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This dissertation in connection with the paper ‘Map theory’, Theoretical Com-
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Denne afhandling er i forbindelse med artiklen ‘Map theory’, Theoretical Computer
Science 102 (1992) 1-133 af Det naturvidenskabelige Fakultet antaget til offentligt
at forsvares for den naturvidenskabelige doktorgrad. Kgbenhavn, den 19. oktober,
1992, Henrik Jeppesen, Dekan.
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institutet fire uger fgr det offentlige forsvar, sa leenge lager haves.
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Preface

Long have I realized that too much logic at any one time smells suspicious
— Aksel Sandemose, A fugitive crosses his tracks

This dissertation introduces ‘map theory’ which is a foundation of mathematics
based on maps (i.e. functions). Like set theory, map theory is a well-defined, ax-
iomatic theory which, among other, covers all of classical mathematics. Map theory
seems to be the first foundation with these properties that makes no reference to sets
or related entities. Contrary to set theory, map theory allows unlimited abstraction
and has a computer programming language as a subtheory.

The thesis consists of the paper ‘Map theory’, Theoretical Computer Science
102 (1992) 1-133 plus the present volume which contains a preface in English and
Danish, an addendum, an index of Part I and II of the paper and an index of Part
ITI. Note the quick reference list of syntax, axioms and definitions at the end of the
volume. The paper ‘Map theory’ has been reprinted with permission from Elsevier
Science Publishers in DIKU report 92/17.

Part I of the paper consists of Sections 1 to 3, and gives an informal introduction
to map theory. Section 2 presents the notion of a map and Section 3 outlines possible
uses of map theory. Part I is semantic and fairly superficial of nature.

Part IT consists of Sections 4 to 8 and gives a formal, syntactic treatment of map
theory. Sections 4 to 7 introduce the axioms of map theory and Section 8 models
ZFC set theory within map theory. The expressive power of the axioms in Section
4,5, 6 and 7 roughly correspond to A-calculus, propositional calculus, first order
predicate calculus and set theory, respectively. The modeling of ZFC in Section 8
verifies that map theory covers all of classical mathematics.

Part III consists of Sections 9 to 15 and proves the consistency of map theory
assuming the existence of a strongly inaccessible ordinal. Section 9 introduces the
more or less standard ZFC notation used in Part III, Section 10 gives an informal
overview of the model construction, Section 11 defines the model, Section 12 to
14 proves that the model satisfies the theory, and Section 15 proves additional
consistency results. Part III is followed by a concluding section.
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Forord

Jeg har lenge syntes at alt for megen logik pd én gang er mistenkeligt
— Aksel Sandemose, En flygtning krydser sit spor

Denne afhandling introducerer ‘funktionsleere’ (‘map theory’). Funktionslere er
et matematisk fundament baseret pa funktioner (‘maps’). Funktionslere er lige-
som mangelzere en veldefineret, aksiomatisk teori som bl.a. omfatter al klassisk
matematik. Funktionslare synes at veere det fgrste fundament med disse egen-
skaber, der ikke refererer til maengder og lignende begreber. Modsat mangdelere
har funktionsleere ubegranset abstraktion (komprehension) og indeholder endvidere
et programmeringssprog.

Afhandlingen bestar af artiklen ‘Map theory’, Theoretical Computer Science 102
(1992) 1-133 samt neervarende bind, der indeholder forord pa engelsk og dansk,
et addendum, et index for artiklens del I og II samt et index for del I1I. Bemaerk
oversigten 1 kortform over syntax, aksiomer og definitioner bagest i bindet. Artiklen
‘Map theory’ er optrykt med tilladelse fra Elsevier Science Publishers i DIKU-
rapport 92/17.

Artiklens del I bestar af kapitel 1 til 3 og giver en uformel introduktion til
funktionslere. Kapitel 2 introducerer begrebet ‘funktion’ og kapitel 3 skitserer
mulige anvendelser af funktionslare. Del I er semantisk og forholdsvis overfladisk.

Del IT bestar af kapitel 4 til 8 og giver en formel, syntaktisk beskrivelse af funk-
tionslare. Kapitel 4 til 7 introducerer funktionslerens aksiomer. Udtrykskraften af
aksiomerne i kapitel 4, 5, 6 og 7 svarer stort set til A-kalkyle, propositionskalkyle,
forste ordens pradikatkalkyle henholdsvis mangdelaere. Kapitel 8 udvikler ZFC
mengdelere indenfor funktionsleere og beviser dermed, at funktionsleeren omfatter
al klassisk matematik.

Del I1I bestar af kapitel 9 til 15 og beviser, at funktionslaeren er konsistent under
antagelse af eksistensen af et steerkt unaligt (‘strongly inaccessible’) ordinaltal.
Kapitel 9 gennemgar den anvendte ZFC nomenklatur og kapitel 10 giver en uformel
gennemgang af den efterfolgende modelkonstruktion. Kapitel 11 definerer en model,
kapitel 12 til 14 beviser, at modellen er en model for funktionslere og kapitel
15 beviser yderligere konsistensresultater. Del III efterfglges af et konkluderende
kapitel.
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Addendum

This addendum explains how the axioms of Section 4, 5, 6 and 7 of the paper ‘Map
theory’ relate to A-calculus, propositional calculus, first order predicate calculus and
set theory, respectively. The addendum also discusses the syntax of map theory.

Let Map, be the subtheory of Map whose axioms and inference rules are those
stated in Section 4. Likewise, let Map; contain the axioms and inference rules of
Section 4 to 5 and let Map, contain those of Section 4 to 6. Map contains all of
map theory, i.e. all axioms and inference rules of Section 4 to 7.

A-calculus

If two A-terms A and B are B-convertible, then A = B is provable in Map, (Theorem
4.3.1. T and (ifz y 2) are admitted in A-terms). This shows that the embedding of
A-calculus into Map, is ‘sound’. Since anything provable in Map, is also provable
in Map,, Map, and Map, embedding of A-calculus into Map,, Map, and Map is
also sound.

On the contrary, if A and B are A-terms and A = B is provable in Map,, then A4
and B are §-convertible. This is not shown in the thesis, since it is considered out of
scope (the scope is to present map theory and to prove its power and consistency).
However, the proof is an easy application of Church-Rosser’s theorem. This shows
that the embedding of A-calculus into Map, is ‘complete’.

Map, can prove more about A-terms than A-calculus. As an example let R =
Az.5(zz) and R = (RR). In Map,, R’ = L is provable, so R' = L = (L Az.z) =
(R' Mz.z) is provable even though R’ and (R’ Az.z) are not B-convertible. Hence,
the embedding of A-calculus into Map, is incomplete. As a consequence, embedding
into Map, and Map is also incomplete.

Propositional calculus

For any well-formed formula A of propositional calculus let A’ be the result of
replacing = and — of propositional calculus by = and -, respectively, of map
theory. Let A” be the equation

lzy,... lzp—A
where z1, ..., z, are the free variables of A in some, prescribed order. The equation
A" intuitively says ‘if ;,...,z, are all either true or false, then .4’ holds’.

If A is provable in propositional calculus, then A” is provable in Map; (Theorem
5.2.2). Hence, the embedding of propositional calculus into Map, is sound. In
consequence, embedding into Map, and Map is also sound.

On the contrary, if A" is provable in Map;, Map, or Map, then A holds in
all 2" cases in the truth table of A, so A is provable in propositional calculus
(since any tautology is provable in propositional calculus). Hence, the embedding
of propositional calculus into Map,, Map, as well as Map is complete.

As other examples of sound and complete embedding, one could translate A
into
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lzi A Ale,— A
or
A =1z A Alz,

For arbitrary terms Bi,...,B, and C, the equation By,...,B,—C is provable
in Map, (or Map, or Map) if and only if BiA---AB,—C is provable. This is a

(B1A -+ - AB,):C which holds according to Theorem 5.2.2. As a special case, !z;A
.+ Alz,—A is as good an embedding as !z,. .., !z, —A’.

The equation A’ = !z,A--- Alz,, says more than !z1,...,!z,—A’. The former
equation says that .4’ is true when z;,...z, are all either true or false, and that
A’ = L when one or more among &1,...,&, are L. The equation !z;,...,lz,—
A’ does not state anything about A’ when one or more among z,,...,z, are L.
However, A’ is always L when one or more among z1,...,, are L since &1,...,2Z,
all occur in A’ and z=y and =z are strict in their arguments.

First order predicate calculus

For any, well-formed formula A of first order predicate calculus define A’ as follows:
Let f1,...,fm and Aq,..., A, be the function and relation letters, respectively, that
occur in A. Let a; be the arity of f; for i € {1,...,m} and let b; be the arity of A;
for j € {1,...,n}. Let y1,...,Ym, #1,..-, 2, be variables that do not occur (free or
bound) in A. Now define A’ as the result of replacing -, =, V, fi(B1,...,B,,), and
Aj(C1y...,Co;) by =, =, Y, (v By -+ Bg,), and (2 € -+ - Cy ), respectively. Let A”
be the equation

(?131,...,(]51’1,,

vul) . -aua1~¢(y1 Uy - ual)I

Yui,... Ua, -$(Ym U1 -+ Ua,,),

VU]_, .. .,’Ubl‘!(Z]. L B vbl)a

Yog,..., v, Mzn vy - vy, ) A
where z1,...,z, are the free variables of A. The equation of A" states ‘if z1,...,zp
are well-founded, if yi, ..., y, map well-founded maps to well-founded maps, and
if z1,..., 2z, map well-founded maps to truth values, then A’ holds’.

If A is a theorem of first order predicate calculus, then A" is provable in Map,
(the proof is analogous to but simpler than the development of ZFC in Section 8).
Hence, embedding of first order predicate calculus into Map, and Map is sound.

It is an open question whether the embedding of first order predicate calculus
into Map, and Map are complete.
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Set theory

For any well-formed formula of ZFC set theory, let A’ be the result of replacing =,
=, Vand € by =, =, V and €, respectively. Let A" be the equation ¢z, ..., ¢z, —
A’ where z1,...,z, are the free variables of A’. The equation A” intuitively says
4f 1, ..., 2, all represent sets, then A’ holds’.

If A is provable in ZFC, then A" is provable in Map (Theorem 8.2.1). Hence,
the embedding of ZFC into Map is sound. It is an open question whether the
embedding is complete.

Now let ZFC* be any extension of ZFC (in particular, ZFC* can be ZFC
itself). If A is provable in ZFC™*, then A” is provable in Map®t where Map°*
is defined in Section 9 (the definition of Map°* depends on ZFCt and includes
all theorems of ZFCt as axioms). Hence, the embedding of ZFC? into Map°* is
sound.

The embedding of ZFC* into Map®* is also complete as shown in the following.
If ZFCY is inconsistent, then the completeness of the embedding is trivial. Now
assume ZFC' is consistent and that B is not provable in ZFC*t. Since ZFCt
is consistent and B is not provable, ZFCtt = ZFCt 4 {-B} is consistent. —B is
provable in ZFC** | so (—B)" is provable in Map®** where Map®*¥ is defined from
ZFCTT like Map®t from ZFCT. Map®*+ is consistent since ZFC*+ is consistent
(Formula (10) on page 72 and the three lines following the proof of Theorem 15.5.1
on page 129 of ‘Map theory’). Hence, B” is not provable in Map®t™*, so B” is not
provable in the subtheory Map®* of Map®*™*, which proves the completeness.

The syntax of map theory

Several choices were made when defining the syntax of map theory. Some of them
are: (1) Should map theory be based on A-abstraction or the combinators S and
K? (2) Should if, € and ¢ be combinators or syntactic constructs? (3) What should
the structure of a well-formed formula be? The last question is covered in Section
16.3.

A-abstraction was chosen in favor of S and K because expressions built up from
S and K tend to be large and incomprehensible. The axioms of S and K are
considerably simpler than the corresponding ones for A-abstraction, so when map
theory is considered as an object of study rather than a foundation, S and K are
sometimes better than A-abstraction. This is why the model in Part III is based
on S and K, and models A-abstraction from these combinators.

It is not particularly important whether if, ¢ and ¢ are combinators or syntactic
constructs. In map theory, they are syntactic constructs, i.e., if, ¢ and ¢ are not
maps themselves. However, one may define the corresponding combinators by IF =
Az y Az (fzyz), C = Az.ex and W = Az.¢z. On the contrary, if if, € and ¢ were
introduced as combinators, then one could easily define the corresponding syntactic
constructs.

If if were defined as a combinator, then the axioms could not decide whether (if
TT) was T or a proper map. To state that (ifz y) is proper for all z and y would
require an additional axiom. Further, the combinators are probably slightly more
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difficult to understand for novices than the syntactic constructs. For these reasons,
and since there are no strong arguments in favor of either approach, the approach
with syntactic constructs is chosen.

Again, if map theory is considered as an object of study rather than as a foun-
dation, then combinators are sometimes easier to use. This is why the model in
Part III is based on combinators rather than the syntactic constructs.
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Index of Part I and II

This is an index of notation used in Part I and II. The notation in Part I and II
differs slightly from that of Part III. An index for Part III follows the index for Part
I and II.

For each entry, the index displays a mathematical construct, refers to the section
where it is defined, and gives a short, informal explanation of the construct.

Constructs that merely occur in Section 3.14

3.14 c
3.14 :Yy—z
3.14 Tzoy
3.14 id,
3.14 Di
3.14 =y
3.14 z,y)
3.14 Ay
3.14 Vz.A
3.14 zSy
3.14 *T
3.14 M
3.14 zéy
3.14 frzsy
3.14 2oy
3.14 idy
3.14 cat
3.14 F
3.14 F
3.14 func
3.14 idy
3.14 fog
3.14 Cat

Constructs involving parentheses

2.1 (f21 5:: Tn) Shorthand for (- ((f21)z2) --- z,) where (f
z) denotes f applied to . The syntactic
construct (f z) is part of the basic syntax of
terms in map theory

34 1 s e s Bl The tuple consisting of z1,...,z, (in that
order)
3.13 [A] The Godel-number of the term A. Actually,

[A] is a map rather than a number, so the
Godel-number is really a Godel-map
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3.13 z[i]
3.13 [A/z:=B]

K. Grue

The 2’th element of the tuple z

The result of substituting the term B for all
free occurrences of the variable z in the term A

Constructs involving =

3.6 =y

4.3 A=B

Predicate stating that ¢ and y represent the
same set

The statement that the terms A and B are
identical

Constructs involving <

7.1 <,y
7.1 <y
7.3 < prim¥

Predicate stating that & is recognized as being
well-founded before y is

A well-founded relation used for transfinite
induction

A well-founded relation used to justify the
C-Prim Axiom

Constructs involving <

2.8 :cSLy
2.8 <y
Alphabetic
Greek
7.5 R
2.5 IoF
29 A
1.2 Az A
2.4 o
2.6 =
2.6 by
2.5 oz

Predicate stating that the label z equals or
contains less information than the label y
Predicate stating that the map z equals or
contains less information than the map y

A syntax class used in the verification of the
metatheorem of totality

Choice construct. ez denotes a well-founded y
such that (zy) = T except for certain
exceptions. The syntactic construct ez is part
of the basic syntax of terms in map theory
The label of root nodes of proper maps

The map which maps « to A. The syntactic
construct Az.A is part of the basic syntax of
terms in map theory

Strongly inaccessible ordinal

Syntax class used in the metatheorem of
totality

Syntax class used in the metatheorem of
totality

This term equals T if z is well-founded and
equals L otherwise. The syntactic construct
¢z 1s part of the basic syntax of terms in map
theory




24
2.9
3.7

4.3
7.3

8.2

2.8
5.1

5.4

34

21
8.2

cons
Curry

D(z,y)

T

hd

I/

Map theory

The collection of well-founded maps
An alternative to ®
The least, infinite ordinal

A pairing construct

A combinator which transforms a first order
function that takes a pair of arguments into a
second order function that takes the arguments
one at a time

A construct used in proving the axiom of
restriction

A map that represents falsehood

A map whose range contains all proper maps.
It satisfies

AyT ifz=T
(Fz)=( z if z is proper
Ayl fz=1

h
A = BF C =D states that C = D is provable if
A = B is added to thg collection of axioms.

Furthermore, A = B+ C = D states that C =
D is provable without using the Sub2 inference
on variables free in A or B. The latter
restriction corresponds to the usual restriction
in the deduction theorem of first order
predicate calculus. According to Theorem 5.4.1

h

and 5.3.1, A=TF C =D if and only if A—(C
= D)

Projector function that selects the first element
of a pair

The identity map Az.z
Map used in proving the power set axiom

13
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2.5

4.3

1.3

34

3.12

3.5
3.11

(ifzyz)

mirror

NBG

nil

K. Grue

The construct (if zy z) satisfies

ife=T
(ifzyz) =< 2z if z is proper
1 fe=_1

The syntactic construct (ifz y z) is part of the
basic syntax of map theory. Note that if itself
is not part of the syntax — it is merely allowed
when accompanied by three terms z, y and 2.
In (ifzy 2), the parentheses are part of the
syntactic construct — they do not denote
functional application

The combinator Az.\y.z

The collection of all maps

An axiomatization of map theory from which
certain axioms are removed and certain other
ones are added. The definition of Map®*
depends on the definition of ZFC™T, where
ZFC? can be any extension of ZFC. The
consistency of Map®? is provable from the
assumption that ZFC? is consistent without
assuming the existence of a model of ZFC* or
assuming the existence of a strongly
inaccessible ordinal. Map°t has the same
expressive power as ZFCY

An example of a recursive function

Set theory as defined by von Neumann,
Bernays and Gédel
The empty list

The class of all ordinals

A pairing construct
The power set of «




7.3

5.3

5.1

2.2
2.1

4.3

3.5
21
24

2.2

22
2.5
5.3

34

25

Prim

QND

QND’

term

TND

t

variable
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A combinator for primitive recursive
definitions. If ¢ = (Prim f ab) then

a fz=T
(92) = { (f Au.(¢9(z (bu)))) if  is proper
L fz=1

Metatheorem expressing that any map is T, L
or proper — there is no fourth possibility
Inference rule expressing that any map is T, L
or proper — there is no fourth possibility

The label of the root node of «
A map that is closely related to Russell’s
paradox

Predicate stating that A can be reduced to B
in one reduction

The set represented by the well-founded map z
The combinator Az.Ay.Az.(z z (y %))

The collection of all maps that are recognized
as well-founded before z is recognized

A map of map theory. Among other, it is used
to represent truth and the empty list. The
syntactic construct T is part of the basic
syntax of terms in map theory

The label of the root node of the map T

The syntax class of terms of map theory

The metatheorem stating that any map which
is not 1 represents either truth or falsehood —
there is no third possibility

Projector function that selects the second
element of a pair

The syntax class of variables of map theory
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3.3

1.1

3.6

8.1 AZFC(zy,...zy)

Other constructs

1.1

1.1

1.1

1.1

1.2

2.2
2.4

3.1

ZFC

ZFct

rTEy

-
=y

Ve: A

K. Grue

A fixed point combinator. Y satisfies (Y f) =
(F (Y1)

Set theory as defined by Zermelo and Fraenkel.
ZF(C includes the axioms of choice and
restriction

An arbitrary extension of ZFC

The statement that 4 is a well-formed formula
of ZFC whose free variables occur among
L1,...,2,

The membership relation of ZFC. The
membership relation in map theory is denoted
S

Logical negation in ZFC. Logical negation in
map theory is denoted =

Logical implication in ZFC. Map theory offers
two kinds of implication: = and —

Universal quantifier in ZFC. The universal
quantifier in map theory is denoted Vz.A

A map that represents infinite looping or
undefinedness or total absence of information.
The syntactic construct L is part of the basic
syntax of terms of map theory

The label of the root node of L

The collection of maps that are well-founded
w.r.t. the collection G of maps. f € G° iff

Vei,zo,...€GIn: (for ...2y)=T

Logical negation in map theory. -z satisfies

F ife=T
s“z=<¢ T ifzisproper
L ife=1
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3.1

3.1

3.1

zAy

Map theory

Truth values are represented in two ways in
map theory. In the ‘strong’ representation,
truth is represented by T and falsehood by F.
In the ‘weak’ representation, T represents truth
and any proper map represents falsehood. ~z
denotes the strong representation of the truth
value weakly represented by z. ~z satisfies

T ifa=T
~r =4¢ F if zis proper
1 ife=1

As an example of use, the equation zAz = ~z
states that 2Az has the same truth value as z.
The equation zAz = z fails, e.g., for z = Az.L
because Az.L is a weak but not the strong
representation of falsehood. If T, F and L are
taken to represent the labels T, A and L,
respectively, then =z represents r(z)

!z is true unless z is L in which case !z is L.
lz satisfies

T ife=T
le =< T if z is proper
1l fe=L1

As an example of use, zV-z = !z states that
zV-z is true unless z is L in which case zV-z
is L

jz is false unless z is L in which case jz is L.
jz satisfies

F ifz=T
iz=< F if z is proper
L ife=1

As an example of use, zA-z = z states that

zA-z is false unless z is L in which case zA~z
is L
Logical ‘and’ in map theory. zAy satisfies

ifz=Tandy=T

if =T and y is proper
if 2 is properand y=T
if  and y are proper
otherwise

Ay =

-Tmm -

17
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3.1 zVy
3.1 =y
3.1 Sy
3.2 3z.A
3.2 Vz.A
3.4 Ty
3.4 -y

K. Grue

Logical ‘or’ in map theory. zVy satisfies

fz=Tandy=T

if z =T and y is proper
if z is proper and y =T
if  and y are proper
otherwise

Vy =

==

Logical implication in map theory. 2=y
satisfies

T ifz=T and y= T

F ifz=T and y is proper
z=>y=<(¢ T ifzisproperandy=T

T if z and y are proper

1 otherwise

The equation z=>y = T states that neither =
nor yis L and that # = T impliesy =T. In
contrast, the equation z—y states that z =T
implies y = T without requiring that « and y
differ from 1

Logical biimplication in map theory. z<y
satisfies

fe=Tandy=T

if £ =T and y is proper
if  is proper and y =T
if z and y are proper
otherwise

Y =

=

The existence quantifier in map theory. 3z.A
satisfies

_ 1l fA=1forsomezrec®
Jde. A=< F if Ais proper forallz € ®
T otherwise

The universal quantifier in map theory. V. A
satisfies

] 1l fA=1forsomezed
Ve A= T fA=Tforallze®
F otherwise

A pairing construct in map theory
Tuple concatenation in map theory




3.6

3.7
3.7
3.9
4.1

4.3

4.3

5.3

.’L’Gy

zCy
Uy

Uz

Map theory

The membership relation in map theory. If =
and y are well-founded then

sl { T if s(z) € s(y)

F otherwise

The subset relation in map theory

The union of two sets in map theory

The union of all elements of z in map theory
A1 =Bs;...; A, = B, F C = D states that C =
D is provable in map theory if A; = By,...,A,
= B,, are all provable. Note that the
antecedents are separated by semicolons in A4;
= By;...; A, = B, F C = D whereas the
antecedents of 4y,...,4,—C =D are
separated by commas. F is used both in
inference rules and metatheorems

The statement that the term A can be reduced
to B in a finite number of reductions

The statement that the equation £ holds in the
model M defined in Part III

z:yis y if z = T and equals some default value
if ¢ £ 7T. z:y satisfies

y fz=T
z:;y=4 T if zis proper
1l fe=1
z:y is merely used in the definition of 4A—&

and in metatheorems concerning the behavior

of A—=E

19
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5.3

A—-E

K. Grue

Let Ay,...,A,, C and D be terms. The
construct

Al,...,An—>C:'D

1s shorthand for the equation

and states ‘if A;,...,.A, are all true, then C =
D’. The construct

Ai, ..., An—C
is shorthand for the equation
.Al,...,.An—>C:T

and states if Ay, ..., A, are all true, then C is
true. (See = and I for other notions of
implication). According to theorem 5.4.1 and

h
531, A—-C=Difandonlyif A=TFHC=D.
The tautology :(y:z) = (2:y):z shows that
parentheses are unnecessary in Aj:...:A,:C.
The tautology A;:...:A,:C = (A1A--AA,):C
shows that

.Al,...,.An'*C:'D
if and only if
AiA- - AA,—C =D

The formal definition reads: If A4 is a term
and £ is an equation, then A—& is shorthand
for A:C = A:D where C and D are the left and
right hand sides of £, respectively. Further,
A, ..., A,—€ is shorthand for A4;—(Ay—

(o0 {A=s)e+ 7))
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Index of Part III

This is an index of notation used in Part III. The index is kept separate from that
of Part I and II since the notation in Part III differs slightly from that of Part I
and II.

For each entry, the index displays a mathematical construct, refers to the section
where it is defined, and gives a short, informal explanation of the construct. Some
constructs both have a formal and an informal definition in the text. In such cases,
the index refers to both, and parenthesizes the reference to the informal definition.

Part III introduces light and shade into the notation of Part I and II. In par-
ticular, Part III distinguishes between terms and the maps they denote, and Part
III constructs several models of parts of map theory that lead up to a model of
all of map theory. For this reason, many constructs of map theory have several
names: one for each model, and one for the Godel-number. As an example, a(f, z),
a(f)(x), a(f)(z), and a(f)(z) informally all denote the root of (f z1 ... z,) where
(z1,...,2,) = 2. However, a(f,z) applies to elements of a model & of well-founded
maps, 4(f)(z) applies to elements of a relativization ® of that model, 4(f)(z) ap-
plies to elements of M which consists of ‘terms’, i.e. Godel-numbers, and a(f)(z)
applies to elements of a model M of all maps. As can be seen, accents are used
to distinguish between different versions of the same concept. Further, each accent
refers to a specific model so that constructs with the same accent live within the
same model.

Another difference between Part I, II, and III is that Part III uses dot accents
(like in A(f,z)) to denote Gédel-numbers whereas Part I and II use dot accents to
distinguish between concepts of map and set theory.

Constructs with a dot accent like A(f,z) take Gddel-numbers as arguments
and produce Godel-numbers as their result. In contrast, Constructs with an acute
accent like a(f)(x) take Godel-numbers as arguments and produces other than
Godel-numbers as their result. The Godel-number of a term can be expressed
simply by putting a dot accent above each construct in the term.

It is not always easy to see which parts of a construct are variables and which
are part of the construct itself. As an example, consider the construct z=%y. This
is an equivalence relation in z and y parameterized over G. Hence, z, y, and G are
variables whereas a is part of the name of the relation. The name of the relation
consists of an equal sign, an accent, and the letter a (the relation is related to the
function a(f, z), but that is another story). When confusion is possible, the index
makes clear which parts of a construct are variables by mentioning all the variables
explicitly in the explanation of the construct.

Relations that involve stars such as ="y are excluded from the index. Deco-
ration of a relation with a star makes the relation work coordinatewise on tuples.
See Section 9.6 for details. Further, negations of relations like :c;AéZ.y are excluded
from the index.
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Constructs involving parentheses

9.2

9.2
9.4
94
9.8

(10.1) 11.9
9.9

9.9
9.10

12.3

12.4

f(=z)

(z,y)
(z1,...,2n)

()
F{e)
(fzy ... zn)
(f:cl ...:cnj

[A]
1A]

[A/z:=B]
[A]

The function f applied to the argument z. Both f
and z are sets

The ordered pair of  and y

A tuple with the n elements z1,...,z,

The empty tuple

The well-founded function f applied to the argument
z. When f is not well-founded, f{{z)) forces f to
behave somewhat like a well-founded function

The map f applied to the maps zy,...,z, in turn

The Godel number of (f z; ... z,). Note the dots
above the parentheses
The Go6del number of the expression 4

The relativization of the well-formed formula A to
the model D of ZFC

The result of replacing all free occurrences of the
variable z in the term A4 by the term B

The combinator term corresponding to the A-term A

Constructs involving =

9.5
(10.7) 11.4
12.5

11.1

11.4
10.2

11.4

11.4

G=.H
f=g
A=B

[=¢y

=G9
f=tg

W

Predicate stating the sets G and H have the same
cardinality

Predicate stating that the terms f and g denote the
same map

Predicate stating that for all values of free variables,
the terms .4 and B denote the same map

Predicate stating that the maps f,g € ® are
observationally equivalent when using elements of
the set G C & for observations

The relativization of f=¢g

Predicate stating that the maps f and g are
observationally equivalent when using elements of
the set G of maps for observations

An approximation to f<g for f € <i>, g€ M, and

v € M — L. The relations féfg and f<g coincide
when v = 7. For g € M and any ordinal a, f<g holds
for at most one f € é’(a) which explains why an
equivalence relation can approximate a partial order
An approximation to f<g to be used in connection
with :'S. In the construct, f, g, v, and w are
variables

Constructs involving <

9.3

a<,p

Predicate stating that the ordinal « is less than or
equal to the ordinal 3
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9.5 G<L.H Predicate stating that the cardinality of the set G is
less than or equal to that of H

9.7 z<ry A predicate stating that the information contents of
the label z is less than or equal to that of y
(10.1) 13.5 f<g Predicate stating that the information contents of

the map f is less than or equal to that of ¢
(10.7) 114 <g Predicate stating that the map denoted by the term

f has information contents less than or equal to that
of the map denoted by g

Constructs involving <

9.3 a<,f Predicate stating that the ordinal « is less than the
ordinal 8
11.2 < 00Y A well-founded relation which is useful for
simultaneous transfinite induction in two variables
9.5 G<,H Predicate stating that the rank of the set G is less
than that of H
11.1 z<p,Y A well-founded relation which is useful for
simultaneous transfinite induction in two variables
9.5 G<.H Predicate stating that the cardinality of the set G is
less than that of H
9.8 f<wyg A well-founded relation on well-founded functions f
and ¢ which is useful for transfinite induction
(10.1) 11.10 f<ag A well-founded relation on ® which is useful for
transfinite induction
11.10 f<ig A well-founded relation on ® used for speculations

Alphabetic constructs

Greek
9.9 Ex The Godel number of ez
10.1 Az. A The map which maps z to .4 where z may occur free
in A

9.9 Az A The Godel number of Az.4

124 dz.A The combinator term that represents Az..A where A
is a combinator term

9.7 A The root of any proper map, i.e. the label of the root
node of any proper map
11.4 3 The least ordinal with cardinality greater than
M-L
9.5 p(G) The rank of the set G
9.10 o Strongly inaccessible ordinal
9.9 of The Godel number of ¢ f

14.3 ¢;1f The Godel number of ¢, f where ¢, f = Va.¢(f z)
(10.3) 11.9 @ The set of well-founded maps
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(10.6)
(10.4)
(10.3)

(10.6)
(10.4)

(10.3)

(10.6)
(10.4)

(10.1)
(10.5)

(10.8)
(10.7)

(10.1)

(10.7)
(10.7)

(10.1)

11.1

11.3
11.4
14.2
14.2
11.1
11.3
14.2
14.2
14.2
11.1
11.3
14.2

9.3

94

14.2
11.1

11.3
114

11.9
9.9

12.5

15.3

11.9
14.2
14.2

11.9
9.9

L=08 = L =

~

—~—~
R

~—

~Q ™
~~
R
~—'

*Re®r
S N N’

~

1~ KA 1> 1N

@II

30
"

a(f)(z)
a(f, =)

a(f)(=)
a(f)(=)

A(f,z)
A(f, =)

belbng

c(f)
c*(f)
"G

K. Grue

A model of well-founded maps. This model is the
backbone of the model M of all maps

The relativization of &

The image of ® in M under the injection c(-)

Stage in forming ®

The boundary (i.e. set of minimal elements) of ®'(a)
Stage in forming &

The relativization of & (a)

The counterpart of &'(a) in M

Stage in forming @

The boundary (i.e. set of minimal elements) of ()
Stage in forming ®

The relativization of ®”(a)

The counterpart of ®(a) in M

The least infinite ordinal

The set of infinite sequences of elements of the set G

The root of (fz; ... z,) where (z1,...,2,) =2
The root of (fzy ...z,) where {z1,...,2,) = « and
fxy,...,z¢n €®

The relativization of a(f,z)

The root of the map denoted by the term (fz; ...
z,) where (zy,...,2,) = 2 and f,z4,...,2, are
terms

The map f applied to the map =

The Godel number of the map f applied to the map
z

Predicate stating that the value of the term A is
three-valued Boolean (i.e. has one of the values T, F,
or L) for the assignment d € M V' of values to free
variables

The Godel number of a map that expresses the set
membership relation

The map denoted by the term f

Coordinatewise application of ¢(-)

The set of maps denoted by elements of the set G of
terms

A particular map

The Godel number of C
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14.3

9.2
9.2

9.10

12.5

15.4

11.6
15.3

12.1

12.5

13.5
15.4

9.2
12.3

Con(z)

Curry

F
FV

fne(z)
free(z,.A)
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The statement that the axiomatic theory z is
consistent

The Godel number of the map Curry (c.f. Section
7.3)

The domain of the function f

The union of domains of functions in the set G of
functions. We have (G — H)? =G for H £ 0

The domain of a transitive standard model of ZFC.
Many definitions depend on D implicitly

Predicate stating that the value of the term A is
defined (i.e. differs from L) for the assignment

d € MV of values to free variables

The set of assignments of values to variables in the
model D of ZFC

The set of polynomials in one variable

The Godel number of a map that expresses the set
equality relation

The Godel number of a particular variable of map
theory

The map Az.T which, by convention, represents
falsehood

The G6del number of F (c.f. Section 3.1)

The set of assignments of well-founded maps to
variables in the model M of map theory
Predicate stating that the set z is a function

Predicate stating that the variable « occurs free in
the term A

12.3 freefor(A, z, B) Predicate stating that the substitution [A/z:=B] is

121

12.1

free from variable conflicts

The Go6del number of a particular variable of map
theory

The Godel number of a particular variable of map
theory
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I
11.2
9.9

K
(10.1) 11.9
9.9

L
9.7

M
(10.1) 11.9
(10.7) 11.4
(10.1) 119
(10.7) 11.4
12.1
11.7
12.1
12,5
9
9
9

O
9.3
9.3

P
9.1
(10.1) 11.9
9.9
14.3

Iy s

o

(ifzyz)

K
K

Map

K. Grue

Predicate stating the injectivity of certain functions.
Used for proving Corollary 11.2.2 by transfinite
induction

The Godel number of (ifz y 2)

A particular map
The Go6del number of K

The set of labels, L = {T,\, 1}

The map f applied to the maps z,...,z, in turn
where (z1,...,2p) =

The term (fz1 ... z,) where (21,...,2,) = z.

A model of map theory, i.e. M may be seen as the
set of all maps. The definition of M depends on D
implicitly

Term model of map theory

The set of Gédel numbers of A-terms with free
variables

A set used for proving the Root Theorem

The set of Godel numbers of combinator terms with
free variables

The set of assignments of values to variables in the
model M of map theory

An axiomatic theory of maps

A reduced version of Map

An extension of Map°®

The class of all ordinals
Predicate stating that the set z is an ordinal

The power set of the set G
A particular map
The Godel number of P

The Gddel number of the map P when expressed as
a A-term (c.f. Section 7.3)




(10.6)
(10.4)
(10.3)
(10.6)
(10.4)

(10.7)

(10.1)
(10.6)
(10.1)

14.3

13.2

114
13.2

11.1
11.3
14.2
11.1
11.3
14.2
14.2

10.1

114
114

114
9.2
9.2

11.2

9.2

15.1
15.2
11.9

9.9
11.2

Prim

q(z)

4(G)
4(G)

@(@)

Q'(e)
Q' ()
Q' (a)
Q@)
Qs(a)

r(f)
*(f)
#(v)
# ()

Ry g

GR

s(f)
8(f)

Se.p

ST
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The Godel number of the map Prim (c.f. Section 7.3)

A choice function on @ corresponding to the choice
functions ¢(G) and ¢(G)

A choice function on &

A choice function on & corresponding to the choice
function §(G)

The union of dual stages Q'(«) used in forming ®
The relativization of @

Dual stage in forming ®

Dual stage in forming &

The relativization of ¢’ (o)

The counterpart of Q' (a) in M

The boundary (i.e. set of minimal elements) of Q'(«)

The root of the map f, i.e. the label of the root node
of f

The root of the map denoted by the term f
Function which, given an approximation v to #,
produces a better approximation. The function # is
the least fixed point of #/

The function #' iterated a times

The range of the function f

The set of real numbers

Predicate describing the domain and range of certain
functions. Used for proving Corollary 11.2.2 by
transfinite induction

The union of ranges of functions in the set G of
functions. We have G*® = G and (G— H)? = H
for G#0

The set represented by the well-founded map f

. The set represented by the map f € ®

A particular map

The Godel number of S

Predicate stating the surjectivity of certain
functions. Used for proving Corollary 11.2.2 by
transfinite induction

An axiom beyond ZFC which asserts the existence of
a strongly inaccessible ordinal
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T
(10.2) 14.2

11.1

11.2
14.2

14.2
11.1

14.2

9.5

9.4

(10.1) 11.9
9.9

11.10
11.10

9.7

12.5

12.1

9.1

12.1
9.9

9.9
12.1

\%\%
12.1
(10.3) 14.2
14.2

(10.1) 11.9
9.9

ta(f)
ia(f)

ia(f)
ta(f)

t(f)
& (f)
t&(f)
te(G)
tpl (z)

Y e =

UG

v
v

uwf (G)
uf (G)

T

K. Grue

The observational class of the map f when using
elements of the set G of maps for observations

The observational class of f € & when using
elements of the set G C ® for observations

The relativization of {g(f)

The observational behavior of the map denoted by
the term f when using elements of the set G of maps
for observations

Coordinatewise application of t¢(+)

Coordinatewise application of fg(-)

Coordinatewise application of g (-)

The transitive closure (w.r.t. €) of the set G
Predicate stating that the set  i1s a tuple

A particular map

The Godel number of T

The element of ® that corresponds to T

The relativization of T

The root of T, i.e. the label of the root node of T
Predicate stating that the term A is true (i.e. has the
value T) for the assignment d € MY of values to free
variables

The Godel number of a particular variable of map
theory
The union of all elements of the set G

The Godel number of a particular variable of map
theory

The Godel number of the 2’th variable of map theory
The Godel number of the ¢’th variable of ZFC

The set of Godel numbers of variables

The Godel number of a particular variable of map
theory :

The set of maps f that are well-founded w.r.t. the
set G of maps, c.f. G°

The set of terms that denote maps that are
well-founded w.r.t. the set G of maps

A particular map

The Godel number of W




121

9.9

121

9.9
13.5

121

15.4
9
9

£

z

7
ZFC
ZFCY

Other constructs

9.1
13.5
9.9
13.5
13.5
9.1

13.5
9.9
9.1

13.5
13.5

9.9
13.5
15.1

9.9
15.3

-A
A
SA
AAB
AVB
A=>B

A=B
ASB
A B

A&SB
Vz. A
Ve : A
Jz.A
z€y

z€y
z=y
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The Gédel number of a particular variable of map
theory

The Gddel number of a particular variable of ZFC

The Godel number of a particular variable of map
theory

The Gédel number of a particular variable of ZFC
The Gé6del number of Y (c.f. Section 3.3)

The Godel number of a particular variable of map
theory

The set of well-formed formulas of ZFC
An axiomatic theory of sets
An extension of ZFC

Negation of A

The Godel number of -.A (c.f. Section 3.1)

The Godel number of =4 in ZFC

The Gédel number of AAB (c.f. Section 3.1)

The Gddel number of AVB (c.f. Section 3.1)
Implication, A; = Ay = .-+ = A, means

(A1 2> A)A (A2 2> A A . A (An1 = Ap)

The Godel number of A=>B (c.f. Section 3.1)

The Gédel number of A = B in ZFC

Biimplication, 4; < Ay & - - < A, means

(.Al <=>.A2) A (.Az <:>.A3) AL /\(-An—l =4 .An)

The Gédel number of A<B (cf. Section 3.1)

The Godel number of Vz.A (c.f. Section 3.2)

The Godel number of Vz : A in ZFC

The Godel number of 3z.A4 (cf. Section 3.2)

The Godel number of the map z € y. In contrast,
z€y is the Gédel number of the term = € y in ZFC.
Note that Part I and II in general and Section 3.6 in
particular use € for the map itself rather than the
Godel number

The Godel number of z € y in ZFC

The Godel number of the map set equality predicate
expressed in map theory. See also €. Note that Part
I and II in general and Section 3.6 in particular use
€ for the map itself rather than the Godel number
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(10.1)

(10.4)

13.5
13.5
13.5
13.5
13.5

11.9
9.9
9.7
9.2
9.2
9.2

9.2
9.2
9.3
9.3
94
9.4
9.7
9.8

14.2

14.2

14.2

15.4

12.5

oG
vG
vG
1A
A

K. Grue

The Godel number of ~z (c.f. Section 3.1)

The Godel number of !z (c.f. Section 3.1)

The Godel number of jz (c.f. Section 3.1)

The Godel number of z:y (c.f. Section 5.3)

The Godel number of the equation z1,...,z,—y (c.f.
Section 5.3)

A particular map

The Gédel number of L

The root of L, i.e. the label of the root node of L
The Cartesian product of the sets G and H

The set of functions from G into H

The function with domain G that maps z to A
where the term A may contain z free

Functional composition

The function f restricted to the domain G

The ordinal zero, 0 = 0

The successor of the ordinal o

The set of tuples of elements of the set G

Tuple concatenation

The least upper bound of a chain G of labels

The set of functions f that are well-founded on the
set G. The elements of G° are set theoretic functions
(i-e. sets of pairs) as opposed to maps. See also

wf (G)

The set of minimal elements of the set G of maps
(the ‘boundary’ of G)

The set of maps with the same or more information
contents than elements of the set G of maps

A version of ¥/ that operates on terms rather than
maps

The well-formed formula A of ZFC translated to
map theory

The interpretation of the term A for the assignment
de MY
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The grammar of map theory

variable

term

wif

w= z|ylz] ...

variable | Avariable.term | (termterm) | T | L |
(if term term term) | gterm | eterm

= term =term

Various definitions in map theory

See the index of Part I and II for explanations of constructs

i
l

Ai, ...
A,

F

v
~r

lz

iz
zAy
Vy
=y
25y
JA
Jz.A
Vz.A
=y
a€b
Y
Yf.A
P
Curry
Prim
F/
oz.A
Ty

Az. T

(ifzFT)

(ifzTF)

(ifzTT)

(ifzFF)

(ifz (ifyFT) (ify FF))

(ifz (ify TT) (ify TF))

(ifz(ify TF) (ifyTT))

(ifz(ify TF) (ifyFT))

~(AeA)

3(Az.A)

-3z.-A o o
(ifz (ify TF) (ify F (VuTv.(z w)=(y v))A(VvIu.(z u)=(y v))))
(ifb F Jv.a=(bv))

Af((Az.(f (22))) (Az.(f (2 2))))
(YAf.A)

Aa.dbdz.(ifzab)

Aadz. Ay (a(Pey))

Afda b Yg . (ifza(f Au(g (z(bu)))))
Afdz.(f z)

drz. A

(ifzyT)
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Axioms/inference rules of Section 4 (A-calculus)

Trans A=BA=CFHB=C
Subl A=B;C=D} (AC)=(BD)
Sub?2 A=BF iz A= )Xz.B

Apply 1 (T =T

Apply 2 ((Az.A) B) = [A/z:=B] if B is free for z in A

Apply 3 (LB)=1

Select 1 (fTBC)=8

Select 2 (if(Az. A)BC)=C

Select 3 (ifLBC)= L1

Rename Az [A/y:=z] = Ay.[A/z:=y] if z is free for y in A and vice versa

Axioms/inference rules of Section 5 (propositional calculus)

QND’ [A/z:=T] = [B/z:=T];
[A/z:=(F 2)] = [B/z:=(F 2)];
(A e=L) = [Ble=1]
FA=B

Axioms/inference rules of Section 6 (first order predicate
calculus)

Quantify 1 ¢A,Vz.B—((Az.B) A)
Quantify 2 ex. A = ez.(gzAA)
Quantify 3 ¢ez. A =Vz.l4

Quantify 4 Jr.A—¢ez.A
Quantify 5 Vz.A =Vz.(¢zAA)

Axioms/inference rules of Section 7 (set theory)

Well 1 &1

Well 2 odz. A = pAz.d A
Well 3 ¢l =1

C-A da, pb—¢(ab)
C-K’ oz T

C-p’ ¢x.(ifzTT)

C-Curry pa—¢(Currya)

C-Prim Vz.¢(f x), pa, pb—¢(Prim f a b)

C-M1 Yu.gz. A—=Vu.¢z.((Au.A) (v z))

C-M2 Vu.gr. A—Vu.dz.((Az.A) (z u))

Induction  If z does not occur free in A and y does not occur (free or bound) in
B, then A, z—B; A, -z, ¢z, Vy.[B/z:=(z y)| =B+ A—B

See the addendum in this volume for an explanation of the correspondence between
Sections 4 to 7 and A-calculus, propositional calculus, first order predicate calculus
and set theory.




