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Abstracr 

Grue, K., Map theory, Theoretical Computer Science 102 (1992) I-133. 

Map theory is a foundation of mathematics based on A-calculus instead of logic and sets, and 
thereby fulfills Church’s original aim of introducing A-calculus. Map theory can do anything set 

theory can do. In particular, all of classical mathematics is contained in may theory. In addition, 

and contrary to set theory, map theory has unlimited abstraction and contains a computer 

programming language as a natural subset. This makes map theory more suited to deal with 

mechanical procedures than set theory. In addition, the unlimited abstraction allows definition, 

e.g., of the notion of truth and the category of all categories. This paper introduces map theory, 

gives a number of applications and gives a relative consistency proof. To demonstrate the expressive 

power of map theory, the paper develops ZFC set theory within map theory. 
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Part I. Introduction to map theory 

1. Overview 

1.1. Properties qf map theory 

This paper introduces a theory - Map Theory- which has five important 

properties: 

(1) map theory is a rigorously-defined formal theory; 

(2) map theory has enough expressive power to serve as a foundation of all of 

classical mathematics; 

(3) map theory has unlimited abstraction and a computer programming language 

as a natural subset; 

(4) map theory is as simple as set theory; 

(5) relative consistency proofs for map theory exist. 

It is hard to find other theories with all of these properties. Set theory [17, 221 

fails to satisfy (3). This makes map theory more suited as a foundation of computer 

science than set theory. Theories like intuitionistic type theory [20], A-calculus [3], 

and Meta-IV [8] fail to satisfy (2). Category theory [ 18,4] is the common name of 

a host of theories, each of which fails to satisfy at least one of the points above. 

All versions of category theory in practical use fail to satisfy (1). Attempts have 

been made to make set theory satisfy (3) [ 1,6], but set theory is highly nonconstruc- 

tive and inherently unsuited to support computer science. 

Set theory is suited as a foundation of all of classical mathematics, and map 

theory is intended to enlarge the scope to include algorithms, metalogic and computer 

science. It is easy to move from set to map theory since all concepts of set theory 

are definable in map theory and all theorems of set theory (ZFC to be precise) are 

also theorems of map theory. ZFC as stated in [17] has four elementary concepts: 

membership (E), negation (l), implication (=+) and universal quantification (V). 

To demonstrate the expressive power of map theory, this paper defines all four in 

map theory and proves that any theorem of ZFC is provable in map theory. 

1.2. Comparison with earlier work 

Map theory is considerably different from set theory, but compares well to set 

theory with respect to formal rigor, expressive power and relative consistency. Hence, 

map theory has finally turned h-calculus into the alternative foundation it was 

originally intended to be. 
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References [23,24] reviews earlier attempts to turn A-calculus into a foundation 

and make their own contribution. Reference [24] concludes, however, that the 

attempts did not succeed well. 

Like earlier attempts, map theory is based on functions. Functions are termed 

maps in map theory. Reference [23] identifies certain functions to be particularly 

well-behaved and calls them dejinite. Likewise, map theory identifies certain maps 

to be well-founded. However, the definition of well-foundedness differs from any of 

the earlier attempts and is crucial to the expressive power of map theory. 

Earlier attempts let a function ,f represent the set 

{x If(x) = true], 

whereas map theory let a map f represent the set 

{f(x) Ix E @I 

where @ is the collection of well-founded maps. The difference is like the difference 

between co- and contravariance. 

As a consequence of the representation of sets, earlier attempts have used f(x) 

to stand for x ä fand Ax.& to stand for {x 1 a}. Matters are slightly more complicated 

in map theory due to the different representation. In particular, A-abstraction and 

set abstraction are two different things in map theory. The paradoxes of set theory 

have shown that unrestricted set abstraction is unattainable, so in hindsight it is no 

surprise that unrestricted A-abstraction differs from set abstraction. 

Map theory also differs from earlier attempts in that it is based on a type-free 

but not completely pure A-calculus: In addition to functions and the inevitable i 

element, the maps of map theory also comprise a single object which is not a 

function. This is no dramatic innovation but crucial to the expressive power of map 

theory and deserves mention here. 

1.3. Three descriptions 

This paper gives three descriptions of map theory: an intuitive, an axiomatic, and 

a model theoretic one. Part I, II and III take these three points of view, respectively. 

Part I uses words like function, set and tree in the naive sense. Sets of ZFC and 

classes of NBC [22] are referred to as ZFC-sets and NBC-classes, respectively. 

Part I gives the intuition behind map theory and sketches a number of applications 

of map theory. 

Part II presents an axiomatization of map theory and develops ZFC within that 

axiom system. This verifies the expressive power of map theory. 

Part III proves the consistency of the axiomatization from Part II. To do so, Part 

III has to assume the existence of a strongly inaccessible ordinal [22, 171. Part III 

also considers the consistency of various weaker and stronger axiomatizations of 

map theory. 

Part II and III together demonstrate the consistency and expressive power of 

map theory and thereby verify that map theory deserves to be called a foundation. 
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2. The intuition behind maps 

2.1. Black boxes 

Think of a map as a black box with an input, an output and some hidden 

mechanical computing machinery inside. Whenever a black box f receives an input 

x, its machinery starts working and delivers an output after a while. Let (fx) denote 

this output. The term (fx) reads “f applied to x”. 

A black box f merely accepts black boxes as input and merely produces black 

boxes as output. The simplest black box is the identity I which, whenever it receives 

a black box x as input, delivers this x unchanged as output. This I satisfies (Ix) =x 

for all black boxes x. Other notations read 1 :x H x and I = Ax.x. 

Another example is the black box I’= Ay.Ax.x. Whenever it inputs a y, it outputs 

hx.x regardless of the value of y. In the other notations we have (I’ y) = I and 

I’: x - I. Since (1’~) = I and (Ix) =x, we have ((1’~) x) =x. Let (fx, . x,,) be 

shorthand for (. . . ((fx,) xl) . . x,,). With this convention, (I’ y x) = x. 

Two further examples are K = Ax.Ay.x and S = Ax.Ay.Az(x z (y z)) which satisfy 

(Kxy)=x and (Sxyz)=(xz(yz)). 

In essence, the machinery inside a map can do anything a real world computer 

can do, and in addition it can run infinitely many processes in parallel. Even though 

maps have infinite computational power, there are, as we shall see, operations they 

cannot perform. 

A particularly interesting map is R = Ax.(x x) which is closely related to Russell’s 

set {x/x G x}. When R receives a black box A as input, it takes two copies of A and 

enters one A as input to the other A. When the output of the latter A appears, R 

takes it and outputs it as its own output. Hence, computation of (R A) causes 

computation of (A A). If a copy of R is entered as input to R, then computation 

of (R R) causes computation of (R R), which in turn causes computation of (R R) 

and so on indefinitely. Hence, when R receives a copy of itself, it will work 

indefinitely without producing output. 

Let 1 (bottom) denote “no output”. With this convention, (R R) = 1. As another 

example, let R’= Ax.(xx x). Since R’ produces no output when it receives R as 

input, (R’ R) = i = (R R). 

Even though I denotes “no map”, it is considered to be a map. At this moment 

a map is either I or a black box, a black box accepts both I and black boxes as 

input, and it may produce both L and black boxes as output. 

Since I has no input and output, (I x) does not make sense. Nevertheless it is 

convenient to define that (I x) = I for all x. This convention ensures that (fx) is 

defined and is a map for all maps f and x. 

2.2. White boxes 

All black boxes look the same from the outside, but their inner machinery may 

react differently to input. 



The limited output facilities of black boxes make them useless, so it is necessary 

to enhance them slightly, As an example, consider a black box f which, given an 

input x, decides whether or not x has a certain property p(x). How should f 

communicate its findings to the outside world? 

One possibility is to let f output one black box if p(x) is true and another if p(x) 

is false, but that would not be very helpful since all black boxes look the same. 

Another possibility is to letfoutput a black box ifp(x) is true and loop indefinitely 

if p(x) is false. Then if (fx) produced output, p(x) would be known to be true. 

However, if (fx) had not produced output after a while, then this could either 

indicate that p(x) is false or that p(x) is true but f needs more time to find out. 

To remedy for this, we now introduce the third and last kind of map: a white box 

with no input, no output and no machinery inside. The central property of a white 

box is that it is immediately distinguishable from any black box. Any two white 

boxes are equal. 

Now a map is either J. or a white box or a black box. Black boxes accept 1, 

white and black boxes as input and produce I, white and black boxes as output. 

Most theories are based on a logic, but map theory is not. In map theory, by 

convention, the white box is used to represent truth and the black boxes are used 

to represent falsehood. The map I represents undefinedness. 

Let T denote the white box. The similarity of the symbols T and I is incidental: 

T denotes truth whereas I denotes the bottom element of an ordering to be defined 

later. 

Since T has no input and output, (T x) does not make sense. Nevertheless, it is 

convenient to define that (T x) =T for all x. This convention ensures that (fx) is 

defined and is a map for all maps f and x. 

Let 7, i, and 1 denote “white”, “black” and “no color”, respectively, and let 

r(f) denote the color off: With these conventions, 

r(T) = 7, 

r(l) = 1, 

r(x) = 1 for black boxes x. 

From now on, we refer to black boxes as proper maps, to 7, i and 1 as labels, 

and to r(f) as the root off: 

Three-valued logic [16] has three truth values true, fake and undefined. Map 

theory represents them by 7, x and 1, respectively. More precisely, T represents 

true, I represents undejined, any any proper map represents false. 

Let M denote the (naive) set of all maps. The set M is neither a ZFC-set nor an 

NBC-class. 

2.3. Equality of maps 

Two maps f and g are equal iff 

r(fx, . . . x,)=r(gx, . ..x.) 



for all n > 0 and all maps x,, . . . , x,,. This defines equality of maps from equality 

of labels. The definition is close in spirit to the definition of equality of sets: two 

sets A and B are equal iff x E A@x E B for all sets x. This defines equality = of 

sets from equality ti of truth values. 

Theorem 2.3.1. Two proper maps f and g are equal {jf (f x) = (gx) for all maps x. 

Proof. Assumefand g are proper, i.e., r(f) = r(g) = 1. If,f= g and ifx is a map then 

r((fx) x, . . .x,,) = r(,fxx, .x,,) 

= r(gxx, . .x,,) 

= r((gx) x, . .x,,) 

for all n 3 0 and all maps x,, . . . ,x,,, so (fx) = (gx). On the contrary, if (fx) = (gx) 

for all maps x, then r(fxx, x,,) = r(gxx, . . x,,) for all n > 0 and all maps 

x, Xl > . . . > x,7. Combined with r(f) = r(g) this gives r(fx, . x,,) = r(gx, . . x,) for 

all n 2 0 and all maps x, , . , x,,, so f = g. 0 

2.4. Well-founded maps 

Map theory uses T and proper maps to represent truth and falsehood, respectively. 

Map theory also uses T to represent the empty set fl and certain proper maps to 

represent the nonempty Z/Y-sets. Those maps that represent ZFC-sets are going 

to be termed well-founded; the others will be termed ill-founded. 

A map ,f is said to be well-founded w.r.t. a set G of maps if 

Vx,, Xl,. . .~G3n: (,fx ,... x,,)=T. 

Let G” denote the set of maps that are well-founded w.r.t. G. In particular, let M” 

be the set of all maps except 1. 

The set @ of well-founded maps is the least set such that 

l Tt@, and 

l if G c_ @ is a set of “limited size” and Vx E G”: (,fx) E @, then ,f’~ @, where 

“limited size” will be defined shortly. 

The definition builds up @ in stages. The first state Q. merely contains T, so 

CD,, = {T}. Stage (Y contains all maps whose well-foundedness can be verified, knowing 

that all maps on stages before stage Q are well-founded. For example, hx.T~ @, 

because Vx E (4”: (( hx.T) x) = T E a0 and because (b happens to be a set of limited size. 

A well-founded map ,f is said to be introduced at stage @,, if it belongs to that 

stage but does not belong to any previous stage. A well-founded map g is introduced 

before a well-founded map ,f if the stage where g is introduced comes before the 

one where ,f is introduced. 

The stock of a well-founded f’ is the set of all those well-founded maps g that 

have to be introduced before,f’can be introduced. However, it is difficult to formalize 
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this definition, so we shall use another: The stock of a well-founded f is the set of 

all well-founded maps introduced before f: Let f’ denote the stock off: 

A set of well-founded maps is of limited size it it is (or is a subset of) the stock 

of some well-founded map. Hence, @ is the least set such that 

l TE@, and 

. gE~AtlXEgSo:(fx)E~JfE~. 

The process of introducing well-founded maps comes to a halt by itself. The size 

limitation in the definition of @ prohibits new maps to be introduced at stage (T or 

later where u is the first strongly inaccessible ordinal (if such a one exists). As a 

consequence, the “standard” model for map theory has no inaccessible ordinals 

(but map theory has “nonstandard” models in which strongly inaccessible ordinals 

exist). 

The universe of ZFC is constructed in a similar manner. However, “limited size” 

is not mentioned in the construction of the ZFC universe even though that concept 

is central in ZFC. As a consequence, the construction is imprecise in that it does 

not specify when the process of introducing sets stops. 

One stage approach to ZFC is stated in [25]. In that approach, a set S may only 

contain sets introduced before S. Another approach is the transfinite iteration of 

the power and union operations described in [22]. In both cases, the constructions 

provide support for the axiom of foundation more than they explain how the 

paradoxes are avoided. 

2.5. Operations on maps 

Maps can perform a few basic operations which they can combine in numerous 

ways. Among other, they can refer to their input and to the maps T and 1, they can 

apply one map to another, and they can make abstractions. 

Sections 2.1 and 2.2 gave examples of these operations, but the examples are 

repeated here for emphasis. The map Ax.x outputs its input x unchanged, so hx.x 

refers to its input. The map Ax.T outputs T irrespective of its input, so Ax.T refers 

to T. Likewise, Ax.1 refers to 1. The map Ax.(x T) refers to its input as well as T, 

and applies the former to the latter. The map Ax.Ay.x inputs x and outputs a black 

box Ay.x, which in turn outputs x for any input y. Hence, Ax.Ay.x builds an 

abstraction. 

Consider R = Az.(z z), R’ = Ay.( R R), and R”= Ax.Ay.( R R). When R” receives an 

input x, it outputs R’. When R’ receives an input y, it loops indefinitely in the 

attempt to compute (R R). Hence, computation of (R” x) does not in itself cause 

(R R) to be computed even though it is part of R”. Rather, computation of (R R) 

is delayed until R’ receives input. Black boxes are lazy [14] in that they delay all 

computations they are not forced to perform. Rather, they stop computing immedi- 

ately when they have determined the color (black or white) of their output, and 

leaves it to their output to continue the computation if necessary. 

Black boxes can perform three more operations: they can select, choose and 

classify. 
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Selection (if xy z) is an operation on three maps x, y and z. If x is a white box, 

then y is selected, and if x is black, then z is selected. If x is I, then one must wait 

forever for x, and it is impossible to choose between y and z. Hence, (if I y Z) = 1. 

In short, 

J if r(x) = i, 

(ifxyz)= z 

- i 

if r(x) = X, 

I ifr(x)=i. 

This construct is the McCarthy conditional ([21, p. 54]), and is well-known in 

computer science. 

The operations stated so far are all machine executable, and they form a Turing- 

complete [22] computer programming language. The last two operations-choice 

and classification-are not executable on any real machine, and they are the ones 

that make map theory a powerful theory rather than another programming language. 

Choice sf is an operation on a single map J: When a black box performs a choice 

of; it first computes (fx) for all well-founded x, and waits for all these infinitely 

many computations to terminate. If (f x) loops indefinitely for any well-founded x, 

then Ef never terminates, i.e., 

!tXE@: (fX)=l =+' Ef=l. (1) 

If (fx) terminates for all well-founded x, then qf chooses a well-founded x such 

that (fx) =T if such an x exists. Otherwise, .sf chooses a well-founded x such that 

(f x) # T in lack of better. In other words, 

VxE@: (fx)#i =3 EfE@, (2) 

VXE@: (,~~)#IA~xE@: (fx)=T + (f&f)=T. (3) 

The choice operator F chooses in a deterministic rather than random way as 

expressed by Ackermann’s axiom ([ 10, p. 2441): 

kfXE @: r(fX)= t-&X) 3 &f= Eg. (4) 

The construct &f corresponds to Hilbert’s epsilon operator [15]. 

A map p represents a predicate in the following sense: The predicate is true for 

a map x if (p x) = T. It is false if (p x) is proper, and undefined if (p x) = 1. The 

construct FP attempts to choose a well-founded x that satisfies the predicate p, but 

may fail if no such x exists or if (p x) = i for some well-founded x. Ackermann’s 

axiom states that if p and q express the same three-valued predicate, then EP and 

eq pick the same x. 

Classijication 4x is the last operation. It classifies x as well- or ill-founded as 

follows: 

4x= 
T ifxE@, 

I otherwise. 

The predicate 4 corresponds to the “menge” predicate M(x) in NBC [22]. 
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The terms of map theory have the following syntax. Any term denotes a map. 

variable ::= x 1 y 1 z 1 . . . , 

term ::= variable 1 hvariable.term ) (term term) 

1 T 1 I 1 (if term term term) I 4term I &term. 

As usual, the Ax in Ax.& is said to bind all unbound occurrences of x in &. A 

term is closed (or is a combinator [3]) if it has no free variables. To be very precise, 

a term 93 merely denotes a specijic map if 93 has no free variables. 

There are only countably many terms and, intuitively, there are more maps than 

there are ZFC-sets. Hence, the terms merely denote a small fraction of the maps. 

Further, different terms may denote the same map. For example, hx.x = hy.y accord- 

ing to Lemma 2.3.1. 

2.6. Well-foundedness theorems 

Some terms of map theory are said to be simple and some are said to be dual. 

Let E and _% denote the syntax classes of simple and dual terms, respectively. Let 

%,X1,.. and Y,,Y,,... denote distinct variables, and let t;” denote the syntax 

class of simple terms in which x0, x,, . . . do not occur free. A definition of ,Z and 

2 is given by 

E ::= y, I Axi I (Ii?) 1 T ) ~y,.Trf# ( ~$1 ( (ifx5=_2) 1 ((Ay,.Z)Z), 

2 ::= x, I (Six) I 2, 

where sy,.d is shorthand for ~(hy,.&Z) for all terms &. 

As shown in Section 7, some important consequences of the definition of @ are 

given in the following theorems. 

Theorem 2.6.1 (Totality). If SI is a simple term whose free variables occur among 

Yo,...r yn, then & denotes a well-founded map for all well-founded y,, . , , y,. 

Theorem 2.6.2 (Well-foundedness). If f and a,, a,, . . . are well-founded, then there 

is an n such that (f a, . . a,) = T. 

Theorem 2.6.3 (Induction). If 

9’(T) and VXC CD: (Vyc @: L!P(xy) + P(x)) 

then 

VXE @: P(x). 

Theorem 2.6.4 (Primitive recursion). Zf a, b E @, if Vx E @: (g x) E @, and zf 

(fx) = (if x a (gAu.(f (x (b u))))) 

then f E @. 
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These theorems allow to decide the well-foundedness of a wide class of terms 

and to prove properties about well-foundedness. As an example of use of Theorem 

2.6.1, hx.(if xa h) is well-founded if u and b are well-founded. As an example of 

use ofTheorem 2.6.2, I is ill-founded (i.e. not well-founded) since (I a, . . a,,) = i # 

T for all n and all well-founded a,, . . , a,,. 

As a more subtle application of Theorem 2.6.2, I = hx.x is not well-founded, for 

if I was well-founded, then (I I. . I) = T should hold for sufficiently many I’s in 

succession,but (II...I)-I#T. 

2.7. Maps us trees 

Black and white boxes provide one mental picture of the maps. This “box picture” 

considers maps as mechanical procedures (or algorithms). 

The present section presents another mental picture of the maps in which maps 

are thought of as trees. This “tree picture” considers maps as data structures, and 

the two views complement each other. 

The tree representation of a map .f is a tree whose nodes are labelled by the labels 

?, i and i, and whose edges are labelled by maps. The tree picture f’ of the map 

f is constructed as follows. 

If ,f‘=T then the root node of .f’ is labelled 7. If ,f= _L then the root node is 

labelled 1, and if ,f is proper then the root node is labelled i. 

If ,f = T or f = 1, then .f’ has no other nodes than the root node, and ,f’ has no 

edges. Figure 1 shows the tree pictures of T and 1. 

If .f is proper, then the tree picture f' of ,f is constructed recursively: For each 

map x, the tree picture (,fx)’ of the map (f x) is constructed. Then (,fx)’ is attached 

to an edge labelled x descending from the root node of ,f’ as shown in Fig. 2. 

Figure 3 shows hx.T, Fig. 4 shows hx.(if x (Ay.T) T), and Fig. 5 shows Axx. The 

Fig. I. The maps T and 1. 

Fig. 2. The graphical representation of a proper map f. 

Fig. 3. The map Ax.T 
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Fig. 4. The map Ax.(if x (Ay.T) T). 

Fig. 5. The map Ax.x 

figures have to be incomplete since the tree picture of any proper map is infinitely 

large. 

The root r(f) of the map f was introduced in Section 2.2. The root r(f) is the 

label of the root node of _jY 

As mentioned in Section 2.3, two maps f and g are equal if 

(fx,...x,,)=(gx,...x,,) 

for all n 2 0 and all maps x, , . . . , x,,. Hence, two maps are equal if their tree pictures 

are equal. 

When computing (fx), it is often convenient to use the box picture for f and the 

tree picture for x, i.e., f is considered as an algorithm and x as data on which f 

acts. While f is computing (fx), it has access to the labels of the tree picture of x 

through the operations of selection, choice and classification. The map f cannot 

access any further information about x since it has no operations for doing so (cf. 

Section 2.5). This justifies the important property 

x = y =+ (fx) = (fv). 

2.8. Order and monotonicity 

The expression r(fx, . . x,) denotes the label of the node reached when traveling 

from the root node off downwards along the path x,, . . , x,. To find the tree 

picture of a map f; it is necessary to compute r(f x, . . . x,) for various n a 0 and 

maps x, , . , x,. 
Let n 2 0, let J; x, , . , x, be maps, and let u = r(f x, . . . x,). Computation of u 

either yields u = 7 or u = i within “finite” time or loops indefinitely, in which case 

r(fx, . . . x,) = 1. If computation of u has given no result after a while, this either 

means that more time is needed or that u = 1. Hence, absence of a result after a 
_ 

while provides no information. As a consequence, u = I means that computation 

of u gives no information ever. 
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For all labels U, u E (7, x, i} define 

US,V~ u=.ivu=ti 

The relation u G L v states that any information present in u is also present in U, 

but v may contain more information than u. We have 1 s L ? and 1 s 1 ii because 

i contains no information, so any information present in i is also present in 7 and 

i. We neither have 7 s L x nor x c L 7 because 7 and 1 contain different information. 

Figure 6 illustrates the partial order s L. The L in s, refers to label. 

For all maps f and g define that ,f” g iff 

r(fx,. .x,,) SL r(gx,. . . x,,) 

for all n 20 and all maps x,, . . . , x,,. Like u sL v, fs g states that any infor- 

mation present in f is also present in g. However, s applies to maps whereas sr 

applies to labels. As an example, L contains “less information” than any other map. 

One may think of I as a map containing “no information”. 

Fig. 6. The partial order sL on labels. 

Maps have infinite computational power because their choice operation allow 

them to do infinitely many computations in parallel. However, maps still resemble 

physical computers in that there are operations they cannot perform. As an example 

of such an operation, consider 

3?(x) = 
T ifx=_L 

F otherwise. 

Suppose we want the map g to satisfy (gx) = Y(x). Now x = I iff T(X) = i, so to 

compute (gx), g needs to compute r(x). If T(X) is computable in finite time then 

x # i so g can output F. Hence, g can satisfy (g x) = Y(x) for x # 1. However, if 

computation of T(X) loops indefinitely, then g sits and waits forever for the value 

of v(x), so g produces no output. Hence, (gx) = I so g cannot satisfy (gx) = Y(x) 

for all x. 

The operation 9 is not computable by any map; the operation 

3’(x) = 
I ifx=I, 

F otherwise, 

on the other hand, is. The difference is that 9’ is monotonic in s, i.e., x < y=+ 9’(x) c 

V(y). All maps ,f are monotonic, i.e. 

This is a property that maps inherit from physical computers in general and lazy 

functional programs [ 141 in particular. 
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As shown later, the monotonicity property and the existence of _L give simple 

explanations of Russell’s and Cantor’s paradoxes and allow the notion of truth to 

be definable in map theory. 

Some immediate consequences of the definition of G are given in the following 

lemma. 

Lemma 2.8.1. For all maps x, y and z, 

I s x, 

TGX a x=T, 

x G y A x is proper =3 y is proper, 

XsyAy~x =3 x=y, 

xsy/\ysz * xsz, 

xsy * (xz)s(yz) 

The map T is maximal w.r.t. G--, but there are other maximal maps, so T is no top 

element. As mentioned earlier, T stands for truth rather than top. 

2.9. Problems in dejining @ 

The definition of @ is crucial to the expressive power of map theory. This section 

considers a few alternative definitions to the authorized one given in Section 2.4 

and shows how these alternatives lead to considerably weaker theories. As shown 

below, if the set @ is chosen too small or too large, then the expressive power of 

map theory becomes less than that of ZFC. 

As an example of a too small @, consider the definition 

@ = {T}. 

With this definition, 

4x = (if x T I), FX = (if (x T) TT), 

hence, if @ = {T}, then 4 and e are expressible in terms of the other operations, 

and map theory reduces to a computer programming language and, in particular, 

becomes weaker than ZFC. In general, if 0 has fewer elements than the universe 

of ZFC, then map theory is bound to be weaker than ZFC. 

As an example of a too large @, consider the definition 

@ = M\(I). 

With this definition, 

4x=(if xTT). 

Now define 6 = {T, hx._L}. We have 
,. 
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Hence, using the monotonicity of maps, one possible definition of E reads 

~x=(if (XT) (if (xhx.l)TT) (if (xAx.1) (hx.l)T)). 

Again, 4 and F are expressible in terms of the other operations. In general, if a set 

6 of maps has fewer elements than the universe of ZFC, and if x E @a 3y E &: y < x, 

then map theory is bound to be weaker than set theory. 

The monotonicity of maps dictates x ~y~((hz.~z)x)~((Az.~z)y)~~x~~y 

so XE@AX< . y+y E @, which restricts the possible choices of @. As an example, 

if Ax.1 E @, then all proper maps belong to 4, and map theory becomes trivial. 

On this background it would be obvious to define @ to be the set of maximal 

elements of M. This possible definition, however, requires further work to investigate. 

3. Uses of map theory 

3.1. Logical connectives 

As mentioned in Section 2.2, T represents truth, I represents undefinedness, and 

any proper map represents falsehood. Define 

F = Ax.T. 

The map F is one of those that represent falsehood. 

Define 

ix = (if x F T), 

=x = (if xT F), 

!x = (ifxTT), 

ix = (if x F F), 

x r; y = (if X “Jj iy), 

x\jy = (if x !y -y), 

x*y = (if x =y !y), 

x e y = (if x =y iy). 

The dots in i, A, i,, 3 and e are introduced to distinguish these terms of map 

theory from the logical connectives 1, A, v, * and w they emulate. Part III uses 

dots in a slightly different way. 

Figure 7 shows the truth tables of x A y and y Ax. As an example of use, the 

fourth line of the table states that if r(x) = x and r(y) = 7, then x E, y = F and y r\ x = F. 

In other words, if x is false and y is true, then both x ,4 y and y A x are false. 

Since x r\ y and y r\ x have identical truth tables, x i y = y /; x. A tautology of map 

theory is an equation ~4’ = ?B where .& and 94 have identical truth tables. 
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r(x) 

i 
i 
i 
x 
ri 
i 
i 
i 
i 

Fig. 7. Truth tables of x r; y and y A x. 

Examples of tautologies are 

xr;y=y/ix, (x r; y) r; z = x i! (y r; z), i(xAy)=ixCiy. 

The formula x 3 ix = T is no tautology since, for x = 1, x i, ix = I # T. However, 

x\iix=!x 

is a tautology. Likewise, x A x =x is no tautology, for if x = Ay.1 then x A x = F # x 

(actually, the right-hand side of xix = x does not even have a truth table, which 

disqualifies x i x = x as a tautology). However, 

xix=-x 

is a tautology. 

3.2. QuantiJiers 

Define 

a&4 = -(93 E&4), 

>,.a = j(Xx.&), 

ax.& = iZlx.id. 

Assume 3x E @: (fx) = 1. In this case, ef = 1. Now let x E @ satisfy (fx) = 1. 

Bymonotonicity,~f=(fsf)==(fi)~=(fx)=I,so~f=1. 

NowassumeVx~4b:(fx)#I.If3x~~:(fx)=T,then~f~~and(f~f)=T, 

so~f=T.IfVx~~:(fx)#T,then~f~~,~~(f~f)#T.Since(f~f)#Tand(f~f)# 

I, iIf=-(f&f)=F. 

As a result, af = I if 3x E @: (f x) = I and 

3xE@:(fx)=T 3 af=T, VXE @: (fx)#T j af=F, 

otherwise. The construct ax.& states that & holds for some x E @ and \bx.& states 

that ~4 holds for all x E @. However, ax.& and \bx.& equal I if J& = i for some x E @. 
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3.3. Recursion 

Define 

s, = (AxU (xx))), 

Y=A$(S,$), 

YjI.S!I = (Y AjX). 

For any map L 

(Yf) = (S, s, I= ((~-a- (xx))) q ) = (f (S, s, 1) 

= (.I” Vf)). 

Hence, for any A (Y f) is a g such that (fg) = g. For this reason, Y is termed the 

fixed point operator [3]. 

Now consider a recursive definition such as 

(gy) = (if y T (g (Y F))). 

This recursive definition is satisfied by the g given by 

g =YJAy.(if Y T (f (Y F))). 

As another example, 

(gxy)=(ifyTAz.(g(~z)x)) 

is satisfied by 

g = Y$Ax.Ay.(if y T Az.(f (y z) x)). 

In what follows, recursive definitions are shorthand for the corresponding 

definitions using Y. Further, a recursive definition like 

xly = (if x T (if Y F ((x T)l(y T)))) 

is shorthand for 

xly = ((Y$Ax.Ay.(if x T (if Y F (f (x T) (y T))))) xy) 

where (fxy) plays the role of xly within the scope of Yf: 

3.4. Programming 

Define 

hdx=(xT), 

t/x = (x F), 

nil = T, 

x::y = Az.(if zxy), 

() = nil, 

(x) = x: :nil, 

(x1,..., x,,) = x,: :(x,, . . ) x,). 



Map theor_v 19 

This defines the concepts head or cur (hd), tail or cdr (tl), the empty list (nil), cons 

(: :), and lists (x, , . . , x,) that are typical ingredients of functional programming 

languages [ 141. 

As an example of a small program, consider the append function . which satisfies 

A machine executable definition reads 

x.y=(if xy ((hdx)::((tlx) .y))) 

As mentioned in Section 3.3, this is shorthand for a definition involving Y. 

The definition is machine executable in the sense that a computer can compute 

the value of x. y from no other input than x, y and the definition of . . 

A definition in map theory is machine executable if it makes no reference to 4 

and F. Assuming Church’s thesis [22], map theory can express any computable 

function by a machine executable definition. In other words, map theory without 

4 and F is a general (or Turing complete) computer programming language. 

The definitions above introduce lists and list operations. It is also possible to 

introduce integers, real numbers, arrays, files, exceptions and all other data types 

used in programming. It is possible but requires a trick to make map theory as 

efficient as contemporary programming languages. These issues are interesting in 

themselves, but outside the scope of the present paper. 

3.5. Sets 

By recursion, define s(f) for all f E @ by 

s(T) = 8, 

s(f)={s(fx)/xE@} iff isproper. 

For each f E @, s(f) happens to be a set of ZFC, and the well-founded map f is 

said to represent the set s(f ). Any set of ZFC happens to be representable by at 

least one f E @. 
As an example, F = hx.T represents (0): 

s(F)={s(Fx)(x~@}={s(T)~x~@}={0~x~@} 

= (01. 

Now define P = Ax.Ay.hz.(if zxy). If a, b E @ represent the sets A and B, respectively, 

then (Pa b) represents {A, B}: 

s(Pab)={s(Pubx)~x~@}={s(ifxub)~x~@}={~(u),s(b)} 

={A, B}. 

Hence, P represents the pairing operator. Accidentally, (Pa b) = a : : b (cf. 

Section 3.4). 
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3.6. Set equality and membership 

Let the relation x 5-y denote that the well-founded maps x and y represent the 

same set. Further, let a and b be proper, well-founded maps that represent A and 

B, respectively, i.e. 

A = {s(a u) 1 u E CD}, B={s(bv)lv~@}. 

The maps a and b represent nonempty sets and T represents 0, so 

T-T = T, T-b = F, a&T = F, and 

aGb=T@ A=B. 

Now rewrite A = B as follows: 

A=B (j AGBABEA 

M VU/A: UEBAVVEB: VtA 

w VUEA~VEB: U==VA~VEB~UEA: U=V 

e t’u~@3v~E:(au)~(bv)r\Vu~@3u~@:(au)+(bv). 

This allows a recursive definition of set equality in map theory: 

x&y = (if x (if y T F) (if y F (\bu ju.(x u) 1 (y u)) A (VU ~u.(x u) e (y v)))). 

Further, 

s(a)Es(b) ti 3VEs(b): s(u)= V 

e 3vg@: a-(bv). 

This allows a definition of set membership in map theory: 

sib = (ifbF>v.us(bv)). 

Now that i, 3, \b and i are all defined, any well-formed formula of ZFC is 

also a well-formed formula of map theory. Section 8 goes further by showing that 

any theorem of ZFC is provable in axiomatic map theory. 

Part II1 goes even further. It proves that for any consistent extension ZFC+ of 

ZFC there is an axiomatization Mupoi of map theory so that any theorem of ZFC’ 

is provable in Map”‘. 

3.7. Further set operators 

All the usual set operators are treated formally in Section 8. However, the 

definitions of the set operators are stated below to show how short they are. 

In this section, let (d and {a, b} be shorthand for T and (Pa b), respectively. 

A map p is set extensive if x s y implies ( p x) e (p y); or, stated more formally, 

(xfy)=T implies ((px)ti(py))=T. Any well-formed formula of ZFC is set 

extensive. Now define 
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If a represents A and p is set extensive, then (Subset a p) represents {x E A 1 p(x)}. 

Let {xi &I 93} be shorthand for (Subse? tiA~x.B). 

Define 

(Power’a)=hx.(ifx(dAy.(a (I))), 

(Union’ a) = hx.(u (x T) (x F)). 

If a represents A, then (Power’ a) and ( Union’ a) represent supersets of the power 

and union sets of A, respectively. Hence, the power and union set operators are 

definable by 

x<y=\bz.(zixSziy), 

(Poweru)={xi(Power’u)~x~u}, 

(Union a) = {x i ( Union’ a) Iay.(x i y A y i a)} 

Define 

(Choice a) = (if a 0 Ax.ey.(y i (a x))), 

If a represents a set A of disjoint, nonempty sets, then (Choice a) represents a 

choice set of A. 

Define 

{a> = {a, a>, 

a u b = ( Union {a, b}), 

(Sucu) = a u{a}, 

(w x) = (if x 0 (SW (w (x T)))). 

The (recursively defined) map w represents the least infinite ordinal 

3.8. Beyond set theory 

Section 3.5 defined s(x) for all x E @, but the definition makes sense for a much 

wider range of maps. As an example, 

4Ax.x) = {s((Ax.x) Y) IY E @I = {s(Y)/Y E @I, 

so Ax.x represents the class V of all sets. Further, 

s(Ax.Ay.y) = {((Ax.A.Y._Y) z)l z E @> = {s(Ay.y)), 

so Ax.Ay.y represents the class {V} whose sole element is the class V of all sets. 

This is not only beyond ZFC but also beyond NBC in which classes merely contain 

sets. Now define 

w = YjIAx.J: 

This w satisfies w = AX.W, so 

s(w) = {s((Ax.w) Y)/Y E @I = {s(w)} 
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Hence, w represents a non-wellfounded set [2] W = { W} which contains itself and 

nothing else. The given representation provides exactly one such set (i.e. all sets 

with the property W = { W} are equal in the given representation). 

Next, define 

a = {Power, Union}. 

The map a represents the class containing the power and unions set operators. Such 

a construction is totally beyond set theory and is syntactically impossible in ZFC. 

This shows that map theory has the ability to define more complex structures 

than set theory. 

Map theory allows quantification over arbitrary classes: Define 

\jxi y..d=tix.((hx.&) (yx)). 

For example, 

‘;rs i {Power, Union}.*y, z.(y cl z * (~JJ) _ (fz)) 

states that both the power and the union set operator are monotonic w.r.t. _. 

3.9. Map versus set theory 

Formally, map and set theory are of approximately the same power. More 

precisely, map theory can prove the consistency of ZFC, and ZFC plus the existence 

of a strongly inaccessible ordinal can prove the consistency of map theory. 

At first sight, ZFC is a very simple theory which has only one concept: the set. 

This is not correct, however. Set theory has 

l sets, 

l truth values, 

l the membership relation, 

l logical connectives and quantifiers. 

Further, in practical work, ZFC is enriched with 

l set operators, 

l defined relation symbols (and classes [ 171). 

Map theory can represent them all, but only has one concept: the map. 

Previous sections have represented sets and truth values by maps. The membership 

relation is representable by the map Ax.Ay.(x i y), and a logical connective such as 

3 is representable by the map Ax.Ay.(x + y). Section 3.7 represented the set operator 

I_! by the map Union, and a defined relation symbol like C is representable by the 

map Ax.Ay.(x _ y). 

Even the basic operators if, F and 4 of map theory are representable by the maps 

Ax.Ay.Az.(if XJJ z), AX.FX and hx.~Jx, respectively. Lambda abstraction as such is hard 

to represent, but as is well known [3], lambda abstraction may be eliminated by 

use of the maps S = Ax.Ay.hz.((x z)(y z)) and K = Ax.Ay.x. 

As shown in Section 3.8, map theory is more coherent than set theory in that it 

is possible, e.g., to form classes that contain set operators. This is a syntactic 
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impossibility of ZFC. The difference is due to the fact that map theory only has 

maps whereas ZFC has several, incompatible concepts like sets, truth values and 

set operators. 

3.10. Specification 

Programmers occasionally specify a program before they write it down [ll, 81. 

An informal specification of the append program x. y in Section 3.4 may read 

The program x. y shall append the lists x and Y. 

A more formal specification is given by 

(5) 

(x1,. . . , x,).(Yl,...,Y,,)=(x,,~.‘,x,,Yl,...,Y,). (6) 

(The specifications are incomplete since they merely specify x. ,v when x and y are 

tuples.) Finally, the program x. y reads 

x.y=(ifxy((hdx)::((tlx).y))). (7) 

In general, a specification is a predicate and a program is a machine executable 

definition. In the example above, the program (7) is said to satisfy the specifications 

(5) and (6). 

Formal specifications usually involve quantifiers, so when proving that a given 

program satisfies a given specification, it is convenient to work in a theory that 

supports both quantifiers and machine executable definitions. This is exactly what 

map theory does-and does more coherently than other theories around. 

Specification followed by implementation is one approach to programming. 

Another is as follows: The programmer first writes down the program. However, 

the programmer allows himself to use quantifiers and Hilbert’s E operator, so the 

program is not really a program, and definitely not machine executable. Next, the 

programmer refines the program step by step, and in each refinement step he replaces 

quantifiers and F operators by executable code that perform the same operations 

(which is not always possible). If the programmer succeeds, the final program is a 

genuine, machine executable program. The initial and final programs are mathemati- 

cally equal, but the former is short and easy to comprehend whereas the latter is 

larger but machine executable. Again, map theory is a suitable environment for 

such development activity. 

Meta IV [8] also supports various development methods. Meta IV supports 

countable infinity, quantifiers, and the E operator (the suck that operator). It does 

not support uncountable infinities. Hence, contrary to map theory, Meta IV is 

unsuited to consider, e.g., topology and its applications to numerical analysis. It is 

straightforward to define Meta IV within map theory. 

The specification language Z [l] is ZFC set theory plus a number of defined 

concepts that are useful in computer science. In comparison with map theory, Z 

supports quantifiers and anything set theory supports, but it is impossible to state 

machine executable definitions directly in Z. 
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ZPC+(h-calculus) [6] supports anything ZFC set theory supports and also 

supports executable definitions, but ZFC + (A-calculus) is more like a disjoint union 

than a Cartesian product: it is not possible to mix ZFC and A-calculus arbitrarily 

as in map theory. 

At this place, unfortunately, it is impossible to discuss the wealth of existing 

specification languages and compare them all to map theory. 

3.11. Russell’s and Cantor’s paradoxes 

Define 

S={x/x~x}, P@SSS. 

Now 

This is Russell’s paradox for Frege set theory [13]. Now define 

S’= hx.i(xx), P’ = (S’ S’). 

In map theory, 

P’=(S’S’)=((Ax.i(xx)) S’)=i(S’S’) 

= iP’. 

However, P’ = iP’ is no paradox in map theory; it merely shows P’ = 1 since I is 

the unique map in map theory that equals its own negation. Frege set theory is 

inconsistent because it has unlimited abstraction but no “undefined” truth value 1. 

Map theory avoids Russell’s paradox by having 1. 

Cantor’s paradox is almost the same as Russell’s paradox. To see this, proceed 

as follows. Let pa denote the power set of the set a. 

Lemma 3.11.1 (Cantor). For all sets a, a and pa have diflerent cardinalities. 

Proof. Assume f: a + !?‘a is one-to-one. Define S = {x E a Ix g_/‘(x)}. Define S”E a 

such that f( S”) = S. Now, 

S”E f( S”) ti S” E s 

G S”af(S”) 

Hence, f cannot be one-to-one so a and Ba have different cardinalities. 0 

However, let V be the set of all sets. Since .oPV is a set of sets, BVG V. Further 

(if we do not have uhr-elements), VS SV, so V = 9’V and V and 9’V must have 

equal cardinalities, contradicting Cantor’s lemma. This is Cantor’s paradox. 

The identity function i: V--, V is a one-to-one function from V onto V = .oPV. 

Using this for f in the proof of Cantor’s lemma yields the definitions S” = S = 

{x E V (x E x} and the contradiction S”E S”e S”G S”, which is Russell’s paradox. 

A translation of Cantor’s paradox to map theory is omitted since Cantor’s paradox 

is essentially equal to Russell’s paradox. 
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3.12. Burali-Forti’s paradox and stages 

Burali-Forti’s paradox says: The set On of all ordinals is an ordinal, and On is 

the largest ordinal there is, but On u { On} is even bigger, yielding a contradiction. 

The dilemma is that we cannot allow being able to form the largest ordinal as well 

as constructing successors of any ordinal. Hence, the problem is to know when to 

stop: it is convenient to be able to construct as many ordinals as possible, but 

destructive to form the last one (which is On). 

One approach to avoid the paradoxes in set theory is outlined in [25]. In this 

approach, following [25], a set z can have as members only those sets which are 

formed before z. Sets are formed in stages, and at each stage, each collection of sets 

formed at previous stages is formed into a set. There are no other sets than those 

formed at the stages. 

Suppose x is a collection of sets and S is a collection of stages such that each 

member of x is formed at a stage which is a member of S. If there is a stage after 

all the members of S, then we can form x at this stage. 

It would be convenient if any collection S of stages were followed by a stage T, 

but then there shouid be a stage U following all stages. In particular, U should 

come after itself, which is impossible (as a minimum, before and after must be 

partial orders for the stage approach to make sense). 

Again, the problem is to know when to stop. It is convenient to have as many 

stages as possible but destructive to have a stage after all stages. 

The introduction of stages does not really avoid the paradoxes. Rather, the stages 

justify the axiom of foundation that says that x, 3 x7 3 xi 3. . . holds for no infinite 

sequence of x’s. The axiom of foundation simplifies set theory, but it is not essentially 

needed for any practical application. Further, theories of non-well-founded sets [2] 

may happen to be useful. 

The theory ZFC is not explicit about when the formation of stages stops, but 

it does prevent the formation of a stage after all stages. The lack of explicitness 

makes it undecidable, e.g., whether or not ZFC has a strongly inaccessible 

ordinal. 

The theory NBG has the same stages as ZFC, but also has a “semistage” after 

all stages. Collections formed at the semistage become classes rather than sets. 

Collections that can be formed at the semistage but not at any previous stage are 

proper classes. Proper classes are not members of any set or class since there is no 

stage or semistage in NBG where collections containing proper classes can be 
formed. 

The approach of map theory is somewhat different. Sections 2.1 and 2.2 introduce 

the notion of a map by a fairly simple definition, and Section 2.4 introduces the 

collection of well-founded maps as the least collection such that 

TE @, 
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The “least collection . . closed under. . ” -construct tacitly introduces the well- 

founded maps in stages but, contrary to ZFC and NBC, the minimality requirement 

and the built in size limitation determines the collection of well-founded maps 

uniquely. As an example, the natural model of map theory contains no strongly 

inaccessible ordinal. (But, as shown in Part III, there are axiomatizations of map 

theory that allow strongly inaccessible ordinals to exist.) 

Among other things, map theory is an attempt to form a theory with a simpler 

and more intuitively appealing universe than the various theories of sets. Even 

though some of the goal has been achieved, map theory is not completely successful 

on this point. To see this, consider the map 

S= Ax.i(xx). 

Next define S’ E M -+ M by 

Now, x<y+(S’ x) G (S’ y), so S’ is monotonic and S’E (M s M)rL. However, 

S’g M, for if S’ E M then S’ 3 S, (S’ S’) = T and 

T=(S’S’) 

“(SS’) 

= ((Ax.i(xx)) S’) 

= i( S’ S’) 

=iT 

= F. 

Hence, Ta F which contradicts the definition of 3. In conclusion, S’ is monotonic 

but not a map. 

The problem here is that there is no obvious reason why S’ should not be a map. 

Rather, the assumption that S’ is a map leads to a contradiction. This is the same 

situation as in ZFC: The assumption that the set of all sets exists leads to a 

contradiction, so there is no such set. 

The set of all sets would be very convenient to have at hand, whereas there are 

probably no uses of S’ above. In general, the closure properties of map theory are 

strong, and it is hard to think of a useful, monotonic pre-map which is not a map. 

However, it is still annoying that map theory offers no precise, positive characteri- 

zation of maps. 

Note, that no term of map theory denotes S’, so S’ does not give rise to a paradox. 

It would be a great enhancement if all monotonic, continuous operations were 

maps, where continuity would have to be defined somehow. Reasonable definitions 
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of continuity exist within computer science, but these definitions rule out noncompu- 

table constructs like the F operator and universal and existential quantifiers. 

3.13. 7Ire notion of truth 

In ZFC, a notion of truth is a predicate p(x) such that p( ]ti])e& for closed, 

well-formed formulas LX! where [&4] denotes the GcYdel number of SL According to 

Tarski’s theorem [22, 191, the notion of truth of ZFC is not definable in ZFC 

(provided ZFC is consistent). In contrast, as shown below, map theory is capable 

of defining its own notion of truth. 

For each nonnegative integer i define 

[il =\T, . . . , Tj. 

In particular, [Ol = T, [l I= (T) and 121 = (T, T). The equations below assign a Giidel 

number [al to each term ~4 of map theory. 

IT] = T. 

II 1= U). 

Txil=([iltT>. 

1(-@J~)l=([~l, r31,v. 
Px,.~l=(r~l, r4TV. 
r(if-pe~Wl=(r.4, rs1, rq,T,v. 
r&&l = (r&l, T, T, T, T, V. 
r~cppl=(r~l,T,T,T,T,T,T). 

Define 

xbl= (if y thdx) (tlx)[tlyl) 

(this is a recursive definition of the two-place construct *[-I). Now, 

b”, . . .,~,xrili=~, 
for 0 d i =S n. Define 

[x/y:=z]=(ify(z::(tlx))(hdx::[tlx/tly:=z])). 

Now, 

Lb”, . . . , -d/ Pl := ~1 = (x0, . . . , h, Y, x,+~, . . , x,) 
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for 0 s is n. Define 

n 

, _ , 

tl” x = tl. . tl x, 

x’ = hd x, 

x”= hd tlx, 

X “I = hd tl tl x, 

x,. = (if (tl” x) T 

(if (tl’ x) 1 

(if (tl’x) y[x’] 

(if (tl’ x) (xi, x:) 

(if (tl” x) hz.x[,.I,,=II 

(if (tl’x) (if x:. x:x:) 

(if (tl” x) e(x{) 

4(x:.)))))))). 

As an example, 

[hx2.(if x2 xl xo)l~,,h.~.d~ = hxz.(if x2 b a). 

In general, [zzZ]~,~,,, ,,(,,,) is the value of .& for x,) = a,,, . . . , x,, = a, and x,,,, , x,,+~, . . . = 

T. If .r$ has no free variables, then [%dlT = LX!. 

Now define p(x) = xT. Terms-among others-serve as predicates in map theory, 

and p( Iti]) = .SZI for closed terms .L$ so p is a notion of truth in map theory defined 

within map theory. 

3.14. Category theory 

A category GZ is a structure consisting of 

l a collection @ of objects, 

l a ternary relation f : A --$ B, 

l a binary operation 0, and 

l a unary operation id, (defined for all AE g), 

whichforA,B,C,DE%?,f:A+B,g:B--,Candh:C-+Dsatisfies 

l goJ:A-+C 

l (h~g)~f=kg~f), 
l idA : A + A, and 

l foid,=idHOf=.f 

If f: A - B for some A, BE g, then f is a morphism of %‘. 

Category theory is the theory of categories [4] but, contrary to set theory, category 

theory has remained informal. 
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Within set theory, various formal theories like ZFC and NBC have been proposed, 

and each formal theory attempts to cover all of set theory (see [13] and [22] for an 

overview of theories of sets). Each formal theory of sets contains ways of forming 

sets that are ensured to exist by the theory. Further, for each theory of sets it makes 

sense to ask whether or not the theory is consistent. 

No generally accepted formal theory attempts to account for all of category theory. 

Generally accepted theories of categories do not allow mechanical checking of 

categorical proofs, they do not offer ways of forming categories that are ensured to 

exist, and it does not make sense to ask whether or not a theory is consistent. 

Workers in category theory may encounter paradoxes, but try to avoid them ad hoc. 

Section 8 develops all of ZFC set theory within map theory, and Part III proves 

that for any consistent extension of ZFC there is a matching axiomatization of map 

theory with the same expressive power. In conclusion, map theory can do anything 

set theory can do. 

It is impossible to do the same for category theory since “all of category theory” 

is not sufficiently well defined. In the following, categories are represented in map 

theory and the category of all categories is introduced. Formalization of the various 

constructions of category theory in map theory would be a substantial task, but the 

award would be that category theory became formalized. The ability to define the 

category of all categories indicates that map theory is a reasonable basis for such 

a formalization. The ability to define the category of all categories is due to the 

unlimited abstraction of map theory. 

Define 

i--l 

ptx = l&-I-G... 

xzy = (X,Y) 

x;y = ((PI 4 PI Y), (Pz x, Pr Y)) 

+x.54 = (AX.(P, &id), hx.( Pz .d)) 

XSY = (PIY)~(wxY(P,x)(P2x))~(PrY)=(wxY(P?x)(P,x)) 

and let l & be shorthand for (p, d) = ( p2 .d). With these conventions 

pi(x ,,... x,,)=x, for IsiGn, 

*(&LB) @ &=B, 

*(A%) CJ (*&)n(*B), 

*($x..&) e VXC M: *.d, 

*(a% 2%) =3 ((*.sd)*(*L%)). 

In ti 3 93, w is a witness that testifies that *& implies *%‘. 

Map theory may represent a category % as a map (e, J#, c, id, w) such that l ( e A) 

states that A is an object of %, l (RfA B) states thatf: A - B, (cfg) denotesfo g, 
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(id A) denotes id,,, and w witnesses that ie is a category. For all maps Ye, A, B and 

.f define 

Agg = ((~1 W A), 

j-:A& B = ((pz %)fAB), 

j-6', = ((JhVfg), 

id: = ((pz, %)A), 

Further define 

(cut %‘) = +A,B,C, D,s,g, h. 

(A,B,C&%:f':A >B;g:B&,.*,h:C1I,D 

(P5 0 
w>g:,f:AI,C;(h Ag):,fzh :(g:f) 

l . 
,ud;:A_I-,A:f t idkEf:idz Z.fZ-f). 

Now, *(cat %) holds iff (e represents a category. 
- = 

Map theory may represent a functor F: ?Z -+ 9 as a map (F, F, w) such that F is 
= 

a mapping of objects, F is a mapping of morphisms, and w witnesses that F is a 

functor. Define 

F = (PI V, 

F = (pz F), 

(funcF%~) = GA,B,C,j; g. 

(A,B,Ch:f:A~B:g:B~C 

U(FA)Z~?~(F,~.):(FA)~ (&3):(Eid$id;‘;,, 

:(F (g Q)&Fg) ,‘(F“f)). 

Now, l (func F % 9) expresses that F: % - 9 is a functor. The identity functor id,, 

and functor composition are expressible by 

2 c, = (hx.x, Ax.x, SP), 

G 0 F=(hx.(G (px)), Ax.@ (F-x)), M'), 

for suitable terms .PI’ and ~4”. The category Cut of all categories can be written as 

Cut = (cat,func, Ax.Ay.(x z y), Xx.id ~, &) 

for a suitable term ~2. 

The above is merely a very rough outline of one approach to formalize category 

theory in map theory. It is a substantial task to make the formalization of category 

theory fluent and thorough. 
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In particular, the “suitable” terms d’, &” and d above have to be specified. 

There is no point in specifying them directly, since they are large and complex. 

Rather, it is reasonable to state and prove metatheorems like 

*(A,:. . GA, %A,) for a suitable &, 

*(A $ C) for a suitable & if *(A s B) and *(B 3 C), 

*(A&?k) for a suitable & if *(As B) and *(As C). 

Part II. Axiomatization of map theory 

4. Elementary axioms 

4.1. Presentation of axioms 

The definition of (if sd %I %) combined with r(T) = 7, r(hx.A) =x and r(l) = i 

gives the following axioms 

(Selectl) t-(ifT%%‘)=%‘. 

(Select2) k-(if (Ax.&) 93 %) = ie 

(Select3) t-(if I %I %) = 1. 

(Script letters L$ %‘, %?, etc. denote arbitrary terms.) 

In axioms, td = B states that L& = 3 is an axiom. In inference rules, &, = 

%I,;... ; A& = %I,, t- d = 93 states that &, = !??I,, . . . , s3,, = CBn directly infers ti = %3. 

In metatheorems, A, = 93,; . . . ; sd, = 93,, F d = 93 states that if ~2, = B,, . . , S, = 

S3, are all provable, then ti = 9 is provable. Section 5.4 defines a fourth use of E. 

For terms 4 and 98 and a variable x, [d/x:= B] denotes the result of replacing 

all free x’s in JY by 93. The term 9 is said to be free for x in d [22] if no free 

variable in 93 becomes bound in [d/x:= a]. 

The conventions (T x) = T and (I x) = I and the definition of lambda abstraction 

gives three further axioms. 

(ApplyI) +(T.%)=T. 

(APP~Y~) t-((Ax.&) 93) = [d/x:= ZI] if 93 is free for x in &. 

(APP~Y~) E(I %I) = 1. 

The definition of Ax. 8 shows that the names of bound variables are insignificant: 

(Rename) t-Ax.[&/y := x] = Ay.[.d/x := y] 

if x is free for y in XI and y is free for x in & 

The following inference rules provide the axiomatic description of equality in 

map theory. They describe the transitivity (trans) and substitutivity (sub1 and sub2) 
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of equality. 

(trans) .$ = 3 ; .& = g t 3 = g, 

(subl) ~=~3;%:=~ t- (.ti%)=(%%). 

(sub2) ti = 3 + Ax.32 = Ax.%. 

A.formula (or well-formed formula) of map theory has the form & = B where 4 

and 3 are terms. Free variables of .ti and .% implicitly range over all maps. 

Formulas of set theory are more complex; they are composed from atomic formulas 

x E JJ, negation l.ti, implication &=+%I, and quantification Vx: .& As shown later, 

map theory treats membership, negation, implication, and quantification as defined 

concepts at term level. 

Let Csp denote some term. Here is an example of a formal proof of .ti = SQ in 

map theory. 

Proof of .Izz = &+I. 

I. Select1 (ifT.dd)=.d 

2. Select1 (ifT,dd)=.d 

3. 1,2,trans .d=d q 

A more terse proof reads as follows. 

Proof of .d = .d. 

1. Select1 

1. 1,1,trans 

(ifTd.d)=iiP 

d=..d. 0 

4.2. Metatheorems qf equality 

Theorem 4.2.1. For all terms &, B and %, 

k & = &, 

The theorem states that & = & is provable in axiomatic map theory for any term 

J& Further, if & = .%I is provable, then % = .zZ is provable, and if both G? = 3 and 

93 = %? are provable, then A = (e is provable. The statement .d = ti was proved in 

Section 4.1. 
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Proof of d = B k B = d. 

1. hyp %&=%I 

2. Th.4.2.1 Sd=d 

3. 1,2,trans %I==. 0 

Proof of d = 9 ; CB = % k &l = %. 

1. hyp Ad=93 

2. l,Th.4.2.1 %I=& 

3. hyp 93=% 

4. 1,3,trans d=% 0 

Lemma 4.2.2. If td = S’, ~93 = 6%” and k--Cc = W, then k(if d 93 %‘) = (if 4’ 93’ V’), 

EEA&Z = .dr and EC$& = &&I. 

Proof of d = d’ k Ed = &.&I. 

1. Th.4.2.1 AX&X = AX.&X 

2. hyp Ld=.dl 

3. 1,2,subl ((hX.FX)Sq = ((hX.&X)d) 

4. Apply2 ((AX.&X)d) = &a? 

5. 3,4,trans ((Ax.Fx)&‘) = FSZ 

6. Apply2 ((Ax.Ex)&‘) = ati’ 

7. 5,6,trans Ed = EdI. 0 

The proof of the remainder of Lemma 4.2.2 is analogous. 

Theorem 4.2.3. d = dc4’ + 95’ = Ce if % arises from B by replacing & by ti’ any number 

of times. 

Proof. The lemma follows by structural induction (or by induction in the number 

of connectives) in 93 from the following fact: If t9 = 9’, k ZC = Z?’ and t9 = 9’ then 

FAx.9 = Ax.9’ 

k(9 z?) = (9’ 87) 

E(if 9 g 9) = (if 9’ 8’ 9’) 

t-&9 = ES’) 

ttp9 = @B’ 

kT=T 

Fl=J_ 

Fx=x. 0 
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Theorem 4.2.4. If d and .ti’ are identical except for naming qf bound variables, then 

ES4 = Sz’. 

The theorem follows from the Rename axiom. 

4.3. Metatheorems of reduction 

If & = % is an axiom according to one of the schemes (Select l-3) or (Apply 

l-3), and if % and 9 are identical except that one subterm of % of form & is 

replaced by 93 in 9, then 9 is said to be a reduct of %‘. Let (6 h 9 denote that 

either 9 is a reduct of % or 9 is identical to % except possibly for renaming of 

bound variables. Let ~~2s %I denote that the terms ti and 6% are identical. 

Let &~.&,~-t..~&~ stand for ~2-, ‘-d4, for all iE{l,..., n}. If 

Sq,~&q~*~ . G d,, for some &, , . . , sk’, _, , then .&+ &,, Obviously, if ~2 L 98, 

then t& = 9. Also, if ~2% 28, then k.d = 93. Hence, we have the following result. 

Theorem 43.1 (Reduction). [f .d’+ % and 3’4 % for some %, then E& = 93. 

Define 

F = Ax.T, ix = (if x F T) 

The reductions 

iTE(ifTFT) L F, 

iFz(if(Ax.T)FT) A F and 

ilz(if_LFT) L I, 

show that 

tiT=F, t-iF=T, Fil-1. 

Define 

cons = hx.hy.Az.( if z x y), 

hd = Ax.(x T), 

tl= Ax.(x F). 

The reduction 

(hd (consxy))z((Ax.(xT)) (consxy)) 

L (consxy T) 

z ((Ax.Ay.Az.(if zxy)) xy T) 

h ((Ay.Az.(if zxy)) y T) 

L ((Az.(if zxy)) T) 

L(ifTxy) 

LX 
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shows that 

t-(hd (consxy)) =x. 

Likewise 

t(tl (consxy)) =y. 

Like in Section 3.3 define 

S,=Ax.(f(xx)) 

Y = U(Sf S,), 

Yf.‘& = (Y AjX). 

The reduction theorem gives 

+(Y 92) = (a (Y ti)). 

Further, if Yj& is free for f in ti then 

The map Y is the “fixed point operator” [3]. To define, e.g., a map mirror which 

satisfies 

(mirrorx)=(ifxT(cons(mirror(tlx))(mirror(hdx)))), 

the following definition will do: 

mirror=YjIAx.(if xT(cons (f (t/x)) (f (hdx)))). 

It is possible to strengthen the reduction theorem: &+ %’ and 95’4 % for some 

5% if and only if ~2 = 93 is provable from the axioms and inference rules stated until 

now. The only if part is similar to the reduction theorem whereas the if part follows 

from the Church-Rosser Theorem [3]. 

Part III defines a model of map theory in ZFC. Let +& = 93 denote that ~2 = 9 

holds in that particular model. For all terms ~4 and 3, t& = 93 implies +~4 = 9, 

but the opposite is not always true. 

A term % is a program if g is built up from application (& %‘), abstraction Ax.&, 

selection (if d 93 %), truth T and bound variables x. If g is a program and %‘+ 9, 

then 9 is a program. 

It is fairly easy [26,3] to define a mechanical procedure 9’( 8) which, given a 

program %‘, answers yes if g&T, answers no if i%'+T, and loops indefinitely 

otherwise. An important property of the model reads: If g is a program and if 

neither ‘8+T nor iSSAT, then + E = 1. Hence, 

l + 8 = T iff 9’( %) returns yes, 

l k=iZY = T iff 9( Z?) returns no, 

l + Z? = I iff 9( 8) loops indefinitely. 

This gives the intended meaning of I: I stands for infinite looping. 
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5. Quartum non datur 

5.1. Presentation sf QND’ 

The rule tertium non datur of classical theories states that a formula is true or 

false-there is no third possibility. In contrast, Gijdel’s incompleteness theorem 

[12] states that a formula may be provable, disprovable or undecidable. Classical 

theories have no truth value to match undecidability. 

The rule quartum non datur of map theory states that the root of a map is ?, 1 

or I-there is no fourth possibility. Here, 7, i and i correspond to provability, 

disprovability and undecidability, or to truth, falsehood and nontermination. 

To express quartum non datur (QND’) formally, define 

F’= hx.hy.(x_tl) 

For any x, (F’ x) is proper and, for any proper x, x = (F’ x) according to Lemma 

2.3.1. Hence, if 

[.d/x:=(F’x)]=[B/x:=(F’x)], 

then & = 93 holds for all proper x. 

Now, the QND’ inference rule is given by 

(QND’) If E [dZ/x:=T]=[%l/x:=T], 

E [.d/x:=(F’x)]=[B/x:=(F’x)] and 

E [*d/x:= I]=[%I/x:= 11, 

then E .&= 3. 

In other words, if .s$? = 93 holds when x is T, I or proper, then ti = 9 holds for 

all x. 

5.2. Tautologies 

Let & = 93 be a formula whose free variables are exactly x,, . , x,. A logical 

instance of .54 = SB is a formula 

[&lx, := %,I . . . lx, := %?,,I = [%3/x, := %,/ . . lx, := %,,I, 

where each %, is one of the terms T, I or (F’ x,). As can be seen, .~4 = 93 has exactly 

3” logical instances. Repeated application of inference QND’ gives the following 

theorem. 

Theorem 5.2.1. If all logical instances of a formula & = 93 are provable, then & = 93 

itself is provable. 

A formula .sG! = 9 is a tautology if each logical instance is provable by the reduction 

theorem. Hence, we obtain the following result. 
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Theorem 5.2.2. Each tautology is provable. 

If & = LB is a tautology with free variables x,, . . . , x,, if Ye,, . . . , %, are terms, 

and 59, , . . . , Vi?,, are free for x,, . . . , x,, in & and B, then the formula 

[a/x, := %,/ . . ’ lx, := %,I = [9/x, := G!z,/ . . /x, := E-,] 

is an instance of J& = !?A’. Since ~2 = 93 is a tautology, & = 98 is provable so, by 

Theorem 4.2.3, 

k ((Ax, . ..hx.,.&Qie, . . . %,,)=((Ax I... Ax,.?73 

which entails 

t C&/x, := %,/ . . . lx, := %*] = [S/x, := /e,/ . 

This proves the following theorem. 

Theorem 5.2.3. Any instance of a tautology is provable. 

. . lx,, := Ye,]. 

For instance, using the above results one immediately proves 

t ~/iB=~ALXz. 

for all terms .& and 9% 

5.3. Nonmonotonic implication 

Whenever a term L& occurs in a position where a formula is expected, J&! is 

shorthand for ti = T. For example, if a line of a proof reads iF, then that line states 

that iF=T. 

Equality of map theory is nonmonotonic in the sense that a map f would be 

nonmonotonic if it satisfies (fx y) = T e x = y. To see this, note that I = I, so 

(f I I) = T. If f is monotonic, then 1. G x and 1~ y implies T = (f I I) d (fxy) 

which implies (fx y) = T for all x and y, contradicting (fx y) = T Q x = y. 

Consequently, no map f satisfies (fx y) = T iff x = y since all maps are monotonic 

according to (map 11.6.1). 

The nonmonotonicity of equality allows to express an implication concept more 

powerful than x 3 y where x 3 y is monotonic in x and y like any other term of 

map theory. To do so, define the guard x:y by 

x:y=(ifxyT) 

and define & - (53 = %) to be shorthand for 

&:B=&:%?. 
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If~isproper,then~:.~=T=~:~,andif~==,then~:~====:~.If~=T 

then ti:93=3 and &:Ce=%, so &:B==.d:% ifi %I=%. Hence, &+(B=%) 

expresses the statement “if J& is true, then 9 equals (e”. 

The expression d --+ B is shorthand for ti + (93 = T) and expresses “if J& is true, 

then 3 is true”. This relation is nonmonotonic just like equality. For comparison, 

(JZ~ + 33) = T expresses “.ti and 98 both differ from I, and d implies 9J”. 

The following lemma is easy. 

Lemma 5.3.1. For all terms ~4, 93 and %, 

.%!;A-(%I=%) t cB=ce, 

SS!;.Sfl+i% k %B. 

In other words, if & =T and ti:.% = .zZ:T are provable, then so is 9 =T. 

The formula J& + & is a tautology (i.e. .d:R = &:T is a tautology), which implies 

the next lemma. 

Lemma 5.3.2. td + .d 

If t% = % then k&:9 = &:% by Theorem 4.2.3, which proves the following 

lemma. 

Lemma 5.3.3. % = % i- S + (93 = V). 

Since (x:y):z =x:(y:z) is a tautology, there is no need to put parentheses in 

expressions like zZ,:dGQ?: . . :d!,,. 

Since the formula %’ d-(%=9) is shorthand for 933:%=.%3:9, ti*-(%-(%e= 

9)) is shorthand for d:(%‘:%) = z2:(.%:9). In general, &, -. . + s& --+ (% = 21) 

is shorthand for &‘,: *. . :.d,,:%=d,: . ” :&,:9. 

Let ti,, . . , d,, -(%‘=9) be shorthand for &,+...+&,--+(%=&?I) which 

in turn is shorthand for &,: . . . :dn:%= d,: . :.d,,:S. The following lemma is 

trivial but nevertheless important. 

Lemma 5.3.4. The formulas 

&4 I,..., x&,9 I,..., %13,+((e=9) 

and 

A I,..., ccp,,-*(!B I,..., 93,3,,*(%=9)) 

are shorthand for the same term. 

As an example, &, CB ,,..., Bn-(%=9) i s the same term as & - 

(CB ,,..., CB3,+(%‘=9)), so, by Lemma 5.3.1 

&;.!z& 93,, . . .) .on,,+(E=iB) k .% ,,..., %n,,-(ie=9). 



Note how semicolons separate antecedents of k whereas commas separate ante- 

cedents of +. 

Since &$:&I % = d: % and A: 93: % = B:&: % are tautologies, the following holds. 

Lemma 5.3.5. If {a,, . . . , d,,} and {CB,, . . . , B,,,} are the same sets of terms, then 

.d,,...,&-z(E=9) 

if 

93 I,“‘, !?&-(%=9). 

In other words, repetition and ordering among the antecedents of + are 

insignificant. 

The following theorem will be used extensively in proofs. 

Theorem 5.3.6. (QND). If 

&d,,...,&-+(%=9) 

is an instance of a tautology, then 

&d,;..- ;d, t %=%f. 

The theorem can be used, e.g., to prove 

9I4;22*9I F CB. 

The QND theorem expresses quartum non datur whereas TND below expresses 

tertium non datur. 

Theorem 5.3.7 (TND). 

!d;~-+(LB=%);id-+(~=%T)~ 93=%. 

Since !& = T iff & f I, the first antecedent of TND rules out the possibility that 

d = 1. Once ti = I is ruled out, tertium non datur holds. 

Proof of TND. (See below for an explanation of lines 6 and 7.) 

1. hyp !& 

2. hyp a-+(%=%) 

3. hyp id-(CB=%) 

4. 1,QND (if d (d:93)((iA):!?Zl))= 93 

5. 1,QND (if .d (a:%) ((id):%))= Ce 

6. 2,3,triv (if d (&2:93) ((id):B))= (if d (d:%T) ((id):%)) 

7. 4,5,6,triv B=%. 0 
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In the proof, line 7 follows “trivially” from lines 4, 5 and 6. An equation % = 9 

follows “trivially” from &Z, = %!, . . , dn = S,, if 

(1) %= 9 is deducible from d, = 9,, . . , .d, = Bn using only the inferences 

trans, sub1 and sub2, and the axioms Select 1-3, Apply 1-3, and Rename; 

(2) it is expected to be easy for the reader to fill in the missing details. 

From this point on there will be few references to the metatheorems on equality 

and reduction since they are “trivial”. 

5.4. The deduction theorem 

A formula L& = 98 follows hypothetically from the formulas &Z, = B,, . . . , ,dn = %,, 

if there is a sequence %, = 9,) . , %‘,,z = 9,,, of formulas such that 

(a) Op = 9 is the last formula in the sequence; 

(b) Each formula of the sequence 

(1) is an axiom of map theory, 

(2) is one of the hypotheses .d, = 3,). . , .d,, = Z,,, or 

(3) follows from previous formulas in the sequence by one of the inference 

rules of map theory; 

(c) The sub2 inference is never used to verify Ax.%, = hx.9, from Z:, = 9, if the 

latter depends on a hypothesis &, = 3, in which x occurs free. 

The statement .d, = 3 . . . . 

hypothetically from &, = .i:, . 

; d,, = B,, p ,d = 23 states that ti = .j/3 follows 

. ) St,, = so,, 

Theorem 5.4.1 (Deduction). Ij 

Z$!&=% 

then 

X*(&=%l). 

The deduction theorem is close in spirit to the deduction theorem of first-order 

predicate calculus [22]. In particular, that deduction theorem has a requirement 

similar to (c) above. 

The deduction theorem validates proofs of the form “Assume that X is true. 

Given that 9Y is true, .ti = .% holds. Hence, X’- (& = %‘)“. This will be used later 

in this paper when formal deductions are replaced by a more conversational style 

of proofs. 

From the deduction theorem the following corollary can be obtained. 

Corollary 5.4.2. If 

q;. . . ; Ye?, P .G! = 93 

then 

x, , . . ) R,, + A? = !a. 



Map theory 41 

There are two different ways to prove the corollary. One way is to apply the 

deduction theorem n times. Another way is to apply the deduction theorem once 

with hypothesis X,: . . . :X,,. If the goal is actually to construct a proof of 

R, , . . . , 2ffl - ~4 = 93, the second approach is best since it produces a considerably 

shorter proof. This may be critical in computer-based proof systems. 

Proof of the deduction theorem. Map theory has five inference rules: trans, subl, 

sub2, QND’ and ind, where ind will be introduced in Section 7.4. The meaning of 

the ind inference is unimportant for now, but its syntax is needed for the proof of 

the deduction theorem. It says 

~,xx-~;~,ix,~x,~y.[~/x:=(xy)]~~ + d,S,x-z% 

if x is not free in ti and y does not occur (free or bound) in 93. 

Seven auxiliary lemmas are: 

(trans’) %?-+((s=B);%?-+(&=%) t ~~(%?=%q. 

(subl’) ~~(~=~);5Y-+(%=9) k 3z+((&%)=(933)). 

(sub2’) Z+ (&= 93) k X%-, (Ax.GZ=Ax.B) if x is not free in R. 

( QNW 2’9-2 ([d/x:=T]=[93/x:=T]); 

SY- ([d/x:= F’(x)]=[B/x:= F’(x)]); 

2if*([d/x:=I]=[93/x:=I]) 

t- X+(d=%l). 

(ind’) %Z, &,x-+ CB;X,d,ix, +x,\by.[B/x:=(xy)]-+ 3 t %,A&!- 93 

(axiom’) R t (& = LB) if & = 93 is an axiom of map theory. 

(hyp’) 3Y k 9e. 

Proof of trans’. The trans’ statement holds since it is a special case of the trans 

inference. 

Proof of subl’. 

1. hyp 

2. hw 

3. QND 

4. QNL’ 

5. 1,2,triv 

6. 3,4,5,triv 

SY:d= SY:93 

Re:%= X:9 

%:(d %) = %!:((X:&q (zr:%)) 

2x:(93 9) = 2Y:((Te:~) (X:9)) 

X:((X:d) (sY:%)) = 2Y:((X:%) (X:9)) 

%?(xl%) = %?(%I 9). 



42 K. Grue 

Proof of sub2’. 

1. hyp %?:ti = %:.%I 

2. QND Ye: hx..d = i?iT: Ax.i.v:d 

3. QND 9?:hx.B = sY:Ax.Ye:9 

4. 1,2,3,triv %T”: Ax.& = %fe: Ax.%‘: 33. 

Note that line 2 is an instance of the tautology y:hx.z = y:Ax.y:z because x does 

not occur free in SY. The same is true for line 3. 

The proof of QND” is left as an exercise. For ind’, replace SEZ by X:& in the ind 

inference to obtain ind’ (the sole purpose of having ti in the ind inference is to 

prove the deduction theorem). The axiom’ statement follows from &? = 9 as men- 

tioned in Lemma 5.3.3. The hyp’ statement is an instance of a tautology as mentioned 

in Lemma 5.3.2. 

Now assume that %, = 9,). . , %Y;,, = 9,, deduces & = %I hypothetically from 

2 = T. By induction in i and using trans’, subl’, sub2’, QND”, ind’, axiom’ and hyp’, 

z-+ (%, = 9,). 

In particular, for i = m, 

%!-(&4=9l). 

This proves the deduction theorem. 0 

The following theorem justifies the method of indirect proof. 

Theorem 5.4.3 (Contra). !.I&, ia.! * F E ~2. 

Proof. 

1. b 

2. hyp 

3. QND 

4. 2,3,tc 

S. l,QND 

6. 4,5,triv 

I. 6,QND 

!&4 

(i.d):F =(id):T 

-d= (id):F 

=.d= (i.d):T 

(i.d):T=T 

-d=T 

5d. 0 

The following theorem can be used in connection with the deduction theorem 

Theorem 5.4.4. (Monotonic deduction). 
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Proof. (See below for an explanation of line 1.) 

t. hyp !dl ; . . . ; !&!I, 

2. hyp !93 

3. hyp ,!d,, . . .) && - a 

4. I,QND ~,r\...r;~~~(d,:...:~~:T) 

5. 3,4,triv dd, Ii. ~~/i&dn~(d,:~~~:dn:B) 

6. ‘,QND sd, Ii. ..r;~“~(~,:.‘.:~~:~)=~,r;...r;~~~~ 

7. 5,6,triv “;4, il. ..r;z&*B. 0 

In a proof line, 

is shorthand for n proof lines that are all verified the same way. Likewise, 

&,=%?,;a.. ;5?&=sm t %?,=9,;...;%“=9n 

is shorthand for n statements of the form 

d, = CB, ; . . . ; <& = B,, k Yz, = iis8 

for i E (1, . . , n}. 

6. Quantification 

6.1. Quantljication axioms 

If c#& = T and @x.%3) = T, then ti is well-founded and 3 = T for all well-founded 

x. In particular, 9 = T for x = &, so ((hx.3) JZJ) = T. Hence, 

(Quantifyl) k f$9z,~x.!?8 + ((Ax.53) &). 

For all well-founded x, C$X = T, so r(d) = r(4x A d). Hence, by Ackermanns 

axiom (4) (Section 2.5), 

(Quantify2) k &X..& = ex.(4x r; &). 

The next axiom expresses (1) and (2) of Section 2.5: 

(Quantify3) i- C$&X.& = 9x. !.&. 

A verification requires two cases. 

l If Vx E @: (Sp # I) then Vx E CD: (!& = T) so (Qx.!&) = T. Further, according to 

(2), FX.& E CD so C#J.EX.& = T. Hence, C&EX.ZZ = T = 9x.!&. 

l If 3x E @: (& = I) then 3x E @: (!a = I) so (6x.!&) = 1. Further, according to 

(l), FX.& = 1. As mentioned in Section 2.6, I Lf @, so 4ex.d = I = *x.!ti. 
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The axioms Quantify 4 and 5 follow directly from Quantify 3 and 2, respectively, 

using the monotonicity of maps. It would be more satisfactory to express the 

monotonicity directly as an axiom and omit Quantify 4 and 5. A formulation of 

monotonicity is complicated, but should be included in next iteration of map theory. 

(Quantify4) t kX..G! -+ l$FX..SL 

(QuantifyS) t- \bx..zI = \bx.( 4x r; .!zz). 

6.2. Metatheorems of quantijication 

A direct consequence of the Quantify2 axiom is the following theorem. 

Theorem 6.2.1. If .d is free ,for x in 28, then 

(k9.S!;\bx9 t [a/x:=.22]. 

Section 8 states proofs in a conversational style as opposed to the more formal 

proofs that consist of numbered proof lines. A typical construct in conversational 

proofs reads “if x is well-founded, then .PI is true-hence, %‘bx.,& holds”. The theorem 

below justifies this conversational construct. 

Theorem 6.2.2. 4x - .d k ~x..d. 

Proof. 

1. hyp ~x:d = 4x:T 

2. QND $6x Ii .sd = 4.x IT (c$x:.xq 

3. QND 4x r;T= 4x E\ (4x:T) 

4. 1,2,3,triv +xr;.d=~xr,T 

5. 4,triv 9x.+x ,i .a? = vx.4.x r\ T 

6. S,triv,QuantifyS \bx..d = \;lx.T 

7. e,triv \bX.d 

(In line 7, note that k’.x.T =T follows trivially from the definition of \b and 

(Tx)=T). 0 

Another conversational construct reads “,& is well-founded, ax.3 #I, and 9I 

holds for x = 4, so ax.& = T” (Chapter 8.3 considers conversational proofs sys- 

tematically). In many situations in conversational proofs, it will be obvious that .d 

is well-founded and ax.:% # i, in which case the construct reduces to “.%I holds for 

x = .ti, so ax..&“. The construct is justified by the following theorem. 
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Theorem 6.2.3. Zf d is free for x in 93, then 

c$a;!3x.%;[cB/x:=&q k 3x.Sz. 

Proof. 

1. hyp 

2. hyp 

3. hyp 

4. triv,Quantifyl 

5. 1,3,4,triv 

6. 2,5,indir.pf. 

[LB/x:=&q 

&&?, iax.iiB + i[!B/x := a] 

i3x.B --) F 

~x.CB. 0 

In conversational proofs, if !lx.%!(x) has been proved, the construct “let u satisfy 

S! (2.4)” means “let u be shorthand for ex.%!(x) within this proof or until u is 

redefined”. Further, “let u satisfy 9?(u)” tacitly establishes the fact that Z(u) 

actually holds for u = EX.%!(X) and that u is well-founded as justified by the next 

theorem. 

Theorem 6.2.4. Zf u is shorthand for EX.& and u is ,free for x in &, then 

3x.&44 #m;[a/x:= u]. 

Proof. 

2. I ,triv,Quantify4 CpEX.d 

3. I,triv “[d/X := EX.se] 

4. 3,QND [d/x := FXd]. q 

The construct “let u satisfy S(u)” becomes clumsy when 9?(u) is a large, 

well-formed formula. In particular, it is clumsy first to state >x.%(x) and then “let 

u satisfy 3 (u)” for large 3 since 9? is stated twice in a row. In such situations, 

“let u be such an x” is shorthand for “let u satisfy 3(u)” since it is obvious what 

3 is. Further, “pick x” is shorthand for “let all free occurrences of x be shorthand 

for &x.%(x) within this proof or until x is redefined” when it is obvious what 2 is. 

The Quantify2 axiom was justified from Ackermann’s axiom (4). The following 

theorem proves Ackermanns axiom from the Quantify2 axiom. 
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Theorem 6.2.5 (Ackermann). C#XX - .cP e 3 k EX.& = &x.3. 

Proof. 

1. hyp 

2. 1,triv 

3. 1,triv 

4. QND 

5. QND 

6. QND 

7. 2,3,4,5,6,triv 

8. 7,triv 

9. 8,triv,Quantify2 

7. Well-foundedness 

7.1. Properties of well-foundedness 

As mentioned in Section 2.4, @ is the least set such that 

TE CD, 

g E @ A vx E gsO: (f’x) E @,fE @. 

Here, g” is the set of well-founded maps introduced before g, and G” is defined by 

G”={frM(Vx,,x2 ,... ~GZlnz=O:(fx ,... x,)=T}. 

In particular, (do is the set of all maps except 1. 

Let f ci g denote that f is introduced before g. The relation <\ is a well-order 

and f E g’@f cs g. Since .f <, g A g <\ h-f” <\ h we have g K~ h+g’C- h’. 

From the definition of G” one easily verifies GE H+ Ho5 G”. Hence, if f -c\ g 
then g’” c_ f “. 

When a proper well-founded map f is introduced, it is introduced by verifying 

VX E g”‘: (fx) E @ for some g E @. To verify this, g and (fx) have to be introduced 

before f: Hence, for all proper, well-founded L 

3gE f 'VxEg?(fx)E.f'. 
In particular, 

3g E f’ vx E g”“: (j-x) E @. 

The latter statement happens to hold also for f =T, so it holds for all well- 

founded f: 

If gEf’then g <s f and f’“cg”“, so 

vx Ef? (fx) E f”. 

If f <, h then f’c h’ and h’“E g”“, so 

Vffh’VxEh”‘: (fx)Eh‘. 
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Lemma 7.1.1. If a, b E @ then Ax.(if x a 6) E @. 

Proof. If x E T”” = 0” then x f I and ((hx.(if x a 6)) x) E {a, 6) E @. Hence, Vx E 

TBo: ((hx.(ifxab))x)E@, so Ax.(ifxab)E@. 0 

Lemma 7.1.2. If a, b E @ then there is a c E @ such that a <S c and b <, c. 

Proof. Let c = Ax.(if xa 6). 0 

Define (u, u) <SC (x, y)e u cs x A z1= y v v cc x A u = y. The relation <s, is easily 

shown to be well-founded. 

Lemma 7.1.3. If J g E @ and g’ G as0 and a” L g’” for all a E f ‘, then f’ E g”‘. 

Proof. Assume a E f ‘. From Vx E a? (a x) E a’, g’c a”‘, and us G g”” we have Vx E 

g”: (ax) E g”” which entails a E g‘” (by the definition of G”). Hence, a l ,f’~a E g”“. 

0 

Lemma 7.1.4. Zf f; g E @ then f’ G g”“. 

Proof. Follows from the previous lemma by transfinite induction on <s.. 0 

‘E h” s g’“. q 

Lemma 7.1.5. IfA g E @ then f E g’“. 

Proof. Choose h E @ such that f <i h. Now f 

Lemma 7.1.6. Iff ge @ then (fg)+z @. 

Proof. Follows from g E f’” and tlx E f? (fx )E@. 0 

Corollary 7.1.7. Iff; gE @ andffT then (fg) <$j 

Lemma 7.1.8. @ s @“. 

Proof. Let J; x, , x2, . . .E@ and let g,,=(fx,...x,,). For all na0 we have g,E@ 

and g, c5 g,+, v g, = T. Since <A is well-founded, g, cs g,+, cannot hold for all n, 

so g,, = T must hold for some n. Hence, Vx, , x2, . . . E @ 3n 2 0: (f x, . . . x,) = T which 

proves f E @“. From f E @+f E @” we have @s @“. q 

7.2. Well-foundedness axioms 

Well-foundedness is described by ten axiom schemes and one inference rule in 

map theory. None of these express the intuition behind well-foundedness. It would 

be more satisfactory to have a single axiom that expresses the intuition. The ten 

axiom schemes and the inference rule correspond to some extent to the union and 

power set axioms, etc., of ZFC that point out that certain sets exist. 
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In what follows, the ten axioms and the inference rule are presented, and they 

are proved to follow from the intuitive notion of well-foundedness stated in Section 

2.4 and repeated in Section 7.1. 

Three axioms describe some elementary properties of @ like Apply l-3 described 

functional application and Select l-3 described selection. 

(Welll) @T. 

(We112) 4Ax.d = @x.+& 

(Well3) f$I=I. 

The Well1 axiom is shorthand for 4T = T. It follows directly from TE @. Since 

i ~6 G” for all sets G of maps, we have I E 4 which verifies Wel13. The Well2 axiom 

is more complicated. 

Lemma 7.2.1. If Ax..d E @ then Ax.&&? E @. 

Proof. Choose go 4b such that Vx E g’“: ((Ax.&) x) E @. For all x E g‘“, .&E @ so 

4.d = TE @. Hence, Vx E g? ((Ax.+&‘) x) E @ so hx.d& E @. q 

Lemma 7.2.2. If hx.c#d E @ then Ax.& E @. 

Proof. Choose g E @ such that Vx E g”“: ((Ax.~&) x) E @. For all x E g’“, &zZ E @ so 

4ti # I and & E @. Hence, Vx E g”: ((Ax.&) x) E @ so Ax..ti E @. 0 

Lemma 7.2.3. 4Ax.d = &Ax.+&. 

Proof. If Ax.& E @ then Ax.&& E @ according to Lemma 7.2.1 so 4Ax.d = T = Ax.+&. 

If Ax.& .r? @ then Ax.44 E @ according to Lemma 7.2.2 so 4bhx.d = I = PAX.+&. Cl 

7.3. Construction axioms 

Let 4x.& be shorthand for 4Ax.d and define 

P = Aa.Ab.Ax.(if x a b), 

Curry = Aa.Ax.Ay.(a (Pxy)), 

Prim = A$Aa.Ab.Yg.Ax.(if x a (fAu.(g (x (b u))))). 

The definition of P (Pair) is identical to the definition of cons in Section 4.3, and 

(Pa b) equals a:: b defined in Section 3.4. 

For any map a, (Curry a) expresses the inverse of Currying of a [7]. 

If L a and b are maps, then g = (Primfu b) satisfies the primitive recursive 

definition 

if x = T, 

ifx=I, 

(fAu.(g (x (b u)))) otherwise. 
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The construction axioms are suited to prove the well-foundedness of a wide range 

of maps. They are as follows. 

(C-A) 4a, G -+ 4(a b). 

(C-K’) 4x.T. 

(C-P) q5x.(if x T T). 

(C-Curry) &l + 4( Curry a). 

(C-Prim) Vx.+(fx), &z, +b + 4( Prim fu b). 

(C-Ml) Vu.4x.&+ VU.@X.((AWq (UX)). 

(C-M2) VU.@X.&4 + VU.$$X.((AX.&q (x U)). 

The remainder of this chapter verifies the construction axioms from the intuition 

behind well-foundedness. 

Lemma 7.1.6 is a verification of the C-A axiom. From Vx E T’“: ((Ax.T) x) = T E @ 

we have Ax.TE @ which verifies the C-K’axiom. Lemma 7.1.1 verifies the C-P’axiom. 

Lemma 7.3.1 (The C-Curry axiom). Zfa E @ then Ax.hy.(a (Pxy)) E @. 

Proof. Choose g E @ such that VX E g”“: (a x) E @. Assume x, y E g”“. Now Vz, , . . E 

g”3n:(xz,...z,)=T. If zEg’ then zfi so (Pxyz)=xv(Pxyz)=y. Hence, 

Vz, z, ) z2, . . . EgS3n:(Pxyzz,...z,)=Twhichproves(Px),)Eg’”so(a(Pxy))E 

@. From Vy E g? (a (Pxy)) E @ we have Ay.(u (Pxy)) E @, and from Vx E 

g”? Ay.(u (Pxy))~ @ we have hx.hy.(a (Pxy))~ @. q 

Lemma 7.3.2. If z E @ then Ax.{ a xx) E @. 

Proof. If XEQ’~ then (ax)~u’ and (axx)=((ax)x)~u~ so V’XEU”: 

((Ax(uxx))x)~u~ and hx.(axx)~@ 0 

Lemma7.3.3. IfVx~@:(ux)~@undb~@thenAx.(u(bx))~@. 

Proof. For all x E 6”” we have (b x) E b’ G @, so (a (b x)) E @. Hence, Vx E 6’“: 

((Ax.(u (bx))) X)E @ and Ax.(a (bx))E @. q 

Lemma 7.3.4 (The C-Ml axiom). Jf we have Vu E @: Ax..&E @ then Vu E @: 

hx.((Au.ti) (vx)) E Qi. 

Proof. Assume Vu E @: Ax.&E @ and v E @, and define f = Au.Ax..&. Now Vu E 

@: (fu) E @, so we have Ay.(f(vy)) E @ according to Lemma 7.3.3 and 

Az.((Ay.(f (vy))) zz) E @ by Lemma 7.3.2. By reduction, 

((A~.(f(v~)))z~)=(f(uz)z) 

= ((A2~Ax.d) (vz)z) 

=[a/u:=(vZ)/X:=Z], 
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so hz.[&!/u := (v z)/x := z] E @. By renaming z to x, Ax.[&&lu := (u x)] E 4, so 

Ax.((hu.~) (z, x)) E @. 0 

Lemma 7.3.5 (The C-M2 axiom). If we have Vu E CD: hx..d~ @ then Vu E @: 

Ax.((Ax..d) (x u)) E @. 

Proof. Assume u E CD and Ax.& E @. Let f = Ax.&. Choose g E @ such that f <\ g 
and u <a g. Assume x E g’“. Since u E g” we have (x u) E g’” and (f (x u)) E g’. Hence, 

Vx E g‘“: ((Ax.(f (x u)) x) E # so Ax.(f (x u)) E @. 0 

Lemma 7.3.6 (The C-Prim axiom). Zf Vx E @: (fx) E @, a, b E Q, and 

ifx = T, 

ifx = I, 

(fAu.(g (x (b u)))) otherwise, 

then g E 0 

Proof. Define x <prim y e y f T A 3z E h‘: x = (y z). The relation cprlrn is easily 

shown to be well-founded on b”“. We now prove (g x) E @ for all x E b‘” by transfinite 

induction in x and <prim. 

if x = T then (g x) = a E @. Now assume x # T and assume (as inductive hypothesis) 

Vy E b”: (g (xy)) E @. If u E b’” then (b u) E b’ so (g (x (b u))) E CD. Hence, Vu E bbo: 

((hu.(g (I))) U)E @ so Au.(g (x (bu)))~@ and (gx)=(fhu.(g (x(bu))))~ CD 

as required. 0 

7.4. The inference qf‘ induction 

Corollary 7.1.7 states (fg) <,f for all ,1; gE #, ff T. Since <, is well-founded, 

this gives rise to an induction principle: If 9?(T) is true and VXE @\{T}: (Vy E @: 

~z!(x~)+%(x)) then Vx E @: 3(x). Now let the term 93 (where x may occur free) 

stand for 3(x). We have 

x--2 ~;ix,~x,\by.[~/x:=(xy)]--, 9 i- 4x-, 3, 

where y is not allowed to occur in 93. To make it possible to prove the deduction 

theorem (Theorem 5.4.1), the inference is stated as follows: 

(induction) If x does not occur free in & and y does not occur (free or bound) 

in 93, then 

7.5. The metatheorem oj’ totality 

We now state and prove Theorem 2.6.1 formally in a slightly generalized form 

which, among other things includes Theorem 2.6.4. 
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As in Section 2.6 let 1 and 2 denote the syntax classes of simple and dual terms, 

respectively. Let x,, x2,. . . and y,, y,, . . . denote distinct variables, and let E# 

denote the syntax class of simple terms in which x, , x2, . . . do not occur free. Let 

2’ denote a sequence of exactlyj simple terms. Let J;, (i,j E (0, 1, . .}), denote terms 

in which x,, x2,. . . and y,, y2,. . . do not occur free. This section defines 1 to be 

slightly more general than Section 2.6 did: 

1 ::= y, 1 Ax,2 1 (El?) ) T 1 ~y,.l? 1 C#LE 1 (ifzX2) 

I ((Ah,. . . hh,.~#) xi) I (f;,z’) I (Prim (AyJ”) 2X), 
2 ::= x, l (XI) ( 2. 

Theorem 7.5.1 (Totality). If ti is a simple term, if x,, x2,. . . and y,, y,, . . . do not 

occur free in ~4, and if 4y,, . . , 4yi -+ 4 ( fj y, . . . yi) for allf;, that occur in -cP, then c$&. 

We shall discuss simple terms before proving the totality theorem. If ti and 3 

are simple terms, then =&, !&, isP, id, sd L 93, d \j 93, d 3 93 and zZ& 93 are 

simple terms. Further, if K =Ay,.Ax,.y, and S=hy,.Ayz.Ax,.(y, x, (yz x,)) then 

(K &) and (S ~2 93) are simple terms. If x, , x2, . , . do not occur free in .& then ayi.d 

and \by,.& are simple terms. 

If & is simple and & = B holds according to the theorem of reduction, then we 

call B almost simple. The totality theorem trivially extends to almost simple terms. 

This is particularly useful in the production rule 

2 ::= (f,-r’). 

, ~YZ+ +(YI &YI). Hence, Ay,.Ay,.(y, +Y,) As an example, we prove later that ~$y, 

may take the place of fiO so that 

2 ::= ((Ay,.Ay,.(y, + yz)) 21 ) 

becomes a production rule. Since ((Ay, .Ay,.(y, A y,)) & 9) = (&k 93) we have by 

the theorem of reduction that ~4 e B is almost simple if ti and 9 are almost simple. 

Hence, the production rule I::= (j, E’) allows to extend the class of almost simple 

terms for each theorem of form ~$y,, . . . , dy, + 4g. 

In particular, for i = 0, a result of form ~$8’ allows to extend the production rules 

by Z::= g. As an example of its use, consider the following proof of 

~$y - @Ax.(y (x (yx))), where line 3 is verified by the deduction theorem. 

Proof. 

1. a.ssume 4Y 

2. 1,totality 

3. l-2 

4~ ---z ~Ax.(Y (x (Y x))) 

4~ + 4~ -+ ~Ax.(Y (x (YX))). 0 

Hence, foo,fol, . . . in the totality theorem replace y,, . . , y, in Theorem 2.6.1. 



52 K. Grur 

The deduction theorem is used so often, that we introduce a special notation for 

it. In proofs, a range of lines (e.g. l-2 in the proof above) denotes that the deduction 

theorem has been applied to that range. The presence of a dash always refers to 

the deduction theorem. 

The reduction rule 

E ::= ((Ayr, . . hyr,.Y) Zl) 

is primarily intended to stand for 

E ::= [P‘/& := .z/ . /Jy := 11, 

but the former formulation was chosen to avoid variable conflicts. As an example 

of its usage, define 

d = “Y, .Ax, .W.(YI Xl Y,), 

3 = &Y,.hX,.((hY,.&Yz.(Y, Y2)) (Y, x,1). 

Now 93 is simple and ~2 = .%I by the reduction theorem, so & is almost simple. 

Hence, 4& holds. On the other hand, ~4 is not simple because ey,.(y, x, yz) is not 

simple. The latter is not simple because the production rule E::= eyi.Z# merely 

allows sy,.& to be simple if ti contains no x, free. Hence, the reduction rule 

1 ::= ((Ayk, . . . Ay&X+) 2’) 

is useful to circumvent the restriction in the production rules 

2 ::= ey,.I#, 

E ::= (Prim (Ay,.X”) EI). 

It is not possible to circumvent the restrictions in all cases. As an example, Ax.ey.(y x) 

is not well-founded. It is slightly complicated to state exactly when the restrictions 

can be circumvented, and we shall avoid stating the rule. 

The rest of this section proves the totality theorem. In order to prove the totality 

theorem we first prove some lemmas. 

Lemma 7.5.2. If x is not free in d? then &d - c$x..d. 

Proof. 

1. assume 

2. C-K’ 

3. 1,2,triv 

4. 3,Well2,triv 

5. 1-4 
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Lemma 7.5.3. &d, $93 ---, c$( PA 5%). 

Proof. 

1. assume 

2. C-P 

3. 1,2,triv 

4. QND 

5. 3,4,triv 

6. S,WellZ,triv 

7. 6,triv 

8. 1-7 

Lemma 7.5.4. 

4Y,, 

Proof. 

1. assume 

2. assume 

3. IJ,triv 

4. 2,3,l.em.6.2.2 

5. 4,QNDpiv 

Lemma 7.5.5. 

. . . ) 

(a) f#~y, , . . . , ~$y, * &d F ~$y,, . . . , ~$y, - 4x.d ifx is not free in d 

lb) 4~17 . . . t 4vm - 4x.d c 4.~19 . . ,4ym - &[~/Y, := (Y, x)1. 

Cc) 4Y, > . . . ,4Ym - 4x.d k 4YI ” . . . ,4Y* -+ 4x.L-dl.x := (x .&)I. 

Cd) +YI,...,~Y~ -+ I$x.~ k 431,) . . , c$y,,, + c$[d/x := T]. 

Proof of (a). 

1. assume 

2. assume 

3. 1,2,triv 

4. 3,triv,Lem.7.5.2 

5. 2-4 
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Proof of (b). 

1. assume 

2. l,Lem.7.5.4 

3. 2,C-Ml,triv 

4. assume 

5. 3,4,triv,Lem.6.2.1 

6. 4-5 

Proof of (c). 

1. assume 

2. l,Lem.7.5.4 

3. 2,C-M2,triv 

4. assume 

5. 3,4,triv,Lem.6.2.1 

6. 4-5 

Proof of (d). 

I. assume 

2. assume 

3. 1,2,triv 

4. 3,Welll,C-A,triv 

5. 4,triv 

6. 2-5 

K. Grue 

&G&/Y, := (Y! x)1 

4Y1,. . ., 4Yrn - &JG~/Y, := (Yi x)1. q 

dY,, . . . ,4Ym - 4x.4 

4Y,, . . . , 4Ym - ~Y,.&.~ 

4Y, > . * > 4JYm -+ ify,.(bx.[d/x:= (x yt)] 

4Yl,.~.?$Yrn 

$Jx.[~lx := (XY,)l 

$Y,,...,4Yr?l -+ 4x.[d/x:= (xy,)]. q 

cb((Ax.4 T) 

+[d/x := T] 

4~1, . . ,4~, + $1&/x:= Tl. 0 

Now let x and z be distinct variables that do occur among y, , y2,. . . and define 

the syntax class r of wary simple terms by 

I- ::= y, 1 Az.((Ax.T)(Pxz)) ( (I-T) ) (I-(xl-“)) 1 T 1 ~y,.[r/x:=T] 

1 rbr 1 (Prr) I ((AYE,. . Ay~,.[~lx:=TI) I”) 

I Cfi, r’) I (Prim (Ayr.[~lx:=TI) TU, 

where I‘” denotes a sequence of zero, one, or more unary simple terms and r’ 

denotes a sequence of exactly i unary simple terms. 

Any of the variables x, , x7, . . may occur free in simple terms whereas merely x 

may occur free in unary simple terms (apart from y, , y,, . . which may occur free 

in simple as well as unary simple terms). We shall prove a theorem about the 

well-foundedness of unary simple terms, and then prove the totality theorem from 

this special case. 
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Lemma 7.5.6 (Unary totality). If 9 is a unary simple term, if y,,, , ymtz, . . . do not 

occur in 5, and if 4y,, . . . , 4yn -+ 4(J;,Yt . . . y,) for all f;, that occur in 3, then 

~Yl>...,+Ym+M.~ 

Proof. We proceed by structural induction in r and Y. 

Case 1. Assume that .T is y,. 

1. QND 4Y, 4Yrn - 4Yi 9. . > 

2. l,Lem.7.5.5 4Y, 4Ym - WY,. 9 . . . > 

Case 2. Assume that F is AZ.((AX.&) (Pxz)). 

1. ind. hyp $+YI,. cbY, --+ 4x.a . . , 

2. assume 4YI,...,4Y,n 

3. 1,2,triv C$X.&d 

4. C-Curry &I -+ 4x.Az.( a (Px z)) 

5. 3,4,triv ~x.Az.((Ax.d) (Px z)) 

6. 2-5 4~1,. +~rn - &.Az.((Ax.N (Pxz)) . . , 

Case 3. Assume that 9 is (&%I). 

1. ind. hyp 4Yl,. ,4Y, - 4x.d . . 

2. ind. hyp ~Yl,...,~Ym-N.~ 

3. assume ~Yl,...V~Yrn 

4. 1,2,3,triv f$xsz, 4x.9 

5. C-A @a, @ - 4(a b) 

6. 5,Lem.7.5.5 N, @ - @.((a x) (bx)) 

7. 4,6,triv 4x.(& 3) 

8. 3-7 4Y,, --) 4x.(& 9). . . Ywl 9 

Case 4. Assume that F is (& (x93,. . . %I,,)). 

1. ind. hyp 4Yl,. 4Ym - 4x.a . ., 

2. ind. hyp ~Y,,...,~Y,--,~x.~,,iE{l,..., n> 

3. assume $Y, > ‘. ., Y, 

4. 1,2,3,triv qbx.&, 4x.% +x.a, ,,..., 

5. QND +a, $4, ,4b, - 40 . . . 

6. 5,Lem.7.5.5 b, h, ,d&, -+ c$x.((ax) (b, x). . . . x . . (b,x)) 

7. 4,6,triv ~x.(21(xB,...933,)) 

8. 3-7 4Y,, 4Y, - 4x.(& (x 33, am)). . . . > . . . 
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Case 5. Assume that 5 is T. 

1. aSS”me 4y1,.~.,4ym 

2. C-K’ &CT 

3. l-2 41’1, 4y,,, . . - , 4x.T. 

Case 6. Assume that 9 is dye.% where 3 is shorthand for [&/x:=T]. 

1. ind. hyp $Y 1, . . , &y,, - &i.a 

2. l,Lem.7.5.5 4Y1,. . , CbY,?? -+ q1B 

3. assume dY,, . ‘. , &,I 

4. 2,3,triv 4% 

5. 4,QND !%I 

6. 3-5 &Jl,...,dYn,r+!~ 

7. 6,Lem.7.5.4 4.~1, . . . . 4y,n-+Qy,.!B 

8. 7,Quantify2,triv 4Y,, . , dym - &v,.~. 

Case 7. Assume that 9 is c$&. 

1. ind. hyp ~Y,,...,~y,~*+~x.~ 

2. assume cbY,,.*.,6Y, 

3. 1,2,triv CpX.s2 

4. 3,We112 4X. @d 

5. 2-4 4Y,, . v+ym - . , 4x.d. 

Case 8. Assume that .Y is (Pd.%). 

1. ind. hyp 

2. ind. hyp 

3. assume 

4. 1,2,3,triv 

5. C-P 

6. 5,Lem.7.5.S 

7. 4,6,triv 

8. 3-7 
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Case 9. Assume that F is ((Ayk, . . . Ay,,.GE’) ‘%, . . . Zi) where 53 is shorthand for 

[&4/x := T]. Let 93’ be shorthand for (Aykl . . . Ay,,.B). 

1. ind. hyp 4Y,, . . .1 @Ym - 4x.d 

2. l,Lem.7.5.5. 4Y,, . . . > 4.vtn - 92 

3. 2,triv ~Y,,...,~Y,~(~‘.Yh,...Yk,) 

4. 3,Lem.l.SS ~YI,...,cbY”I -+ 4x.(3 (Y/q x) . . . (Yk, x)) 

5. ind. hyp $Y, ,..., ~Ym-N.q, jE{l,...,iI 

6. assume 4Y, >. . . > 4Ytn 

7. 4,6,triv &k,, . . , &k, - &.ta’ b’k, x, . . . (yk, x)) 

8. 5,6,triv 4x.%,, . .) cpx.%; 

9. 7,8,triv +x.(B’ ye, . . . %,) 

10. 6-9 4y,, . .) f$ym --3 4x.(93’ %, . . . %,). 

Case 10. Assume that .Y is (f;, ~4, . . . d,). 

1. assume @, , . . . , 44 - 4CJ;, aI . . .a,) 

2. ind. hyp by,,. . . , 4ym -j 4x.4, jE{l,. . ,4 

3. assume d!v,,..‘,+Ym 

4. 2,3,triv 4x..&,, . . . ) ~xd, 

5. l,Lem.7.5.5 N, ,...,Mi+ 4x.(f;,(a,X)...(aix)) 

6. 4,5,triv &a; d, . . .&I 

7. 3-6 4Y, 3.. ., 4ywl+ 4x.(J;, &I . . . &;I. 

Case 11. Assume that F is (Prim(Ay,.%I) %9) where 93 is shorthand for 

[d/x := T]. 

1. ind. hyp 4Y, >. . . > 4Y”I - 4x.a 

2. l,Lem.7.5.5 &Y,,..~>~Y”,--,~~ 

3. 2,Lem.7.5.4 4Y,, . . . ,4Yrn -+ GYi.@ 

4. ind. hyp 4Y 1, . ’ . 9 4Y,?I - 4x. +z 

5. ind. hyp ~Yl,...,~Y,n*b~ 

6. assume 4Y,, . . . ,4Yrn 

7. 3,4,5,6,triv vyi.+((Ay,.W Y,), 4x.% 4x.9 

8. 7,C-Prim 

9. 8,Lem.7.5.5 

10. 7,9,triv 

Il. 6-10 

+, 4d ----z ~x.(Prim(hy,.i%‘) cd) 

I#IC, 4d + @x.(Prim(Ayi.%‘) (cx) (dx)) 

~x.(Prim(Ay,.%‘) %9) 

4y,, . . , 4ym - 4x.(Prim(Ay,.‘t’%‘) Vi&S). 0 
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We may now prove the Totality Theorem from the Unary Totality Theorem. 

Proof of the Totality Theorem. Let S be a simple term that satisfies the conditions 

of the Totality Theorem. We may construct a unary simple term 9 such that 

& = [9/x := T] by reduction and such that % satisfies the conditions of the Unary 

Totality Theorem. The construction is as follows: Replace all occurrences of Ax,.‘% 

in .& by Az.((Ax.%) (Px z)). Replace all occurrences of x, by 

(x’r...i F) 

where ,i is the De Bruijn index of the occurrence of x,. Replace all occurrences of 

my,.% and (Prim(hy,.Ce) 9 8) by ey,.[%/x:=T] and (Prim(hyk.[%/x:=T]) 9 %), 

respectively. Replace all occurrences of (if % 9 8?) by (P9 k% (8). It is left to the 

reader to see that 3 is a unary simple term and that .& = [g/x := T] (note that .% 

does not depend on x). Since & satisfies the conditions of the Totality Theorem, 

it contains no yi free. Hence, neither does 93, so 4x.93 by the Unary Totality Theorem. 

From axiom Well1 and C-A we have 4((Ax.%) T) which shows 4S. 0 

8. Development of ZFC 

8.1. The syntax and axioms of ZFC 

The following axiomatization of ZFC is inspired by [17] and [22]. The syntax 

of terms and well-formed formulas (wff’s) of ZFC reads: 

variable ::= x 1 y 1 z 1 . . . 

term ::= variable E variable 

wff ::= term ( lwff 1 (wff +wff) 1 Vvariable.wff. 

Let d:ZFC(x,, . . , x,,) denote that s4 is a well-formed formula of ZFC whose 

free variables occur among x,, . . , x,,. 

The logical axioms read ([22]) 

(ZFC-Al) &*(%I*&) 

(ZFC-A3) (l%*l&d)~((l~~.d)*9?) 

(ZFC-A4) Vx.~Z+[ti/x:= 11 where t is a term free for x in SI 

(ZFC-AS) VX.(S~*%I)*(&*VX.~I) if x is not free in 92. 
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The inference rules read 

(ZFC-MP) d;&*%lt-3 

(ZFC-Gen) tit Vx.& 

The axiom of extensionality reads 

(ZFC-E) Vz.(zEx~zz~)~tlz.(xEZ~JyEZ), 

where e is defined from + and 1 as usual. We shall use defined logical connectives 

like e and the defined quantifier 3 in stating axioms, but we shall avoid defined 

relations like E, and defined functions since they would complicate matters. The 

axiom of subsets reads 

(ZFC-S) Vy3zVx.(x E z@x E y A Ccp) where y and z do not occur free in &, 

where ti is any well-formed formula of ZFC. 

The construction axioms of ZFC are easier to state when we have the axiom of 

subsets at our disposal [17]. As an example, we state the axiom of pair sets as 

(ZFC-P) VxVy3z.x E z A y E z. 

This axiom states that for any sets x and y there is a z containing both which makes 

z a superset of the pair set {x, y}. Having a superset of the pair set, the pair set 

itself may be constructed using the axiom of subsets. The axioms of union and 

power sets are stated similarly: 

(ZFC-U) Vx3yVuVu.( u E u A 21 E xJl.4 6z y) 

(ZFC-W) vx3yvz.(vu.(uEz~uEx)~zEy). 

The axioms of pair and null sets are not strictly necessary, but it is instructive to 

verify them in Section 8.10. The axiom of null sets reads: 

(ZFC-N) 3xvy.lyEx. 

The axiom of replacement reads 

(ZFC-R) VZ3UVX.(X~ z A 3y.tiJ3y.yE u A &) 

where z and u are not free in &?. 

The interpretation is as follows: The well-formed formula & may contain x and y 

free. Consider & as a multi-valued function that maps x to y iff & is true. In 

particular, ti may be a single-valued function, in which case the axiom expresses 

the usual axiom of replacement. When & is multi-valued, the axiom states part of 

what the axiom of choice states. Hence, ZFC-R is stronger than the usual axiom of 

replacement, but ZFC-R plus the axiom of choice has the same strength as the usual 

axiom of replacement plus the axiom of choice. 
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Stated without use of defined functions and relations, the axiom of choice is 

colossal. We use the formulation that provides a choice set y for any collection x 

of disjoint, nonempty sets. 

(ZFC-C) Vx.[Vu.(u E .-r*3u.u E u) 

AvU,2),W,Z.(UEXAUEXAWEUAWEUAZEU~ZEU) 

* 3~~.vu.(u~x~3u.u~uAv~y) 

AbfU,V,W,Z.(UEXAVEUAVEyAWEUAWEyAZEU=$ZEW)]. 

The axiom of restriction says that any nonempty set x contains a set y which is 

disjoint from x. This axiom allows to prove the axiom of foundation [22], i.e., that 

there is no infinite sequence x,, x,, . . . of sets such that x, 3 x2 3 x3 3. . 

(ZFC-D) tlX.(jy.y E X331’.j- E X A 132.2 E X A 2 E.y). 

The axiom of infinity states that there exists an infinite set. Having the axiom of 

restriction, it is sufficient to assume that there exists a nonempty set y such that 

whenever 4’ contains a set z, then it also contains a set u which contains z. Without 

the axiom of restriction, this axiom of infinity would be satisfied, e.g., by any set u 

that satisfied u = { u}, and such a u is finite since it merely has one element. The 

axiom of infinity reads 

(ZFC-I) 3,V.((3Z.ZEy)A~Z.(ZEJ’~3U.ZEUAUEJJ)) 

8.2. The strategy qf development 

We shall prove that any theorem of ZFC is provable in map theory. More 

specifically we shall prove the following result. 

Theorem 8.2.1. [f ,ti:ZFC(x,, . , x,,) is a theorem of ZFC, then 4x,, . , qbx,, --$ .d 

is a theorem qf map theory. 

The theorem follows from the following lemmas 

Lemma 8.2.2. rf’ we have 4y,, . . , by,,, --) .d and +y,, . . . , +Y,,, -+ (d * 3) then 

$Y, , . . , by,, - 3. 

Lemma 8.2.3. I. 4y,, . , +y,,, - d then 4y,, . . , d-v*, + \by,.sL 

Lemma 8.2.4. If’.rB:ZFC(y,, . . ,y,,) is an axiom of’ZFC then $~y,, . , qby,,, - al. 

Lemma 8.2.5. [f we have .s~:ZFC(X,, . . , x,,) and Ld:ZFC(y,, . . . , y,,,) then 

4x, ,..., ~x,--~i~~~,,...,~y,,~-2.~. 

Lemmas 8.2.2-8.2.4 are verified in Sections 8.8-8.11, while Lemma 8.2.5 is trivial. 

The theorem follows from the lemmas as follows. 
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Assume LzZ:ZFC(X,, . . . , x,) is a theorem of ZFC. Since & is a theorem, it has a 

proof&,,..., dk ending with J& where each & is either an axiom or follows from 

previous &,‘s by an inference rule. Assume the free variables of 1;4,, . . . , s4k occur 

among y, , . . . , y,,. It is straightforward to verify dy,, . . . , 4y, --) d, by induction 

in i using Lemmas 8.2.2-8.2.4. In particular, for i= n, 4y,, . . . , 4~1, - d, so 

@I,..., 4x,, - s2 by Lemma 8.2.5. 

Theorem 8.2.1 would be true trivially if 4x,, . . , C$X, -+ d would hold regardless 

whether or not & was a theorem. To rule out this possibility it is sufficient to find 

a single well-formed non-theorem ,& such that 4x,, . . . , 4x, + d is not provable. 

For example, let & be xix. If 4x + xix is provable in map theory then, in 

particular, +T-+ Ti T is provable so, since c$T=T, we would have TiT=T. 

However, Ti T= F by reduction, so we would have T= F and map theory would be 

inconsistent. Hence, if map theory is consistent then Theorem 8.2.1 is nontrivial. 

In Sections 8.8-8.11 we shall not prove Lemma 8.2.4 for every list y,, . . . , ym of 

variables. We merely prove dz,, . . . , $JZ,, --f d for one list z,, . . , z,, of variables 

after which Lemma 8.2.4 follows from Lemma 8.2.5. 

The axioms ZFC-P, ZFC-N, ZFC-U, ZFC-W, ZFC-I, ZFC-S, ZFC-R, ZFC-C 

and ZFC-D all assert the existence of certain sets. They are all proved in map theory 

by constructing the set explicitly: 

(ZFC-P) (pairset) (PXY) 

(ZFC-N) (emptyset) T 

(ZFC-U) (unionset) hz.(x (z T) (z F)) 

(ZFC-W) (powerset) hu.(if uThv.(x (u (Z’xv)))) 

where (I’xy)=~z.((xz)~(xy)) 

(ZFC-I) (injnity) (Prim(hw.w) TT) 

(ZFC-S) (subset) (if y T (if iau.(B (y u)) T 

Adif (9 (Y u)) (Y u) (Y 43 (Y u)))))) 

where 93 = Ax.& 

(ZFC-R) (replacement) Ax.( u’ (z x)) where u’ = Ax.sy.& 

(ZFC-C) (choice) Az.(y’ (x z)) where y’ = Az’.Ez”.z” i z’ 

(zFC-D) (restriction) D(x, EW.W i x) where D(x, y) 

= (if (iy r; 3v.(y v) i x) D(x, (y SU.(Y 0) ix)) y). 

8.3. Conversational proofs 

In the previous sections, the axioms and inference rules of axiomatic map theory 

have been introduced. In principle, any theorem of map theory is provable using 

only these axioms and inference rules. In practice, however, proofs become exceed- 

ingly long and unreadable if they use only axioms and inference rules. We shall 

refer to proofs as “formal” if they only use axioms and inference rules. 
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Proofs become considerably more manageable when use of metatheorems is 

allowed, but they still remain long and difficult to read. 

In this section we shall state proofs in the “conversational” style commonly used 

between mathematicians. However, since map theory is a new theory such a conversa- 

tional style has to be developed first. 

The aim of a “conversational proof” of a theorem is to present the idea behind 

the proof in order to convince the skilled reader that it is straightforward to write 

out a formal proof in all detail. 

Trivial details are omitted from conversational proofs. As an example, suppose 

.p2 = 93 is established in the middle of a proof. Further suppose that %I = & is needed 

to continue the proof. In a formal proof, 3 = .d has to be proven from & = 3 using 

a few proof lines. A conversational proof would neither prove 3 = .& nor even 

mention that this is necessary for the proof to proceed. 

As an example of a conversational proof, consider the following proof of 

x -+ \by.C$(x &y)): 

Proof. Assumex and 4~. Now xky=(ifyTF)~@ so $(x*y). 0 

This proof starts out saying “assume x” which indicates that either x + ,ti or 

x 3 ~2 will be proved for some term .ti using the deduction theorem and Theorem 

5.4.4. Since the proof is going to prove x ---$ ‘by.4(x -‘y), it is obvious that the goal 

is to prove x-+ ti where A is ‘b’y.d(x*y). 

The proof continues with “assume +y” which indicates that $y + 93, @y 3 %I 

or Qy.93 will be proved for some term 93 using the deduction theorem, Theorem 

5.4.4 or Theorem 6.2.2. Again, it is obvious that the goal is to prove \by.%’ where ,% 

is $(x-y). The assumption ~$y could also be stated y t @ since _VE @ is shorthand 

for $y in conversational proofs. 

Next, the proof states x e_>z = (if y T F) E @. This is shorthand for x sy = (if ,v T F) 

and d(if y T F). The former follows by the reduction theorem if x is replaced by T, 

and the latter follows from the totality theorem. 

The proof concludes 4,(x k y); this follows from x *y = (if y T F) and +(if y T F) 

by substitutivity, but substitutivity is not mentioned since this is considered trivial. 

The proof ends after the conclusion 4(x A J’) even though the goal was to prove 

x ---$ \by.~(x~y). Hence, it is left to the reader to verify 4y -+ 4(x-y) by the 

deduction theorem, then Qy.+(x 2 y) by Theorem 6.2.2, and then x +- ‘b_v.$(x * y) 
be the deduction theorem. However, the proof started by assuming x and by which 

implies that this “post processing” is needed. 

As another example, consider the following proof of qxvyaz.(if (xy) z iz). 

Proof. Assume x, y E @. The proof is by TND from the following two cases: 

Case 1. Assume (x y) and let z = T. We have (if (x y) z iz) = z =T as required. 

Case 2. Assume i(xy) and let z= F. We have (if (xy) z iz) =iz=T as 

required. 0 
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This proof starts out assuming 4.x and dy in order to prove qx\by.& where S& is 

az.(if (xy) z iz). Next, it is stated that az.(if (x y) z iz) will be proved from 

Xxv) 

(x y) ---z !lz.(if (x y) z iz) 

i(xy)+ Clz.(if (xy) z iz) 

using the TND theorem. The statement !(xy) is not proved explicitly since +(xy) 

follows directly from the totality theorem and since +Z -+ !&. In general, verification 

of premises of the form $S and !~4 are omitted whenever the proof is straightforward 

(but remember these “side conditions” both when reading and writing proofs). 

The proofs of (x y) + az.(if (x y) z iz) and i(xy) * az.(if (x y) z iz) are stated 

under the headings Case 1 and Case 2. In Case 1, (xy) is assumed. Then 3z.B 

where 3 is (if (x y) z iz) is proved by giving a z explicitly. This is the usual way 

to prove existence in map theory. To make the intention clear, z is locally defined 

to stand for T and then (if (x y) z iz) is verified. It is then left to the reader to apply 

Theorem 6.2.3 to conclude 3z.(if (x y) z iz). Theorem 6.2.3 requires 4z and 

!!lz.(if (xy) z iz), but the proofs of these two requirements are omitted as before. 

In Case 2, z is locally defined to stand for F and then the proof is similar to Case 

1. The two local definitions z = T and z = F do not conflict with each other since 

they apply to different parts of the proof. It is up to the reader’s judgement to 

understand the scope of each local definition, and it is up to the writer of the proof 

to allow the reader to guess the scope. 

The two examples give the flavor of conversational proofs. Conversational proofs 

make use of theorems (metatheorems, to be precise) like the deduction theorem 

and QND, but they do not always identify the theorems explicitly. Conversational 

proofs almost never refer to the reduction, QND and totality theorems since they 

are considered “trivial”. Conversational proofs do not refer to the deduction theorem 

and related theorems either, since the use of “assume” indicate their use. 

There are a few constructs of conversational proofs that have not been mentioned. 

First, “let x E @ satisfy S’ does not choose an arbitrary x but chooses the x chosen 

by F. In other words, if we say “let x, y E @ satisfy &” then x = y. The construct 

“let x E @ satisfy A” is shorthand for the local definition “let x = FX.&” and should 

only be used when ax.& has been established. When ax.& has been established, 

then & = T follows trivially from x = FX.& and the definition of 3. 

Another construct is “The proof is by QND’ from the following three cases”. 

This indicates that & = 93 is going to be proved from [a/x:= T] = [LB/x := T], 

[a/x:=I]=[B/x:=I] and [a/x:= F’(x)]=[%/x:= F’(x)] for given ti and 93. 

A third construct is “the proof is by induction in x” where \bx..& or 4x -+ .ti is 

proved from x ---, d and ix, 4x, \by.((hx.i;P) (x y)) + d. The two cases x and ix, 

4x, qy.((Axd) (xy)) are usually not stated under two headings like Case 2 and 

Case 2. Rather, the proof looks like: “The proof is by induction in x. First assume 

x.. . Now, as inductive hypothesis assume ix, 4x, %'y.((hx.d) (x y)) . . ” 
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A fourth and very common construct is to deduce [d/x := 91 from \;/x.& using 

Theorem 6.2.1. This requires c,MI to be proved, but the proof of ~$3 is omitted if 

it is trivial. Use of this construct also requires B to be free for x in .ti. 

A fifth construct is the method of indirect proof. If assumption of i.d leads to 

a proof of F (i.e., of F = T), then XI holds according to Theorem 5.4.3 (provided !.& 

holds, but the proof of !d is omitted if it is trivial). 

The list of constructs that can be used in conversational proofs is open, The sole 

purpose of a conversational proof is to convince the reader, so whatever convinces 

the reader may be used in conversational proofs. 

8.4. Trivial lemmas 

The following statements are trivial to prove, and we shall use them without 

reference in conversational proofs. 

Theorem 8.4.1. 

(a) xckyEiy,c#u,x*(yu) where u = FU.(X i (y u)). 

(b) y, 4.x + i(x i y). 

(c) ix,x~:y,4u~~v,(xu)~(yu) wherev=&v.(xu)*(yv) 

(d) ix,xe_y, #a E &A, (x u)k(y v) where u = ~u.(xu)~(y v). 

(e) iy,x~y,&4tc#m,(xu)~(yv) wherev=~v.(xu)+(yv) 

(f) iy,x~y,~v~~u,(xu)~(yv) whereu=Eu.(xu)e(yv). 

(d Vx.i(x i~j) t y. 

(h) ix,&x,&t-(xu)ix. 

8.5. The totality qf * 

Theorem 8.5.1. 4x, dy -+ 4,(.x ‘y). 

Proof. The proof is by induction on x. First assume x = T. Further assume y E @. 

Now xsy=(ifyTF)E@ so 4y+$(x--y). 

Next, as inductive hypothesis assume 4x, ix and \ju.\by.~$((xu)~y). Further 

assume y, u, v E CD. Since (y u) E @ we have 4((x u) + (y u)). Having\ju.qv.4((x u) e 

(y v)) the totality theorem gives $\bu.av.((x u) 5 (y v)) and c$~v.~u.((x u) e (y u)). 

Hence, by the definition of --1 and the totality theorem, +(x&y) so by-) 4(x ‘y). 

The theorem now follows by induction. q 

From now on, we regard the above theorem as part of the totality theorem, i.e., 

the definition of the syntax class C of simple terms is extended to 

,r ::= . . . (I&X, 
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As a consequence we have 4x, 4y + 4(x i y) by the totality theorem. Furthermore, 

the totality theorem entails the following corollary. 

Corollary 8.5.2. For each &:ZFC(x,, . . ,x,,) we haue #G,, . . , 4x, + &d 

8.6. Equality properties of k 

Theorem 8.6.1 (Reflexivity). Zf 4x then x+x. 

Proof. The proof is by induction on x. For x = T, x +x holds trivially. Now, as 

inductive hypothesis assume 4x, ix and \bu.(x U) +(x u). 

If 4~4 then (x U) A (x u). Hence, \bu.>u.(x u) G (x u) and %‘u.$u.(x U) k (x v). Com- 

bined with ix this gives x k x. The theorem now follows by induction. 0 

Theorem 8.6.2 (Transitivity). Zf 4x, 4y, 4z, x G y and x s z then y A z. 

Proof. We first prove \bx.\by.\bz.(x +y !I x e z 3 y A z) by induction on x. For x = T 

assumey,z~cP.Nowx~y~x~z~~~~zbyTNDso\b~~.\bz.(x~y~x~z~y~z). 

As inductive hypothesis assume 4x, ix and qu.%‘y.%‘z.((x u) --y /, (x u) s z + y f 

z). Further assume u, y, z E @, x sy and x h z. Choose U’E @ such that (x u’) e (y u) 

and choose U”E @ such that (x u’) * (z u”). As a special case of the inductive 

hypothesis we have (x u’) + (V u) A (x u’) k (z u”) 3 (y u) e (z u”), so (y u) e (z u”). 

Hence, ~u.~v.(y u) G (z v). Likewise, \jn.a~.(y u) + (z u). Hence, from the definition 

of +, y&z. 

Now, %‘x.by.bz.(x *y A x A z 3 y e z) follows by induction on x. The theorem 

follows easily. 0 

The theorems of reflexivity and transitivity allow us to treat + as an equivalence 

relation. 

Theorem 8.6.3 (Substitutivity). Zf 4x, 4y, dz and x ey then xi zey i z and z i 

xezzy. 

Proof. Assume 4x, $y, +z and x e y. 

l Proof of xi- zey i z. Assume xi z. From x i z we have iz. Choose u E @ such 

that x f (z 1.4). By transitivity of e we have y k (z u), so y i z. Hence, x i z 3 y i z. 

Likewise,yiz+xiz, so xizdyiz. 

l Proof of z i x6 z i y. Assume z i x. From z i x we have ix, and from x k y we 

have iy. Choose u E @ such that z e (x u). Choose u E @ such that (x u) e (y 0). 

By transitivity of + we have z k (y u), so z i y. Hence, z i x * z i y. Likewise, 

ziy~zZx, so 2ix~zZy. q 
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Corollary 8.6.4 (Substitutivity in ZFC). !f &:ZFC(x, x,, . . . ,x,), 4x, 4~1, 

Ml,..‘, 4x,, and x-y then .~4e[&‘/x:=y]. 

The corollary allows us to treat k as an equality relation when dealing with 

well-formed formulas ti of ZFC. 

8.7. Extensionality 

Theorem 8.7.1 (Extensionality). If 4x, +y and \;Iz.( z i xe z c y) then x by. 

Proof. Assume 4x, 4y and \bz.(z i x(sz i y). The proof is by TND. 

Case 1. Assume x. Further assume +z. We have z i x e z i y. Since x = T we have 

iz i x so iz i y. Hence, \jz.iz i y so i3z.z i y and y = T according to Theorem 

8.4.1. From x=y=T we have X&J’. 

Case 2. Assume ix. Further assume u E @. We have (x U) i x. Further, (x U) E @ 

so(xu)ix~(xu)iyand(xu)iy.From(xu)iy wehave~v.(xu)~(yv).Hence, 

bu.gv.(x u) k (y v). Likewise, ~v.~u.(x u) * (y II), so x ‘y. 0 

8.8. Logical axioms and inference rules 

Theorem 8.8.1. Let &, .%I, %;:ZFC(x,, . . . ,x,). We have 

(ZFC-Al) 4x, ) . . . ) (bx,, - d * (93 3 &!I) 

(ZFC-A2) 4X,). . . ) c&x, ---f (.!d 3 (3 3 W)) * ((as 93) 3 (&d 3 %)) 

(ZFC-A3) +x,,...,4xn+ (i~*i.d)~(((i%l~d)~%). 

Proof. Assume 4x,, . . , 4x,,. Now @&, 493 and 4% according to Corollary 8.5.2, 

so & 3 (3 3 &) and the other two statements are trivial to prove by TND. 0 

Theorem 8.8.2 (ZFC-A4). Let &:ZFC(x,, . . . , x,). Let i, j e { 1,. . , n}, and assume 

that x, is free for x, in d We have 

4X,). . ) cpx, + ilx,..d 3 [&?l/x, := x,]. 

Proof. Assume 4x,, . . . ,4x,,, and Gx,.&. Now, [d/x, := x,] follows by Theorem 

6.2.1. 0 

Theorem 8.8.3 (ZFC-AS). Let d:ZFC(x,, . . ,x,) and let B:ZFC(x,x,, . . , x,) 
where x does not occur among x,, . . . , x,. We have 



Map theor) 61 

Proof. Assume 4x,, . . . , 4x,,. Corollary 8.5.2 gives +z2. Further, if 4x, then 4633 so 

+\;lx.%. The proof proceeds by TND in & and 9x.S. 

l If d and Qx.3 then \bx.(&aB) ~(~~~x.%)=~x.~~~x.~ =T. 

l If & and i\bx.B then $‘~.(a 3 6%‘) 3 (a 3 \bx.W) =\bx.% + \bx.B =T. 

l If iti and vx.3 then \~~.(~~~)~(~~~x.S~)=\~X.F~\~X.F=T. 

l Ifi& and i\bx.B then ~x.(d~B)~(d~~x.6B)=\jx.F~~x.F=T. 

Theorem 8.8.4 (ZFC-MP). Let &, 93:ZFC(x,, . . . ,x,). We have 

4x,,..., 4x,-d;4x,,..., 4x, - &% 633 t- 4x,, . .) c#Jx, + 93. 

Proof. Assume 4x,, . . . ,4x, - d, q5x, , . . . ,4x, + d 3 93, and I$x,, . . . , 4x,. 

Now, ti and &+ 6%’ holds, which logically implies 3. Hence, 

@x1,.*., 4x, - 3. 0 

Theorem 8.8.5 (ZFC-Gen). Let &:ZFC(x,, . . . , x,) and let it (1,. . . , n}. We hazle 

4x,,..., 4x, -+ &4 t 4x, ) . . . ) cpx, - \bx,.d 

Proof. This theorem was previously stated and proved in Lemma 7.5.4. Here is a 

conversational proof: Assume 4x,, . . . , 4x,_, , 4y, 4x,+, , . . , 4x,,, 4x,. From 

4x,, . . , 4x,, we have ti, so 9x,.& and 4x,, . . , 4x,_, , +y, 4x,+, , . . . , 4x, + bx,.d. 

The theorem follows by renaming y into x,. q 

8.9. The axiom of extensionality 

Theorem8.9.1 (ZFC-E). #x, #y--t~z.(zix~zZy)~~z.(xiz~yiz). 

Proof. Assume 4x, 4y, (bz.(z i xez i y) and #z. From Theorem 8.7.1 we have x A y. 

Assume xiz and choose UC@ such that x+(zu). We now have y&x-(zu) so 

yiz. Hence, xizSyYz. Likewise, yiz*xiz so xizeyiz as required. 0 

8.10. Construction axioms of ZFC 

Theorem 8.10.1 (ZFC-P). \bx.\by.az.x i z i y i z. 

Proof. Assume x,y~@ and let z=(Pxy). From (zT)=(Px~T)=x and (xF)= 

(PxyF)=ywehavex~(zT)andy~(zF),soxizandyiz. 0 

Theorem 8.10.2 (ZFC-N). jx.\by.i(y i, x). 

Proof. Take x = T. 0 

Theorem 8.10.3 (ZFC-U). ~x.~y.\bu.\bv.( u i 21 A u i x 3 u i y). 

Proof. Assume 4x and let y = Az.(x (zT) (z F)). Assume 4u, +, UC u and uix. 

From u i 2, and u i x we have iv and ix. Choose 21’ such that u G (xv’). From u i ZJ 
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and o + (x v’) we have u c (xv’). Choose u’such that u G (x V’ u’) and let z = (Pv' u'). 
Now C$Z and (y z) = (x (z T) (z F)) = (x u’ u’j * u so u i y as required. 0 

Intuitively, hu.(if u T hv.(x (u (x u)))) represents the power set of x. However, the 

given axiomatization of map theory seems to be insufficient to prove this. Instead, 

we represent the power set of x by 

Au.(if u T Av.(x (u (I’ x u)))) 

where I’ is “almost” an identity relation. We define I’ (conditional identity) by 

I’=Ax.Ay.~z.(xz)-(xy). 

The following lemma expresses the “almost identity” property of I’. 

Lemma 8.10.4 (I’). If’@x and +y then (x (I’xy))‘(xy). 

Hence, (I’ xy) behaves like y when occurring as the argument of x. 

Proof. Assume 4x and 4y and let z = (I’xy) = FZ.(XZ)-(xy). From (xy)e(xy) 

we have au.(x u) k (xy), so (x z) s (y z) as required. 0 

Note that 4x + b( I’ x). This is important when using the totality theorem. 

Theorem 8.10.5 (ZFC-W). \bx.ay.qz.(\bu.( u i z 3 u i x) 3 z i y). 

Proof. Assume~xandlety=hu.(ifuTAv.(x(tl(I’xu)))).Assume~zand\;lu.(ui 

z + u i x). We shall prove z i. y and do so by TND from the following two cases. 

Case I. Assume z. From (y T) = T and z = T we have z G (y T), so z i y as required. 

Case 2. Assume iz. Define u = Av.(if ((x u) i z) (I’ xv) (EZ?.(X v) i z)). To prove 

z&y it is sufficient to prove z G (y u), and to prove z + (y u) it is sufficient to prove 

u i z ti u i (y u) for all v E @. Hence, assume +v. Note that the definitions of y and 

u gives 

(y u) = Av.(x (if ((xv) i 2) (I’ xv) (e%(x u) i z))). 

Proofofv i z 3 u i (y u). Assume u i z. From Qu.( u i z * u i x) we have v i x so 

ix. Choose U’ such that u 1 (x u’). From v e (x u’) and v i z we have (X u’) i z so 

(y u v’) = (x (1’ x u’)) k (x v’) g u and u c (y u). 

Pvoofofu i (y u) 3 u i z. Assume u i (y u) and choose U’E @ such that v k (y u u’). 

We now prove u i z by TND from two cases. 



Case a. Assume (x u’) i z. In this case u L (y u 0’) = (x (I’ x u’)) +(x v’) i z so u i z. 

Case b. Assume i(x u') i z. In this case z1+ (y u 0’) G (x FU.(X v) i z). From iz we 

have (z T) i z, and from bu.( u i z 3 u i x) we have (z T) i x. Choose u” such that 

(zT)&(x~“). From (xu”)s(zT) we have (xv”)iz so ?lv.(xu)iz. Hence, zll 

(x FV.(X U) i z) c z which proves z’ i z as required. q 

Theorem 8.10.6 (ZFC-I). !ly.(?lz.z i y h \bz.(z i y 3 3u.z C u A u i y)). 

Proof. Let y = (Prim(hw. w) T T). We have 4y, iy, and 

(y u) = (if ZI T hw.(y (u T))). 

Since (y T) = T we have Ti y so 3z.z i y. Now assume @z and z i y. Choose u E @ 

such that z 5 (y u) and define u = hw.(y u) and u’= hw.u. From (y u’) = Aw.(y (u’ T)) = 

Aw.(yu)=u we have uiy and from z’(yu)=(uT) we have ziu, so 

&4.(zi_u/\uiy). 0 

Theorem 8.10.7 (ZFC-S). Zf&:ZFC(x,x,, . . . , x,,) then 

4x,,..., ~x,~~y.~z.\bx.(xiz~xxyYr;). 

Proof. Assume 4x,, . . . , 4x,, and 4~1. Let 93 be shorthand for Ax.& and define 

z = (if y T (if igu.(93 (y u)) T Ay.(if (93 (y u)) (y u) (y eu.(% (y u)))))). 

We have 4~. Assume 4x. We shall prove x i zex i y A &, 

Proof of x i z 3 x i y ,i ~4. Assume xi- z, choose u E @ such that x + (z u), and 

define u = (if (9 (y u)) u eu.(B (y u))). Since & is a term of ZFC we have 

4.7 4x1,. . , C$X, -+ c#L&. In particular, since 4x,, . . , 4x,, and +y holds, we have 

4w -+ @( 93 (y w)). If y = T or if iax.( 5% (y x)) then z = T contradicting x i z. Hence, 

iy and 2x.(93 (yx)). If (3 (yu))=T then x’(zu)=(yu) so xiy. Further, &= 

(93x)=(% (zu))=(% (,vu))=T. If i(93 (yu)) then x*(zu)=(~Fu.(% (yu))) 

so xiy. Further, since ~u.(%((Yu)) we have ~=(~x)=(~~(zu))= 

(93 (y ~~(93 (y u)))) = T. In any case, x i y r; & as required. 

Proof of x i y A .d * xi z. Assume x i y and &. Choose u E @ such that x L (y u). 

We have (93 (y u)) = (92 x) = & = T. Hence, au.(B (y u)). The definition of z com- 

bined with iy, !I~.(93 (yu)) and (93 (yu)) gives (zu)=(yu)+x so xiz as 

required. 0 

Theorem 8.10.8 (ZFC-R). Zf .d:ZFC(x,y, x,, . . .,x,,) ~PI 
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Proof. Assume 4x,, . . . , 4x,, and 4~. Define u’= Xx.&y.& and u = hx.(u’ (z x)). We 

have 4~. Assume 4x, x i z and !ly..& Choose v, y E @ such that x e (z v) and & = T. 

Now(uv)=(u’(zv))=~y.((hx.~)(z1;))=~y.((hx.d)x)=~y.~=ysoyiu.Hence, 

y i u A & as required. (Recall that “choose y E Cp such that ti = T” means “let 

y = Fy..&‘. 0 

Theorem 8.10.9 (ZFC-C). 

\bx.(\;lu.(u ix 3 3v.v i u) 

/i\bu,v,w,z.(UiXAviXAWiU/iwiv~ziU~zzv) 

3 zly.hL(u~xshJiuAviy) 

Abl,v,w,z.(uixr\viuAviy/iwill/iwiy/iziv~zzw)) 

Proof. Assume~x,\bu.(uix~~v.viu)and\bu,v,w,z.(uixr;vix~wiu~wi 

v A z i u 3 z i v). Define y’= hz’.~z”.z”i z’ and y = Az.(y’ (x z)). We have 4y. To 

prove the theorem we have to prove \bu.(u i x4av.v i u ,Y v iy) and \bu, v, w, 

~.(uixr;viu~viy~wiu~wiy~ziv~ziw).Notethat 

(y &) = (y’ (x ,@z)) = &Z”.z”i (x &) 

for any term &J that does not contain z” free. 

Proof of \bu.(u i x 3 3v.v i u A v i y). Assume 4u and u i x. Choose U’E @ such 

that u + (x u’) and define v = (y u’) = &z”.z”i (x u’). From v = (y u’) we have vi y 

as required. We now prove v i u. From (x u’) i x and \bu.( u i x 3 3v.v i u) we have 

3v.v i (xu’). Since v = ~z”.z”c (x u’) we have vi (x u’) which combined with u k 

(x u’) gives v i u. 

Proof of \bu, v, w, z.(uix~viu~v~y~wiu~wiy~ziv3ziw). Assume 

414, 4v, 4w, r$z, u i x, v i u, v i y, w i u, w i y and z i v. We shall prove z i w. Choose 

u’, v’, W’E @ such that u k (x u’), v s (y v’) and w k (y w’). 

Let v”= (y v’) = ez”.z”i (xv’). From (xv’) i x and the assumption \bu.( u i 

x 3 3v.v i u) we have az”.z”i (xv’) so v”i (xv’). Combined with v”= (y v’)e v 

this gives vi (xv’). Likewise, w i (x w’). 

We now prove z’ i (x v’) e z’ i (x w’) for all z’ E @. Assume +z’ and z’ i (x v’). The 

assumption \bu, v, w, z.(uix~vix~wiu~wiv~ziu~zZv) combined with 

(x v’) i x, u i x, v i (x v’), v i u and z’ i (x v’) yields z’ e u. The same assumption 

combined with u i x, (x w’) i x, w i u, w i (x w’) and z’i u yields z’i (x w’). Hence, 

z’i (x v’) 3 z’i (x w’). Likewise, z’i (x w’) 3 z’i (xv’) so 4z’-t (z’i (x v’)az’i 

(x w)). 
By Ackermann’s axiom we have v G FZ”.Z” i (x v’) = ez”.z”i (x w’) k w which com- 

bined with z i v gives z i w as required. q 



8.11. The axiom of restriction 

The axiom of restriction states that for any non-empty set x there is a set z E x 

such that x and z have no elements in common. In order to prove this statement, 

we introduce a function D(x, y) with the following property: Ify E x, then z = D(x, y) 

satisfies z E x and has no elements in common with x. We define D(x, y) as follows: 

If x and y have no elements in common, then D(x, y) = y. Otherwise, D(x, y) = 

D(x, y’) where y’ is a common element of x and y. The definition D(x, y) = D(x, y’) 

is recursive. The well-foundedness of y ensures that the recursion terminates (this 

is expressed formally in Lemma 8.11.1 below). The formal definition reads 

D(x,y)= (if(iyAGlv.(yu)ix)D(x,(ym.(yv)ix))y). 

Lemma 8.11.1. \bx.\by.4D(x, y). 

Proof. Assume 4x. The proof is by induction in y. For y = T we have D(x, y) = T E @ 

so ~D(x, y) holds. Now assume as inductive hypothesis 4y, iy and \bu.$~D(x, (y u)). 

We shall prove D(x, y) by TND from the following two cases. 

Case 1. Assume au.(y v) i x. Let u = ev.(y U) i x. We have D(x, y) = D(x, (y u)) E 

@ so qbD(x,y) holds. 

Case 2. Assume iav.(y u) i x. We have D(x, y) =y E @ so @D(x, y) holds. q 

From now on, we regard the above lemma as part of the totality theorem, i.e., 

the definition of the syntax class 1 of simple terms is extended to 

2 ::= . . . I Wz;~). 

Lemma 8.11.2. 4x, Cpy*yixd D(x,y)ix. 

Proof. Assume 4x. The proof is by induction in y. Assume y = T and y i x. We have 

D(x, y) = y and y i x so y i x 3 D(x, y) i x as required. Now assume as inductive 

hypothesis dy, iy and \bu.D(x, (yu)) i x. Further assume y i x. We shall prove 

D(x, y) i x by TND from the following two cases. 

Case 1. Assume au.(y U) i x. Let u = EU.(Y U) i x. We have (y u) i x so D(x, y) = 

D(x, (y u)) and D(x, (y u)) 6 x. 

Case 2. Assume iau.(yv)ix. We have D(x,y)=y and yix so D(x,y)ix as 

required. q 

Lemma 8.11.3. 4x, ~$y-+\bz.(zi D(x,y) *izix). 

Proof. Assume 4x. The proof is by induction y. Assume y =T and +z. From 

D(x, y) = T we have iz i D(x, y) so z i D(x, y) + iz i- x as required. Now assume 

as inductive hypothesis 4y, iy and %‘bu.\bz.(z i, D(x, (y u)) =3 iz i x). Further 

assume 4z and z i D(x, y). We shall prove iz i x by TND from the following two 

cases. 
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f Case 1. Assume !lu.(y v) i x. Let u = &v.(y v) i x. From z i D(x, y) and D(x, y) = 

D(x, (y u)) we have z i D(x, (y u)) so, by the inductive hypothesis, ix i x. 

Case 2. Assume i>v.(y 0) ix. From z i D(x, y) and D(x, y) = y we have z c y. 

Choose u t @ such that z 2 (y u). From iau.(y v) i x we have qu.i(.y v) C x so 

izix. 0 

Theorem 8.11.4 (ZFC-D). %‘x.(ay.y i x 3 ?ly.y i x i i3z.z i x A z i y). 

Proof. Assume @: and 3y.y i: x. Choose u E @ such that u i x and let y = D(x, u). 

From Lemma 8.11.1 we have 4y, from Lemma 8.11.2 we have y i x, and from Lemma 

8.11.3 we have i!lz.zixizi y. 0 

Part III. The consistency of map theory 

9. General concepts and notations 

For all axiomatizations of ZFC’ of set theory, let Con(ZFC’) be the statement 

that there is no proof of Vx: x E x in ZFC’. For all axiomatizations Map’ of map 

theory let Con(Map’) be the statement that there is no proof of T= Ax.T in Map’. 

Let SI be the statement that there exists a strongly inaccessible ordinal. 

We shall prove 

SI =+ Con(Map) (8) 

where Map is the axiomatization of map theory stated in Part II. It is an open 

question whether or not Con(ZFC) =$ Con(R/lap) is provable in ZFC. 

Let Map” be the axiom system Map where Well2 and the construction axioms 

are omitted. We shall prove 

I 
Con(ZFC) =3 Con(Map”). (9) 

Actually, it is merely necessary to exclude Well2, C-Prim and C-Ml from Map” to 

prove the above result. Each of these axioms has a strength similar to the axiom 

scheme of replacement in ZFC. The other construction axioms can be verified from 

Con(ZFC), but the verification on basis of SI gives a better understanding of the 
4. intuition behind the axioms. 

Further, for any extension ZFC ‘~ of ZFC we shall prove 

Con(ZFCC) 3 Con( Map”+) (10) 

in ZFC+ where Map”’ is Map” extended with all theorems of ZFC*, i.e., the 

translation of any theorem of ZFC’ into map theory is an axiom of Map”‘. The 

system Map”+ is not interesting in itself, but (10) ensures that for any consistent 

extension of ZFC there is a corresponding consistent extension of Map” with at 

least the same strength, so ZFC cannot outsmart map theory by additional axioms. 
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Before giving an overview of the consistency proof, it is necessary to give a 

condensed introduction to the notation used in the proof. 

9.1. Basic concepts 

The symbols 1, =3 and e stand for negation, implication and bi-implication, 

respectively, and 

P,*P,*P,=j. . .*P,-i*P, 

stands for repeated use of 3, i.e. 

(p,*pJ A (P,JPJ A. . . A (Pn-,*PnL 

and likewise for @. The order of precedence is e, =+, V, 3, v, A, 1; e.g. Vx.& A 93 3 

% means (Vx.(& A 93))=+ %‘. The symbols U and 9 stand for union and power set, 

respectively. We have x E U G e 3y E G: x E y and x E 9G G x E G. Further, 

Uvic;f(v) stands for U{f(y)ly E GJ. Hence, .x~U,.~.,fl~)~~y~ G: x~f(y). 

9.2. Functions 

The construct (x, y) stands for the Kuratowski pair {{x}, {x, y}} of x and Y, and 

G x H stands for the Cartesian product {(x, y) (x E G A y E H}. 

The construct ,fnc(g) stands for “g is a function”, i.e. 

_fnc(g) e 3G, H: gs G x H 

A vx, y, 2: ((x, y) E g A (x, z) E g-y = z). 

For all functions g we define the domain g“ and the range g’: 

xE gd e $rC(g) A 3Y: (x, Y) E g, 

.X E g’ e fnC(g) A 3J’: (y, X) E g. 

Note that gd = fl and g’= (d if g is not a function. If g is a function and x E gd, then 

we let g(x) stand for the unique y such that (x, Y) E g. If g is not a function or 

x g gd we define g(x) = 0, and we actually make use of this convention. 

We use G--2 H to stand for the set of functions from G into H: 

gEG-zH efnc(g)Agd=GAgrsH. 

For all sets G we define G” and GR as follows: 

GD= U gd, GR= u g’. 
gcG yic; 

For all sets G and H we have (G + H)“= G if H f lil and (G - H)R = H if G # (d. 

For all variables x, sets G and terms @ of ZFC we introduce XE G - @ as the 

function whose domain is G and which maps x to @ (where x may occur free in 

@). More formally, 

XEG- @={(x, @)lx~G}. 
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transfinite recursion in E . For all sets G, p(G) is an ordinal. G <,, H stands for 

p(G) co p(H). We define the transitive closure E(G) by 

tc(G)=Gu l,_, tc(x). 
rtG 

9.6. Relations 

In order to have a sufficient supply of names for relations, they are given names 

like =K, co and < p, where the index is part of the name. In general, relations with 

names like =a are equivalence relations. Relations with names like (a generally 

are strict partial preorders, i.e. they satisfy x ~~ x and x <,y A y <a ZJX <a z. 

Relations with names like sa generally are weak partial preorders, i.e. they satisfy 

x~,xandx<.y~y~.z+x~~z. 

Occasionally we shall need parameterized relations like c p. For each x, y and z, 

x d: y is either true or false. The name c z suggests that x s 4 y is a partial preorder 

in x and y for each, fixed z. 

For all relations co we define <z as follows: 

f <Z g @ fnc(f) Afnc(g) of” = gd A Vx ~f~:f(x) Ca g(x). 

For example, 

(Xi,. . . , xe) <: (Yl, . . ., Yfi) e LY=PAX, <uy,A...A X, <,ycf. 

Stars may be applied several times: 

f <:* g = fnC(f) AfnC(g) Af” = gd A VX Efd:f(X) <: g(X). 

Stars may also be applied to relations with names like =LI and <o, and to parameter- 

ized relations like sz to form relations like = z and c q**. 

9.7. Labels 

In Part I we have introduced the labels 7, i and 1. We now introduce them 

formally by the arbitrary definitions I= 0, i = 1 and ?= 2. The definition of 1 is 

not quite arbitrary: If x& gd then g(x) = 1, and we shall use this result. Let 

L = {?,I, 1) be the set of labels. We organize L by a partial ordering d L as follows: 

XS,Y e x=ivx=y. 

For all GE L we define 

7 if?EG, 

UG= i 

( 

if?//GGAcG. 

1 if?$GGigG. 

In what follows, we are going to form UG occasionally, and in each case we have 

Vx E G: x s L U G. In several cases, however, the proof of Vx E G: x d L L. G cannot 

be stated immediately after UG is formed. 
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9.8. Well-founded functions 

We say that a function f’ is “well-founded on G” if f E G” where 

G”={f~G*+{i,Ji}~Vx,y~G*:(f(x)#~+j-(x.y)=f(x)) 

~tlx~G’“3a~w:f(x(cr)=?}. 

The notion G” corresponds to wf(G) in Part I. We shall use such well-founded 

functions to represent well-founded maps. If .f E G” then f d = G” and f dR = G. 

Hence, if f E G” and f E H” then G =,f dR = H. For all sets J‘ and g we introduce the 

relation <,< as follows: 

f <,vg e g(( ))=;ir\,fEG”r\gEGo 

A 3x E G Vy E G”: f(y) = g((x) . y) 

where G = gdR. Obviously, <,< is well-founded and set-like. 

On several occasions we shall need to apply a function f to an argument x such 

that f(x) f #i+,f(x. y) =f(x). In order to obtain this, we define f((x)) as follows: 

(1) f((x))=f(x), 

(2) f((xB f x*,f((x. II)) =f‘(x) and 
(3) (2) takes precedence over (1); 

or, more precisely, for all y and all tuples x define 

.f((( ))) =f(( )I, 

iff((x)) = 1, 

otherwise. 

If .fE G” and x E G” then f((x)) = f(x). 

9.9. GGdel numbers 

We now introduce Code1 numbers for terms of map theory and for well-formed 

formulas of ZFC. To do so, define 

l &x, Y) = (0, x, Y), 
* S=(l), 

. ri =(2), 

l -i=(3), 

. F=(4), 

l i‘=(5), 
. W=(6), 

l i=(7), 

l U, = (8, i), 

l /ix+ = (9, x, JJ), 

l (iixyz)=(lO,x,y,z), 

l 6x=(11,x), 

. d;x = (12, x), 
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. ii; = (8, i), 

. xiiy=(13,x,y), 

. lix = (14, x, y), 

. x~y=(lS,x,y), 

. vx: y = (16, x, y). 

Note that ti, = ti,. We use ti, when talking about variables in map theory and tiZ when 

talking about variables in set theory. 

As an example, the Code1 number of 

Vx: (XEXJlXEy) 

is 

. . . . . . . . . ., . . . . 
Vii: (xE.X*lXEy) 

if we let jc’ = ij0 and j = ii, represent x and y, respectively. 

It is customary in the literature to introduce a notation like ]@] for the Code1 

number of the well-formed formula @. We shall avoid this notation in order to 

ensure referential transparency since this gives most flexibility in nontrivial handling 

of Giidel numbers. 

We use (xyj as shorthand for A(x,y), and (xy, y,. . .y,j as shorthand for 

(. . . (ixv, j y2j . . . y, j. 

9.10. Models 

In the consistency proofs we shall use a transitive standard model D of ZFC. 

However, we use different D in different places of the text. In the proof of (8), i.e. 

in the proof of SI+Con(Mup) we define D in the obvious way [ 171: 

Let o be strongly inaccessible, 

define @(a> = Upin W@(P)), 
(11) 

define D = @(a) 

In the proof of (9) and (lo), i.e. in the proof of Con(ZK)+Con(Map”) and 

Con(ZFC+)+ Con( Map”+) we proceed like Cohen, i.e. at any time we assume that 

D satisfies finitely many axioms of ZFC and ZFC+, respectively, without being 

explicit about which ones. In other words, we constantly assume that D satisfies 

sufficiently many axioms for the argument at hand. For a discussion of this see 

r9,17,51. 
For any well-formed formula @ we let I@] stand for the relativization of @ to 

D, i.e. the expression obtained by replacing each occurrence of Vx by tlxc D in 

@. We say that @ is absolute if Vx,, . . , x,: (@a [@J ) where x,, . . . , x, are the 

free variables of @. We use the relativization and absoluteness results of [ 171 without 

further reference. 

The notation I@] is not referentially transparent, i.e. n = 0=+( L@(n)] @ I@( 0)J ) 

does not hold for all terms n and 0 and well-formed formulas @( l ). We compromise 
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on referential transparency in this case since we shall only make trivial use of 

relativization. 

10. Overview of the model construction 

10.1. The semantic model 

In this section we give an overview of the model construction rather than stating 

formal definitions. The purpose of doing so is to give an intuitive understanding of 

the model before defining it. As a starting point we take the description of map 

theory from Part I, and then we elaborate the description. In particular, we shall 

go into the details of well-founded maps. Later, when it comes to the formal 

definition, we start with the details and gradually build up the model. 

In Part I, functional application (fx) and the combinators S, K, T, P, C, W and 

I were introduced. In addition to functional application and the combinators, we 

shall introduce a number of concepts that are explained below. 

The set of maps is denoted M and the set of well-founded maps is denoted @. 

The function A E M x M + M is defined by A(f, x) = (fx), so A(f; x) is just another 

notation for functional application in map theory. The function m E M x M” + M 

is defined by m(f, (x,, . , x,,)) = (fx, . . x,,). Hence, A(,f, z) denotes f applied to 

one argument whereas m(f, (x,, . . , x,,)) denotes f applied to a list of arguments. 

The names A and m stand for “application” and “multiple application”, respectively. 

The function r E M -+ L is defined by 

1 

? if x=T, 

f(x)= 1 ifx==-L, 

/i otherwise. 

Hence, r(x) denotes the label of the root of x (r stands for “root”). The func- 

tion aEM+(M*+L) is defined by a(f)((x,, . . ,x0)) = r(fx, . . x,,) = 

r(m(f, (xl,. . . , x,))). Hence, a(f)((x,, . . . ,x,,)) stands for the label of the node 

reached by traveling from the root node off along the path (x,, . , x,,) (a stands 

for “application” as does A). 

According to the extensionality of maps we have .f = g iff 

r(fx, . . x,,)=rkx,...x,,) 

for all x,, . . , x,, E M. In other words, 

~f=g @ a(.f)=a(s). 

We define ,f s g iff 

r(fx, . . x,) GL r(gx, . .x,,) 

for all x,, . . , x, E M. In other words, 

J’cs e a(f‘) s?Y a(g). 
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We have 

Figure 8 shows the universe M and four of its elements: T, 1, Ax.T and hx.1. The 

relation I G T is illustrated by drawing T above I and interconnecting the two by 

a line. The same is done for the relation 14 Ax.1 s Ax.T. 

Since x s y A y s z+x 5 z, the same information could be represented as in Fig. 

9. The only difference is that Fig. 9 displays i d Ax.T in addition to 16 Ax.1 < Ax.T. 

The monotonicity of maps states 

f~tTAX~Y =$ (fx)sk.YL 

fsg\xxs* Y * m(.Lx)~mk,y), 

fsg/\x5* Y * a(f)(x) GL a(g)(y). 

For all well-founded A x,, x2, . . . E @ there exists an (Y E w such that (fx, 

T. In other words, 

VfE~tl~E#~3cuEw:m(f;xlcu)=T. 

For all well-founded JI g E @ define 

f <+,g e ffTA3xEQ: f=(gx). 

Fig. 8. Illustration of the s relation. 

xm)= 

(12) 

Fig. 9. Another illustration of the s relation. 
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This relation is well-founded according to (12). The function s(x) is defined for all 

xE@ by 

s(x) = 
$3 if x = T, 

{s(A(x, y))[y E @} otherwise. 

This can also be written 

s(x)=ls(y)l_v <AXI 

which is a valid definition since <A is well-founded (and set-like since it is restricted 

to the set @). We have that S(X) denotes the set represented by x E @. The model 

will be constructed such that 

sr= D 

holds, i.e. such that the representable sets are exactly the elements of the model D. 

This is a key result in proving Con(ZFC’)JCon(Map”+). 

10.2. Types and observational equivalence 

Let f E M. For any x,, . . , x,, E M we say that the root of (f x, . . . x,,) is an 

“observable property” of J: In other words, the value of a(f)(x) is an observable 

property off for each x E M”. If two maps ,f, g E M are observably equivalent, i.e. 

if a(f)(x) = a(g)(x) for all x E M”, then they are equal according to the extensional- 

ity of maps. In other words, a(f) = a(g) ~3 f= g. 

IfGzMandx,,..., x,, E G, then we say that the root of (fx, . x,,) is observable 

within G. Furthermore, we say that f and g are observably equivalent within G and 

write f =T; g if Vx E G”: a(f)(x) = a(g)(x). Observational equivalence is an 

equivalence relation for each, fixed G. 

Define the “type” t,;(f) of .f w.r.t. G by 

t&f) =x E G* H a(.f)(x). 

We have t,(f) E G* c-, L and 

.f =; g e tc(.f’) = [c(g). 

If f; g E M, G c M and f = ‘;; g, then there exists an h E M such that h s.f; h s g, 

and h =g f =% g. To see this, define 

H = Yh’.hf ‘.Ag’. 

(if.f’(if g’T_L)) 

(if g’I Ax.(h’(f’x) (g’x))), 

h = (Hfg). 
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10.3. Well-founded maps 

Let G& M. The map f~ M is said to be well-founded w.r.t. G iff, for all 

x1,x2,... E G there exists an LY E w such that (fx, . . x,) =T. In other words, f is 

well-founded w.r.t. G iff Vx E G” 3cu E w: m(J; X(CY) = T, which can also be written 

t,(f) E G”. 

In particular, any f E @ is well-founded w.r.t. @. 

Let wf( G) denote the set of fE M that are well-founded w.r.t. G, i.e. 

Q(G) = {f~ MI Mf) E Go). 

Now define 

@‘(a) = w!(Q’(a)), 

@“(a) = u Q’(P)> 
a B 0 

Q’(a) = wf(@“(Cz)). 

@= u Q’(P). 
fitOR 

In the definition of @, p ranges over On which may cause @ to become a proper 

class, This is avoided by a modified definition later on. 

Iff is well-founded w.r.t. G, then f is also well-founded w.r.t. any H c G. Hence, 

Hz G+wf(G)z wf(H). Furthermore, if CY so/3 then 

@“(Cz) S @‘(a) E Q”(P) C G’(P) S @E Q’(P) G Q’(a). 

If MEGO and vcG*-+L then u ~Tu@u=v. If fsg and fEwf(G) then 

fG(f)dzt,(g) and tc;(g)EGo, so tc(f)=tc(f)EGo which proves gEwf(G). 

Hence 

fsgAfEwf(G) =+ gEwf(G)Af=:g, 

fcgAfE @‘(a) =3 gE @‘(a), 

f~gAfE@“(a) =3 gE@ycY), 

.f~gAf~Q’(~) * gEQ’(a), 

fcgAfE@+gE@. 

Figures 10, 11 and 12 give a picture of how @‘(a), @“(a), Q’(a) and @ relate 

to each other. Figures lo-12 display Q’(2), @ and Q’(2), respectively. The figures 

illustrate statements like Q’(2) s @ c Q’(2) and f 6 g A f E @+g E @. 

Figures lo-12 do not capture the close relationship between @“(a), Q’(a) and 

@‘(a). This is done in Fig. 13. However, Fig. 13 does not illustrate statements like 

Q’(2) E Q’(2) and f S g A f E @‘(2)+g E Q’(2). 

10.4. Minimal well-founded maps 

We say that the map f c G is minimal in G if Vg E G: (g c fag = f ). Define the 

boundary aG to be the set of minimal elements of G. We say that G is closed if 
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Fig. 10. Illustration of Q’(2). 

Vf~G3g~aG:gsf: The 

Q’(Q) are closed for all (Y. 

@(cu) = a@‘(a), 

O’b) = aQ’(4 

Fig. Il. Illustration of @. 

model A4 is going to be defined such that @‘(a) and 

Define 
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Fig. 12. Illustration of Q’(2) 

fl = @“i4--,Q,(o) 
G?‘(O) = Q”(l)_ 

>4?‘(1) 
Q’(1) = Q”(2)\Q’(2) 
Q’(2) = @“(3)<. 

. 
. 

. 
. 

. 
a 

@‘(w)-- 
--xl(~) 

9’(w) = a++)<* 
. 

. 
. 

. 
. 

Fig. 13. Illustration of who is defined using whom 

We have 

Fig. 14 shows &j’(a) and Q’(a), and illustrates the relationship between &,‘(2) 

and Q’(2). 6’(2) is the vertical line which forms the lower boundary of O’(2). 
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Fig. 14. The relation between 6,‘(2) and Q’(2) 

As we shall see later, o’(O) cK 6’(O) <K Q’(1) <r. &‘(l) <<. . . (actually, we merely 

prove Q’(0) <K 6’(O) SK Q’(l) <K 6’(l) SK. . .). These relative sizes of the @(a) 

and 6’(p) are illustrated by the length of the lines in Fig. 14. 

For all x E 4’(p) there is a y E &‘(p) such that y G x. In particular, if (Y s0 p and 

x E &‘(a) then there is a y E &‘(/3) such that y s x. Fig. 15 displays some typical 

relations y s x using the conventions from Fig. 8. 

Let HE M be closed. AssumefE wf(ClH) and x,, x2,. . .E H. Choose y,,y,, . . .s 

3H such that y, s x, for all i E {l, 2,. . .}. Choose (Y E w such that (fyt, . . . y_) = T. 

From T = (fy, . . . y,) s (fx, . x,,) we have (fx, . . . x,,) =T. Hence, Vx,, x2,. . E 

HZla~w:(fx,... x,,)=T, so f~ wf(H). Hence, wf(aH)cwf(H). From 3Hc H 

we have wf( H) G wf(aH) so wf(13H) = wf( H). Hence, 

@‘(a) = N”(Q’(a)) = W!@i)‘(~)), 

Q’(a) = wf(@“((Y)) = wf(SP(cu)), 

We now have 

&(,)=?Jwf(Q’(CY)), Q’(a)=awf(@‘(LY)), 

so @‘(a), @(a), @(a), 6 and 0 are definable without 

Q’(a). 

10.5. Types of well-founded maps 

reference to @‘(a) and 

Assume that f E awf(G) and f = s g. Choose h E M such that h sf, h c g and 

h =“G_ f => g. From h =: f andfE wf( G) we have h E wf( G). From the minimality 
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‘C3) 

Fig. 15. Illustrations of the c relation 

off and h c f we have h =J: Hence, f = h 5 g, so if f E awf( G) then f = g gaf c g. 

We have previously proved f s gaf =% g if fE wf( G). Hence, if f E awf( G) then 

In particular, 

for f E @(a), g E @(a) and h E M. 

Iff;gEdwf(G) then fG(f)=tc(g)@f =&gefsg~g~f@f=g, so the ele- 

ments of awf(G) are uniquely determined by their type r,(f ). In particular, the 

elements f of &‘(a) are uniquely determined by to,ccr,(f) and the elements of Q’(a) 

by bc,,(f ). 
We now identify .f~ d;‘(a) with t~,~~~,(f) and g E @(LX) with t~SSCaj(g). We have 

to be slightly cautious because TE &‘(a) and TE i)‘(a) for all [Y, so T is identified 

with many different types. 
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As a consequence of the identification we have 

6;‘(o) c i)‘(C$, Q’( CY) c_ @( cu)O. 

IffE &‘(a), thenfE i)‘(cy)‘, sofd= @(a)* andfdR= @(a), so 

J-E @(a) =3 fdR= Q’(Q), 

As mentioned earlier, @‘(a) c_ Q’(p) f or all LY and p. IffE 6’(o) E @‘(a) G Q’(p) 

then there is a unique gE o’(p) such that g<j From gsf we have g =$,,,pJ.i so 

t&scs,(g) = tCb,ca,(f). Since we have identified g and f,E,.Cpj(g), we have g = t*i,ca,(f). 

From the definition of f+..Cpj(f) we obtain g= UE &j”(p)* H a(S)(v). Hence, if 

f~ &‘(cr) then 

[u E @‘(P)* - a(f)(v)1 E @(P), 

[UE @(p)* - a(f)(v)]sJ: 

If fE &‘(a)* then 

[UEfdW z.JE C@(p)* - a-(u))(v)1 E m)*, 

[UEfdH Z1E @(p)*- a(f(u))(u)] s*J: 

If fe 4’(p) and x E Q’(p)*, then, by the definition of ‘Q.~~, we have taco, = 

a(,f)(x). Since we have identified f and tO,cp,(f) we have 

a(f)(x) =f(x). 

If x E 4)‘(p) and y E &*, then let y’ = u E yd H u E 4;“(p)* ++ a(y(u))(v). We have 

y’~ e’(p)* and y’ G* y, so x(y’) = a(x)(y’) < ,_ a(x)(y). Since x(y’) f 1 we have 

x(y’) = a(x)(y). Since xdR = o’(p) and xdRD = &;“(/3)* we may write this result as 

a(x)(y)=x(uEyd- UEXdR’)++ a(y(u))(u)). 

This equation is essential since it makes no reference to yet undefined concepts 

like M and it uniquely determines a(x)(y) for all x and y. In a slightly modified 

form, it is going to be the first formal definition in the construction of M. The 

function defined by the equation gives the correct value for a(x)(y) whenever x E 4 

and y E &* (but we have not yet defined 6). Since the function defined in the 

equation does not give the correct value for a(x)(y) for all x E M and y E M”, we 

shall refer to it as a^. 

10.6. The construction of 6 

If f~ &(cr) then we have seen that UE C@‘(P)* H am Q’(p). Let J=~E 

G+(o) H 21 E @l(p)* - a(f)(v). We have J E &‘(a) + Q’(p). We shall define M 
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such that J is surjective (or onto or epimorphic) if p so (Y and injective (or one-to-one 

or monomorphic) if LY co p. This gives rise to the following cardinalities: 

0=&(O) c, Q’(0) SK 6,‘(O) SK d;“(l) GK. . . SK &yo) 

SK Q(w) sli c5’(0) SK. . . . 

Further, since J is surjective for /3 co LY, we have 

VXE Q’(p) 3yc &‘(cI): x<y 

for all p co [Y. 

Lemma 10.6.1. Letf; gE @‘(a). We have 

Proof. Since we have not yet formally defined the concepts involved in the lemma, 

the proof is merely based on the assumptions we have made about these concepts. 

Assume fc g v g <J Without loss of generality assume g s f (see Fig. 16). Let h be 

the unique element of Q’(o) for which h d g. From h G g 4 f we have h GJ From 

h E Q’(a), h sJ; and h <g we have h = tosrca,(f) and h = t@,,(,,(g). Hence, t$S,c,,(f) = 

ts-c,,(g) which proves S =&z(a, g. 

Now assume f =&(,, g. Let /? and y be such that f E 6”(p) and g E 6’(y). 

Without loss of generality assume /I co y. Let xy E Q’(y)*. Choose x, E &‘“(a)* 

such that x, s* x,,. We have x, E Q’(y)* 5 Q’(y)* s Q’(p)*. Choose xP E 

O’(P)* such that x0 s* x,. We have 1 f u(f )(x0) s:L a(f)(x,) sL u(f )(x,) = 

u(g)(xa) aL a(f)(x,) # 1 which proves a(f )(x,) = a(g)(x,). Since this holds for 

all x, E o’(y)* we have f = &,,) g which entails g sf: This concludes the proof. 0 

Iffe@(a) and x,YE@‘(~)*, x =&(rr,~r then u(f)(x) = u(f)(y) follows from 

the lemma. Hence, Q’(o) s d;“(a)” can be narrowed down to 

@(cr)!G{fE cP(a)“px,yE d+‘(a)*: (x =~,.(,,y=Sf(x)=f(y))}. 

Fig. 16. The relationship between .f; g and h. 
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To sum up we have 

&(a) G Q’(a)O, (13) 

@(a)s{fC! @‘(ct)OJvx,yE P(a)*: (x =~~“(,,yjf(x)=S(y))}, (14) 

@(a) = u 6’(P), (15) 
pL <I 

6= u 6’(P), (16) 
I_icon 

0 = ,‘;‘, O’(P). (17) 
t n 

Again, these statements are independent of M, but they cannot be used as a definition 

of & because (13) and (14) do not determine &(a) and O’(Q) uniquely. 

The idea behind the model construction is to replace G by = in (13j and (14). 

This certainly produces a universe 6 large enough to represent any set, but at the 

same time 6 becomes a class, and the model construction later on requires (i, to 

be a set. To get around this problem, we define 

and then we define &‘(a), o’(,cx), @(cr), 6, and 0 as the relativization to D of 

&‘(a), 6’( cu), &(a), 6 and 6, respectively. This ensures that 6 gets the “richness” 

of D and a manageable size at the same time. 

Define i(x) = {s^(x’) ] x’ <@,, x}. We say that x E ~6 represents the set g(x). The role 

of 6 in the model construction is to ensure that the model of map theory becomes 

rich enough to allow representation of any set of set theory within the model. A 

central property of C$ is the theorem Vy 3x E 6: y = ?(x), which we shall refer to 

as the Adequacy Theorem. Even though it is central, the Adequacy Theorem is only 

used when verifying the consistency of Map”+. 

10.7. The syntactic model 

In addition to the semantic model M and the models & and 6 of well-founded 

maps we shall construct a syntactic model 6f. 
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The definition of h;r is simple in itself: It is the least set such that 

{S,ti,T,P,C, W,i}rti, 

Vx,yEkA(x,y)Eti, 

cfkhi, 

Q&f. 

The elements of k are Code1 numbers of closed terms of map theory (i.e. terms 

with no free variables). However, we allow elements of 8~ and Q to occur in the terms. 

Each term x E i6l denotes a map c(x) E M. We define i(x) to be the root of the 

map denoted by x, i.e. 

i(x) = T(C(X)). 

Likewise, we define 

a’(X)((Y,, . *. I Ye)) = a(c(x))((c(y,), . ‘. ,c(yn)>), 

x 2 y @ c(x)s c(y), 

x A y @ c(x) = c(y). 

The function ~6 E II? x kf*-tkl is defined by 

h(x, (Y,,...,YJJ=~xY, . ..yJ. 

10.8. The actual order of the formal dejnitions 

Above, a number of concepts have been introduced based on the yet undefined 

set M of all maps. The formal definitions are stated in another order: 
1 ,. 

l First, 2, @ and Q are defined as outlined above. 

l Second, 6, 6 and Q are defined by relativization of L;, 6 and Q, respectively. 

l Third, r’ is defined by a fixed point construction, and a’ and g are defined from 6 

l Last, M is formed by the quotient construction M = &T/L, i.e., the elements of 

M are equivalence classes of hi under 4. 

11. Construction of the model 

11.1. Definition of well-founded maps 

Define cP,, by(u, ZJ) <,_, (x,y) e ugy’r, VEXING. If(u, v) <,,,, (x,y)then u <,>y 
and v <,,x. Hence, cPp is well-founded and set-like. As foreseen in Section 10.5 

define a^ by transfinite recursion in <Pp: 

6(x, y) = x( U E yd H v E XdRI’ H a^(y( U), v)). 
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For all sets G define x g:b YeVz E G”: a^(x, z) = a^(~, z). Following Section 10.6 

and by transfinite recursion in cy define 

&(Ly)= &CY)O, 

&(cu) = u &(a), 
!3cn 

$(CX)={fE &a)“]Vx,yE &((Y)*: (x ~:&,y*f(x)=f(y))}. 

Define &x)@3a: XE &(a) and &x)@~LY: XE @(a). 

We shall work with proper classes like [ 171, e.g., we introduce x E & as shorthand 

for 6(x), x c 6 as shorthand for VY E x: Y E 6 and x E &* as shorthand for q/(x) A 
4 

x’s @ etc. 

In accordance with Section 10.2, define the type i,,(x) of x w.r.t. G by 

i,;(x) = ~1 E G” ++ a^(x, u). 

Define i:;(x) as the coordinatewise application of i,; : 

t*:(x) = u E Xd - &(x(u)). 

For G s & we have 

11.2. Properties of well-founded maps 

Define 

The formula R:,,, states that i,,;.,,, maps &‘(cY) into Q’(p), I& states that i&,cp, 

is injective (i.e. one-to-one, or monomorphic) if cy sC, p and S:,,, states that fC,+Cp, 

is surjective (i.e. onto, or epimorphic) if cy aC1 p. 
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Theorem 11.2.1. For all ordinals (Y and /3, R&, IL,6 and S:,,, hold. 

Theorem 11.2.1 justifies several claims from Section 10. In particular, it justifies 

Fig. 15. As we shall see, the relativization ofTheorem 11.2.1 justifies in,. E o’(p) 

and the claims in the beginning of Section 10.6. 

Corollary 11.2.2. We have 

vx E 6 vy E &*: 6(x, y) E (7, X}, 

vx E & vy E &*: 6(x, y) = x(( +u>R(y)))) 

vx E &,I( a) vy E !s*: 6(x, y) = x(( i$.,,Jy))), 

tlxE~‘~E~‘W3cuEW:~(x,y]a)=?. 

The corollary follows from R& 

Proof of Theorem 11.2.1. Let (-y, co0 (q p) stand for 

(r<oCYA~~,p)v(y~,cuA~<,p)v(y<,pA6~”a) 

a). 

We have that co0 Now assume that LY p ordinals and 

coo P> * RI.82 

6) P) =j Sl.83 (19) 

s> P) * z:,fi. (20) 

If we prove R&, and S&,, from then theorem 

follows by transfinite induction on <Oo. 

For (y, S) p) we have 

VXE (21) 

y <” s =3 y E &‘I(?)*: (22) 

y a0 6 =3 Vx E &6)y” 3y E &(y)*: (23) 

We prove 

Vx, y=3x s JI). (24) 

Assume k(p) x 4 &(BI ,/3 then &(CU)E &.“(p) which 

x G&u,y follows. Now assume LY. We have (y, for y sop. 

Let such that and y E &(E). Without of generality assume 

6 so F (see Fig. 17). u E &‘(a)* and u’= t^$,,,,,(~). From Rb,, we have 

U’E U”E 6”(p) such that u’. This S&,, 
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Fig. 17. The relationship between u, u’, u” and u”‘. 

holds. Let u”‘= i,x e,,.C8I(~). And we have u ‘I’= i&,,(u) = (f~.,,Ju)(&‘I~(~)*) = 

(f~..,~,(u”)l~~l(ti)*) = q,,,, (IA”). Therefore, a^(~, u) = x( i$..,,,( u)) = x( ?f,,,,,( u”)) = 

a^(~, u”). Likewise, a^(~, u) = a^(.~, u”). From x G&,,, y we have 6(x. u”) = a*(_~, u”). 

Hence, a^(~, u) = a^(~, u). Since this holds for all II t &)“(cx)“, we have proved (24). 

We now prove Ri,,, . Assume x E 6’( cy). From $,‘(a) = G’( LY)” we obtain 

- _ 
VV’E $(cy)*: x(v’) E {T, A}, 

Vu’, W’E @(a)*: (x(u’) # X*x(V . w’) = x(d)), 

VV’E $(a)~~ 3s Eo: x(v’lS) =i. 
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From Vy E ,B: RL,, we deduce Vu E d”(p): i~j.c~~,(u) E @((Y). Hence 

VU E &p,*: x( i&J U)) E (7, I}, 

Vu, WE &P)*: (x(i&Ju)) zx*x(i~.,~‘JU~ w)) =x(i~.,,,,(L’))), 

Vu E &(/3)” 3s E w: x( i&J U(6)) = i. 

Define y = i&p, (x). For all ZJE 6”(p)* we have y(u) = ?+cp,(x)(v) = a^(~, u) = 

x( i’&,,,(u)). Hence 

- I 
VU E k(p)*: y(v) E {T, A}, 

vu, w E 6”(p)*: (y(u) # X3y(v. w) = y(u)), 

which proves y E k(p)‘. 

Now let U, v E &(p)* satisfy u A $,,, 21. From (24) we have u 2 itcn, ~1, so y(u) = 

x(i~..(~~)(~))=x(i~..(~,(~))=y(v). Hence, vu, UE 6”(p)*: (u $!,,, v*y(u)= 

Y(V)) which combined with YE 6”(p)” yields y E G!(p). Hence, VXE 

&‘(a): .?&p,(x) = y E Q’(p) which proves R&,, . 

We now prove S:,,, . If (Y co j3 then S;,, holds trivially, so assume p co (Y. Let 

x E e’(p). Define f= u E &‘(p) - f,&,,,(n). From Vy E p: Rk,* we obtain f~ 

&l’(P) ---z @(a). 

Let u, ~1 E 6”(p)* satisfyf( u) =f( v). Fromf( u) =f( v) we obtain u & >?,a, u which 

combined with G”(p) c &(a) gives u 2 $,(Bj v. Since x E e’(p) we have x(u) = x(u). 

Hence, 

vu, UE &3,*: (f(u)=f(V)JX(U)=X(U)). 

Now let G = f r s $(a) and let y’ E G* ---z (7, x} be the unique function that satisfies 

vu E G’“(p)*: x(u) = y’(fo u). 

From x E &“(p)’ one easily deduces Y’E G”. Now define y E $(a)* + (7, I?} by 

if u E G*, 

otherwise. 

We have YE @((Y)‘= &‘(a). Furthermore, for u E &‘(p)* we have ?* 
A 

“* a(y, u) =Y(QQ, (u)) = y{f( u)) = y’(f( u)) = x(u) which proves 
&9(u) = 

Hence, Vx E G’(p) 3y E O”((Y): i&,,(y) = x which proves S&,, . 

t+(a,(y) = x. 

We now prove I:,,a. If p so LY then Iir,! holds trivially, so assume a <,, /3. Further 

assume x, y E &(a), x # y. Choose z E Q’(a)* such that x(z) # y(z). From a co /3 

and Vy E p: S$+ we obtain Sb,,, . Choose Z’E G’(Q)* such that z= ?f,,,,,(z’). We 

have a^(x,z’)=x(~~..,~~~(z’))=x(z)#y(z)=x(~~..,~,(z’))=~(y,z’). From Z’E 

&(a)* c k(p)* 

x 2 >>>(a, y 

and a^(~, z’) f a^(y, z’) we obtain x $i,.,,, y. Hence, x f ye 

which proves 1$. 0 
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11.3. Relatiuization of well-founded maps 

We now relativize the model of well-founded maps to the transitive standard 

model D: 

&,={XED( @(x,J,, 

Q={xe DI 16(x)1], 

6’(Q) = \&“((Y)J, 

&‘“(a) = ]&(cu)], 

O’(Q) = l&r)], 

&=xE 6-qX &,*H [6(x,y)]. 

We use the relativization and absoluteness results of [ 17, Chapter 41 without further 

notice. For example, we have 

XE& e Lx&q for xE 0, 

xsd; e [xE&J for XE D, 

XE&,” e [XE&“J for x E D, 

a’(x)(y) = la^(x,.Y)J forxE6 and YE&*. 

11.4. Dejinition of the syntactic model 

Let 6f be the least set such that 

(3, k,i, P, i; kif, i} G ti, 

klh, 

Q&f, 

VX,YE ilk A(x,y& ilk. 

By reading the somewhat arbitrary definitions of 3, k, T, p, C, w, i, A(x,y), 6 

and 0 very carefully one verifies that 

ti={S}~{~}~{i}~{P}~{c?}u{~}u{i}u IJ {A(x,_Y)}u~;uQ 
\,vi Iii 

is a direct sum. 
Define ti(x, (y,, . , ycY)) = (x y, . . y,?). Let i(G) be a choice function that satisfies 

LEG for G~&,Gifl, 

q(u) = i. 

For all VE hi + L, XE &u 0 and YE hi we define x gry so that x Ar y 

“approximates” x 2 y. According to the isomorphism theorem stated later, the two 

relations coincide when u = P! The definition is: 

xqy @ vzEx”:x(z)=v(iqy,z)). 
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Further, for technical reasons, we introduce 4 $, which in conjunction with x L ,” y 

gives a “slightly more conservative” approximation to x 2 y than x A F y alone: 

x AZw , y .+ vz E wd: a-(x)(z) = v(riz(y, z)). 

We are going to define d(x)(y) as f(ti(x, y)) where r’ is going to be defined as 

the “minimal fixed noint” for a functional r” E (A? jL)-z(hj~L).Forallx,y,z~ 

A?, UEA?, ZIE~--+ L, WC& and w’E~) define: 

r”(V)(&!q=X, 

iyv)((Sxj) =X, 

iyv)((Sxyj)=i, 

+)(ti((Sxyzj, u))= v(h((xz iyzjj, 4), 

i’(v)(k) = x, 

iyv)(jlr;-xj) =X, 

r’yv)(h(ikxyj, u)) = wqx, u)), 

i’(zl)(rFi(i, u)) =i, 

i’(v)(P) =x, 

iyv)((Pxj) = ii, 

r-yv)((Px yj) = ii, 
i if u(z)=i, 

iy~)(ti(iPxyzj, u))= v(~(x, IA)) if U(Z)=?, 

1 u(ti(y,u)) if u(z)=J, 

P(v)(C)=X, 

iyO)(riz((Cxj, u)) 

= v(C’t(q({y E &,lu((xy)) =?}),)) otherwise, 1 
i if 3y E 6: v((xyj) = 1, 

i’( V)( IQ) = K, 

i’(u)(h(i wx), U)) = 1 i ifElyECS:y-‘zx, 
1 otherwise 

2 

P(u)(h(i, u))= 1, 

I’(V)(ti(w,U))=w((iE~~-jEw dRD - v(m(n(i),j)))), 

r”(V)(ti(w’, u)) 

=[u E ti” +-+ U{w’(u’)) U’E W’dA U’ A;* u A u’q$? u}]{(u)). 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 
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By transfinite recursion in (Y define i”(a) as (Y iterations of r”: 

iyo)=x~ ti H i, 

i"(cr ') = ;'(;"(a)), 

;II(~)=X~~HU{;"(CU)(x)l~~~}. 

Now let 5 be the least ordinal with cardinality greater than n/i H L. We define 

r’= r”‘(C). 
I 

From riz and r’ we define d E M --f (M* + L) as follows: 

a’(X)(Y) = r’(h(x, y)). 

For all x, y E Ak we define the equivalence relation x g y by x g ye k(x) = a’(y). 

This relation expresses “observational equivalence”. In terms of Part I we could 

say that x gy expresses that x and y have the same graphical representation. 

Further, we define xgyek(x) sz a’(y) and &={xt hj/3_y~ 6: ykx}. 

The intuition behind (43) is as follows: If u E &J -+ L, w E i)‘(a), x, y E & and 

z E A?, then 

X AZM. Z+$, 2 * x _’ g, L, ) y. 

Hence, if u E hi + L, w E 0, x, y E wd, and z E i$ then 

x+$z/\y= ’ $ z =3 w(x) = w(y), (44) 

so the set {w’(u’) 1 u’ E wld A u’& r* u A u’ A 2: u} has at most one element. Hence, if 

vtti-+L, WkQ, UEIGI”, U’EW’d, P , o* 
u =[a u and u’ gz: u, then (43) reduces to 

;‘( V)( Gt( U”, u)) = w’( u’). 

11.5. The jixed point theorem 
, 

If 21, v’ E M -+ L, v s *, v’, WE~,XE& and zEk, then 

xA?z 3 xL;“z > (45) 

xA&.z * xA:,wZ. (46) 

With (44)-(46), it is easy to verify 

Vu, V’E ti -+ L: (v c f v’*;‘(v) c2 i’(v’)) 

by a proof by cases using equations (25)-(43) (i.e. by a trivial proof by 19 cases!). 

It then becomes easy to verify 

Va, p: (CX SC, /3*7’(ck!) C”c ?‘(P)). 

Since i”(a) E kl ----f L for all cy and A? *L<,& there exist cr,p~& (w#/3 such 

that ;“(a) = t”(p). It is now straightforward to verify i”(y) = r”‘(6) for all y, 6 a0 cy. 

In particular, r’= i”(t) = ;“( 5’) = L’( ;“( 5)) = i’( +) which proves the fixed point 

theorem: 
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Theorem 11.51 (Fixed point theorem). i’(j) = 6 

11.6. Extensionality and monotonicity 
, 

Theorem 11.6.1 (Monotonicity theorem). Zf u, u, x, y E M, u 2 v and x 2 y, then 

iuxj2 ivyj. 

Theorem 11.6.2 (Extensionality theorem). Zf u, 0, x, y E hi, u A u and x A y, then 

juxjA(ivyj. 

From the definitions of A and 2 we have 

xL.y e x2y/&x. 

Hence, the extensionality theorem follows from the monotonicity theorem. Further, 
, 

from the definition of s we have 

U& + (uxj+xj. 
Hence, to prove the monotonicity theorem, it is sufficient to prove 

x2y 3 (uxj+yj. (47) 

In order to prove this we introduce a set g c h -+ k of “polynomials”. For 

each polynomial f E k we then prove 

y& =3 f(J+f(z). (48) 

Further, we make sure that z E &f ++ (x z) is a polynomial for each fixed x E hi so 

that (47) becomes a special case of (48). 

We define the polynomials to be those functions that can be written 

ZEhiH@ 

where @ is an expression built up from z and elements of hi by repeated application 

of A. More formally, we let 6 s 6I - hi be the least set such that 

(ZEti~Z)Eti 

VxEiGl:(zEhLX)EE 

Vx, y E ri: (2 E hi H &x(z), y(z))) E l3. 

Any polynomial g =XE k - @ can be written on the form g = ZE 

&?-(@O@,...@ujwhere~ 3 0 and where Q0 is either an element of {$ k, T, p, 

C, w, i} u 6 u 6 or the variable “z”. Hence, for all g E i there exist x E {$ k, i, 

p, C, w, i}u&uQ and h ,,..., h,E_k such that 

g(z) = (x h,(z). . . h,(z)) (49) 

or 

g(z) =(zh,(z). . h,(z)j. 

TO prove (48) we first prove an auxiliary lemma. 

(50) 
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Lemma 11.6.3. 

vv E ICI -+ L vy, 2 E iii: (y 2 z A Vf E ri: v(f(y)) GL Q(z)) 

=+ vg E f!i: :‘(v)(g(Y)) sr. Q(z))). 

Proof. Assume u E h ---f L, y, z E i6, y 2 z, VIE l?: v(f(y)) S L ;(f(z)) and g E 6 We 

split the proof of f’(v)(g(y)) s=--r r’(g(z)) in two cases. 

Case 1. Assume that (49) holds. From the definition of i’ and V,~E 8: 

G(Y)) sL i(f(z)) we deduce 

q~)((xh,(y). . . h,,(y)j) ~~iyi)(i~h,(z). . . h,,cz)j). 

The proof is similar to the proof of Vv, V’E &? + L: (u 6 *L v’+r”( v) s T i’(v’)). 

From r”(r’)=r’and g(u)=ixh,(u)...h,(u)j wededuce i’(v)(g(y))G,_r’(g(z)). 

Case 2. Assume that (50) holds. From VIE g: v(f(y)) So +(f(z)) we deduce 

i’(v)(g(y)) = 0)(iy h,(y) . uy)j) sL ;(i~ h(z) . h,,wj) 
, 

as in Case 1. From y G z we obtain 

;((,Nz) . . h,b)j) sL itiz hw h,(z)j) = wd). 

These together entail +‘(v)(g(y)) So v’(g(z)). q 

For y, z E & y 2 z we can now prove Vf E k: i”(cx)(f(y)) s I_ r’(f(z)) by transfinite 

induction in cr. The Vj’c I?: r’(f(y)) sL l(f(z)) follows as the special case cy = 5, 

which proves (48) from which the theorems follow. 

11.7. The root theorem 

Theorem 11.7.1 (Root theorem). For all XC l6f we have 

XL? cl ryx)=i, 

x&i e ;(x)=i. 

Proof. Define 

Let u E kf’, x E &? and y E k*. One easily verifies ;‘(v)(x) # ,i~;‘(v)(ti(x, y)) = 

i’(u)(x) by a proof by cases in x using (25)-(43). Hence, i’(v) E hk’. We now have 

i”(a) E I%?’ by transfinite induction in cy and GE kf’ as the special case cy = 5. The 

theorem now follows trivially. 0 
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Theorem 11.8.1 (Isomorphism). We have 

vx E 6 vy E 6,“: a-(x)(y) = a’(x)(y), 

vxE~vyEitk(x~~y~x=2y). 

(51) 

(52) 

Proof of (51). For x E ~8 and y E 6* we have 

a^(x, y) = x( i*RDR(y)) 

= x(( i*RUK(y))) 

= x((u E yd H u E XdR” t-+ a^(_y( u), u))). 

By relativization we obtain 

a’(x)(y) = x((u E yd ++ u E XdRb t-+ &(y(u))(v))) 

for x E 6 and y E 6*. Using the fixed point theorem, &(x)(y) = i(kz(x, y)) and (42) 

we obtain 

a-(x)(y) = x(( u E yd H u E XdR” H a’(y( u))( v))). 

Equation (51) of the isomorphism theorem now follows by transfinite induction on 

(x, y) using the well-founded relation CPp defined in Section 11.1. q 

Equation (52) requires a considerably longer proof. We prove it by a series of 

lemmas. 

Lemma 11.8.2. Zf 

vx E cP(a) vy E xd: x(y) = a’(x)(y) 

then 

vx E @(a) vy E xd: x(y) = a’(x)(y). 

Proof. Assume Vx E &‘(a) Vy E xd: x(y) = a’(x)(y), x E @((Y) and y E xd = &‘(cr)*. 

Inspired by (43) let G = {x(y’) ) y’ E @(a)* A y’ 2 r* y A y’ h $? y}. For z E &‘(a) we 

may prove z A:z by z IyzeVu~z~: z(~)=b(z)(u)eV~u~z~: a-(x)(u)= 

L(z)(u). Further, we may prove z g TX z by z +” z@V’u E xd: a-(x)(z) = 

i(kr(.~, z>)eVu E xd: a’(x)(z) = b(x)(z). Hence, x(y) E G. Since G has at most one 

element according to (44), we have G = {x(y)} and U G = x(y), so d(x)(y) =x(y) 

follows from (43). 0 

Lemma 11.8.3. Zf 

vx E &_I) vy E xd: x(y) = d(x)(y) 

then 

vx E &(a) vy E x4: x(y) = a’(x)(y). 
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Proof. Assume Vx E O’(Q) Vy E xd: x(y) = a’(x)(y), x E @“(a) and y E xd = @(a)*. 

Using (42) we have 

a’(x)(y) =x((u Eyd - DE XdKil - d(y(u))(u))) 

= x((u E yd H 2, E xdRL’ - y(u)(v))) 

= X((Y )) 

=x(y). 0 

Lemma 11.8.4. Vx E 6 Vy E xd: x(y) = a’(x)(y). 

Proof. Follows from the preceding two lemmas by transfinite induction. 0 

Lemma11.8.5. Vx~~Vy~1\;1:(x~yy~xrQy). 

Proof. Assume x E d, and y E hi. We have 

x2-y e Vz E ti*: a-(x)(z) Gl a’(y)(z) 

3 Vz E xd: a’(x)(z) s-, d(y)(z) 

e vz E xd: x(z) sr d(y)(z) 

@ VZE xd: x(z) = a’(y)(z) 

ex+y. 0 

This establishes half of (52). 

Lemma 11.8.6. If 

Vx~~,“(a)Vyr~:(x~~yyjx~y) 

then 

VxEOl(cu)vrE~:(XI~y4’jx~y). 

Proof. AssumeVxE @‘((~)Vy~hj: (x ~~yyjx~y),x~i)‘(a.),y~~,x AFyand 

ZE I’&*. We shall prove k(x)(z) cL a’(y)(z). We divide the proof in three cases: 

d(x)(z) = i, a'(x)(z) = 1 and a’(x)(z) ==?. 

If a’(x)(z) = 1 then a’(x)(z) sL a’(y)(z) is trivial. 

If &(x)(z) = i then let Z’E xd = @‘(a)* satisfy z’ A ‘* z A z’ G y: z (if no such z’ 

exists, then &(x)(z) = I by (43) and the fixed point theorem). From z’ A o* z we 

obtain z’ k* z so, by the monotonicity theorem and x A :” y, d(x)(z) = x(z’) = 

a’(Y)(Z’) GL a’(v)(z). 
If ~(X)(Z) =? then let (Y be the least ordinal such that a’(x)(zl~) =? and let 

Z’E xd satisfy z’ A:!‘* (z/a) A z’ LT,? (~]a). From z’ A:* (zla) we obtain z’k (zlcr). 

Hence, ?= a’(x)(zlCr) =x(z’) = a’(y)(z’) <=_1 6(Y)(ZI”), so a’(y)(z) =i and 

a’(x)(z) SL a’(y)(z). q 
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Lemma 11.8.7. If 

vxEtjycY)vyEfk (x qyJx+y) 

then 

VXE @(LY)k$Etij: (x +y*xky). 

Proof. AssumeVxE Q’(o) tly~fi: (x ~~_r+x~y),x~ &‘(~~),y~hi,x ATyyand 

ZE I&*. We shall prove d(x)(z) i La’(y)(z). We divide the proof in three cases: 

d(x)(z) = 1, d(x)(z) = 1 and d(x)(z) =?. 

If d(x)(z) = 1 then d(x)(z) sr a’(y)(z) is trivial. 

If d(x)(z) = 1 then let I’= u E zd H u E xdRD - a’(z(u))(v). We have a’(x)(z) = 

x(z’) and Z’E xd = i)‘(a)*. From z’ A,“* z we obtain z’ G* z. Hence, a’(x)(z) = x(z’) = 

d(Y)(Z’) i L a’(Y)(Z). 

If ~(X)(Z) =? then let (Y be the least ordinal such that a’(x)(zlcy) =?. Let z’= u E 

(Md -VEX dRD- d(z(u))(v). We have ~(x)(zI~)=x(z’) and z’~x~=i)‘(o)*. 

From z’ GF (z/a) we obtain z’k* (~[a). Hence ?= a’(x)(zlcx) =x(z’) = 

a’(Y)(Z’) sL 6(y)(zj~y), so b(y)(z) =? and &(x)(z) sL 6(y)(z). 0 

Lemma 11.8.8. Ifx E 6, y E a and x g ,? y, then x 2 y. 

Proof. By transfinite induction using the preceding two lemmas. 0 

Lemmas 11.85 and 118.8 together establish (52). 

11.9. Dejinition of the model 

Define the equivalence class c(x) of x E d by c(x) = {y E h? J y g x}. We now 

define the quotient hi/A: 

M={c(u)ju~hi}, (53) 

@ = {c(u) ( u E d}, (54) 

A(x,~)=U{c(&u, ~))IuExA~EY), (55) 

S = c(S), (56) 

K = c(k), (57) 

T = c(i), (58) 

P = c(P), (59) 

c = c(C), (60) 

W=c(P), (61) 

I= c(i). (62) 
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From the extensionality theorem we have that this construction really is a quotient 

construction, i.e. we have 

A(c(x), C(Y)) = cbh, Y)). (63) 

As an analogy to (x y, y, . . y<?) we introduce (x y, y, . . . ye) as shorthand for 

A(. . . NA(x, Y,>, yJ . . t y<,). 

11.10. The well- foundedness theorem 

Lemma 11.10.1. TE @ and IG @. 

Proof. Let ? = x E e’(O)* H ?. We have 7 E 6’(O), so ? E 6. Let T = if]. We have 

TG 6 and Vx E T”: T(x) = ?. Hence, T h r T, so 72 T which entails TE 6 and T = 

c(i) E cp. 

Now assume x E &‘(a) = (il(( From the definition of i)‘(a)’ we have x(( )) E 

(7, A}, so Vx E &: x(( )) # 1 which proves Vx E 6: x(( )) # 1, Vx E 6: x 2 F i, Vx E 
&xki, igdaand I=c(i)K@. 0 

We now verify the property of well-founded maps that gave them their name. 

Lemma 11.10.2. Vx E @ Vy E @” 3a E w: m(x, y) = T. 

Proof. Let x, y,, yZ, . E @. For all cy E w choose u, u,, E 6 and v, v,, E & such that 

x = c(u), y,, = c(v,,), v 2 u and v,, 2 u,,. Using the relativization of Corollary 11.2.2, 

_ choose (Y E w such that G(v)((v,, . . . , II,,)) = T. From the isomorphism and monoton- 

icity theorems we have 6( u)((u,, . . . , u,,)) = 7 which entails ti( u, (u,, . . , u,,)) A ? 

and m(x, (y,, . . . , y,)) = T by the root theorem. 0 

For all x, y E @ define x <,A y by 

x<,y e yfT/\3z~@:x=(yz). 

From the above lemmas we conclude the well-foundedness theorem. 

Theorem 11.10.3 (Well-foundedness theorem). TE @, I G @ and <A is well-founded 

on @. 

Corollary 11.10.4 (Induction theorem). Let 9?(x) be a predicate. If 

S.(T) and VXE Q\(T): (VYE @: S(xy)+%(x)) 

then 

vx E cp: 3(x). 
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There is a much deeper way to well-order the well-founded maps: For all x E @ 

let f(x) be the least ordinal (Y such that 32~ &‘(a) 3ye ~6: zgy A x = c(y) and 

define x <, y@f(x) <,f(y). Even though it is not explicitly mentioned in the proof, 

the well-foundedness of <; on @ is central in proving the consistency of Map. In 

the proofs, induction in <i has been replaced by induction in the ordinals. 

The ci relation corresponds to the “introduced before” relation in Section 2.4. 

None of the axioms of map theory expresses the well-foundedness of <,, which is 

clearly unsatisfactory. 

The well-foundedness of <A corresponds to the well-foundedness of E in ZFC 

as expressed by the axiom of foundation. The well-foundedness of <, also relates 

to the well-foundedness of E, but in a less clear way. It seems that <A and ci factor 

out two distinct sides of the well-foundedness of E. Non-wellfounded sets [2] are 

well-founded w.r.t. <, but non-wellfounded w.r.t. ca. 

12. Terms and their values 

12.1. Representation of terms 

Define the set Q of syntactic variables by 

Q = { tij ) i E w}. 

In what follows, i, 9, i, ti, ti, k, f: g, h, etc. stand for arbitrary, distinct variables, 

i.e., i = tii, J; = ti,, i = tik, etc. where i fj, i # k, j # k, etc. 

Let the set A?’ of combinator terms be the least set such that 

{$I;-,i,P,C, W,i}~r+, 

vx, y E IGIl: A(x, y) E I&, 

tic&l’ and 

M&h’. 

Let the set A? of terms of map theory be the least set such that 

r&C hi, 

Vie tivf&f:h~.fEhj, 

vx, y E n;r: A(x, y) E A?, 

Vx, y, z E h!f: (ii x y z) E hi, 

tlx~ A?: ix~kl and 

VxEk: $x&l. 
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12.2. Structural induction 

The principle of structural induction for Ak’ can be stated as follows. 

Lemma 12.2.1. Let S(x) be a predicate. Zf 

vx E Q: 9?.(x), 

VXE{S, k,i,P, C, W,i}: 3(x), 

VX,YE ti?(%(x)/a(y)392(A(x, y))), 

vx E M: 9.(x), 

then Vx E &I’: g(x). 

The principle of structural induction for kf is given in the next lemma. 

Lemma 12.2.2. Let 3(x) be a predicate. [f 

vx E 3: S(x), 

V{S, k,i, P, C, ti, i}: S(X), 

ViE 3VfE ti:(~(.f)=m(o;x.j-)), 

VX,_yE R;I:(~(x)r\~(?l)~~(A(x,y))), 

Vx,y, ZE ICI: (S(x) A .“n(y) A %(z)*%((ii xyz))), 

VXE A?: (9?(x)*%(kx)), 

Vxr k: (.%(x)=+%!(&X)), 

then Vx E II?: tin(x). 

Proofs by structural induction tend to be long and trivial in that they tend to 

consist of a long list of trivial cases. For this reason, we shall omit the details of 

most proofs that use structural induction. 

12.3. Freeness and substitution 

For all ti E Q and x E &I we define the predicate free( ti, x) to stand for “u occurs 

free in x”. The definition is standard: For all ti, d E c, ti # d and x, y, z E I%? define 

free(ti, ti), 

ifree( ti, ti), 

i~free(ti,x) ifxE{S, R,i, P, C, W, i}, 

ifree( ti, hti.x), 

free( ti, hti.x) e .free( ti, x), 

.free(ti, A(x, y)) @ .free(ti, x) vfree(ti,y), 
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free(ti, (ii xyz)) @ f ree u, x v ree 2.4, y v ree 24, z ( 1 f ( ’ ) f ( >, 

fiee( zi, ix) e free( ti, x), 

fiee(ti, 4x) e free(ti, x), 

lfree(ti, x) if x E M. 

For all ti E c and x, y E &I we define the predicate freefor(x, ti, y) to stand for “y 

is free for ti in x” [22]. The definition is standard: For all li, ti E q, ti # 2; and 

x, y, z, w E kl define 

freefor( ti, ti, w), 

freefor(ti, ti, w), 

freefor(x, ti, w) ifxE{S, lC,i, P, C, W, i}, 

freefor(Ati.x, ti, w), 

freefor(/iti.x, ti, w) e ifree(ti, w) v ifree(ti, x), 

freefor(A(x, y), zi, w) @ freefor(x, ti, w) A freefor(y, ti, w), 

freefor((iixyz), ti, w) 

H freefor(x, ti, w) A freefor(y, ti, w) A freefor(z, ti, w), 

freefor( .Gx, ti, w) e freefor(x, ti, w), 

freefor( $x, ti, w) C2 freefor(x, ti, w), 

freefor(x, 12, w) ifxE M. 

For all zi E c and x, y E M we define [x/C := y] to be the result of substituting y 

for all free occurrences of ti in x. Also this definition is standard: For all ti, ti E k 

tiifd and x, y, z, wEiIk define 

[zi/U := w] = w, 

[ti/ti := w] = d, 

[x/C:= w]=x ifxE{S,k,i,P, C, ri/,i}, 

[hti.x/ti:= w]=hti.x, 

[/id.x/zi:= w]= /jd.[x/ti:= w], 

[A(x,y)/ti:= w]=A([x/ti:= w],[y/li:= w]), 

[(iixyz)/ti:=w]=(ii[x/ti:=w][y/ti:=w][z/ti:=w]), 

[@x/G:= w]=F[x/Li:= w], 

[$x/ti:= w]=&x/zi:= w], 

[x/C:= w]=x ifxe M. 
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12.4. Translation of terms 

For all ti E 3 and x E Q’ we now define iti.x such that iti.x becomes the com- 

binator equivalent of );ti.x. The definition is standard (cf. [3]). For ti E $’ and x, y E hk’ 

define 

iti.ti=(Skkj, 

iix=(I;:xj if ifree( ti, x), 

iti.(xyj = (Siti.xiti.yj iffree(ti. ixyj). 

For all terms x E A? we now define the translation 1x1 E k’. For all terms x, 1x1 is 

the translation of x into combinator form ([3]). F or r.iE 3 and x,y,zE&l define 

[tin = li, 

[xI]=x ifxe{S, k-,i,P, C, ti,i}, 

[Ati.xJ = h.[x], 

uAm4n = A(bn, bn), 

u(iixYz)n =iPbn uzn bni, 
uixn=(c oxnj, 

udxn=iWdi, 
uxn=x ifxEA4. 

Note that A%’ c_ &I and [xl] = x for x E A?‘. 

12.5. Interpretation 

Define M” = c---z M. Elements d of M” assigns a value d(C) in M to each 

variable ri E c, and we refer to elements d of M” as “assignments”. For all 

combinator terms x E A?’ and assignments d E M v we define the “interpretation” 

dx E M to be the value of x when the free variables ti of x are assigned the values 

d( ti). More precisely, for all ti E q, x, JJ E A?’ and d E M” we define 

dri = d(C), 

dx=x if xE{S, k,i, P, C, ct,i}, 

dbyj=(cr~d~), 
dx=x ifxE M. 

For all terms x E A? and assignments d E Mv we define 

dx = d uxn 
i.e. the interpretation of a term is found by first translating to combinators. Since 

Ak’_c A? and [xl =x for x E TL?‘, the definitions of <,x for x E IL?’ and x E h? do not 

conflict. For all combinator terms x, 4’ E iI? define 

x A I’ e Vd E M ’ : ,!x = <,J-. 
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If we let T represent truth, F falsehood and J_ undefinedness, then we may define 

5;‘x e dX#i (x is defined for assignment d), 

ix CJ ,x=T (x is true for assignment d), 

E/Rx e d~~{T,F,~} (x is three-valued Boolean for assignment d). 

13. The consistency of Map’ 

13.1. Overview 

In this section we prove (9), i.e. we prove that the consistency of Map” follows 

from the consistency of ZFC. To do so we prove that the model established above 

satisfies each axiom and inference rule of Map’. For example, to prove that the 

model satisfies (Ap2) which reads 

(hu.xy)=[x/u:=y] ify is free for u in x, 

we prove 

freefor(x, ti, y) * @.xyj 1 [x/G := y] 

for all zip ? and x,yEik 

As mentioned in Section 9.10 we assume at any time that the transitive standard 

model D satisfies finitely many axioms of ZFC without being explicit about which 

ones. We just assume that D satisfies the axioms necessary for the argument at hand. 

13.2. Semantics of basic concepts 

If we let v = r’ in (25)-(43) and use the fixed point theorem and ;(m(x, y)) = 

a’(x)(y), we obtain 

r’((Sxyj) =X, 

d((3xrzj)(u) = d(ixz (yzjj)(u), 

i((kxj) = 1, 
. . . 

a’((KXY))(U) = a’(x)(u), 

a’(i)(u) =?, 

i if i(z) = i, 
a’((Pxyzj)(t4) = ~(X)(U) if t(z) =?, 

a’(y)(u) ifi(z)=;i, 
w 

ri((Cxj)(u) = ’ if3yE6: ;(ixyj)=i, 

d(@({y~&]r’((xyj)=?}))(u) otherwise, 

h(i wx))(u) = 
7 if3yE&:y &7x, 
1 otherwise 

9 

b(i)(u) = i. 
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Using the root theorem and the definition of A we obtain 

(Sxyj 4i, 

(Sxyj + i, 

(Sxmy.jQz iyzjj, 

(I;-xj4-fi, 

(kxjki, 

(r;:xJ~j~xx, 

Using d((xyj)(u) = &(x)((y). u) and the root theorem we obtain 

(ixj&T and (ixj&i. 

Using the isomorphism theorem and the definition of 6 we obtain 

I otherwise. 

We now investigate the choice combinator C and the choice function q(a). We 

first prove 3y E 6: (xyj A ie 3y E 6: (x vj ; i. The j-direction follows from 6 c 

6. Now assume that y’ E 6, satisfies (x y’j A i. Choose y E 6 such that y 2 y’ (this 

is possible due to the definition of d). From the monotonicity theorem we have 

~xyj~~ixy’j~iwhichproves~x_~j~iand3y~~:~xyj~~.From3y~~:~x~~j~ 

i@3y E d: (xyj A i we deduce 

(‘xj’{i((r E $l(xyj~T}) 
if3yE 6: (xyj&i, 

otherwise. 

Define 

4(G) = 
{ 

G(Gn&) ifGn&#@, 

q(G) otherwise. 

We have 

G(G)EG forGck,Gf@, 

4(O) = i, 

~(~_y~~~~xyj~~i))=~(~y~~~~x~~j~~i>). 
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Let x~hj and assume VyEd:(xyjgi. Let G={yE6,1(xyjA?} and G’= 

{yE~~~xyj~i}.From~~~wehaveG=G’n~.IfG’=P)thenq’(G)=i=4(G’). 

If G’ # 0 then let y’ E G’ E 4 and choose y E 4 such that y 2 y’. From i 9 (x yj 2 

(xy’j&? we obtain (xyj&T, so LEG and G=G’n&#f. Hence, G(G) = g(G) 

holds whether G = 0 or G f 0, so 

if3yE&: (xyjri, 

otherwise. 

If Gs M then U G c hi, G(U G) E hi and c(q’(U G)) E M. Define q(G) = 

c(q’(U G))E M. We have 

q(G)EG forGsM,G#@, (64) 

s(0) = T, (65) 

This ends the special investigation of C? and q(a). 

From x~y~c(x)=c(y) and (sxyzjA(xz(yzjj we obtain c((sxyzj)= 

c((xz (yzjj). From (53)-(63) we obtain (SC(X) c(y) c(z)) = (c(x) c(z) (c(y) c(z))). 

Since VX’E M ~X”E ilk: c(x”) =x’ we have (Sxyz) = (xz (yz)) for all x, y, z E M. 

Likewise. 

(Kxy)=x, 

(T x) = T, 

(Wx)= 
T ifxE@, 

I otherwise, 



110 K. Grue 

For all x, y, z E hi and d E M “, the definition of dx yields 

diSxYMT,O, 

d(Sxyzj=d(xz iyzjj, 

,ikxj @ {T, 11, 

AKxy)=,x, 

,(i x j = J, 

i 

,,i if dx = I, 

Jiixyz)= <,y if,x=T, 

Clz otherwise, 

I 
,6x = 

if 3yE di: (,,xy) = I, 

q({y E @I (<,x y) = T}) otherwise, 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

,6x = 
T ifxE@, 

1 otherwise, 
(73) 

d(i X) = di. (74) 

13.3. Binding 

We now state a series of well-known lemmas about h-abstraction and substitution. 

Each lemma is proved by structural induction and, hence, is a proof involving many 

cases to check. Since each proof is trivial, we shall omit the details. 

Lemma 13.3.1. Let u, v E q, u # v and x, y E &I’. Assume l,free(v, y). We have 

iv.[x/u := Y] = [b.x/u := y]. 

Proof. By structural induction on x. 0 

Lemma 13.3.2. Let IA t 3 and x, y E hk Assume freefor(x, u, y). We have 

[[xl u := y]l = [[xl/u := [yJ]. 

Proof. By structural induction on x. The only nontrivial case in the proof is the 

case where x has the form hv.x’ where v E e, v # u and x’ E 6l is assumed to satisfy 

the lemma. In this case we shall prove 

~[/iv.x+ := _yl~ = [&.xqjju := [yj~. 

From x = iv.x’ and ,freefor(x, u, y) we deduce lfree( v, y) v lfree( u, x’). If 

l,free( u, x’) then 

[I[~~.x’+ := y]n =chv.xfg = [[hv.xq/u := uyn]. 
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If lfree( v, y) then we use the definitions of (0) and [ l /* := 01, the previous lemma 

and the inductive hypothesis that x’ satisfies the present lemma: 

([&%x’/u := y]) = (/i%[X’/U := y]) 

= Av.([x+ := y]) 

= iv.[(x~)/u :=(y)] 
\ 

= [hu.(x’)/u :=(y)] 

= [(hu.x’)/u :=(y)]. 0 

Lemma 13.3.3. Let u E e and x, y E &cl’. We have 

(iu.xyj-[x~u:=y~. 

Proof. By structural induction on x using the definition of i and the equations (67) 

and (69). In particular, we have 

Lemma 13.3.4. Let u E q x E I%? and d E M “. We have $u.xE {T, I} 

Proof. This lemma is not proved by structural induction. Using (66) and (68) we 

prove the lemma by three cases. 

l If x=u then ,iu.x=,(Skk)@{T,I}. 

0 If lfree(u, x) then ,iu.x = ,(kx) ,@ {T, I}. 

l If x = (x’ xl’) and fiee( u, x) then ,iu.x = ,(s iu.x’ iu.x”jg {T, I}. 0 

13.4. Computation axioms and QND’ 

Lemma 13.4.1 (Extensionality). Let d E M” and x, y E kf. Assume dx Z& {T, I}, ,)y & 

{T, I} and VZ E M: ,,(x z) = & zj. We have (,x = ,,y. 

Proof. Let x, y E II? and assume x g T, x 2 i, y 2 T, y 2 i and t/z E h?: (x z) A (y z). 

From the root theorem we have i(x) = i = i(y), so a’(~)(( )) = b(x)(( )). Let z E hi 

and u E hi*. From (xz) A (yzj we obtain 6(x)((z). u) = d((xzj)(u) = d((yzj)(u) = 

d(y)((z) * u). We now have a’(x)(u) = a’(y)(u) for all u E ki*, so x L y. Hence, 

x~~ixxiiy~~i~~iiVzEhj:ixzjri~zj~.~ry. 

This entails that 

x~{T,I}r\y~{T,i}~tlz~M: (xz)=(yz)+x=y 

for all x, y E M, and 

~x~{(T,I}A~~~{T,I}A~ZEM:~~XZ~=~~~Z~~~X=~~ 

for all x,ye k and d E MV. 0 
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Theorem 13.4.2 (Computation axioms). For ti, ti E Q and IA, v, x, y, z E $I we have 

(Trans) 

(Subl) 

(Sub2) 

(Ren) 

(Apl) 

(APT) 

(APT) 

(Sell) 

(Se12) 

(Se13) 

freefor(x, ti, y) =3 (&ix y j g [xl li := y] 

(i xj & i 

(iiiyz)Ay 

(ii hti.xy z) g z 

(iiiyz);i. 

Proof. (Trans) follows from ,,x = ,,y A ,,x = <,~+~y = dz. (Sub]) follows from ,,u = 

~,~~~~=~y~(~~~~~)=(~v~y)~~~~xj=~,~~lyj.(Sub2)Assumex~y. WehaveVzE 

M: Jx/ti := z] = Jy/ti := z]. Hence, ,,(iri.x zj = d();ti.y zj by Lemma 13.3.3. Further, 

,,hri.x g {T, I} and dhti.y r? {T, I} by Lemma 13.3.4, so &ti.x = dhti.y by Lemma 13.4.1. 

(Ren) By structural induction in x one easily proves iti.[x/ti := r.i] = iV.[x/ ti := ti] 

for all XE &I’. Assume freefor(x, ti, V) and freefor(x, V, ti). Using Lemma 13.3.2 

we have fhi[x/ti:= till = iti.[[x/ti:= till = iti.[[xJ/ti:= [tin] = iti.[[xn/ti:=i[tin] = 

iti.~[~/ ti := ti]n = ~/iti.[~/ ti := ti]n f rom which Ren follows. (Apl) follows from (70). 

(Ap2) Assume freefor(x, ti, y). From Lemmas 13.3.2 and 13.3.3 we have 

,(hti.~ JJ j = du(h~.~ yjn = &iti.~x~ uyn j = c,[uxn/ ti := [_yn] = du[x/ti := y]n = s,[~/u := ~1. 

(Ap3) follows from (74). (Sell) follows from (71). (Se12) follows from (71) and 

Lemma 13.3.4 (Sel3) follows from (71). 0 

Lemma 13.4.3. Let d E M “, u, v E q, u # v and x E hi. Assume dx .@ {T, I}. We have 

,,(iu.i~.(u vj xj = do. 

Proof. Let v’ E c satisfy lfree( v’, x) and v’ # u. We have 

. . . . . 
(A~.AV.(~ vj xj G (AU.A~~.(~ dj xj GA~.(X dj. 

For all y E M we have 

From Lemma 13.3.4 we obtain ,,(;\u.~~v.(u vj xj = ,id.(x v’j g {T, I}. Hence, 

,,(/iu.hv.(u vj xj = dx by Lemma 13.4.1. 0 
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Theorem 13.4.4 (QND’). Let u, v, w E k v # w and x, y E A?. We have 

[x/u:=i-]qy/u:=i] 

A[x~u:=(iv.~w.(vwj Uj]q[Y/U:=(iV.hw.(vwj uj] 

A[x/u:=~]~[~/u:=~] 

* x&y. 

Proof. We obviously have dx = Jx/u:= d(u)]. If d(u) =T then [x/u :=i] 2 

[y/ u := ?] yields 

d~=d[~/~:=d(u)]=d[y/u:=d(u)]=dy. 

The proof of dx = dy for d(u) = I is analogous. If d(u) fi {T, I} then 

dX=d[X/U:=d(u)]=d[X/U:=~/iv./iW.~vWjd(14)j] 

=d[~/~ := &h~.(~wj Uj] 

= d[y/U := (iV./iW.(V Wj Uj] = d[Y/U := (iV.iW.(V Wj d@)j] 

=d[y/Ll:=d(u)]=dy. 

Hence, dx = dy for all d E M”. 0 

13.5. Semantics of defined concepts 

In Part I we defined T, F, etc. in map theory. When translated into the notation 

used for the consistency proof, the definitions are as follows. 

i = i. 

i = hx.i. 

ix = (ii x pi). 

Gx = (ii x i i). 

Ix = (iixii). 

ix = (ii x 6 i). 

xAy = (iix(iiyiF)(i?yFk)). 

x\jy = (iix(iiyii)(iiyii‘)). 

x3y = (ii x (ii y i F) (ii y ii)). 

xey = (iix(iiyii)(iiyii)). 

xiy = (iixyi). 
. . . 

Y = A$(hx.(j‘jiijj k.(fjkkjjj. 

9,~ = j+hu.xj. 

2 = &.G (a ii_i, 

&.x = (Liu.xj. 

\bu.X = 4u.ix. 
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We have dT=T and d/I = FG {T, I>. From (71) we obtain the following lemma. 

Define 

xsy e 3x’EX3y’Ey:x’kyy’, 

Lemma 13.5.2. If x’, y’~ hi then 

c(x’)sc(y’) G x’kyy’. 

Proof. Let x’, y’ E hi. Assume ~‘2 y’. From X’E c(x’) and y’~ c(y’) we deduce 

~X”E c(x’) 3y”~ c(y’): ~‘2 y’ which entails c(x’)~ c(y’). Hence, x’g y’=~c(x’)s 

c(y’). Now assume C(X’)G c(y’). Choose X”E c(x) and y”~ c(y) such that xl’; y”. 

From X”E c(x’) we have x’ A x” and from y” E c(y’) we have y’ A y” which combined 

with x”k y” gives x’g y’. 0 

From the properties of 2 we obtain the following result. 

Lemma 13.5.3. For all u, v, x, y, z E M we have 

x 4 x, 

xsyr\ysx =3 x=y, 

X~yAysz * xsz, 

U~vAx~y =3 (ux)s(uy), 

I s x, 

x.@{T,I} =+ xffT/\T%x, 

x,ya{T,i} 3 (x~y~Vz~M:(xz)<(yz)). 
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Lemma 13.5.4. Let d E M” and x E iI?. We have 

I if3yE@:Jxyj=I, 
ifVyE@:&xyj@{T,_L}, 

T otherwise. 

Proof. Assume d E M” and x E &l. Assume 3y E @: d(xyj = 1. Choose y E @ such 

that &xyj = 1. From (72) we have ,ix = 1. Hence, dF~ my so &x Exj S&xyj = I 

which entails d(~ ixj = I and ,2x = d G(x ixj = 1. 

Now assume Vy E @: d(xyj & {T, I}. From this assumption, (72), and (65) we have 

,kx =TE @. Using the assumption Vy E @: ,(x yj& {T, I} once more we obtain 

Jx gxj @ {T, _L} from which ,3x = p (x Exj = F follows. 

Now assume 13~ E @: d(x yj = _L and itly E @: d(x yj ES {T, I}. From the assump- 

tions we obtain 3y E @: d(xyj =T. Hence, from (72) and (64) we have dix E 

{YE @Id(xyj=T} which proves d(~kxj=T and ,3x= ,G(xkxj=T. q 

From this lemma we immediately conclude Lemma 13.5.5 

Lemma 13.5.5. Let d E M” and x, y E &I. Assume Qz E @: y(y zj. We have 

:3X :?IXM~E Q: :(xzj :SI~~~E G: :iyzj. 

Using this lemma and Ap2 in Theorem 13.4.2 and Lemma 13.5.1 we obtain the 

following result. 

Lemma 13.5.6. Let d E M “, x, y E II? and u E I? Assume Vz E M: y[y/ u := z]. We have 

;&4.x ~ilU.X~VZ E @: Y[x/u := z] :zhl.y‘3332 E @: :[y/U := z], 

;*u.x pU.x@vz E @: ‘,‘[x/u := z] p&Ly~vz E @: Z[y/u := z]. 

Using Ap2 in Theorem 13.4.2 several times we obtain Lemma 13.5.7. 

Lemma 13.5.7. Let d E M “, x, y E iI? and u E I? Assume freefor(y, u, vu.,). We have 

$X = JX Yx j, 

d\iu.y = Jy/u := ?u.y]. 

As stated m Part I, x,, . . . , x, + y stands for x,: . . . :x,:y =x,: . . . :x,:T, and 

this construct is used in several axioms. Define xi,. . . , x, -+ yex, i . . * ix, i y A 
:...: x1 ’ .x, ii. The following lemma is useful for verifying axioms involving -+. 

Lemma 13.5.8 (Deduction lemma). Let x1,. . . , x,, y E hi and d E M “. 

zf:xlA* . . ~~x,~~ythen,x,i...ix,iy=~x,i...ix,ii. 

If VdEM”:(:x,r\...r\:x,j:y) thenx,,...,x,Ay. 
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Proof. From the definition x i y = (ii x y T) we deduce dx = I j <,( x i y) = i and ,XE 

{T,l}=~,(xiy)=T. Hence, d~,i ... ix,,iy=,x,‘: ... ix,,iT holds if ,,x,#Tv...v 

dx, #T. Now assume do, =. . . = rlxc. =T. From the assumption we have (,y =T 

so <,X, i . . ix,,.y=,x,i . . . ix,, ii. The second claim follows from the definition 

OfA 0 

13.6. Quantification axioms 

Lemma 13.6.1 (Quanl). Let u E 3 and x, y E A?. We have 

4x, ih., i (iu.yxj. 

Proof. Let d E M ‘. Assume ~C$X and :‘bu.y. We have dx E CD and Vz E @: z[y/ u := z]. 

Hence, Vz E @: (,,/iu.y z) = T so ,,(iu.y x) = (d/i~.y do) =T. Now the lemma follows 

from the deduction lemma. 0 

Lemma 13.6.2 (Quan2). Let UE cand XE ik We have 

6u.x 2 FU.( & /i x). 

Proof. Let d E M “. If (I~ E @ then :‘$u and i$u, so ‘,3xey$u i, x and :xe:&u A x. 

The lemma now follows from (72). 0 

Lemma 13.6.3 (Quan3). Let u E c and x E hk We have 

. 
de5l.X A Vu.!x. 

Proof. Let d E M ‘. If 3z E @: lg[x/u := z] then 3z E @: ,y[ix/u := z] so 1:‘iu.x 

and l:‘\bu.‘!x. Hence, &U.X = I = ,vu.‘!x. Now assume Vz E @: :[x/u := z]. We 

have dF~.~ E CD so z4ku.x. Further, t/z E @: :[!x/u := z] so :\bu.‘!x. Hence, &u.x A 

vu.‘!x. 0 

Lemma 13.6.4 (Quan4). Let u E e and x E kf. We have 

3u.x 4 C#k.l.x. 

Proof. Let d E Mv and assume &au.,. From Lemma 13.5.6 we have Vz E @: y(hu.x z) 

and ~ZE CD: :(iu.xzj. Hence, by (72), ,~U.XE @ so f;&u.x by (73). Now Quan4 

follows from the deduction lemma. q 

Lemma 13.6.5 (Quan5). Let u E c and x E hi. We have 

+u.x 2 9u.c Cju r; x). 
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Proof. Let d E M “. If du E @ then y$u and II&, so 6x = ~&.I /\ x and Ix = :&.I i x. 

The lemma now follows from Lemma 13.5.6. 0 

Lemma 13.6.6 (Ind). Let u, v E q, u f v and x,, . . . , x,, y E it?. Assume 

freefor(y, u, (u vj) and lfree(u, x,), . , lfree(u, x,,). 

Assume 

x1,. . . , x, i [y/u := T], 

Xl,..., x,, &4, iu, \jv.[y/u := (U vj] i y. 

We have 

x1,. . ., xu, $A4 + J’. 

(75) 

Proof. Let d E M “. Assume :x,, . . . , zx,. From x,, . . . , x, 4 [y/u := T] we obtain 

:[y/u:=T]. Now assume ZE Q\(T) and VW E @: :[y/u := (z w)]. From (75) we 

obtain 

d[y/u:=Z]=d[X,i . . . ix,i~uiiui\bv.[y/u:=iuuj]iy/u:=z] 

Zd x,; . . . ix,: [ ~uiiui\ju.[y/.:=i.vj]ii/u:=z] 

= T 

Hence, :[y/u := z] so 

~ZE Q\(T): (VW E @: &/U := (Z Wj]+&/U := Z]). 

Now Vz E @: :[y/u := z] follows from the induction lemma. 

Assume l&4. We have du E @ so :y. Hence, Ix,, . , ix,,, :$u*ly so the lemma 

follows from the deduction lemma. 0 

13.7. Well-foundedness axioms 

By the well-foundedness theorem we have TE @ and I $ @. Hence, from (73), 

we obtain the following lemmas. 

Lemma 13.7.1 (Welll), fji&T. 

Lemma 13.7.2 (Wel13). $i A i. 

We have now proved (9), i.e. we have proved the consistency of Map” assuming 

the consistency of ZFC. 
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14. The consistency of Map 

14.1. Assuming SI 

In this section, and this section only, we assume SI, i.e. the existence of a strongly 

inaccessible ordinal u, and we assume that the transitive standard model D is defined 

by (11). The central consequence of this assumption is 

xcDr\x<,u + XED. 

In this section, the variables CI, /I, y, etc. range of a, i.e. we tacitly assume LY, ,8, y E u. 

We have the following absoluteness results for all G, H, a, x, y E D: 

[CF’GJ = PG, 

[G--zHJ=G+H, 

[G + V] = G + D where V is the class of all sets, 

[Go] = G”, 

&(cz) = &(a), 

@‘((-u) = &((Y), 

Q’(Q) = &I,). 

14.2. Some properties of well-foundedness 

Definec”G={c(x)~x~G}andc*(f)=~~f~~c(f(~)).ForG~~andf~~* 

we have c”G c M and c*(f) E M*. 

Define dG={x~A?I3y~G:y~x} and VG={XEMI~~EG:~~X}. We have 

Vc”G = &G for all G C_ &l. The V operation is sort of the inverse operation of the 

boundary operation a in Section 10.4. For some G s M we have aV G = G or VaG = G 

or both. We shall not define a formally. 

Define &(x)=vE G*H ~(X)(U) and t,(x)=v~ G*++ a(x)(v). From the 

isomorphism theorem we have t,~~~(c(x))(c*(~)) = it,(x)(v) for all Gs A?, XE A? 

and VE G”. We have that tG(x) is the type of x w.r.t. G, cf. Section 10.2. Define 

the coordinatewise application of iG and t, by i*,(f) = us f” - i,(.f(u)) and 

t:(f) = u Efd H tc(f(u)). 
Like in Section 10.3 define ~f(G)={fE~Iic;(f)EGo} and wf(G)= 

{f e M 1 tc;( f) E G”}. We have wf( c”G) = c”kf (G) for all G z A?. From the monoton- 

icity theorem we have Gf( G) = *f(eG) for all G s A?. Define &‘(a) = V&‘(Q), 

&‘(LY)=$@~((Y) and Q’((Y)=~@((Y). 

Lemma 14.2.1. We have 

Q(a) = kf(&‘(a)) = Gf(&(a)), 

~.I(LY)=~f(i)‘((Y))=~f(d~((Y)). 
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Proof. 

a Lp(,,(X) E Qyc$ 

tj XE q(d+)) 

a x E ti~(V@ya)) 

e XE q(&(a)) 

The statement d”(a) = ~JJ( @( a)) = k$( @( a)) is proved in a similar way. 0 

Define @:,(cx) = C&((Y), @::(a) = c”c&‘((Y), Q:](cr) = c”@(a), @‘(a) = Y&((Y), 

@“( LY) = c”&‘(cx) and Q’(a) = c”@( LY). W e h ave @‘(a) =V@:,(a), @“(a) =V@l(n) 

and Q’(a) = VQA(cu). Further, we have 

@‘(a) = MC?‘(Q)) = wf(Q:,(Q)), 

O’(a) = wf(@“(a)) = wf(C(a)), 

@‘(a) = UPC<? Q’(P)> 

@6(a) = Upcu @A(P) and 
@ = @“(CT) = lJpt<, Q’(P). 

From &‘(a), &‘“(a), @(a) E D we obtain (P:,(a) <, a, Q:(Q) <K r, and Q~(Q) <K (T. 

For all G s H L hi we have 6f( H) s kf( G). Hence, for all G c H c M we have 

wf(H) c wf(G). For (Y 6, p we have B”(O) G P’(p) which entails Q’(P) E Q’(a) 

and @‘(a) c_ O’(p). Further, we have @‘(a) c_ Q’(p), Q”(Q) c_ Q’(p) and @c_ Q’(p) 

by transfinite induction on (Y and p. 

If G s A?, x E Gf( G) and y E G, then (xy) E &f(G) follows from the definition of 

&f(G). Hence, if XE Q’(Q) and y E Q’(a) then (xy) E @‘(a), and if ye Q’(a) and 

x E @“(a>, then (y x) E Q’(Q). Hence, 

(Y SO p A x E @“(CX) A y E Q’(P) =3 (xy) E @“(a), 

Ly So PAXE@“(~)AYEQ’(P) * (Yx)EQ’(a), 

XE @“(a) AyE CD”(P) =a (XY)E P’(a). 

If G s hi, G # 0, x E hi and Vy E G: (x y) E kj( G), then x E $f( G). Hence, 

~~OA~EMAV~E@“(~):(X~)EQ’(~K) j x~Q’(a), 

XE M AVYE Q’(a): (X,V)E @‘(a) =2 XE @‘(a). 
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Lemma 14.2.2. Let N E (T. If x E M and (x y) E @for all y E Q’(a), then x E @. 

Proof. Assume x E M and Vy E Q’( cz): (x y) E @. For all y E Q:,(a) choose pJ such 

that (xy) E @‘(pV) and define y = (Y u U,,to,lc~V, p,.. From Q:,(a) cK v we have YE (T. 

Further, we have Vy E Q:,(N): (x y) E Q”(y) so, by the monotonicity theorem, Vy E 

Q’(y): (x y) E Q’(y) which entails x E Q”(y) c_ @. 0 

Lemma 14.2.3. Let (Y E (T and let 2(x) be a predicate. If 

z(T) 

is true, and if 

VyE P’(a): 92(xy)*!B(x) 

forallxEQ’(cz), xfT, then 

9?.(x) 

holdsfor all x E Q’(N). 

Proof. For all x~Q’(cr), xfT and JIG @“(a) we have (x~j)~Q’(a), ta,S,,Xj(x)E 

@“(a)“, td,S.(~ul(xy)E @“(a)’ and tat,c,X,(xy) <,< t,,,,,,,,(x). The lemma now follows 

from the well-foundedness of <,, on @“(cy)O. 0 

14.3. Consistency proof for Map 

We now verify the consistency of Map. 

Lemma 14.3.1 (Wel12). For ti E c and x E A? we have 4hti.x A $hti.$x. 

Proof. Assume z/iti.x. From (73) we have #ir.i.x E @. Choose (Y E u such that d/iti.x E 

@“(a). Let UE Q’(a). We have ,();ri.x~j~ @“(a). Hence, Jx/ri:= U]E @“(a), so 

&[x/ti := U] =TE @ and J$x/ti := u] =TE @ which entails ,(hti.dx u) E @. Hence, 

,/ir.i.dx E @ and I$hti.&x. This proves ~~~ti.x~~~/iti.~x. 

We now prove ~&);r.i.~x=+~&hri.x. Assume :$/iti.$x. We have dhti.$~ E @. Choose 

(Y E (T such that ,,/iti.dx~ @“(a). Let UE Q’(a). We have d(hU.$~uj~ @“(a), so 

<,[ 4x/ ti := u] E @“(a). Since I .@ @“( cy ) by the Well-foundedness Theorem we have 

J&x/C:= u] =&[x/U:= u]# I, so ,,[x/ti:= U]E @ by (73). Hence, d(/iU.~uj~ @ so 

dhti.~ E @ and :$;\ri.x. This proves :$/iri.$x+:$hti.x. 

We now have ~~/iti.x@~~hti.$x. From (73) we have ,$/iti.x~{T, I} and 
. . 

rl~hi~x E {T, I}, so ,&hti.x = ,,d;\ri.$x as stated in the lemma. U 

Lemma 14.3.2 (C-A). 4x;-, &j -; $(xj). 

Proof. Let d E M “. Assume :4x and :dy. We have ,,x E @ and dy E @. Choose 

(Y, p E u such that dx E @“(a) and ,,y E Q”(p). We have ,,(xyj E @“(a). Hence, <,(xy) E 

@ and :$(xy). The lemma now follows from the deduction lemma (Lemma 

13.5.8). 0 
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Lemma 14.3.3 (C-K’). 4hti.T A T. 

Proof. Let d E M “. For all u E Q’(0) we have ,(iti.T uj = ,T=TE @, so ,/iti.T~ @ 

and ,&.T=T=,T. 0 

Lemma 14.3.4 (C-P’). $hti.(ii ti ii) Ai. 

Proof. Let d E M “. We have Q’(O) = M\(I). Hence, for all u E Q’(O) we have 

,(/iti.(iiUTT) Uj=TE@, so ,/iti.(iitiTT)E@ and ,d/iti.(iiti?i)=T=di. 0 

Define 

I;=hf.rij./ii.(iiifj), 

We have 1; A P and @ # p, so p and P are semantically but not syntactically equal. 

The introduction of @ is necessary since axiom C-Curry mentions @ rather than k 

Lemma 14.3.5 (C-Curry). Let x E hi. We have 

hx 4 &Grrvxj. 

Proof. Let d E M “. Assume :4x. We have dx E @. Choose (Y E c such that dx E @“(a). 

Let y, z E Q’( a ). We have 

d~ci~~yxyzj=d(X (&zjj. 

Let u E Q”(Q). We have u # 1. If u =T then 

d(kyZuj=y~ Q’(~). 

If u#Tthen uE{T,I} and 

Hence, VU E @“(a): d(liy~uj~ Q’(O) SO d(kyzj~ Q’(a) and d(~ (@yzjj~ @“((Y), 
. . . . 

so :4( Curryx). Now the lemma follows from the deduction lemma (Lemma 

13.5.8). q 

Lemma 14.3.6 (C-Prim). We have 

$,j; $a, $y i &(Piimfi$j. 
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Proof. Let d E M “. Assume :&,f: 1$x and f;$j. We have Vu E @: ,(juj E @, dX E 4, 

and dj E @. Define h = (P&mfljj. We have 

Choose (Y such that dp E @“(a). We now prove Vz E Q’(a): ,,(!I z) E @ by induction 

on z. 

If z=T then ,(hz)=,xE@. Now assume z~Q’(a). z#T and VVE 

~“(a):,lihizvjj~~.If~~Q’(~)then,,iyuj~~”(a)anddihi~iyujjj~~.Hence, 

v,~Q’(cy):~ih~.ihi~ij’~jjj~j~~,, SO we have ,,,iti.(h(~(~tijjj~@ and 

,(f,iti.(h (z (J;tijjjj~ @‘, which entails d(h zjg @. 

From Vz E Q’(Q): d(h z) E @ we have h E @ as required. 0 

Lemma 14.3.7 (C-M). For ti, ti E c, ti # 2; and x E Ak tve have 

\bti.&i~ -4 \bi&iiiti.x (ti tijj, 

\jti.&i~ 2 \ji&.(hd.x (ti ti j j. 

(76) 

(77) 

Proof. Assume d E M” and &Vti.&.x. From Lemma 13.5.6 we have VUE 
. . 

@: I[ $hti.x/ti := u], so Vu E @: ,[hti.x/zi := u] E @ by (73). 

Now let (Y E (7. For each u E @,!:(a) choose pU E (T such that ,[/jti.x/ti := u] E @“(p,,). 

Define y = (Y u UutOZ;(,Xj pU. Since @::(a) <K o and (T is strongly inaccessible, we 

haveyra.Further,wehaveVuE @“(a): ,[hti.x/ti:=u]~ @“(y),soVu~ @“(cu)Vv~ 

Q’(y): d([hV.~/ri := u]vj E W’(y), which entails 

VUE @“(a) VVE Q’(r): J[x/ti:= v]/ti:= U]E Q”(Y). 

We obviously have [[xl ti := v]/ ti := u] = [[x/G := u]/ ti := v] for all u, v E M G &I 

since elements of M have no free variables (i.e. Vu E M Vti E i/: lfree( ti, u)). 

NOW let u E Q”(N) and v E Q’(r). We have (u v) E @“(a) and (v u) E Q’(y). Hence, 

<,[[x/ti:=(vu)]/ti:=u]E@“(y), (78) 

,[[X/ti:=v]/U:=(Uv)]E@“(y). (79) 

We have 

d[[X/ti:=(vU)]/~:= u]E Q e d[(hti.X (vu)j/ti:= q~ D 

e d[[(iti.X (titijj/ti:= vlyti:= Use Q 

a c,[(hti.(hd.x (ti ti j j v j/ ti := IA] E a 

Since this holds for all v E Q’(y) we have 

,[/iti.(iti.~ (ti tijj/ti := ~41 E Q 

so 

;[&(,i~.~ (ti tijj/ti := q. 
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Since this holds for all (Y E (T and u E @“(a) we have 

SO 

Now (77) follows by the deduction lemma (Lemma 13.5.8). Equation (76) follows 

from (79) in a similar way. 0 

15. The consistency of Map’+ 

15.1. Overview 

We now prove (10) which states 

Con(zFC+) * Con(Mup”+). 

Throughout this section we assume that the transitive standard model D satisfies 

finitely many axioms of ZFC+. We shall not be explicit about which axioms D 

satisfies. Rather, we constantly assume that D satisfies sufficiently many axioms for 

the argument at hand (cf. Section 9.10). 

In Section 15.2 we introduce s E @ * D in such a way that 

ZES(X) ti x#TA~YE@: z=s((xY)) 

and 

sr= D. 

In Section 15.3 we prove 

D 
LiXiY, zxiy and ;xiy e S(X)ES(Y). 

for all x, y E @ and d E A4 “. In other words we prove that xi y is T if s(x) E s(y) 

and t otherwise. 

From these results we may deduce that i inherits the properties of E in D. Further, 

sinces~~--,Dands’=D,wehaveVx~D:~(x)~~y~~:~(~(y))forallpredi- 

cates s(x), so q may be used to represent the universal quantifier of ZFC+. 
Having made these observations, it is obvious that any statement true in D is 

also true in Mu,‘+. However, to prove this formally, it is necessary to do some 

bookkeeping. In particular, it is necessary to be cautious concerning the handling 

of abstraction in set and map theory. 

The consistency proofs for Map and Map,+ may be combined as follows: If we 

define D as in (ll), then any statement true in D is also true in the model of Map, 
so Map may consistently be extended by any statement true in this D. 
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15.2. Representation qf sets 

Define i(x) = {i(x’) (x’ <,,.x}. For x E @ define S(X) = {s(x)) 1 x’ <A x}. We say 

that XE d represents the set t(x) and that x E @ represents the set s(x). In this 

section we prove Vy3x E 6: y = f(x), Vy E D 3x E @: y = S(X) and Vx E @: S(X) E D. 

From the definition of s and <A we immediately obtain 

YES(X) (j ~#TA~uE@:~=s(xu). 

Lemma 152.1. Let f E H --f G, z E G” + L and Z’E H* -+ 15. If f r = G and z’(u) = 

z(fo u)fora/l UE H” then ZEG’SZ’E H” ands^(z)=s^(z’). 

Proof. Let ,f, z, and z’ satisfy the assumptions of the lemma. From f’= G we have 

VVE G: 3(u) @ VUE H: %!((.f(v)), 

VVE G*: 9?(v) Q VVE H*: %(f 0 v), 

Vu E G”: z%?(v) @ Vu E H”: 9?(.f 0 u) 

For all predicates 92 (u). Hence, z E Go@ z’ E H” follows trivially from the definitions 

of G” and H”. 

In what follows, let z” and w” be shorthand for u E H* - z(fo v) and v E 

H* - w(f 0 v), respectively (note that z is free in z” and w is free in w”). We now 

prove Vz E G”: i(z) = f(z”) by induction in z and <M,. If z(( )) = ? then t(z) = 0 = 

sI(z”). Now assume z(())=x and VW: (w <..z+?(w)=$(w”)). 

Assume x E .?(z). Choose w <,< z such that x = .t( w). Choose u E G such that 

VUE G”: M~(v)=z((u). v). Choose U’E H such that f(u’)=u. We have VVE 

H*: w”(v) = w(.f 0 u) = z((u) . (fo v)) = z”((u’) . II), so w” <w z” and x = sI(w”) E 

f(z”). 

Now assume x E .?(z”). Choose w’ <,< z” such that x = .?(w’). Choose u E H such 

that Vu E H*: w’(v) = z”((u). v). Let u’=_/“(u) and w = v E G* - z((u’) . v). We have 

w <K z and Vu E H”: w”(v) = w(fo u) = z((u’) . (.f 0 u)) = z”((u) . v) = w’(v). Hence, 

x = ?( M?‘) = s1( U”‘) = s1( w) E i(z). 

We may now conclude ?(z) = t(z)‘) for all z E G”. From the assumption of the 

lemma we have z’ = z”, so .<(z) = s1( z’) holds. 0 

Lemma 152.2. Let 1 E 6, i E ~6 and x E @. IfX 2 I and x = c(i) then s(x) = .?(x’). 

Proof. Define 

i=yE di* H a-(i)(y), 

i’= y E 6* - k(Z)(y), 

i=yE d* - a’(?)(y), 

5’ = y E 4* ++ b(i)(y), 

z = y E @* ++ a(x)(y), 
- 

f = u E @ H v E PR[l - C(u)(v), 

f=uEcLc(U). 



Let f, 6 3 4 satisfy j-( 24) ~uforu~~\~and~(u)=uforu~~.Choose~usuch 

that x’ E &(a). According to the relativization of Theorem 11.2.1 we have 

Further, 

, 
fE@-4, j+= 4, 

, 
fE@-+@,, f'=@. 

We now prove i, i)E &, 2, i’E do, ZE @“ and .?(,?)=sl(i)=sl(i’)=sl(i)=s1(i’)= 

f(z) = S(X). 

For ye&‘” we have i(y)=a’(l)(y)=x’(u~y~++v~x~~~-6(y(u))(u))= 

X’(UE~~Hf(y(u)))=T(j:oy). Hence, in 6’ and s^(i)=s^(x’) by Lemma 15.2.1. 

From the isomorphism theorem we have i= i’, so YE & and s^(i’) = f(i). 

Let y E 6* from the definition off’ we obtain fo y E 6* and fo y g* y, so I# 

a’(W”iOY) GL a'(Z)(y) which entails d(~Z)(f’o y) = a’(Z)(y). Hence, i’(jo y) = 

a’(%)(fo y) = a’(%)(y) = g(y) which gives in 6’ and $(i) = s^(i’) by Lemma 15.2.1. 

Let y E d*. From x’ 2 x’ we obtain I# 6(x’)(y) So a’(i)(y), so i(y) = a’(X)(y) = 

&(x’)(y) = i’(y). Hence, i= i’, 2’~ & and f(Y) = t(i). 

Let y E d*. We have i’(y) =&(x’)(y) = a(c(x’))(c*(y)) = a(x)(f oy) = z(f 0~). 

Hence, ZE @” and t(z) = s*(i)) by Lemma 15.2.1. 

In what follows let z and z’ be shorthand for YE @* - a(x)(y) and YE 

@* H a(x’)(y), respectively. We now prove Vx E @: S(X) = f(z) by induction in x 

and ca. 

If x=T then s(x)=@=.?(z). Now assume x#T, XE@ and VX’E@: 

(x’ <A x*s(x’) = .?(z’)). From x ZT we have z(( )) = x. 

Assume w E s(x). Choose x’ ca x such that w = s(x)). Choose u E @ such that 

x’=(xu). For all UE@* we have z’(u)=u(~‘)(~)=a(xu)(v)=u(x)((u)~ v)= 

z((u) . u), so z’ cM, z. From w = s(Y) = $z’) and z’ <K z we conclude w E s(z). Hence, 

w E s(x)*w E T(z). 

Now assume w E t(z). Choose z” <,,. z such that w = $(z”). Choose u E @ such 

that Vu E F*: z”(u) = z((u) . v). Let x’= (x u). We have x’ <Ax and Vu E F*: z’(u) = 

z”(u), so w=.?(z”)=.?(z’)=s(x’)~s(x). Hence, WE.?(Z)JWES(X). 

We may now conclude S(X) = ?(z). Hence, S(X) = t(z) = ?(z’) = f(i) = s^(i’) = 

s^(i) = ?(.q. q 

Lemma 15.2.3. k(H) cK Ga3x E G”: H = sI(x) 

Proof. By induction in H and E : If H = (d then let x = u E G* H 7. If H #(d then 

for each h E H we have tc(h) =s, G. For each h E H assume by the inductive 

hypothesis that k,, E G” satisfies h = ?(k,,). Let g E G ++ H be surjective (i.e. g’= H) 
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(this is possible because H sK G). Define XEG’ by x(0)=x and VUEGVVE 

G”: x((u) . u) = kKtu,(2)). The lemma follows from H = g(x), which we may verify 

as follows: 

SI(x)={$x’)Jx’<..x} 

={~(x’)~~uEGVVE G*: x’(u)=x((u). v)} 

={~(~‘)(3u~GVv~G*:x’(u)=k,,,,,(v)} 

={SI(x’)13u~ G: x’= k,,,,} 

= {.%kg,u,) I u E G> 

={.?(k,)luE H} 

={U~UE H} 

=H. 0 

Let cy cop. From Theorem 11.2.1 we have &‘(a) cK o’(p) (this follows from 

I :,,a in Theorem 11.2.1). Further, from the definition of &(cy ) we have 

@(a) cK &I), so G’(a) cK @(/3). H ence, there are G’(p) of arbitrarily large 
1 

cardinalities. From the definition of & we have x E @ @ 3/3: x E @(/3)O. This com- 

bined with the previous lemma gives the Adequacy Theorem. 

Theorem 15.2.4 (Adequacy Theorem). Vy3x E 6: y = i(x) 

As mentioned in Section 10.6, the Adequacy Theorem is central in understanding 

the role of 6 in the model construction. 

Corollary 15.2.5. We have Vy E D 3x E @: y = s(x) and Vx E @: s(x) E D. 

Proof of the corollary. The definition of c,~ is stated such that <,,. is absolute. 

Hence, s^ is absolute, so we may conclude Vx E 6: s(x) E II. The relativization of 

the Adequacy Theorem gives Vy E D 3x E 6: y = g(x). Now the corollary follows 

from Lemma 15.2.2. I7 

15.3. Semantics of membership 

In Section 13.5 we stated lemmas about the semantics of if, T, k, i, G, i, i, A, \i, 

3, e, 3, \b and 9. We now proceed by e and i. Define 

equal = \ijhl./jj. (ii x (ii j i F) (ii y k 

hiC~ti.(,j(itij (l;tijj~3tiki.(.f(.ttij &jj)), 
X&1’ = (eqklxyj, 

be&g = hx./il;.(if 1; 6 3ti.x 6 (9 ti j), 

xiy = (beldngxyj. 
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In what follows, let d E Mv and x, y E Q. Since x # I and y f I we have :‘x and 

yy. From the semantics of 9 we have 

From the semantics of if, T, k and A we have 

:x&y. 

Now assume Vu, z E @: f(x u) G z. From the semantics of if, T, t, A, ti and 3 we 

conclude vy E @: 7x-y. Hence, by the Induction Theorem (Corollary 11.10.4) we 

have 

:X&y. 

From the previous section we obtain 

ZES(X) @ ~#TA~uE@: z=s(xu). 

Hence 

s(x)=s(y) ti x=T~y=TvxfT~y#T 

AVUE @ 3UE @: s(xu)=s(yv) 

A vu E @ 30 E @: s(x u) = s(y u). 

From the semantics of ii, T, 6, A, 9 and ?l we have 

:x&y ti x=T~y=Tvx#T~yfT 

AVuE~3vE~:~iXuj~~yvjAv/UE~3UE~:~iXUj~~yuj. 

Hence, by the Induction Theorem we have 

:x&y @ s(x)=s(y). 

From the semantics of ix k, 3 and 1 we obtain 

:x&Y, 
D 
d~iy and 

:xiy e y#Tl\!tuE @: s(x)=s(yu) CJ s(x)Es(~). 

15.4. Terms of ZFC and their values 

In analogy to the definition of A? define the set Z of well-formed formulas of 

ZFC and related concepts as follows: Let Z be the least set such that 

Vu,lJ&U;iVEZ, 

VXEZ: ‘iXEZ, 

Vx,yEZ: X3$EZ, 

VUE PVXEZ: GU: XEZ. 
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Foru,v,wEqandx,YEZdefine 

free(u,vGw) e u=vvu=w, 

free( u, 7x) @ free( u, x), 

free(u,x3y) e free(u,x)vfree(u,y), 

free(u, Gv: x) e u # v r\free(u, x). 

Define D” = c - D. For all x E Z andj”E D” define the interpretation ,x as follows: 

,ue u @ f(U)Ef(V), 

,7x @ 1,x, 

,x+y ,a ,x=+,y, 

,8u: x @ VgE D”: (VVE i/\{u}:,f(v)=g(v)3,x). 

For all x E Z define the translation Ix of x into map theory as follows: 

.l(uiiv) = uiv, 

&lx = i 4x, 

I(x*Y = (Ix) + (JY), 

Jtlu: x = ‘bu.Jx. 

Define F” = c + @‘, let d E F “, and let f = s 0 d. We have fE D “. From the semantics 

of i, i, 3 and ‘b, and by structural induction in x E Z we obtain 

3% :Jx and :4x e ,x. 

15.5. Consistency proof 

As stated previously, Map Oi is Map” extended by the translation of any theorem 

of ZFC ‘. Now that we have defined ix, we may define Map”’ more formally: Map”+ 

contains all axioms and inference rules of Map”. Further, if x is a theorem of ZFC’ 

whose free variables occur among u, . . . u,,, then we include 

f&L,, . . . , f$u,, -; Ix 

as an axiom of Map’+. Map”’ is axiomatic since its axioms and hence its theorems 

are recursively enumerable. To ensure definedness in Map”+ of all well-formed 

formulas of ZFC, we also include 

$u,, . . ) &,, j ‘!Jx 

for any well-formed formula (theorem or not) of ZFC. 

Theorem 155.1 (Semantic Adequacy). Let XEZ. Assume that the free variables of 
\ 

x occur among u,, . . , u,, E V. We have 

$u,, . . ) c&i,, -A ilx, 
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Proof. Let d E M “. Assume :$u,, . . , :&,. We have do,, . . . , do,, E @. Define e E 

M” by 

e(v) = 
d(u) ifvE{U ,,..., u,}, 

T otherwise. 

We have e E F” and &x = .&x. 

Since e E F” we have T$x which entails y&x and f;iJx. Hence, $u,, . . . , $u, i ‘!&x 

follows from the deduction lemma. 

Now assume VIED”: .fx. Let f = s 0 e. We have f~ D”, so fx holds. Further, 

rx@~J,x~~~x, so &,, . . . , &t,, 4 Ix follows from the deduction lemma. Hence, 

b'f E Dv: ,~xG+,, . . . , &A, + &x. 

Now assume &,, . . . , C&U, -G Ix and f E 0”. Choose e E FV such that f = s 0 e 

(this is possible since s E @ -+ D is surjective, i.e. sr = D). We have $&, , . . . , T&u,,, 

so TJx follows from &,, . . . , &A,, i Lx. Since TJx@,x we have verified that 

$u,, ’ ‘. 9 &, i Jx+Vf E D”: ,x. 0 

We have now proved that the transformation of any ZFC statement which is true 

in D, holds in M. Taking D to satisfy (a finite set of axioms of) ZFC’ we obtain 

the consistency of Mu,‘+ as stated in (10). 

Taking D to be defined as in (11) we see that we may also consistently extend 

Map by the translation of any statement of ZFC true in this D. 

16. Conclusion 

16.1. Summary of results 

Part II documented the expressive power of map theory by developing set theory 

in it, and Part III has verified the consistency. Furthermore, the notion of truth has 

been defined in Section 3 and we have presented a few other constructions that are 

beyond the capability of set theory. In conclusion, map theory is an alternative 

foundation to set theory. 

16.2. Further work 

Further work is needed to improve the axiomatization of map theory. In particular, 

it is unsatisfactory that well-foundedness is expressed by ten axion schemes and 

one inference rule, none of which explain the intuition behind well-foundedness. 

It is also not satisfactory that no axiom expresses the monotonicity of maps. Define 

xLly=(ifx(ifyTJ_)(ifyIAu.(xu)Ll(yu))). 

We have x G y iff .x = xUy, so one formulation of monotonicity could be x G 

y t (fx) s (fy) where x G y is shorthand for x = XU y. 

The Quantify4 and Quantify5 axioms ought to be superfluous once monotonicity 

is stated as an axiom. 
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16.3. Equality is better than truth 

The author strongly prefers to express theories using equality rather than truth 

as the basic concept, i.e. without using logic, logical connectives and quantifiers at 

the level of axioms. One reason is that the basic laws of equality such as 

x=y;x=z t y=z 

are simpler and more appealing than the basic laws of logic such as 

Another reason is that theories based on equality immediately suggest to form term 

models and thereby give a better understanding of the nature of Skolem’s paradox 

[22]. A third reason is that using equality does not favor one particular kind of 

logic, e.g., classical or intuitionistic. One could say that there are many kinds of 

logic but only one kind of equality (unfortunately, however, h-calculus traditionally 

messes up equality by calling various relations “equality” even though they are 

really just equivalence relations on syntactic domains). A fourth reason is that use 

of equality as the basic concept eases the definition of “the notion of truth” which 

reduces to a self-interpreter for theories based on equality. The formalization of 

map theory using equality as the basic concept demonstrates the expressive power 

of this approach. 
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Index to Part III 

Map theory 

In the index, references in parentheses refer to informal definitions. 

Note that in Part III accents are used differently from Parts I and II. 

Relations involving stars are omitted from the index. See Section 9.6 for an explanation. 

Example of use: The construct x g F; y has parameters X, y and G. The construct itself consists of an 

equal sign, an accent, and the letter a. In the index, the construct could be located under = or under a. 

It is located under = because that character comes before a in the index. 

The reader can obtain a combined index/alossarv directlv from the author. The index/glossary extends - . 
the index below with a short explanation of each construct 

Constructs involving parentheses 

9.2 f(x) 
9.2 (x,?..) 
9.4 (X,, , x,,) 
9.4 ( ) 

9.8 f(b)) 
(10.1) 11.9 (fir x,,) 

9.9 (fx, x,,j 

9.9 ]&f] 

9.10 ],cp] 
12.3 [d/x := %] 

12.4 [i&l 

Constructs involving = 

9.5 G =* H 
(10.7) 11.4 f-g 

12.5 d A B 

11.1 f^‘;; g 

11.4 f -;g 

10.2 f=6g 
11.4 f A_lng 

11.4 f’$, g 

Constructs involving < 

9.3 a GOP 
9.5 G<,H 

9.7 x S, y 

(10.1) 13.5 f s g 
(10.7) 11.4 fig 

Constructs involving < 

9.3 a CO p 
11.2 x <““!’ 

9.5 G <P H 
11.1 X <ppy 

9.5 G cX H 

9.8 f<,, g 
(10.1) 11.10 fiAg 

11.10 f<,g 

Alphabetic constructs 

Greek 

9.9 Qx 

10.1 AX.& 

9.9 /ix..& 

12.4 ;\x..p2 

9.7 x 

11.4 5 

9.5 P(G) 
9.10 cr 

9.9 &r 
14.3 i,,r 

(10.3) 11.9 @ 

15.4 F” 

(10.6) 11.1 6 

(10.4) 11.3 6 

11.4 6 

(10.3) 14.2 Q’(u) 

14.2 @<;(cr) 
(10.6) 11.1 &(a) 

(10.4) 11.3 &(cr) 

14.2 d’(u) 
(10.3) 14.2 @“(a) 

14.2 @;(a) 

(10.6) 11.1 &“(a) 

(10.4) 11.3 &.“(a) 

14.2 &(a) 

9.3 w 

9.4 G” 

A 

(10.1) 14.2 a(f)(x) 
(10.5) 11.1 a^(f;X) 

(10.8) 11.3 i(f)(x) 

(10.7) 11.4 ,6(f)(x) 
(10.1) 11.9 A(f;x) 

9.9 A(f; x) 

B 

12.5 ;& 

15.3 beiong 

C 

(10.7) 11.9 c(.f) 

(10.7) 14.2 c*(,f) 

14.2 c”G 
(10.1) 11.9 c 

9.9 c 

9 Con(X) 
14.3 curry 

D 

E 

F 

G 

H 

I 

K 

9.2 f “ 
9.2 CD 

9.10 D 

12.5 ;& 

15.4 Dv 

11.6 k 

15.3 eqlal 

12.1 f 

12.5 F 

13.5 i 

9.2 fnc(x) 

12.3 free(x, &) 
12.3 freefor(d, x, 3) 

12.1 g 

12.1 h 

11.2 I:rp 

9.9 (iixyz) 

(10.1) 11.9 K 

9.9 Ii 

L 

9.7 L 

M 

(10.1) 11.9 m(f,x) 

(10.7) 11.4 tfi(f;x) 

(10.1) 11.9 M 

(10.7) 11.4 if 

12.1 hi 

11.7 ti, 

12.1 lcf, 

12.5 M” 

9 Map 
9 Map” 
9 Map”+ 
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0 
9.3 On 

9.3 ord(x) 

P 
9.1 3G 

(10.1) 11.9 P 
9.9 P 

14.3 P 

14.3 Prh 

Q 
13.2 y(G) 

11.4 q(G) 

13.2 cj,cG) 

(10.6) 11.1 Q 

(10.4) Il.3 d 
(10.3) 14.2 Q’(a) 

(10.6) 11.1 $(a) 

(10.4) 11.3 6’(a) 

14.2 ~$‘(a) 

14.2 Q:,(a) 

R 

10.1 r(f) 

(10.7) 11.4 i(j) 
11.4 i’(v) 

11.4 i”(a) 

9.2 f’ 
9.2 R 

11.2 R& 
9.2 GK 

s 

(10.1) 15.1 .df) 

(10.6) 15.2 t(f) 

(10.1) 11.9 s 

9.9 s 

11.2 s:,, 

9 SI 

T 

(10.2) 14.2 t<;(f) 
11.1 i,;(f) 

11.2 <<;(.f) 
14.2 I<;(f) 

14.2 t*,(f) 

11.1 i:;c.j, 

14.2 &(f) 

9.5 /c(G) 

9.4 rp/(x) 
(10.1) 11.9 T 

9.9 i 

11.10 i 

11.10 i 

9.7 f 

12.5 I,& 

U 

12.1 ti 

9.1 UG 

V 

12.1 ti 

9.9 d, 

9.9 ij, 

12.1 c 

W 

12.1 i 

(10.3) 14.2 MT(G) 
14.2 *j’(G) 

(10.1) 11.9 w 

9.9 w 

X 
12.1 .\: 

9.9 i 

Y 
12.1 ?’ 

9.9 j 
13.5 Y 

Z 
12.1 i 

15.4 z 
9 ZFC 
9 ZFC+ 

Other constructs 
9.1 Isp 

13.5 id 
9.9 lid 

13.5 .s4 A %I 

13.5 .dV 3 

9.1 &cl!‘39 

13.5 &A,% 

9.9 aGg 

9.1 do% 

13.5 d&a 
13.5 Vx.d 

9.9 tlx:d 

13.5 ax..rI 

15.1 xc,l 

9.9 xi I’ 

15.3 x-1 

13.5 Gx 

13.5 ix 

13.5 ix 
13.5 xi) 
13.5 Y ,,..., x,,i.l 

(10.1) 11.9 I 

9.9 i 
9.7 i 

9.2 G x H 
9.2 G+ H 
9.2 x E G H .d 

9.2 .fo g 

9.2 .f’jG 

9.3 0 
9.3 a+ 

9.4 G* 

9.4 “‘,l 

9.7 UG 

9.8 G” 

(10.4) 14.2 dG 

14.2 VG 

14.2 tG 

15.4 J.d 
12.5 ,,.d 
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