynchronized accesses and imperative updates to
the bucket table shared by all calls. Consequently, each thread should use
a basic discriminator with a thread-local bucket table, and, in a language
with lazy evaluation such as Haskell, all keys in the input should be fully
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discNat :: Int → Disc Int

discNat n =
unsafePerformIO (

do { table ← newArray (0, n) [] :: IO (IOArray Int [v]) ;

let discNat’ xs = unsafePerformIO (

do { ks ← foldM (λkeys (k, v) →
do { vs ← readArray table k ;

case vs of {

[] → do { writeArray table k [v] ;

return (k : keys) } ;

_ → do { writeArray table k (v : vs) ;

return keys } } } )

[] xs ;

foldM (λvss k → do { elems ← readArray table k ;

writeArray table k [] ;

return (reverse elems : vss) })

[] ks } )

in return discNat’ } )

Figure 10: Basic equivalence discriminator generator discNat

evaluated before the first key is stored in the bucket table. If the basic
discriminator is used for discriminating references implemented by raw ma-
chine addresses, garbage collection needs to be carefully synchronized with
calls to it. Finally, the shared imperative use of a bucket table in multiple
calls makes sound typing of the basic discriminator in Haskell or other cur-
rently employed type systems impossible. In Haskell, it rules out the use of
the ST monad to give a purely functional type to the basic discriminator
returned by discNat n. For these reasons and the central role they play
in practically efficient discrimination, sorting and partitioning, we believe
basic discriminators for 8-, 16-, 32- and 64-bit words should be built into
statically typed functional programming languages as primitives, analogous
to comparison functions being built-in.

For experimentation, we provide an implementation of discNat in Glas-
gow Haskell, utilizing unsafePerformIO to trick Haskell into assigning a
purely functional type to basic equivalence discriminators returned by discNat.
It is given in Figure 10. It corresponds to Cai and Paige’s basic bag discrim-
ination algorithm (Cai and Paige 1995, Section 2.2), but without requiring
uninitialized arrays, as originally described by Paige and Tarjan (1987). As
we shall see in Section 13, it has, in contrast to discNatST or an implementa-
tion based on purely functional arrays,10 run-time performance competitive
with the best comparison-based sorting methods available in Haskell. As

10A Haskell implementation using the Data.Array library turns out to be 2 orders of
magnitude slower (!). To avoid tempting anybody into running it, it is not reproduced
here.
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discColl update e xss = disc (listE (NatE (length keyNumBlocks - 1))) yss

where

(kss, vs) = unzip xss

elemKeyNumAssocs = groupNum kss

keyNumBlocks = disc e elemKeyNumAssocs

keyNumElemNumAssocs = groupNum keyNumBlocks

sigs = bdiscNat (length kss) update keyNumElemNumAssocs

yss = zip sigs vs

Figure 11: Bag and set equivalence discrimination

noted, care must be exercised, however, since the functions returned by
discNat are neither thread-safe nor reentrant.

In disc we make do with a single basic equivalence discriminator, re-
quiring only one global bucket table shared amongst all equivalence discrim-
inators:

discNat16 :: Disc Int

discNat16 = discNat 65535

When discriminating integers we make a case distinction:

disc (NatE n) xs =
if n < 65536 then discNat16 xs else disc eqInt32 xs

For Int-keys whose upper (most significant) 16 bits are all 0s—keys in the
range {0, . . . , 65535}—we invoke discNat16 directly. For keys with a non-
0 bit in the upper half of a 32-bit word, the call to disc eqInt32 results
in first calling discNat16 on the upper 16-bit word halves to partition the
lower 16-bit word halves, which are then processed by discNat16 again.
This results in each 32-bit key being traversed at most twice.

10.2 Bag and set equivalence discrimination

In Section 7.4 we have seen how to perform bag order discrimination, which
treats all permutations of a list as equivalent, by sorting the lists first and
then performing lexicographic list order discrimination.

For BagE e it would seem we have a problem: How to implement disc

(BagE e) if there is no order to sort the lists with, only an equivalence rela-
tion? The key insight, due to Paige (1991, 1994), is that we do not need to
sort the lists making up the keys according to a particular ordering relation,
but that any ordering relation on the actually occurring key elements will
do. Paige called sorting multiple lists according to a common ad-hoc order
weak sorting.

We refine Paige’s idea by not returning the key elements themselves, but
returning their ordinal numbers in the ad-hoc ordering. This is done by
using disc instead of sdisc. The clause
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disc (BagE e) xs = discColl updateBag e xs

for processing bag and set equivalence in Figure 8 employs the auxiliary
function discColl, which is presented in Figure 11. Its only difference to
sdiscColl in Figure 5 is that it calls disc instead of sdisc. Consider in
particular

keyNumBlocks = disc e elemKeyNumAssocs

keyNumElemNumAssocs = groupNum keyNumBlocks

Here, groups of key indices containing e-equivalent key elements are returned
in some order, and the subsequent group numbering associates a particular
number with each key element occurring in any key. The call

sigs = bdiscNat (length kss) update keyNumElemNumAssocs

returns sorted groups of such key element numbers, which are then used in
the call

disc (listE (NatE (length keyNumBlocks - 1))) yss

to perform list equivalence discrimination.

Example 10.1 For illustration of bag equivalence discrimination let us
trace the execution of disc (BagE eqChar8) on the input

xss = [("bac", 1), ("ac", 2), ("cab", 3), ("", 4), ("ac", 5)]

from Example 7.4 and Example 7.1, where we have used it for bag order
discrimination and list order discrimination, respectively.

The initial steps are the same as for bag order discrimination, resulting
in the binding

elemKeyNumAssocs = [(’b’, 0), (’a’, 0), (’c’, 0),

(’a’, 1), (’c’, 1),

(’c’, 2), (’a’, 2), (’b’, 2),

(’a’, 4), (’c’, 4) ].

Now, we discriminate these pairs according to the key element equivalence
eqChar8:

keyNumBlocks = disc eqChar8 elemKeyNumAssocs,

which results in

keyNumBlocks = [ [0, 2], [0, 1, 2, 4], [0, 1, 2, 4] ]

in our example. The groups of key indices are not listed in alphabetic or-
der, but in occurrence order: Since the first occurrence of ’b’ occurs before
the first occurrence of ’a’, which in turn occurs before the first occurrence
of ’c’, the group of indices [0, 2] of the keys containing ’b’ occur first,
[0, 1, 2, 4] containing ’a’ next, and, finally, again [0, 1, 2, 4] con-
taining ’c’, last.

Next we convert keyNumBlocks into its group number representation:
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keyNumElemNumAssocs = groupNum keyNumBlocks,

which results in the binding

keyNumElemAssocs = [ (0, 0), (2, 0),

(0, 1), (1, 1), (2, 1), (4, 1),

(0, 2), (1, 2), (2, 2), (4, 2) ].

We now discriminate keyNumElemAssocs:

sigs = bdiscNat 5 updateBag keyNumElemNumAssocs

The resulting signatures are

sigs = [ [0, 1, 2], [1, 2], [0, 1, 2], [], [1, 2] ].

Observe that they represent the lexicographically ordered keys

["bac", "ac", "bac", "", "ac"]

under the ad-hoc ordering ’b’ < ’a’ < ’c’.
Finally, zipping sigs with the value components vs from the original

xss gives

yss = [([0, 1, 2], 1), ([1, 2], 2), ([0, 1, 2], 3), ([], 4), ([1, 2], 5) ].

Applying the list order discriminator

disc (listE (NatE (length keyNumBlocks - 1))) yss

yields the final output

[ [4], [1, 3], [2, 5] ],

which, though computed differently, is the same as for bag order discrimi-
nation. 2

Discrimination for set equivalence is done similar to bag equivalence.

10.3 Correctness and complexity

Theorem 10.2 Let e :: Equiv T. Then disc e is a stable discriminator
for E [[e]] over T .

proof (Sketch) Analogous to the proof of Theorem 7.5: The domain-
theoretic construction of E [[e]] gives rise to the notion of rank, which can then
be used to prove that the theorem is true for all inputs with keys of finite
rank. (Note that the definition of discriminator requires a discriminator
only to be defined on keys of finite rank.) 2

Analogous to definitions employed in Theorem 8.10, disc e executes in
linear time for a large class of equivalence representations.
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Theorem 10.3 Let T = µt1.T ′ with f : T → T ′[T/t1] the unfold-function
from T . Let e :: Equiv T and finite e′ :: Order T’ such that

e = MapE f (e′[e/e1])

where e, e′ are equivalence representations over T and T ′, respectively, t1 is
a formal type variable and e1 :: Order t1 a formal equivalence variable.

Then disc e executes in linear time.

proof Analogous to the proof of Theorem 8.10. 2

11 Representation independence

In the introduction we have motivated the importance of representation
independence for discriminators without, however, formalizing it. In this
section we define precisely two levels of representation independence, partial
and full abstraction; point out that sdisc is fully abstract for ordering
relations; analyze the representation independence properties of disc; and
show how to make it fully abstract.

11.1 Partial and full abstraction

Definition 11.1 [Key equivalence] Let P be a binary relation. Lists ~x and
~y are key equivalent under P if ~x (P × id) ~y. 2

Definition 11.2 [Partially abstract discriminator] A discriminator D for
equivalence relation E is partially abstract if D(~x) = D(~y) whenever ~x and
~y are key equivalent under E. 2

Combining this property with the parametricity property of Definition 4.2,
a partially abstract discriminator for equivalence relation E satisfies, for all
Q, D(~x)Q∗∗D(~y) whenever ~x (E ×Q)∗~y.

Partial abstraction protects against the effect of replacing a key by an
equivalent one becoming observable in the result of a discriminator. But
what if we replace all keys in the input to a discriminator by completely
different ones, but such that the pairwise equivalences are the same as be-
fore? Consider again the case of reference discrimination in Section 1, where
references are represented by raw machine addresses. Since the raw machine
addresses may be different between multiple runs of the same program and
furthermore be subject to changes due to copying garbage collection, the re-
sult of discrimination with references as keys should only depend on which
pairwise equalities hold on the keys in the input and nothing else.
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Definition 11.3 [P -correspondence] Let P be a binary relation. We say
that lists ~x = [(k1, v1), . . . , (km, vm)] and ~l = [(l1, w1), . . . , (ln, wn)] are P -
correspondent and write ~x ≈P ~y if m = n and for all i, j ∈ {1 . . . n} we have
vi = wi and ki P kj ⇔ li P lj . 2

Definition 11.4 [Fully abstract discriminator] A discriminator D for equiv-
alence relation E is fully abstract if it makes P -correspondent inputs indis-
tinguishable: For all ~x, ~y, if ~x ≈P ~y then D(~x) = D(~y).

Likewise, an order discriminator for ordering relation R is fully abstract
if it makes R-correspondent inputs indistinguishable. 2

If E is an equivalence relation, it is easy to see that E-correspondence
implies key-equivalence under E:

Proposition 11.5 If ~x (E∗ × id)~y then ~x ≈E ~y.

The converse does not hold: [(4, ”A”), (4, ”B”)] ≈= [(7, ”A”), (7, ”B”)] but,
obviously, [(4, ”A”), (4, ”B”)] 6= [(7, ”A”), (7, ”B”)].

Proposition 11.6 Let D be a discriminator for E. If D is fully abstract
then it is partially abstract.

Full abstraction is thus a stronger property than partial abstraction, which
explains our choice of terminology.

11.2 Full abstraction of generic order discrimination

Proposition 11.7 sdisc r is a fully abstract discriminator for O[[r]].

proof This follows from sdisc being a stable order discriminator. 2

Observe that, even though sdisc r is fully abstract as an order discrim-
inator for O[[r]], it is not fully abstract as a discriminator for the equivalence
relation ≡O[[r]]. This is for the simple reason that it always returns its groups
in ascending order, making the key ordering observable. Full abstraction for
≡O[[r]] would require it to ignore the order, which is anathema to the dis-
criminator being an order discriminator to start with.

Example 11.8 Consider the discriminator sdisc ordNat8 applied to
[(5, ”foo”), (8, ”bar”), (5, ”baz”)]. It returns [[”foo”, ”baz”], [”bar”]], and ap-
plied to [(6, ”foo”), (1, ”bar”), (6, ”baz”)] it returns [[”bar”], [”foo”, ”baz”]].

Note that [(5, ”foo”), (8, ”bar”), (5, ”baz”)] and [(6, ”foo”), (1, ”bar”), (6, ”baz”)]
are =-correspondent, where = denotes equality on unsigned 8-bit integers.
By Definition 11.4, a discriminator that is fully abstract under = must re-
turn the same result for these two inputs. Clearly sdisc ordNat8 does not.
2
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11.3 Representation independence properties of generic equiv-
alence discrimination

As discussed in the introduction, our intention is for a discriminator for
an equivalence relation to be representation-independent: The result should
only depend on the pairwise equivalences that hold on the key components
of an input, not the key values themselves in any other way. In other words,
it should behave as if it were programmed using a binary equivalence test
only, but it should execute a lot faster. Let us consider the equivalence
constructors, starting with integer segment equality.

Theorem 11.9 The basic equivalence discriminator discNat n from Sec-
tion 10.1 is fully abstract under equality on {0, . . . n}.

proof The algorithm builds a list of unique keys in the order of their first
occurrence in the input and then traverses the list to output the associated
groups of values. For correspondent inputs there is a one-to-one mapping
between keys in one input and in the other input such that the respective
unique key lists are, elementwise, in that relation. Consequently, outputting
the associated values in order of the key lists yields the same groups of values
in both cases. 2

This is a best-case scenario: the basic equivalence discriminator is not
only efficient because it ignores the key order, but precisely because of that
it is also fully abstract !

Unfortunately, the equivalence discriminators for sum and product equiv-
alences only preserve partial abstraction, and for bag and set equivalences
we do not even get partially abstract discriminators.

Proposition 11.10 disc is partially abstract for equivalences not contain-
ing BagE or SetE.

As the following example shows, this proposition unfortunately does not
extend to bag and set equivalences.

Example 11.11 Since "ab" and "ba" are BagE eqChar8-equivalent,
[("ab", 1), ("a", 2), ("b", 3)] and [("ba", 1), ("a", 2), ("b", 3)]

are key-equivalent under BagE eqChar8-equivalence. We have that
disc (BagE eqChar8) [("ab", 1), ("a", 2), ("b", 3)] evaluates to
[[2],[1],[3]], but
disc (BagE eqChar8) [("ba", 1), ("a", 2), ("b", 3)] evaluates to
[[3],[1],[2]]. 2

If fully abstract equivalence discrimination is required, we can accom-
plish it by sorting the value groups returned by disc according to the po-
sition of first occurrence of the first value of an output group in the input.
This can be done as follows:
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edisc’ :: Equiv k → Disc k

edisc’ e xs = map (map snd)

(dsort (ListL (ProdL (NatO (length xs)) TrivO))

(disc e xs’))

where xs’ = map relabel (zip xs ([0..] :: [Int]))

relabel ((k, v), pos) = (k, (pos, v))

edisc :: Equiv k → Disc k

edisc e xs | reqPostProc e = edisc’ e xs

edisc e xs | otherwise = disc e xs

where reqPostProc :: Equiv t → Bool

reqPostProc (NatE _) = False

reqPostProc TrivE = False

reqPostProc (SumE _ _) = True

reqPostProc (ProdE _ _) = True

reqPostProc (MapE _ e) = reqPostProc e

reqPostProc (ListE _) = True

reqPostProc (BagE _) = True

reqPostProc (SetE _) = True

Figure 12: Fully abstract equivalence discriminators edisc’ and edisc.

1. Label input pairs with their input position.

2. Perform equivalence discrimination using disc.

3. Sort groups of values returned in Step 2 by their position labels: List
the group with a value occurring before the values of another group
before that group.

4. Remove labels.

The sorting step can done by applying the generic sorting function dsort

(defined in the following section) to a suitable order representation. This
illustrates the method of solving a sorting or partitioning problem by finding
the “right” ordering relation, respectively equivalence relation. It is captured
in the code of edisc’ presented in Figure 12. Recall that disc is stable,
which ensures that the position label of the first value in a group is the left-
most position of any value in that group. Furthermore, computationally only
the first element in each group is inspected by dsort, without processing
the remaining elements.

For some equivalence representations the sorting step is not necessary.
The function edisc in Figure 12 first checks the equivalence representation
passed to it and only performs the more complex label-discriminate-sort-
unlabel steps if it contains an order constructor that does not preserve full
abstraction.
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spart :: Order t → [t] → [[t]]

spart r xs = sdisc r [ (x, x) | x ← xs ]

sort :: Order t → [t] → [t]

sort r xs = [ y | ys ← spart r xs, y ← ys ]

usort :: Order t → [t] → [t]

usort r xs = [ head ys | ys ← spart r xs ]

Figure 13: Generic discriminator-based partitioning, sorting and unique-
sorting

Theorem 11.12 Both edisc’ e and edisc e are fully abstract equivalence
discriminators for E [[e]].

The position numbering technique is a generally useful instrumentation
technique for representing positional order as an ordering relation. It can
be used to force a sorting algorithm to produce stable results and to ensure
that query results are eventually produced in the semantically specified order
despite using intermediate operations that treat them as multisets (Grust
et al. 2004).

12 Applications

We present a few applications of order and equivalence discrimination in-
tended to illustrate some of the expressive power of order and equivalence
representations and the asymptotic efficiency achieved by generic discrimi-
nation.

12.1 Sorting and partitioning by discrimination

Generic sorting and partitioning functions can be straightforwardly defined
from generic discriminators.

A list of keys can be partitioned in ascending order by associating each
key with itself and then performing an order discrimination:

spart :: Order t → [t] → [[t]]

spart r xs = sdisc r [ (x, x) | x ← xs ]

By flattening the result of spart we obtaining the discriminator-based
generic sorting function

dsort :: Order t → [t] → [t]

dsort r xs = [ y | ys ← spart r xs, y ← ys ].

Since sdisc produces stable order discriminators, dsort, likewise, produces
a stable sorting function for each order representation.
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Choosing the first element in each group output by spart, lets us define
a unique-sorting function:

dusort :: Order t → [t] → [t]

dusort r xs = [ head ys | ys ← spart r xs ]

It sorts its input, but retains only one element among equivalent keys. In
particular, it can be used to efficiently eliminate duplicates in lists of ele-
ments of ordered types. Choosing the first element in each group combined
with stability of sdisc guarantees that the output of dusort contains the
first-occurring representative of each equivalence class of input keys. It can
be used to eliminate duplicates and put the elements into a canonical order.

The function part

part :: Equiv t → [t] → [[t]]

part e xs = disc e [ (x, x) | x ← xs ]

partitions its input according to the equivalence representation passed to it.
The function reps

reps :: Equiv t → [t] → [t]

reps e xs = [ head ys | ys ← part e xs ]

is analogous to dusort, but for equivalence representations: it selects a
single representative from each equivalence class.

As alternatives, we can use edisc instead of disc in the definitions of
part and reps:

epart :: Equiv t → [t] → [[t]]

epart e xs = edisc e [ (x, x) | x ← xs ]

ereps :: Equiv t → [t] → [t]

ereps e xs = [ head ys | ys ← epart e xs ]

The full abstraction and stability properties of edisc guarantee that epart
returns partitions in order of first occurrence (of some element of an equiva-
lence class) in the input; and ereps lists the first-occurring representative of
each equivalence class. Functions reps and ereps are analogous to Haskell’s
nubBy, which eliminates E-duplicates from an input list when passed an
equality test for E, but reps and ereps do so asymptotically faster, avoid-
ing the inherent quadratic complexity of nubBy due to Proposition 1.1. The
performance difference is dramatic in practice. For example, using Glasgow
Haskell11 the call

length (nubBy (λ x y → x + 15 == y + 15) [1..n])

has super-second performance already for n ≈ 1500. The corresponding call

length (reps (MapE (+ 15) eqInt32) [1..n])

11See Section 13 for more information on experimental set-up.
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still displays sub-second performance for n ≈ 700000. Even nub, when ap-
plied to integers, which in Glasgow Haskell runs about 100 times faster than
when given a user-defined equality test such as the one above, is dramatically
outperformed by reps and ereps. For example, evaluation of

length (reps eqInt32 [1..1000000])

takes approximately 1.5 seconds, whereas the corresponding evaluation

length (nub [1..1000000])

takes about 1.5 hours (!).

12.2 Word occurrences

Consider a text. After tokenization we obtain a list of string-integer pairs,
where each pair (w, i) denotes that string w occurs at position i in the
input text. We are interested in partitioning the indices such that each
group represents all the occurrences of the same word in the text. This is
accomplished by the following function:

occsE :: [(String, Int)] → [[Int]]

occsE = disc eqString8

Each group of indices returned points to the same word in the original text.
If we wish to return the group in the lexicographic order of the words they
index we use sdisc:

occsO :: [(String, Int)] → [[Int]]

occsO = sdisc ordString8

If we wish to find occurrences modulo the case of the letters, so the
occurrences of “Dog”, “dog” and “DOG” are put into the same equivalence
class we simply change the equivalence, respectively order representation,
correspondingly:

ordString8Ins :: Order String

ordString8Ins = listL (MapO toUpper ordChar8)

occsCaseInsE :: [(String, Int)] → [[Int]]

occsCaseInsE = disc (equiv ordString8Ins)

occsCaseInsO :: [(String, Int)] → [[Int]]

occsCaseInsO = sdisc ordString8Ins

Here, toUpper is function that maps lower-case characters to their upper-
case counterparts and acts as the identity on all other characters. We could
also use toLower instead of toUpper, which illustrates that the same order
may have multiple representations. The function equiv produces a repre-
sentation of the largest equivalence contained in the ordering denoted by its
input. See Section 14.1 for its definition.
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12.3 Anagram classes

A classical problem treated by Bentley (1983) is anagram classes: Given a
list of words from a dictionary, find their anagram classes; that is, find all
words that are permutations of each other, and do this for all the words in
the dictionary. This is tantamount to treating words as bags of characters,
and we thus arrive at the following solution:

anagrams :: [String] → [[String]]

anagrams = part (BagE eqChar8)

This is arguably the shortest solution to Bentley’s problem, and it even im-
proves his solution asymptotically: it runs inO(N) time instead of Θ(N logN).

If we want to find anagram classes modulo the case of letters we use a
modified equivalence representation, analogous to the way we have done in
the word occurrence problem:

anagramsCaseIns :: [String] → [[String]]

anagramsCaseIns = part (BagE (MapE toUpper eqChar8))

Anagram equivalence is bag equivalence for character lists. If we want
to find bag-equivalent lists where the elements themselves are sets (also rep-
resented as lists, but intended as set representations), which in turn contain
bytes, the corresponding equivalence can be represented as follows:

bsbE :: Equiv [[Int]]

bsbE = BagE (SetE eqNat8)

Discrimination and partitioning functions are then definable by applying
disc and part, respectively, to bsbE.

12.4 Lexicographic sorting

Let us assume we want to sort lists of elements; e.g. strings, lists of char-
acters. Sorting in ascending alphabetic, descending alphabetic and case-
insensitive ascending order can be solved as follows:

lexUp = dsort ordString8

lexDown = dsort (Inv ordString8)

lexUpCaseIns = dsort (ListL (MapO toUpper ordChar8))

The elements need not be fixed-sized. The corresponding functions for lex-
icographic sorting of lists of strings are

lexUp2 = dsort (ListL ordString8)

lexDown2 = dsort (Inv (ListL ordString8))

lexUpCaseIns2 = dsort (ListL (listL (MapO toUpper ordChar8)))

Each of these lexicographic sorting functions operates left-to-right and
inspects only the characters in the minimum distinguishing prefix of the
input; that is, for each input string the minimum prefix required to dis-
tinguish the string from all other input strings. (If a string occurs twice,
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all characters are inspected.) It has the known weakness (Mehlhorn 1984),
however, that there are usually many calls to the Bucketsort-based discrimi-
nator sdiscNat n. Each call to sdiscNat n with a list of m key-value pairs
traverses an entire bucket table of size n. So traversal time is O(n + m),
which means n dominates for small values of m.

If the output does not need to be alphabetically sorted, traversal time can
be made independent of the array size by employing the basic bag discrimi-
nator of Figure 10. This motivated Paige and Tarjan to break lexicographic
sorting into two phases: In the first phase they identify equal elements, but
do not return them in sorted order; instead they build a trie-like data struc-
ture. In the second phase they traverse the nodes in this structure in a single
sweep and make sure that the children of each node are eventually listed in
sorted order, arriving at a proper trie representation of the lexicographically
sorted output (Paige and Tarjan 1987, Section 2). Even though building an
intermediate data structure such as a trie may at first appear too expensive
to be useful in practice, a similar two-phase approach is taken in what has
been claimed to be the fastest string sorting algorithm for large data sets
(Sinha and Zobel 2003).

Another solution is possible, however, which does not require building a
trie for the entire input. Consider the code for discrimination of pairs:

sdisc (ProdL r1 r2) xs =
[ vs | ys ← sdisc r1 [ (k1, (k2, v)) | ((k1, k2), v) ← xs ],

vs ← sdisc r2 ys ]

We can see that sdisc r2 is called for each group ys output by the first
discrimination step. If r2 is NatO n, the repeated calls of disc r2 are calls
to the bucket sorting based discriminator sdiscNat n. The problem is that
each such call may fill the array serving as the bucket table with only few
elements before retrieving them by sequential iteration through the entire
array. It is possible to generalize Forward Radixsort (Andersson and Nilsson
1994, 1998), a left-to-right (most significant digit first, MSD) Radixsort that
visits only the minimum distinguishing prefixes and avoids sparse bucket
table traversals. The idea is to combine all calls to disc r2 into a single
call by applying it to the concatenation of all the groups ys. To be able
to distinguish from which original group an element comes, each element is
tagged with a unique group number before being passed to disc r2. The
output of that call is concatenated and discriminated on the group number
they received. This produces the same groups as in the code above.

Formally, this can be specified as follows:

sdisc (ProdL r1 r2) xs =
sdisc (NatO (length yss)) (concat (sdisc r2 zss))

where yss = sdisc r1 [ (k1, (k2, v)) |
((k1, k2), v) ← xs ]

zss = [ (k2, (i, v)) |
(i, ys) ← zip [0..] yss, (k2, v) ← ys ]
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Going from processing one group at a time to processing all of them
in one go is questionable from a practical perspective: it is tantamount
to going from strict depth-first processing of groups to full breadth-first
processing, which has bad locality. To wit, when using basic equivalence
discrimination (Cai and Paige 1995), which does not incur the penalty of
traversal of empty buckets, breadth-first group processing has been observed
to have noticeably worse practical performance than depth-first processing
(Ambus 2004, Section 2.4).

We believe that concatenating not all groups ys returned by disc r1 in
the defining clause for disc (Pair r1 r2), but just sufficiently many to fill
the bucket table to “pay” for its traversal may lead to a good algorithm that
retains the advantages of MSD radix sorting without suffering the cost of
near-empty bucket table traversals. Even for the special case of string sort-
ing, this does not seem to have been explored yet, however: Forward Radix-
sort uses pure breadth-first processing, and other MSD-Radixsort imple-
mentations are based on Adaptive Radixsort (Andersson and Nilsson 1998;
Maus 2002; Al-Badarneh and El-Aker 2004).

12.5 Type isomorphism

Consider finite type expressions built from type constructors × (product)
and other constructors such as → (function type) and Bool (Boolean type).
We say two type expressions are A-isomorphic if one can be transformed
into the other using equational rewriting and associativity of the product
constructor: (T1 × T2) × T3 = T1 × (T2 × T3) for all T1, T2, T3. The A-
isomorphism problem for nonrecursive types is the problem of partitioning
a set of type expressions into A-isomorphic equivalence classes.

The problem can be solved as follows. We define a data type for type
expressions:

data TypeExp = TCons String [TypeExp]

| Prod TypeExp TypeExp

Here the Prod constructor represents the product type constructor; it is
singled out from the other type constructors since it is to be treated as an
associative constructor.

In the first phase type expressions are transformed such that products
occurring in a type are turned into an n-ary product type constructor applied
to a list of types, none of which is a product type. This corresponds to
exploiting the associativity property of ×. We can use the following data
type for representing the transformed type expressions:

data TypeExp2 = TCons2 String [TypeExp2]

| Prod2 [TypeExp2]

The transformation function trans can be defined as follows:
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trans (Prod t1 t2) = Prod2 (traverse (Prod t1 t2) [])

trans (TCons c ts) = TCons2 c (map trans ts)

traverse (Prod t1 t2) rem = traverse t1 (traverse t2 rem)

traverse (TCons c ts) rem = TCons2 c (map trans ts) : rem

Transformed type expressions are isomorphic if they are structurally
equal, which is denoted by the following equivalence representation:

prod2 :: Order TypeExp2

prod2 = MapE unTypeExp2

(SumE (ProdE eqString8 (ListE prod2)) (ListE prod2))

where

unTypeExp2 (TCons2 v cts) = Left (v, cts)

unTypeExp2 (Prod2 cts) = Right cts

is the unfold direction of the isomorphism between TypeExp2 and Either

(String, [TypeExp2]) [TypeExp2].
The complete solution to the type isomorphism problem with an asso-

ciative type constructor is then

typeIsoA :: [TypeExp] → [[TypeExp]]

typeIsoA = part (MapE trans prod2)

It is easy to see that trans executes in linear time on unshared type expres-
sions, and by Theorem 8.10 the second phase also operates in linear time.
It should be noted that the above is the entire code of the solution.

A harder variant of this problem is AC-isomorphism where the product
constructor is both associative and commutative: T1 × T2 = T2 × T1 for all
T1, T2. Application of trans handles associativity as before, and commuta-
tivity can be captured by the equivalence denoted by

prod3 :: Order TypeExp2

prod3 = MapE unTypeExp2

(SumE (ProdE eqString8 (ListE prod2)) (BagE prod3))

The only change to prod2 is the use of BagE prod3 instead of ListL prod2.
The complete solution to the type isomorphism problem with an associative-

commutative type constructor is thus

typeIsoAC :: [TypeExp] → [[TypeExp]]

typeIsoAC = part (MapE trans prod3)

By Theorem 10.3 typeIsoAC executes in worst-case linear time.
It has been shown that this problem can be solved in linear time over tree

(unboxed) representations of type expressions (Jha et al. 2008) by applying
bottom-up bag discrimination for trees with weak sorting (Paige 1991). For
pairs of types this has also been proved separately (Zibin et al. 2003; Gil
and Zibin 2005), where basic bag discrimination techniques due to Cai and
Paige (1991, 1995) have been rediscovered.

58



The above shows that the same result is an instance of our master theo-
rem for linear time discriminability for equivalences. In particular, bottom-
up multi-set discrimination is not required, as previously claimed (Henglein
2008). Our bag and set equivalence discrimination techniques of Section 10.2
are sufficient.

The type isomorphism problem with an associative-commutative prod-
uct type constructor is a special case of the term equality (isomorphism)
problem with free, associative, associative-commutative and associative-
commutative-idempotent operators. By generalizing trans to work on mul-
tiple associative operators and using BagE for commutative operators and
SetE for commutative-idempotent operators, the solution above can be gen-
eralized to a linear-time solution for the general term equality problem.12

12.6 Discrimination-based joins

Relational queries are conveniently represented by list comprehensions (Trinder
and Wadler 1988). For example,

[(dep, acct) | dep ← depositors, acct ← accounts,

depNum dep == acctNum account ]

computes the list of depositor/account-pairs with the same account number.
The problem is that a naive execution of the query is inadvisable since it

explicitly iterates through the Cartesian product of depositors and accounts
before filtering most of them out again.13 For this reason, database systems
employ efficient join algorithms for performing the filtering without iterating
over all the elements of the Cartesian product explicitly.

We show how to implement an efficient generic join algorithm for a
large class of equivalence relations by using the generic discriminator disc

in Figure 8.
To start with, let us define types for the entities of relational algebra:

sets, projections and predicates.

data Set a = Set [a]

data Proj a b = Proj (a → b)

data Pred a = Pred (a → Bool)

Note that these definitions generalize relational algebra: sets may be of
any type, not just records of primitive types; we allow arbitrary functions,
not only projections on records; predicates may be specified by any Boolean
function, not just equality and inequality predicates involving projections.

The core relational algebra operators select, project, prod then cor-
respond to filter, map and explicit Cartesian product construction:

12It should be emphasized that it is linear in the tree size of the input terms. The linear
time bound does not apply to the graph size of terms represented as acyclic graphs.

13It is even worse if the Cartesian product is materialized. Haskell’s lazy evaluation
avoids this, however.
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select :: Pred a → Set a → Set a

select (Pred c) (Set xs) = Set (filter c xs)

project :: Proj a b → Set a → Set b

project (Proj f) (Set xs) = Set (map f xs)

prod :: Set a → Set b → Set (a, b)

prod (Set xs) (Set ys) = Set [(x, y) | x ← xs, y ← ys]

Using the above operators our example can be written as

select (Proj λ (dep, acct) → depNum dep == acctNum account)

(prod depositors accounts)

We can add a generic (equi)join operation with the following type:

join :: Proj a k → Equiv k → Proj b k → Set a → Set b → Set (a, b)

It can naively be implemented as follows:

join (Proj f1) e (Proj f2) s1 s2 =
select (Pred (λ (x, y) → eq e (f1 x) (f2 y))) (prod s1 s2)

Using join our example query can now be formulated as follows:

join (Proj depNum) eqNat16 (Proj acctNum) depositors accounts

if all account numbers are in the range [0 . . . 65535]. (If account numbers can
be arbitrary 32-bit integers, we simply replace eqNat16 above by eqInt32.)
Nothing is gained, however, without a more efficient implementation of join:
the time complexity is still Θ(mn) if m,n are the number of records in
depositors, respectively accounts.

The key idea in improving performance is that the result of join (Proj

f1) e (Proj f2) s1 s2 consists of the union of the Cartesian products
of records x, y from s1, s2, respectively, such that f1 x and f2 y are
e-equivalent.

Usually hashing or sorting, restricted to equality on atomic types, are
used in efficient join-algorithms in a database setting. We show how to do
this using generic equivalence discrimination for arbitrary denotable equiv-
alence relations, including for complex types and references, which have
neither an ordering relation nor a hash function.14

The following describes the steps:

1. Form the lists [(f1(x), inl x) | x ∈ s1] and [(f2(y), inr y) | y ∈ s2] and
concatenate them.

2. Apply disc e to this list.

14We do not discuss the requirements of I/O efficiency for data stored on disk here, but
appeal to the scenario where the input data are stored or produced in main memory.
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[(5, “B”),  
 (4, “A”),  
 (7, “J”)] 

[(20, “P”),  
 (88, “C”),  
 (11, “E”)] 

[(5, Le8 (5, “B”)),  
 (4, Le8 (4, “A”)),  
 (7, Le8 (7, “J”))] 

[(20, Right (20, “P”)),  
 (88, Right (88, “C”)),  
 (11, Right (11, “E”))] 

[(5, Le8 (5, “B”)),  
 (4, Le8 (4, “A”)), 
 (7, Le8 (7, “J”)),  
 (20, Right (20, “P”)),  
 (88, Right (88, “C”)),  
 (11, Right (11, “E”))] 

[[ Le8 (5, “B”),  Le8 (7, “J”), Right (11, “E”) ], 
  [ Le8 (4, “A”),  Right (20, “P”),  Right (88, “C”)]] 

[([ (5, “B”),  (7, “J”)],        [(11, “E”) ]), 
  ([(4, “A”)],                          [(20, “P”), (88, “C”)]] 

[  ((5, “B”), (11, “E”)), ((7, “J”), (11, “E”)), 
   ((4, “A”), (20, “P”)), ((4, “A”), (88, “C”)) ]   

++ 

disc evenOdd 

bs = 

xs =  = ys 

map split 

fprods = 

mulAply out 

Figure 14: Example: Execution of discrimination-based join

3. Each group in the result of the discriminator consists of records from
s1 and s2. Compute the Cartesian product of the s1-records with
the s2-records for each group, and finally concatenate the Cartesian
products for each group.

This can be coded as follows:

join :: Proj a k → Equiv k → Proj b k → Set a → Set b → Set (a, b)

join (Proj f1) e (Proj f2) (Set xs) (Set ys) =
Set [ (x, y) | (xs, ys) ← fprods, x ← xs, y ← ys ]

where bs = disc e ([(f1 x, Left x) | x ← xs] ++
[(f2 y, Right y) | y ← ys])

fprods = map split bs

Figure 14 illustrates the evaluation of

join (Proj fst) (Equiv evenOdd) (Proj fst)

(Set [(5, "B"), (4, "A"), (7, "J")])

(Set [(20, "P"), (88, "C"), (11, "E")])

Recall that evenOdd = MapE (‘mod‘ 2) (NatE 1) denotes the equivalence
Eeo of Example 4.4.

With this implementation of join the query

join (Proj depNum) eqNat16 (Proj acctNum) depositors accounts

executes in time linear in the size of its input and output.
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Note that this discriminatory-join algorithm admits complex element
types and equivalence relations on them such as bag-equivalence, which is
not supported in ordinary relational algebra or MapReduce-frameworks, and
it still works in worst-case linear time.

The tagging of records before submitting them to a discriminator and
the subsequent separation can be avoided by employing a binary discrimi-
nator disc2, which can be defined generically, completely analogous to the
definition of disc.

Query evaluation can be further improved by using lazy (symbolic) data
structures for representing Cartesian products and unions (Henglein 2010;
Henglein and Larsen 2010).

13 Performance

We have shown that the generic top-down discriminators sdisc, disc and
edisc are representation independent—in the case of disc to a limited
degree—and asymptotically efficient in the worst case. In this section we
take a look at the practical run-time performance of our discriminators and
compare them to comparison-based sorting algorithms in Haskell.

Drawing general conclusions about the performance of discrimination
from benchmark figures is difficult for a number of obvious reasons: Apply-
ing descriptive statistical methods per se allows drawing conclusions only for
the particular benchmark suite under scrutiny. Employing inferential sta-
tistical methods to extend conclusions to a larger data set requires careful
experimental design with random sampling, blind and double blind set-ups
and such. Furthermore, the performance measured reflects the amalgam of
the algorithm, its particular implementation, the language it is implemented
in, the particular compiler, run-time system and machine it is executed
on. Haskell employs lazy evaluation, asynchronous garbage collection and
a memory model that leaves it to the compiler how to represent and where
to allocate data in memory, which makes for convenient high-level program-
ming, but also makes interpretation of performance results tenuous.

Having stated this general disclaimer, we pose the following two hypothe-
ses and set out to support them empirically in this section.

• Equivalence discrimination using disc is radically more efficient than
discrimination or partitioning using an equivalence test only.

• The time performance of sdisc and disc is competitive with (and in
some cases superior to) standard comparison-based sorting algorithms.

We furthermore believe that generic discrimination is a promising basis for
engineering highly run-time efficient code for modern parallel computer ar-
chitectures, notably GPGPU, multicore and MapReduce-style (Dean and
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Ghemawat 2004) distributed compute server architectures. This is not in-
vestigated here, however.

The first hypothesis is easy to validate. Proposition 1.1 shows that a par-
titioning algorithm using only equivalence tests requires a quadratic number
of equivalence tests. In Section 12.1 we have seen that even for small data
sets (say 100,000 keys) such an algorithm is no longer usable on the current
generation of personal computers and that disc-based partitioning operates
in the subsecond range on such data sets.

To investigate the second hypothesis we perform two experiments on
randomly generated inputs. In each case we discriminate inputs whose keys
are lists of integers. In the first experiment we discriminate for the standard
lexicographic ordering on integer lists. Note that its induced equivalence
relation is list equality. In the second experiment we discriminate the same
inputs, but for the Dershowitz-Manna multiset ordering, respectively bag
equivalence.

The Dershowitz-Manna multiset ordering (Dershowitz and Manna 1979),
restricted to total preorders (Jouannaud and Lescanne 1982), is denoted by

multiset :: Order t → Order [t]

multiset r = MapO (dsort (Inv r)) (ListL r).

It is well-founded if and if its element ordering is well-founded, which has ap-
plications in proving termination of rewriting systems. The only difference
of multiset r to BagO r is that the former sorts lists in descending order in-
stead of ascending order, before comparing them according to lexicographic
list ordering.

The list of keys [k1, . . . , ki, . . .] in the input to a discriminator is pseudo-
randomly generated from the following three parameters:

List length parameter m: The length |ki| of each list ki making up a key
is uniformly randomly chosen from the range [0 . . .m− 1].

Range parameter N : The elements of each list ki are drawn uniformly
randomly from the range [0 . . . N − 1].

Total number parameter n: Random lists ki are added to the keys until
(
∑

ki
|ki|) ≥ n.

The input to a discriminator is formed by zipping the keys with [1 . . .].
A comparison-parameterized discriminator employs a comparison-based

sorting algorithm: The input is first sorted on the keys, and finally the values
associated with runs of equivalent keys are returned. We implement three
comparison-parameterized discriminators named cdisc, qdisc and mdisc,
based on the following functional versions of sorting algorithms, respectively:

sortBy: The standard Haskell sorting function sortBy.
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Label Discriminator

sortBy cdisc (<=)
qsort qdisc (<=)
msort mdisc (<=)
sdisc sdisc (ListL ordNat8)
disc disc (ListE eqNat16)
sortBy (bag) cdisc slte
qsort (bag) qdisc slte
mdisc (bag) mdisc slte
sortBy (bag eff) cdisc (<=) . map sortFst
qsort (bag eff) qdisc (<=) . map sortFst
msort (bag eff) mdisc (<=) . map sortFst
sdisc (bag) sdisc (multiset ordNat8)
disc (bag) disc (BagE eqNat16)

Figure 15: Discriminators used in performance tests

qsort: Quicksort, with the median of the first, middle and last key in the
input being the pivot.

msort: Top-down Mergesort.

Figure 15 shows which discriminators have been tested. The first 5 dis-
criminate integer lists under their standard lexicographic ordering (sortBy,
qsort, msort, sdisc), respectively list equality (disc). The remaining discrim-
inators are for the Dershowitz-Manna multiset ordering. The first 3 of these,
labeled “bag”, are passed a comparison function

slte x y = sort x ≤ sort y

that first sorts its two argument lists and then performs a standard lexi-
cographic comparison. This causes the sorting step to be applied multiple
times on the same key. The following 3, labeled “bag eff”, avoid this by
sorting each input list exactly once

sortFst (x, n) = (sort x, n)

and then passing the result to a discriminator for lexicographic ordering.
The test results presented in Figures 16 to 19 have been performed with

parameters N = 256 and n = 100000, 200000, . . . , 1000000. Figures 16 and
17 show the run times for short keys, which are generated using parameter
value m = 10. Figure 18 shows the run times for m = 1000. Finally,
Figure 19 shows them for m = 10000. All tests have been performed under
Glasgow Haskell, version 6.10.1, on a 2.4 MHz dual-core MacBook Pro 4,1
with 3 MB of level 2 cache, 4 GB of main memory and 800 MHz bus speed,
running MacOS X 10.5.8. The run-times are computed as the average of
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10 runs using GHC’s getCPUTime function. The time measured excludes
initial traversal of the input to ensure that it is fully evaluated, but includes
traversing the output, which ensures that it is fully evaluated. The tests
were compiled using the “-O” flag.15

The run times in Figure 16 are given as a function of the minimum
distinguishing prefix of the integer lists serving as keys since all the discrim-
inators used for lexicographic ordering/equality only inspect the minimum
distinguishing prefix in the input.

Since the multiset ordering/bag equivalence discriminators traverse all
elements of each key, the run-times in the other figures are given as a function
of the total input size.

Both the input size and minimum distinguishing prefix size are computed
from the input as the number of 32-bit words used to store the input in fully
boxed representation.

Figure 16 indicates that sdisc and disc are competitive with comparison-
based sorting for lexicographic ordering. The numbers observed are favor-
able for discrimination, but it should be observed that they exploit that
the integer lists contain only small numbers. Executing disc eqInt32,
which works for all 32-bit integers, adds about 30% to the run time of disc
eqNat16 used in the test since each integer is scanned twice, once for each
of its 16-bit halfwords.

The upper chart in Figure 17 shows the costs of calling a comparison-
based sorting discriminator with a complex comparison function. The lower
chart is a blow-up of the performance of the 5 efficient bag discriminators.
Note that the inputs are the same in Figures 16 and 17.

Figures 18 and 19 show the running times for medium-sized (up to 1000
elements) and large (up to 10000 elements) keys, respectively. Here disc

(BagE eqNat16) behaves comparably to the other discriminators. Its per-
formance is not as favorable as for lexicographic equality, presumably due to
the more complex processing involved in performing weak sorting. Indeed
running it with BagE eqInt32 adds about 50% to its run time.

In summary, the tests provide support for our hypothesis that discrim-
ination without any form of program optimization such as specialization,
imperative memory management, etc., has acceptable performance and is
competitive with straightforwardly coded functional comparison-based sort-
ing algorithms.

14 Discussion

In this section we discuss a number of points related to discrimination.

15Full source code of the tests can be retrieved from the author’s web page for validation
and experimentation.
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Figure 16: Discriminator execution times for keys made up of short lists of
small integers

14.1 Discrimination combinators

Since the generic discriminators sdisc and disc are defined by structural re-
cursion over order representations, respectively equivalence representations,
such expressions can be eliminated by partial evaluation, resulting in a com-
binator library for discriminators. This can be thought of as an exercise in
polytypic programming (Jeuring and Jansson 1996; Hinze 2000), extended
from type representations (one per type) to order/equivalence representa-
tions (many per type). Figure 20 illustrates the result of doing this for
order discriminators. Similarly, we can define ordered partitioning and sort-
ing functions by passing them a discriminator; see Figure 21.

The advantage of the discriminator combinator library in Figure 20 vis
a vis the generic discriminator is that it does away with explicit representa-
tions of orders and equivalences altogether and lets programmers compose
discriminators combinatorially. In particular, the use of GADTs can be
avoided altogether if rank-2 polymorphism is available. Also, it incurs no
run-time overhead for representation processing.16

The disadvantage is that user-definable computation on orders and equiv-
alences is no longer possible. For example, if a user wishes to use order

16The generic discriminator sdisc appears to execute noticeably more efficiently than
the combinator library in Glasgow Haskell, however.
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Figure 17: Discriminator execution times for keys made up of small bags of
small integers
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Figure 18: Discriminator execution times for keys made up of medium-sized
bags of small integers

representations as input to the equivalence discriminator disc, this can be
done by providing the function equiv in Figure 22, which computes a rep-
resentation of the equivalence induced by (the ordering relation denoted by)
an order representation.

Another example is the function simplify in Figure 23, which simpli-
fies an order representation prior to submitting it to sdisc. It does not
change the denoted order, but, when passed to sdisc, may eliminate po-
tentially costly traversals of the input data. Note that variations are possi-
ble, which may prove advantageous depending on their use; e.g. simplifying
PairL TrivO TrivO to TrivO and MapO f TrivO to TrivO.17 (Recall that
f in order representations must be total.)

14.2 Complexity of sorting

The (time) complexity of sorting seems to be subject to some degree of con-
fusion, possibly because different models of computation (fixed word width
RAMs, RAMs with variable word width and various word-level operations,
cell-probe model, pointer model(s), etc.) and different models of what is
counted (only number of comparisons in terms of number of elements in

17These simplifications have been suggested by one of the referees.
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Figure 19: Discriminator execution times for keys made up of large bags of
small integers

input, number of all operations in terms of number of elements, time com-
plexity in terms of size of input) are used, but in each case with the same
familiar looking meta-variables (n) and (asymptotic) formulae (O(n log n)).

The quest for fast integer sorting in the last 15 years (see Fredman and
Willard (1993); Andersson et al. (1998); Han and Thorup (2002) for hallmark
results) has sought to perform sorting as (asymptotically) fast as possible as
a function of the number of elements in the input on RAMs with variable
word size and word-level parallelism.

Our model of computation in Section 8 is a random-access machine with
fixed word width w, say 32 or 64 bits, corresponding to a conventional se-
quential computer. We treat the word width as a constant factor in asymp-
totic complexity analysis. In other words, we do not analyze the dependency
of the complexity on the word width. Intuitively, this is tantamount to say-
ing that each primitive operation in our model of computation requires time
proportional to w: The time to process N bits stored in N/w1 words of width
w1 is proportional to the time to process them in N/w2 words of width w2.
This is in contrast to RAM models with word-level parallelism, where prim-
itive operations execute in time independent of w; e.g., addition on a 4-bit
machine takes the same time as addition on a 1,000,000-bit machine. Such
a model emphasizes the benefits of algorithms that manage to exploit the

69



sdiscTrivO :: Disc k

sdiscTrivO xs = [[ v | (_, v) ← xs ]]

sdiscSumL :: Disc k1 → Disc k2 → Disc (Either k1 k2)

sdiscSumL d1 d2 xs =
d1 [ (k1, v1) | (Left k1, v1) ← xs ] ++ d2 [ (k2, v2) |

(Right k2, v2) ← xs ]

sdiscProdL :: Disc k1 → Disc k2 → Disc (k1, k2)

sdiscProdL d1 d2 xs =
[ vs | ys ← d1 [ (k1, (k2, v)) | ((k1, k2), v) ← xs ],

vs ← d2 ys ]

sdiscMapO :: (k1 → k2) → Disc k2 → Disc k1

sdiscMapO f d xs = d [ (f k, v) | (k, v) ← xs ]

sdiscListL :: Disc k → Disc [k]

sdiscListL d xs = case nilVals of

[] → bs

_ → nilVals : bs

where splitL [] = ([], [])

splitL ((ks, v) : xs) =
case ks of

[] → (v : nilVals, pairVals)

(k : ks’) → (nilVals, (k, (ks’, v)) : pairVals)

where (nilVals, pairVals) = splitL xs

(nilVals, pairVals) = splitL xs

bs = [ vs | ys ← d pairVals, vs ← sdiscListL d ys ]

sdiscBagO d xs = sdiscCollO updateBag d xs

sdiscSetO d xs = sdiscCollO updateSet d xs

sdiscCollO update d xss = sdiscListL (sdiscNat (length keyNumBlocks)) yss

where

(kss, vs) = unzip xss

elemKeyNumAssocs = groupNum kss

keyNumBlocks = d elemKeyNumAssocs

keyNumElemNumAssocs = groupNum keyNumBlocks

sigs = bdiscNat (length kss) update keyNumElemNumAssocs

yss = zip sigs vs

sdiscInv :: Disc k → Disc k

sdiscInv d xs = reverse (d xs)

sdiscChar8 = sdiscMapO ord (sdiscNat 65535)

sdiscString8 = sdiscListL sdiscChar8

Figure 20: Order discriminator combinators
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spartD :: SDisc t t → [t] → [[t]]

spartD d xs = d [ (x, x) | x ← xs ]

dsortD :: SDisc t t → [t] → [t]

dsortD d xs = [ y | ys ← spartD d xs, y ← ys ]

usortD :: SDisc t t → [t] → [t]

usortD d xs = [ head ys | ys ← spartD d xs ]

Figure 21: Discriminator-parameterized partitioning and sorting

equiv :: Order t → Equiv t

equiv (NatO n) = NatE n

equiv TrivO = TrivE

equiv (SumL r1 r2) = SumE (equiv r1) (equiv r2)

equiv (ProdL r1 r2) = ProdE (equiv r1) (equiv r2)

equiv (MapO f r) = MapE f (equiv r)

equiv (ListL r) = ListE (equiv r)

equiv (BagO r) = BagE (equiv r)

equiv (SetO r) = SetE (equiv r)

equiv (Inv r) = equiv r

Figure 22: Equivalence relation induced by ordering relation

simplify :: Order t → Order t

simplify r@(NatO _) = r

simplify TrivO = TrivO

simplify (SumL r1 r2) = SumL (simplify r1) (simplify r2)

simplify (ProdL r1 r2) = ProdL (simplify r1) (simplify r2)

simplify (MapO f (MapO g r)) = simplify (MapO (g ◦ f) r)

simplify (MapO f r) = MapO f (simplify r)

simplify (ListL r) = ListL (simplify r)

simplify (BagO r) = BagO (simplify r)

simplify (SetO r) = SetO (simplify r)

simplify r@(Inv (NatO _)) = r

simplify (Inv TrivO) = TrivO

simplify (Inv (SumL r1 r2)) = sumR’ (simplify (Inv r1)) (simplify (Inv r2))

simplify (Inv (ProdL r1 r2)) = ProdL (simplify (Inv r1)) (simplify (Inv r2))

simplify (Inv (MapO f (MapO g r))) = simplify (Inv (MapO (g ◦ f) r))

simplify (Inv (MapO f r)) = MapO f (simplify (Inv r))

simplify (Inv (ListL r)) = listR (simplify (Inv r))

simplify (Inv (BagO r)) = Inv (BagO (simplify r))

simplify (Inv (SetO r)) = Inv (SetO (simplify r))

simplify (Inv (Inv r)) = simplify r

Figure 23: Algebraic simplification of order representations
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availability of high-bandwidth memory transfers and high-performance data-
parallel primitives, and it makes sense to analyze complexity as a function
of both input size N and word size w.18

In our setting the only meaningful measure of the input is its size: total
number of words (or bits) occupied, not the number of elements. If each
possible element in an input has constant size, say 32 bits, then input size
translates into number of elements, of course. But we want sorting to also
work efficiently on inputs with variable-sized elements, where input size and
number of input elements may be completely unrelated.

An apparently not widely known fact about comparison-based sorting
algorithms—I have not seen it stated explicitly before— is that the com-
plexity bounds in terms of N (size of input) and for n (number of input
elements) are often the same, but need not be so: it depends on the com-
plexity of the comparison function. (Recall that we are considering the
case of sorting variable-sized elements.) In particular, an algorithm may
not necessarily run in time O(N logN), even if it only executes O(n log n)
comparison operations.

Theorem 14.1 Let (A,≤) be a total preorder and assume that testing whether
v ≤ w for elements v, w of size n,m, respectively, has time complexity
Θ(min{n,m}) or Θ(n+m). Then comparison-based sorting algorithms have
the worst-case time complexities given in Table 1 on a fixed-width RAM.

proof (Proof sketch) For comparison functions executing in time Θ(n +
m), that is in linear time and inspecting each bit in the two elements, the
lower bounds for the data-sensitive algorithms (Quicksort, . . . , Bubble sort)
follow from analyzing the situation where the input consists of one element
of size Θ(n), with n remaining inputs of size O(1). The upper bounds
follow from analyzing how often each element can be an argument in a
comparison operation. Lower and upper bounds for the data-insensitive
algorithms (sorting networks) follow from information on their depths and
sizes as sorting networks; in particular, the depth provides an upper bound
on how many times any given input element is used in a comparison by the
algorithm.

For comparison functions executing in time Θ(min{n,m}), that is in
linear time but only inspecting all the bits of the smaller of the two elements,
it is easy to see that a worst-case input of size N consists of elements of same
size k. In this case we have N = n·k. Let f(n) be the number of comparisons
and constant time steps executed by a comparison-based sorting algorithm.

18In some analyses an “optimal” value for w as a function of N is chosen so as to
provide a best possible worst-case complexity bound for an algorithm in terms of N alone.
This identifies when word width and input size are perfectly matched. It is difficult to
make practical sense of such an input dependent choice of word width, however, as it is
impractical to choose the word width of the computer to run a program on only after the
size of its input is available.
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Table 1: Comparison-based sorting algorithms for complex data. Asymp-
totic worst-case running times in the size of the input, where comparison
function is linear in the smaller, respectively larger of its two inputs

Sort Comparison
complexity
Θ(min{n,m})

Comparison
com-
plexity
Θ(n +
m))

Quicksort (Hoare 1961) Θ(N2) Θ(N2)
Mergesort (Knuth 1998, Sec. 5.2.4) Θ(N logN) Θ(N2)
Heapsort (Williams 1964) Θ(N logN) Θ(N2)
Selection sort (Knuth 1998, Sec. 5.2.3) Θ(N2) Θ(N3)
Insertion sort (Knuth 1998, Sec. 5.2.1) Θ(N2) Θ(N2)
Bubble sort (Knuth 1998, Sec. 5.2.2) Θ(N2) Θ(N2)
Bitonic sort (Batcher 1968) Θ(N log2N) Θ(N log2N)
Shell sort (Shell 1959) Θ(N log2N) Θ(N log2N)
Odd-even mergesort (Batcher 1968) Θ(N log2N) Θ(N log2N)
AKS sorting network (Ajtai et al. 1983) Θ(N logN) Θ(N logN)

Note that f(n) = Ω(n log n). The complexity of the algorithm in terms
of N is Θ(f(Nk ) · k + f(Nk )). The first summand counts the number of
comparisons—note that each requires Θ(k) time— and the second summand
counts the number of other steps. Thus we have Θ(f(Nk ) · (k + 1)). Since
f grows faster than g(k) = k + 1 we obtain the worst case for k = 1. In
other words, constant-sized elements provide the worst-case scenario. . The
complexity of a comparison-based sorting algorithm in terms of the size of
the input is consequently Θ(f(N)), which coincides with its complexity in
terms of the number of comparison tests and other steps, assuming the latter
each take constant time. 2

Note that Mergesort and Heapsort require quadratic time for a com-
parison function that inspects all bits in its two inputs since they run the
risk of repeatedly, up to Θ(n) times, using the same large input element
in comparisons, whereas the design of efficient data-insensitive sorting al-
gorithms prevents this. If comparisons are on constant size data or are
lexicographic string or list comparisons, both Mergesort and Heapsort run
in time Θ(N logN). This means that comparison-based sorting algorithms
need to have their keys preprocessed by mapping them to constant-sized el-
ements (e.g. Int) or to a list type under lexicographic ordering (e.g. String)
to guarantee a Θ(N logN) upper bound on the worst-case run time, which,
luckily, is often possible.
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14.3 Associative reshuffling

The code for both order and equivalence discrimination of products contains
a reshuffling of the input: ((k1, k2), v) is transformed into (k1, (k2, v)) before
being passed to the first subdiscriminator. Consider sdisc:

sdisc (ProdL r1 r2) xs =
[ vs | ys ← sdisc r1 [ (k1, (k2, v)) | ((k1, k2), v) ← xs ],

vs ← sdisc r2 ys ]

This seems wasteful at first sight. It is an important and in essence unavoid-
able step, however. It is tantamount to the algorithm moving to the left child
of each key pair node and retaining the necessary continuation information.
To get a sense of this, let us consider reshuffling in the context of nested
products. Consider, for example, ProdL (ProdL (ProdL r1 r2) r3) r4),
with r1, r2, r3, r4 being primitive order representations of the form NatO

n. The effect of discrimination is that each input ((((k1, k2), k3), k4), v) is
initially transformed into (k1, (k2, (k3, (k4, v)))) and then the four primi-
tive discriminators, corresponding to k1, k2, k3, k4, are applied in order: The
reshuffling ensures that the inputs are lined up in the right order for this.

We may be tempted to perform the reshuffling step lazily, by calling an
adapted version sdiscL of the discriminator:

sdisc (ProdL r1 r2) xs =
[ vs | ys ← sdiscL r1 xs,

vs ← sdisc r2 ys ]

But how to define sdiscL then? In particular, what to do when its argument
in turn is a product representation? Introduce sdiscLL? Alternatively, we
may be tempted to provide an access or extractor function as an extra
argument to a discriminator, as has been done by Ambus (2004). This leads
to the following definition of sdiscA, with the following clause for product
orders:

sdiscA (ProdL r1 r2) f xs =
[ vs | ys ← sdiscA r1 (fst ◦ f) xs,

vs ← sdiscA r2 (snd ◦ f) ys ]

Note that sdiscA takes an extractor function as an additional argument.
The result of sdiscA includes the keys passed to it, and thus the two calls
of sdiscA select the first, respectively second component of the key pairs
in the input. Since sdiscA is passed an access function f to start with, the
selector functions fst and snd must be composed with f in the two recursive
calls.

In the end this can be extended to a generic definition of sdiscA, which
actually sorts its input. It has one critical disadvantage, however: It has
potentially asymptotically inferior performance! The reason for this is that
each access to a part of the input is by navigating to that part from a root
node in the original input. The cost of this is thus proportional to the path
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length from the root to that part. Consider an input element of the form
(((...((k1, k2), k3), ...), kn), v), with k1, . . . , kn primitive keys. Accessing all n
primitive keys by separate accesses, each from the root (the whole value),
requires a total of Θ(n2) steps!

In summary, it is possible to delay or recode the reshuffling step, but it
cannot really be avoided.

15 Conclusions

Multiset discrimination has previously been introduced and developed as
an algorithmic tool set for efficiently partitioning and preprocessing data
according to certain equivalence relations on strings and trees (Paige and
Tarjan 1987; Paige 1994; Cai and Paige 1995; Paige and Yang 1997).

We have shown how to analyze multiset discrimination into its func-
tional core components, identifying the notion of discriminator as the core
abstraction, and how to compose them generically for a rich class of orders
and equivalence relations. In particular, we show that discriminators can be
used both to partition data and also to sort them in linear time.

An important aspect of generic discriminators sdisc, edisc and, par-
tially, disc is that they preserve abstraction: They provide observation of
the order, respectively equivalence relation, but nothing else. This is im-
portant when defining an ordered abstract type that should retain as much
implementation freedom as possible while providing efficient access to its
ordering relation. It is of particular importance for heap-allocated garbage-
collectable references. They can be represented as raw machine addresses or
memory offsets and discriminated efficiently without breaking abstraction.
No computation can observe anything about the particular machine address
a reference has at any time. A discriminator can partition n constant-size
elements in time O(n). Using a binary equality test as the only operation
to access the equivalence, this requires Ω(n2) time. Fully abstract discrim-
inators are principally superior for partitioning-like problems to both com-
parison functions and equality tests: they preserve abstraction, but provide
asymptotically improved performance; and to hash functions: they match
their algorithmic performance without compromising data abstraction.

15.1 Future work

It is quite easy to see how the definition of sdisc can be changed to produce,
in a single pass, key-sorted tries instead of just permuted lists of its inputs.
This generalizes the trie construction of Paige and Tarjan’s lexicographic
sorting algorithm (Paige and Tarjan 1987, Section 2) in two respects: it
does so for arbitrary orders, not only for the standard lexicographic order
on strings, and it does so in a single pass instead of requiring two. Of partic-
ular interest in this connection are Hinze’s generic definitions of operations
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on generalized tries (Hinze 2000): Discriminators can construct tries in a
batch-oriented fashion, and his operations can manipulate them in a one-
key-value-pair at a time fashion. There are some differences: Hinze treats
nested datatypes, not only regular recursive types, but he has no separate
orders or any equivalences on those. In particular, his tries are not key-
sorted (the edges out of a node are unsorted). It appears that the treatment
of nonnested datatypes can be transferred to discriminators, and the order
representation approach can be transferred to the trie construction opera-
tions.

We can envisage a generic data structure and algorithm framework where
distributive sorting (discrimination) and search structures (tries) supplant
comparison-based sorting and comparison-based data structures (search trees),
obtaining improved asymptotic time complexities without surrendering data
abstraction. We conjecture that competitive memory utilization and attain-
ing data locality will be serious challenges for the distributive techniques.
With the advent of space efficient radix-based sorting (Franceschini et al.
2007), however, we believe that the generic framework presented here can be
developed into a framework that has a good chance of competing with even
highly space-efficient in-place comparison-based sorting algorithms in most
use scenarios of in-memory sorting. The naturally data-parallel comparison-
free nature of discrimination may lend itself well to parallel computing
architectures such as execution on GPGPUs, multicore architectures, and
MapReduce-like cluster architectures (Dean and Ghemawat 2004).

Hinze19 has observed that the generic order discriminator employs a list
monad and that producing a trie is a specific instance of replacing the list
monad with another monad, the trie monad. This raises the question of how
“general” the functionality of discrimination can be formulated and whether
it is possible to characterize discrimination by some sort of natural universal
property. It also raises the possibility of deforestation-like optimizations:
How to avoid building the output lists of a discriminator once we know how
they will be destructed in the context of a discriminator application.

Linear-time equivalence discrimination can be extended to acyclic shared
data structures. Using entirely different algorithmic techniques, equivalence
discrimination can be extended to cyclic data at the cost of a logarithmic
factor (Henglein 2003). Capturing this in a generic programming framework
would expand applicability of discrimination to graph isomorphism problems
such as deciding bisimilarity, hash-free binary decision diagrams, reducing
state graphs in model checkers, and the like.

The present functional specification of discrimination has been formu-
lated in Haskell for clarity, not for performance beyond enabling some ba-
sic asymptotic reasoning and validating its principal viability. It performs

19Personal communication at IFIP TC2.8 Working Group meeting, Park City, Utah,
June 15-22, 2008.
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competitively out-of-the-box with good sorting algorithms in terms of time
performance. It appears clear that its memory requirements need to—and
can—be managed explicitly in a practical implementation for truly high
performance. In particular, efficient in-place implementations that do away
with the need for dynamic memory management, reduce the memory foot-
print and improve data locality should provide substantial benefits in com-
parison to leaving memory management to a general-purpose heap manager.

To offer discrimination as a day-to-day programming tool, expressive
and well-tuned libraries should be developed and evaluated empirically for
usability and performance. Both functional languages such as Haskell, Stan-
dard ML, OCaml, Scheme, Erlang, and Clojure as well as popular languages
such as C++, C#, Java, Python, and Visual Basic should be considered.
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