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Summary. This Mizar paper presents the definition of a “Preordered
Coherent Space” (PCS). Furthermore, the paper defines a number of operations
on PCS’s and states and proves a number of elementary lemmas about these
operations. PCS’s have many useful properties which could qualify them for
mathematical study in their own right. PCS’s were invented, however, to con-
struct Scott domains, to solve domain equations, and to construct models of
various versions of lambda calculus.

For more on PCS’s, see [11]. The present Mizar paper defines the operations
on PCS’s used in Chapter 8 of [3].
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paper.

1. PRELIMINARIES

Let Ry, Ry be sets and let R be a relation between Ry and Rs. Then field R
is a subset of B; U Rs.
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Let Ry, Ry, S1, Sy be sets, let R be a relation between R; and Ry, and let
S be a relation between S; and S;. Then R U S is a relation between Ry U S;
and Ry U Ss.
Let Ry, S1 be sets, let R be a total binary relation on R, and let S be a
total binary relation on S7. Note that RU S is total.
Let Ry, S be sets, let R be a reflexive binary relation on Ry, and let S be
a reflexive binary relation on S;. Observe that R U S is reflexive.
Let Ry, Sp be sets, let R be a symmetric binary relation on Rq, and let S
be a symmetric binary relation on S7. Observe that RU S is symmetric.
One can prove the following proposition
(1) Let Ry, S1 be sets, R be a transitive binary relation on R, and S be a
transitive binary relation on S1. If Ry misses Sp, then RU S is transitive.

Let A be an empty set and let B be a set. One can check that 04 p is total.

Let I be a non empty set and let C be a 1-sorted yielding many sorted set
indexed by I. Then the support of C can be characterized by the condition:

(Def. 1) For every element i of I holds (the support of C)(i) = the carrier of
C(7).

Let Ry, Ra, S1, S5 be sets, let R be a relation between R; and Ry, and let S
be a relation between S7 and Sy. The functor ["R, S7] yields a relation between
Ry, Si]and [ Ry, So] and is defined by the condition (Def. 2).

(Def. 2) Let x, y be sets. Then (z, y) € [R,S] if and only if there exist sets rq,
s1, T2, S such that z = (r1, s1) and y = (rg, s9) and r; € Ry and s; € 5
and r9 € Ry and s9 € Sy and {r1, m2) € R or (s1, s2) € S.

Let Ry, Rs, S1, So be non empty sets, let R be a relation between Ry and Ro,
and let S be a relation between S; and Sy. Then ['R, S| can be characterized
by the condition:

(Def. 3) Let 1 be an element of Ry, ro be an element of Ry, s; be an element of
S1, and s3 be an element of Sy. Then ((r1, s1), (r2, s2)) € ['R,S7] if and
only if {r1, r2) € R or (s1, s2) € S.
Let Ry, S1 be sets, let R be a total binary relation on Ry, and let .S be a
total binary relation on S;. Note that ["R,S"] is total.
Let Ry, S be sets, let R be a reflexive binary relation on Ry, and let S be
a reflexive binary relation on S;. One can check that ['R,S"] is reflexive.
Let Ry, S be sets, let R be a binary relation on Rq, and let S be a total
reflexive binary relation on S;. Observe that ["R, S7] is reflexive.
Let Ry, S be sets, let R be a total reflexive binary relation on Ry, and let
S be a binary relation on S;. Observe that ["R,S"] is reflexive.
Let Ry, S1 be sets, let R be a symmetric binary relation on Ry, and let S
be a symmetric binary relation on S;. Note that ["R, S"] is symmetric.
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2. RELATIONAL STRUCTURES

Let us observe that every relational structure which is empty is also total.

Let R be a binary relation. We say that R is transitive-yielding if and only
if:

(Def. 4)  For every relational structure S such that S € rng R holds S is transitive.

Let us note that every binary relation which is poset-yielding is also
transitive-yielding.

Let us mention that there exists a function which is poset-yielding.

Let I be a set. Observe that there exists a many sorted set indexed by [
which is poset-yielding.

Let I be a set and let C' be a relational structure yielding many sorted set
indexed by I. The functor pcs-InternalRels C' yields a many sorted set indexed
by I and is defined by the condition (Def. 5).

(Def. 5) Let i be a set. Suppose i € I. Then there exists a relational structure P
such that P = C(i) and (pcs-InternalRels C)(7) = the internal relation of
P,

Let I be a non empty set and let C' be a relational structure yielding many
sorted set indexed by I. Then pcs-InternalRels C can be characterized by the
condition:

(Def. 6) For every element i of I holds (pcs-InternalRels C')(i) = the internal
relation of C(4).

Let I be a set and let C be a relational structure yielding many sorted set
indexed by I. One can check that pcs-InternalRels C' is binary relation yielding.

Let I be a non empty set, let C be a transitive-yielding relational structure
yielding many sorted set indexed by I, and let ¢ be an element of I. Note that
C(4) is transitive.

3. TOLERANCE STRUCTURES

We introduce alternative relational structures which are extensions of 1-
sorted structure and are systems

( a carrier, an alternative relation ),
where the carrier is a set and the alternative relation is a binary relation on the
carrier.

Let P be an alternative relational structure and let p, ¢ be elements of P.
The predicate p ~ ¢ is defined by:

(Def. 7)  (p, q) € the alternative relation of P.

Let P be an alternative relational structure. We say that P is g-total if and
only if:
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(Def. 8) The alternative relation of P is total.

We say that P is f-reflexive if and only if:

(Def. 9) The alternative relation of P is reflexive in the carrier of P.

We say that P is f-irreflexive if and only if:

(Def. 10) The alternative relation of P is irreflexive in the carrier of P.

We say that P is S-symmetric if and only if:

(Def. 11) The alternative relation of P is symmetric in the carrier of P.

The alternative relational structure emptyTolStr is defined as follows:

(Def. 12)  emptyTolStr = (0, g g)-

One can check that emptyTolStr is empty and strict.
The following proposition is true

(2) Let P be an alternative relational structure. If P is empty, then the
alternative relational structure of P = emptyTolStr.

One can check that every alternative relational structure which is g-reflexive
is also (-total.

Let us note that every alternative relational structure which is empty is also
[-reflexive, f-irreflexive, and S-symmetric.

Let us note that there exists an alternative relational structure which is
empty.

Let P be a (-total alternative relational structure. Observe that the alter-
native relation of P is total.

Let P be a f[-reflexive alternative relational structure. One can check that
the alternative relation of P is reflexive.

Let P be a S-irreflexive alternative relational structure. One can verify that
the alternative relation of P is irreflexive.

Let P be a f-symmetric alternative relational structure. One can verify that
the alternative relation of P is symmetric.

Let L be a f-total alternative relational structure. Note that the alternative
relational structure of L is (-total.

Let P be a (-symmetric alternative relational structure and let p, ¢ be
elements of P. Let us note that the predicate p ~ ¢ is symmetric.

Let D be a set. Note that (D,Vp) is f-reflexive and [-symmetric.

Let D be a set. Note that (D,0p p) is f-irreflexive and S-symmetric.

Let us note that there exists an alternative relational structure which is
strict, non empty, G-reflexive, and (-symmetric.

One can check that there exists an alternative relational structure which is
strict, non empty, S-irreflexive, and G-symmetric.

Let R be a binary relation. We say that R is alternative relational structure
yielding if and only if:



BASIC OPERATIONS ON PREORDERED ...

(Def. 13) For every set P such that P € rng R holds P is an alternative relational
structure.

Let f be a function. Let us observe that f is alternative relational structure
yielding if and only if:
(Def. 14) For every set  such that € dom f holds f(z) is an alternative relational
structure.

Let I be a set and let f be a many sorted set indexed by I. Let us observe
that f is alternative relational structure yielding if and only if:

(Def. 15) For every set x such that z € I holds f(z) is an alternative relational
structure.

Let R be a binary relation. We say that R is f-reflexive yielding if and only
if:

(Def. 16) For every alternative relational structure S such that S € rng R holds S
is B-reflexive.
We say that R is S-irreflexive yielding if and only if:
(Def. 17) For every alternative relational structure S such that S € rng R holds S
is G-irreflexive.
We say that R is B-symmetric yielding if and only if:
(Def. 18) For every alternative relational structure S such that S € rng R holds S
is B-symmetric.

One can check that every binary relation which is empty is also S-reflexive
yielding, G-irreflexive yielding, and §-symmetric yielding.

Let I be a set and let P be an alternative relational structure. Note that
I — P is alternative relational structure yielding.

Let I be a set and let P be a f-reflexive alternative relational structure.
Observe that I —— P is (-reflexive yielding.

Let I be a set and let P be a S-irreflexive alternative relational structure.
One can check that I — P is S-irreflexive yielding.

Let I be a set and let P be a S-symmetric alternative relational structure.
One can verify that I — P is S-symmetric yielding.

Let us observe that every function which is alternative relational structure
yielding is also 1-sorted yielding.

Let I be a set. Observe that there exists a many sorted set indexed by I
which is [-reflexive yielding, [-symmetric yielding, and alternative relational
structure yielding. '

Let I be a set. Note that there exists a many sorted set indexed by I which is
B-irreflexive yielding, 0-symmetric yielding, and alternative relational structure
yielding.

Let I be a set. Observe that there exists a many sorted set indexed by I
which is alternative relational structure yielding.

217
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Let I be a non empty set, let C' be an alternative relational structure yielding
many sorted set indexed by I, and let i be an element of I. Then C(i) is an
alternative relational structure.

Let I be a set and let C be an alternative relational structure yielding many
sorted set indexed by I. The functor pcs-ToleranceRels C' yields a many sorted
set indexed by I and is defined by the condition (Def. 19).

(Def. 19) Let i be a set. Suppose ¢ € I. Then there exists an alternative rela-
tional structure P such that P = C(i) and (pcs-ToleranceRels C) (i) = the
alternative relation of P.

Let I be a non empty set and let C be an alternative relational structure
yielding many sorted set indexed by I. Then pcs-ToleranceRels C' can be char-
acterized by the condition:

(Def. 20) TFor every element 7 of I holds (pcs-ToleranceRels C') (i) = the alternative
relation of C(3).

Let I be a set and let C' be an alternative relational structure yielding
many sorted set indexed by I. Note that pcs-ToleranceRels C' is binary relation
yielding.

Let I be a non empty set, let C be a f-reflexive yielding alternative relational
structure yielding many sorted set indexed by I, and let ¢ be an element of I.
One can verify that C(i) is f-reflexive.

Let I be a non empty set, let C' be a [-irreflexive yielding alternative rela-
tional structure yielding many sorted set indexed by I, and let ¢ be an element
of I. Note that C(i) is f-irreflexive.

Let I be a non empty set, let C' be a [-symmetric yielding alternative rela-
tional structure yielding many sorted set indexed by I, and let ¢ be an element
of I. Observe that C(7) is f-symmetric.

The following propositions are true:

(3) Let P, @ be alternative relational structures. Suppose that

(i)  the alternative relational structure of P = the alternative relational

structure of @), and

(ii) P is f-reflexive.

Then @ is G-reflexive.
(4) Let P, @ be alternative relational structures. Suppose that

(i)  the alternative relational structure of P = the alternative relational

structure of (), and

(il) P is f-irreflexive.

Then () is G-irreflexive.
(5) Let P, @ be alternative relational structures. Suppose that

(i)  the alternative relational structure of P = the alternative relational

structure of (), and

(ii) P is f-symmetric.
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Then @ is f-symmetric.
Let P, Q be alternative relational structures. The functor ["P, Q"] yields an
alternative relational structure and is defined by the condition (Def. 21).

(Def. 21) ['P,Q"] = (| the carrier of P, the carrier of @) |, ["the alternative relation
of P, the alternative relation of Q).

Let P, () be alternative relational structures, let p be an element of P, and
let ¢ be an element of (). We introduce ['p,¢"] as a synonym of (p, ¢).

Let P, () be non empty alternative relational structures, let p be an element
of P, and let ¢ be an element of Q). Then ["p, ¢"] is an element of ["P,Q"].

Let P, () be alternative relational structures and let p be an element of
['P,@Q"]. We introduce p'1 as a synonym of p;. We introduce p'2 as a synonym
of pa.

Let P, Q be non empty alternative relational structures and let p be an
element of ['P,Q"]. Then p'1 is an element of P. Then p'2 is an element of Q).

We now state two propositions:

(6) Let S1, Sy be non empty alternative relational structures, a, ¢ be ele-
ments of S, and b, d be elements of Sy. Then ["a,b”] ~ [¢,d"] if and only
ifa~corb~d.

(7) Let Si, S2 be non empty alternative relational structures and z, y be
elements of [°S1,52"]. Then z ~ y if and only if one of the following
conditions is satisfied:

i) z1~gyl, or

(i) x2~y2.

Let P be an alternative relational structure and let @) be a G-reflexive alter-
native relational structure. Note that [P, Q"] is S-reflexive.

Let P be a B-reflexive alternative relational structure and let @ be an alter-
native relational structure. Observe that ["P, Q"] is f-reflexive.

Let P, Q be f-symmetric alternative relational structures. One can check
that [P, Q"] is f-symumetric.

4. PCS’s

We introduce pcs structures which are extensions of relational structure and
alternative relational structure and are systems

( a carrier, an internal relation, an alternative relation ),
where the carrier is a set, the internal relation is a binary relation on the carrier,
and the alternative relation is a binary relation on the carrier.

Let P be a pcs structure. We say that P is compatible if and only if:

(Def. 22) For all elements p, p', q, ¢ of P such that p ~ g and p’ < p and ¢’ < ¢
holds p’ ~ ¢'.
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Let P be a pcs structure. We say that P is pcs-like if and only if:

(Def. 23) P is reflexive, transitive, f-reflexive, S-symmetric, and compatible.
We say that P is anti-pcs-like if and only if:
(Def. 24) P is reflexive, transitive, f-irreflexive, S-symmetric, and compatible.

One can verify the following observations:

* every pcs structure which is pcs-like is also reflexive, transitive, (-

reflexive, J-symmetric, and compatible,

x every pcs structure which is reflexive, transitive, [-reflexive, (-

symmetric, and compatible is also pcs-like,

* every pcs structure which is anti-pcs-like is also reflexive, transitive, §-

irreflexive, B-symmetric, and compatible, and

% every pcs structure which is reflexive, transitive, [-irreflexive, (-

symmetric, and compatible is also anti-pcs-like.

Let D be a set. The functor TotalPCS D yields a pcs structure and is defined
as follows:

(Def. 25) TotalPCSD = (D,Vp,Vp).

Let D be a set. Observe that TotalPCS D is strict.

Let D be a non empty set. One can verify that TotalPCS D is non empty.

Let D be a set. One can check that TotalPCS D is reflexive, transitive,
G-reflexive, and G-symmetric.

Let D be a set. Note that TotalPCS D is pcs-like.

Let D be a set. One can verify that (D,Vp,0p p) is anti-pcs-like.

One can verify that there exists a pcs structure which is strict, non empty,
and pcs-like and there exists a pcs structure which is strict, non empty, and
anti-pcs-like.

A pesis a pes-like pes structure. An anti-pes is an anti-pes-like pes structure.

The pcs structure EmptyPCS is defined by:

(Def. 26) EmptyPCS = TotalPCS 0.

Let us mention that EmptyPCS is strict, empty, and pcs-like.

Let p be a set. The functor SingletonPCS p yielding a pcs structure is defined
by:

(Def. 27)  SingletonPCS p = TotalPCS{p}.

Let p be a set. Observe that SingletonPCSp is strict, non empty, and pcs-
like. ’

Let R be a binary relation. We say that R is pcs structure yielding if and
only if:

(Def. 28) For every set P such that P € rng R holds P is a pcs structure.
We say that R is pcs-yielding if and only if:
(Def. 29)  For every set P such that P € rng R holds P is a pcs.
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Let f be a function. Let us observe that f is pcs structure yielding if and
only if:
(Def. 30) For every set z such that z € dom f holds f(x) is a pcs structure.
Let us observe that f is pes-yielding if and only if:
(Def. 31) For every set  such that x € dom f holds f(z) is a pcs.
Let I be a set and let f be a many sorted set indexed by I. Let us observe
that f is pcs structure yielding if and only if:
(Def. 32) For every set = such that x € I holds f(z) is a pcs structure.
‘ Let us observe that f is pcs-yielding if and only if:
(Def. 33) For every set x such that z € I holds f(z) is a pcs.
One can verify the following observations:
x every binary relation which is pcs structure yielding is also alternative
relational structure yielding and relational structure yielding,
x every binary relation which is pcs-yielding is also pcs structure yielding,
and
| x every binary relation which is pcs-yielding is also reflexive-yielding,
transitive-yielding, G-reflexive yielding, and f-symmetric yielding.
Let I be a set and let P be a pcs. Note that 1 — P is pcs-yielding.
Let T be a set. Observe that there exists a many sorted set indexed by I
which is pcs-yielding.
Let I be a non empty set, let C be a pcs structure yielding many sorted set
indexed by I, and let i be an element of I. Then C(%) is a pcs structure.
Let I be a non empty set, let C' be a pes-yielding many sorted set indexed
by I, and let 7 be an element of I. Then C(1) is a pcs.
Let P, QQ be pcs structures. The predicate P C @ is defined by the conditions
(Def. 34).
(Def. 34)(i) The carrier of P C the carrier of @,
(ii)  the internal relation of P C the internal relation of @), and
(iii)  the alternative relation of P C the alternative relation of ).
Let us note that the predicate P C (@ is reflexive.
Next we state two propositions:

(8) Let P, @ be relational structures, p, ¢ be elements of P, and p1, g1 be
elements of (). Suppose the internal relation of P C the internal relation
of Q and p=1p; and ¢ = ¢; and p < q. Then p1 < ¢;.

(9) Let P, Q be pcs structures, p, ¢ be elements of P, and p1, g1 be elements

of (). Suppose the alternative relation of P C the alternative relation of
@ and p=p; and ¢ = ¢ and p ~ ¢q. Then p; ~ ¢1.

Let C be a binary relation. We say that C is chain-like if and only if:
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(Def. 35)  For all pes structures P, @ such that P € rng C and Q € rng C holds
PCQorQcCPr

Let I be a set and let P be g pes structure.  Observe that T —— P ig
chain-like.

Let us note that there exists a function which is chain-like and pces-yielding.

Let I be a set. Note that there exists a many sorted set indexed by I which
is chain-like and pcs-yielding.

Let I be a set. A pes-chain of T is a chain-like pces-yielding many sorted set
indexed by 7.

Let I be a set and let C be a pes structure yielding many sorted set indexed
by I. The functor U C yielding a strict pes structure is defined by the conditions
(Def. 36).

(Def. 36)(1)  The carrier of UC = | (the support of C),
(ii)  the internal relation of UC = Upcs-InternalRels C, and
(iii)  the alternative relation of UC = Upes-ToleranceRels C.

We now state four propositions:

(10) Let I be a set, C be a pcs structure yielding many sorted set indexed
by 1, and p, ¢ be elements of UC. Then p < ¢ if and only if there exists a
set 7 and there exists a pcs structure P and there exist elements p', q of
P such that s € ] and P = C(i) and p' = p and ¢ = qand p’ < ¢

(11) Let I be a non empty set, C' be a pcs structure yielding many sorted set
indexed by I, and p, ¢ be elements of UC. Then p < q if and only if there
exists an element i of I and there exist elements p’, ¢/ of C(7) such that
P'=pand ¢ =gqand p <.

(12) Let I be a set, C' be a pcs structure yielding many sorted set indexed
by I, and p, ¢ be elements of UC. Then p ~ ¢ if and only if there exists a
set ¢ and there exists a pes structure P and there exist elements P’ q of
P such that i € [ and P = C(i) and p' = p and ¢/ = q and p' ~ ¢/,

(13) Let I be a non empty set, C' be a pcs structure yielding many sorted set
indexed by I, and p, ¢ be elements of UC. Then p ~ q if and only if there
exists an element 4 of I and there exist elements p’, ¢’ of ¢ () such that
p'’=pand ¢ =¢ and p’ ~ ¢’

Let I be a set and let C be a reflexive-yielding pcs structure yielding many
sorted set indexed by I. Observe that UC is reflexive.

Let I be a set and let C be a B-reflexive yielding pcs structure yielding many
sorted set indexed by I. Observe that UC is B-reflexive.

Let I be a set and let C be a B-symmetric yielding pcs structure yielding
many sorted set indexed by I. Note that UC is f-symmetric.

Let I be a set and let C be a pes-chain of I. One can check that Uc is
transitive and compatible.
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Let p, q be sets. The functor MSSet(p, ¢) yielding a many sorted set indexed
by {0,1} is defined by:
(Def. 37) MSSet(p,q) = [0 — p, 1 — ¢].

Let P, @) be 1-sorted structures. One can check that MSSet(P, @) is 1-sorted
yielding.

Let P, @ be relational structures. Observe that MSSet(P, Q) is relational
structure yielding.

Let P, @) be alternative relational structures. Observe that MSSet(P, Q) is
alternative relational structure yielding.

Let P, @) be pcs structures. Note that MSSet(P, Q) is pcs structure yielding.

Let P, Q) be reflexive pcs structures. Observe that MSSet(P, Q) is reflexive-
yielding.

Let P, Q) be transitive pcs structures. One can check that MSSet(P, Q) is
transitive-yielding.

Let P, Q be (-reflexive pcs structures. Note that MSSet(P, Q) is f-reflexive
yielding.

Let P, Q be -symmetric pcs structures. Observe that MSSet(P, Q) is 0-
symmetric yielding.

Let P, @ be pcs’s. Observe that MSSet(P, Q) is pcs-yielding,.

Let P, @ be pcs structures. The functor P & () yielding a pcs structure is
defined by:

(Def. 38) P @ Q = |JMSSet(P, Q).
One can prove the following four propositions:

(14) Let P, @ be pcs structures. Then
(i)  the carrier of P @ @ = (the carrier of P) U (the carrier of Q)),
(i)  the internal relation of P & @ = (the internal relation of P) U (the
internal relation of @), and
(iii)  the alternative relation of P& @ = (the alternative relation of P)U (the
alternative relation of Q).

(15) Let P, Q be pcs structures. Then P @ @ = ((the carrier of P) U (the
carrier of @), (the internal relation of P) U (the internal relation of @),
(the alternative relation of P)U (the alternative relation of Q)).

(16) Let P, @ be pcs structures and p, g be elements of P @ ). Then p < ¢
if and only if one of the following conditions is satisfied:

(i)  there exist elements p/, ¢’ of P such that p’ = p and ¢ = g and p’ < ¢,
or
(ii)  there exist elements p’, ¢’ of @ such that p’ = p and ¢ =g and p’ <.

(17) Let P, @ be pcs structures and p, ¢ be elements of P @ Q. Then p ~ ¢
if and only if one of the following conditions is satisfied:

(i)  there exist elements p’, ¢’ of P such that p’ = p and ¢ =g and p' ~ ¢/,
or
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(ii)  there exist elements p’, ¢’ of @ such that p’ = p and ¢’ = g and p’ ~ ¢.
Let P, () be reflexive pcs structures. Observe that P @ @ is reflexive.

Let P, ) be (-reflexive pcs structures. One can verify that P & @ is (-
reflexive.

Let P, @ be -symmetric pes structures. Observe that P®(Q) is f-symmetric.
The following three propositions are true:
(18) For all pes’s P, @ such that P misses () holds the internal relation of
P @ @ is transitive.
(19) For all pes’s P, @ such that P misses @ holds P @ @ is compatible.
(20) For all pes’s P, @ such that P misses () holds P & @) is a pcs.

Let P be a pcs structure and let a be a set. The functor P, yields a strict
pes structure and is defined by the conditions (Def. 39).

(Def. 39)(i) The carrier of P, = {a} U the carrier of P,
(ii)  the internal relation of P, = [{a}, the carrier of P, ] U the internal
relation of P, and

(iii)  the alternative relation of P, = [{a}, the carrier of P, ]U [the carrier
of Py, {a}]U the alternative relation of P.
Let P be a pcs structure and let a be a set. Observe that P, is non empty.
The following propositions are true:
(21) Let P be a pcs structure and a be a set. Then
(i)  the carrier of P C the carrier of F,,
(ii)  the internal relation of P C the internal relation of P,, and
(iii)  the alternative relation of P C the alternative relation of P,.
(22) For every pcs structure P and for every set a and for all elements p, ¢
of P, such that p=a holds p < q.
(23) Let P be a pcs structure, a be a set, p, ¢ be elements of P, and p;, ¢
be elements of P,. If p=p; and ¢ = ¢ and p < ¢q, then p; < ¢;.
(24) Let P be a pcs structure, a be a set, p be an element of P, and p1, 1
be elements of P,. Suppose p = p; and p # a and p; < ¢ and a ¢ the
carrier of P. Then ¢; € the carrier of P and ¢ # a.

(25) Let P be a pcs structure, a be a set, and p be an element of P,. If p # a,
then p € the carrier of P.

(26) Let P be a pcs structure, a be a set, p, ¢ be elements of P, and p1, ¢ be
elements of P,. If p =p; and ¢ = ¢; and p # a and p; < g1, then p < q.

(27) For every pcs structure P and for every set a and for all elements p, ¢
of P, such that p = a holds p ~ ¢ and ¢ ~ p.

(28) Let P be a pcs structure, a be a set, p, ¢ be elements of P, and p1, ¢
be elements of P,. If p=p; and ¢ = ¢; and p ~ ¢, then p; ~ ¢1.
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(29) Let P be a pcs structure, a be a set, p, ¢ be elements of P, and p1, 1
be elements of P,. If p = p1 and ¢ = ¢1 and p # a and ¢ # a and p1 ~ q1,
then p ~ q.
Let P be a reflexive pes structure and let a be a set. Observe that P, is
reflexive.
The following proposition is true
(30) For every transitive pcs structure P and for every set a such that a ¢ the
carrier of P holds P, is transitive.

Let P be a (-reflexive pcs structure and let a be a set. One can verify that
P, is B-reflexive.

Let P be a f-symmetric pcs structure and let a be a set. One can check
that P, is f-symmetric.

|
\
|
i Next we state two propositions:
| (31) For every compatible pcs structure P and for every set a such that
| a ¢ the carrier of P holds P, is compatible.
(32) For every pcs P and for every set a such that a ¢ the carrier of P holds
| P, is a pcs.
! Let P be a pes structure. The functor [P yields a strict pcs structure and
| is defined by the conditions (Def. 40).
j (Def. 40)i) The carrier of [P = the carrier of P,
i (ii)  the internal relation of [P = (the internal relation of P)™~, and

(iii)  the alternative relation of [P = (the alternative relation of P)°.

Let P be a non empty pcs structure. One can check that [P is non empty.
Next we state three propositions:
(33) Let P be a pcs structure, p, ¢ be elements of P, and p/, ¢’ be elements
of [P.Ifp=p and ¢g= ¢, then p < qiff ¢ <p'.
(34) Let P be a pes structure, p, ¢ be elements of P, and p’, ¢ be elements
of [P.If p=p' and q = ¢, then if p ~ ¢, then p’ # ¢
(35) Let P be a non empty pes structure, p, ¢ be elements of P, and p’, ¢’ be
elements of [P. If p=p' and ¢ = ¢/, then if p/ % ¢, then p ~ q.
Let P be a reflexive pcs structure. One can check that [P is reflexive.
Let P be a transitive pcs structure. Observe that [P is transitive.
Let P be a S-reflexive pcs structure. One can verify that [P is S-irreflexive.
Let P be a S-irreflexive pcs structure. One can check that [P is f-reflexive.
Let P be a [B-symmetric pcs structure. One can verify that [P is (-
symmetric.
Let P be a compatible pcs structure. Note that [P is compatible.

Let P, () be pcs structures. The functor P ® @) yielding a pcs structure is
defined by the condition (Def. 41).
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(Def. 41) P ® @ = ([ the carrier of P, the carrier of @], (the internal relation
of P) x (the internal relation of Q), [the alternative relation of P, the
alternative relation of Q).

Let P, @ be pcs structures. One can check that P ® () is strict.
Let P, ) be non empty pcs structures. Note that P ® ) is non empty.
One can prove the following propositions:

(36) Let P, @ be pcs structures, p, ¢ be elements of P® Q, p1, po be elements
of P, and g1, g2 be elements of Q. If p = (p1, ¢1) and ¢ = (pa, ¢2), then
p<qiff pp <pz and g1 < g

(37) Let P, Q be pcs structures, p, ¢ be elements of P® Q, p1, p2 be elements
of P, and qi, g2 be elements of Q. If p = (p1, ¢1) and ¢ = (p2, q2), then if
p ~ g, then p; ~ py or g1 ~ ga.

(38) Let P, @ be non empty pcs structures, p, ¢ be elements of P® Q, p1, po
be elements of P, and ¢q1, g2 be elements of Q. If p = (p1, q1) and ¢ = (pa,
qa), then if py ~ py or q1 ~ go, then p ~ ¢.

Let P, @ be reflexive pcs structures. Observe that P ® @ is reflexive.

Let P, @ be transitive pcs structures. One can check that P® Q) is transitive.

Let P be a pcs structure and let ) be a (-reflexive pcs structure. One can
check that P ® @ is B-reflexive.

Let P be a f-reflexive pcs structure and let Q be a pcs structure. One can
check that P ® @ is G-reflexive.

Let P, @ be (-symmetric pcs structures. One can verify that P ® @ is
[B-symmetric.

Let P, @ be compatible pcs structures. Observe that P ® () is compatible.

Let P, @ be pcs structures. The functor P — (@ yielding a pcs structure
is defined as follows:

(Def. 42) P—Q=1P®Q.

- Let P, ) be pcs structures. One can check that P — @ is strict.

Let P, () be non empty pcs structures. Note that P —— () is non empty.
Next we state three propositions:

(39) Let P, @ be pcs structures, p, g be elements of P —— Q, p1, pa be
elements of P, and q1, g2 be elements of Q. If p = (p1, ¢1) and ¢ = (p2,
go), then p < g iff po < p1 and ¢1 < go.

(40) Let P, @ be pcs structures, p, ¢ be elements of P —— @, p1, pa be
elements of P, and g1, g2 be elements of Q. If p = (p1, ¢1) and ¢ = (po,
q2), then if p ~ g, then p1 % py or q1 ~ go.

(41) Let P, ) be non empty pcs structures, p, ¢ be elements of P —— @,
p1, p2 be elements of P, and g1, g2 be elements of Q). If p = (p1, ¢1) and
q = {p2, q2), then if p; # py or q1 ~ qo, then p ~ q.

Let P, () be reflexive pcs structures. One can check that P —— () is reflexive.
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Let P, Q) be transitive pcs structures. Observe that P —— () is transitive.

Let P be a pcs structure and let @) be a f-reflexive pcs structure. Note that
P+ @ is f-reflexive.

Let P be a (-irreflexive pcs structure and let QQ be a pcs structure. One can
verify that P —— @) is J-reflexive.

Let P, Q) be f-symmetric pcs structures. Note that P —— () is S-symmetric.

Let P, @) be compatible pcs structures. Note that P —— @ is compatible.

Let P, @ be pcs’s. Note that P —— () is pes-like.

Let P be a pcs structure and let S be a subset of P. We say that S is
self-coherent, if and only if:

(Def. 43) For all elements z, y of P such that x € S and y € S holds z ~ y.

Let P be a pcs structure. Observe that every subset of P which is empty is
also self-coherent.

Let P be a pcs structure. One can check that there exists a subset of P
which is empty.

Let P be a pes structure and let F' be a family of subsets of P. We say that
F' is self-coherent-membered if and only if:

(Def. 44) For every subset S of P such that S € F holds S is self-coherent.

Let P be a pcs structure. Observe that there exists a family of subsets of P
which is non empty and self-coherent-membered.
Let P be a pcs structure and let D be a set. The functor Pir(P, D) yields
a binary relation on D and is defined by the condition (Def. 45).
(Def. 45) Let A, B be sets. Then (A, B) € Pr(P, D) if and only if the following
conditions are satisfied:
(i) AeD,
(iiy BeD,and
(iii)  for every set a such that a € A there exists a set b such that b € B and
(a, b) € the internal relation of P.
The functor Prr(P, D) yielding a binary relation on D is defined by the condi-
tion (Def. 46).
(Def. 46) Let A, B be sets. Then (A, B) € Prr(P, D) if and only if the following
conditions are satisfied:
(i) AeD,
(i) BeD,and
(iii)  for all sets a, b such that a € A and b € B holds (a, b) € the alternative
relation of P.
Next we state two propositions:
(42) Let P be a pes structure, D be a family of subsets of P, and A, B be
sets. Then (A, B) € Pir(P, D) if and only if the following conditions are
satisfied:
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(i) AeD,
(i) BeD,and
(iii)  for every element a of P such that a € A there exists an element b of
P such that b € B and a <b.

(43) Let P be a pcs structure, D be a family of subsets of P, and A, B be
sets. Then (A4, B) € Prr(P, D) if and only if the following conditions are
satisfied:

i) AeD,
(ii) BeD,and
(iii)  for all elements a, b of P such that a € A and b € B holds a ~ b.

Let P be a pcs structure and let D be a set. The functor P(P, D) yielding

a pcs structure is defined by:
(Det. 47) P(P,D) = (D, Pir(P, D), Prr(P, D)).

Let P be a pcs structure and let D be a family of subsets of P. We introduce
P(D) as a synonym of P(P, D).

Let P be a pcs structure and let D be a non empty set. Observe that P(P, D)
is non empty.

Next we state four propositions:

(44) Let P be a pcs structure, D be a set, and p, ¢ be elements of P(P, D).
Suppose p < q. Let p’ be an element of P. If p’ € p, then there exists an
element ¢’ of P such that ¢ € ¢ and p’ < ¢.

(45) Let P be a pcs structure, D be a non empty family of subsets of P, and
p, q be elements of P(D). Suppose that for every element p’ of P such
that p’ € p there exists an element ¢’ of P such that ¢’ € ¢ and p’ < ¢'.
Then p <gq.

(46) Let P be a pcs structure, D be a set, and p, ¢ be elements of P(P, D).
Suppose p ~ q. Let p’, ¢ be elements of P. If p’ € p and ¢ € ¢, then
p~q.

(47) Let P be a pcs structure, D be a non empty family of subsets of P, and
p, g be elements of P(D). Suppose that for all elements p’, ¢’ of P such
that p’ € p and ¢’ € ¢ holds p’ ~ ¢'. Then p ~ gq.

Let P be a pcs structure and let D be a set. One can check that P(P, D) is
strict.

Let P be a reflexive pcs structure and let D be a family of subsets of P.
Note that P(D) is reflexive.

Let P be a transitive pcs structure and let D be a set. One can check that
P(P,D) is transitive.

Let P be a f-reflexive pcs structure and let D be a self-coherent-membered
family of subsets of P. One can check that P(D) is S-reflexive.
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Let P be a @-symmetric pcs structure and let D be a family of subsets of
P. Observe that P(D) is f-symmetric.

Let P be a compatible pcs structure and let D be a family of subsets of P.
Note that P(D) is compatible.

Let P be a pcs structure. The functor pcs-coherent-power P yields a set and
is defined as follows:

(Def. 48) pcs-coherent-power P = {X; X ranges over subsets of P: X is self-
coherent }.

We now state the proposition

(48) TFor every pcs structure P and for every set X such that X €
pcs-coherent-power P holds X is a self-coherent subset of P.

Let P be a pcs structure. Note that pcs-coherent-power P is non empty.

Let P be a pcs structure. Then pcs-coherent-power P is a family of subsets
of P.

Let P be a pcs structure. Observe that pcs-coherent-power P is self-coherent-
membered.

Let P be a pcs structure. The functor P(P) yielding a pcs structure is
defined by:

(Def. 49) P(P) = P(pcs-coherent-power P).
Let P be a pcs structure. Note that P(P) is strict.
Let P be a pcs structure. Note that P(P) is non empty.
Let P be a reflexive pcs structure. One can verify that P(P) is reflexive.
Let P be a transitive pcs structure. One can check that P(P) is transitive.
Let P be a B-reflexive pcs structure. Note that P(P) is (-reflexive.
Let P be a B-symmetric pcs structure. Note that P(P) is f-symmetric.
Let P be a compatible pcs structure. Note that P(P) is compatible.
Let P be a pcs. Observe that P(P) is pes-like.
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