Theoretical Computer Science 102 (1992) 1-133 1
Elsevier

Fundamental Study

Map theory

Klaus Grue

DIKU, The University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark

Communicated by M. Nivat
Received May 1990
Revised November 1990

Abstract

Grue, K., Map theory, Theoretical Computer Science 102 (1992) 1-133.

Map theory is a foundation of mathematics based on A-calculus instead of logic and sets, and
thereby fulfills Church’s original aim of introducing A-calculus. Map theory can do anything set
theory can do. In particular, all of classical mathematics is contained in may theory. In addition,
and contrary to set theory, map theory has unlimited abstraction and contains a computer
programming language as a natural subset. This makes map theory more suited to deal with
mechanical procedures than set theory. In addition, the unlimited abstraction allows definition,
e.g., of the notion of truth and the category of all categories. This paper introduces map theory,
gives a number of applications and gives a relative consistency proof. To demonstrate the expressive
power of map theory, the paper develops ZFC set theory within map theory.
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Part 1. Introduction to map theory
1. Overview

1.1. Properties of map theory

This paper introduces a theory — Map Theory — which has five important
properties:

(1) map theory is a rigorously-defined formal theory;

(2) map theory has enough expressive power to serve as a foundation of all of

classical mathematics;

(3} map theory has unlimited abstraction and a computer programming language

as a natural subset;

(4) map theory is as simple as set theory;

(5) relative consistency proofs for map theory exist.

It is hard to find other theories with all of these properties. Set theory [17,22]
fails to satisfy (3). This makes map theory more suited as a foundation of computer
science than set theory. Theories like intuitionistic type theory [20], A-calculus [3],
and Meta-IV [8] fail to satisfy (2). Category theory [18, 4] is the common name of
a host of theories, each of which fails to satisfy at least one of the points above.
All versions of category theory in practical use fail to satisfy (1). Attempts have
been made to make set theory satisfy (3} [1, 6], but set theory is highly nonconstruc-
tive and inherently unsuited to support computer science.

Set theory is suited as a foundation of all of classical mathematics, and map
theory is intended to enlarge the scope to include algorithms, metalogic and computer
science. It is easy to move from set to map theory since all concepts of set theory
are definable in map theory and all theorems of set theory (ZFC to be precise) are
also theorems of map theory. ZFC as stated in [17] has four elementary concepts:
membership (&), negation (—1), implication (=) and universal quantification (V).
To demonstrate the expressive power of map theory, this paper defines all four in
map theory and proves that any theorem of ZFC is provable in map theory.

1.2. Comparison with earlier work

Map theory is considerably different from set theory, but compares well to set
theory with respect to formal rigor, expressive power and relative consistency. Hence,
map theory has finally turned A-calculus into the alternative foundation it was
originally intended to be.
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References [23, 24] reviews earlier attempts to turn A-calculus into a foundation
and make their own contribution. Reference [24] concludes, however, that the
attempts did not succeed well.

Like earlier attempts, map theory is based on functions. Functions are termed
maps in map theory. Reference [23] identifies certain functions to be particularly
well-behaved and calls them definite. Likewise, map theory identifies certain maps
to be well-founded. However, the definition of well-foundedness differs from any of
the earlier attempts and is crucial to the expressive power of map theory.

Earlier attempts let a function f represent the set

{x]f(x) = true},

whereas map theory let a map f represent the set

{f(x)|xe @}

where @ is the collection of well-founded maps. The difference is like the difference
between co- and contravariance.

As a consequence of the representation of sets, earlier attempts have used f(x)
to stand for x € f and Ax.« to stand for {x| s¢}. Matters are slightly more complicated
in map theory due to the different representation. In particular, A-abstraction and
set abstraction are two different things in map theory. The paradoxes of set theory
have shown that unrestricted set abstraction is unattainable, so in hindsight it is no
surprise that unrestricted A-abstraction differs from set abstraction.

Map theory also differs from earlier attempts in that it is based on a type-free
but not completely pure A-calculus: In addition to functions and the inevitable L
element, the maps of map theory also comprise a single object which is not a
function. This is no dramatic innovation but crucial to the expressive power of map
theory and deserves mention here.

1.3. Three descriptions

This paper gives three descriptions of map theory: an intuitive, an axiomatic, and
a model theoretic one. Part I, IT and I1I take these three points of view, respectively.

Part I uses words like function, set and tree in the naive sense. Sets of ZFC and
classes of NBG [22] are referred to as ZFC-sets and NBG-classes, respectively.
Part I gives the intuition behind map theory and sketches a number of applications
of map theory.

Part 11 presents an axiomatization of map theory and develops ZFC within that
axiom system. This verifies the expressive power of map theory.

Part 111 proves the consistency of the axiomatization from Part II. To do so, Part
IIT has to assume the existence of a strongly inaccessible ordinal [22, 17]. Part 111
also considers the consistency of various weaker and stronger axiomatizations of
map theory.

Part I1 and III together demonstrate the consistency and expressive power of
map theory and thereby verify that map theory deserves to be called a foundation.
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2. The intuition behind maps

2.1. Black boxes

Think of a map as a black box with an input, an output and some hidden
mechanical computing machinery inside. Whenever a black box f receives an input
x, its machinery starts working and delivers an output after a while. Let { fx) denote
this output. The term (fx) reads “f applied to x”.

A black box f merely accepts black boxes as input and merely produces black
boxes as output. The simplest black box is the identity I which, whenever it receives
a black box x as input, delivers this x unchanged as output. This I satisfies (I x) =x
for all black boxes x. Other notations read I:x+— x and I = Ax.x.

Another example is the black box I'= Ay.Ax.x. Whenever it inputs a y, it outputs
Ax.x regardless of the value of y. In the other notations we have (I'y)=1 and
I':x— I Since (I'y)=1 and (Ix)=x, we have ((I'y) x)=x. Let (fx,...x,) be
shorthand for (... ((fx,) x5) ... x,). With this convention, (I' y x) = x.

Two further examples are K = Ax.Ay.x and S=Ax.Ay.Az(xz (y z)) which satisfy
(Kxy)=xand (Sxyz)=(xz(yz)).

In essence, the machinery inside a map can do anything a real world computer
can do, and in addition it can run infinitely many processes in parallel. Even though
maps have infinite computational power, there are, as we shall see, operations they
cannot perform.

A particularly interesting map is R = Ax.(x x) which is closely related to Russell’s
set {x|x & x}. When R receives a black box A as input, it takes two copies of A and
enters one A as input to the other A. When the output of the latter A appears, R
takes it and outputs it as its own output. Hence, computation of (R A) causes
computation of (A A). If a copy of R is entered as input to R, then computation
of (R R) causes computation of (R R), which in turn causes computation of (R R)
and so on indefinitely. Hence, when R receives a copy of itself, it will work
indefinitely without producing output.

Let L (bottom) denote “‘no output”. With this convention, (R R) = L. As another
example, let R'=Ax.(xxx). Since R’ produces no output when it receives R as
input, (R'"R)=1=(RR).

Even though L denotes “‘no map”, it is considered to be a map. At this moment
a map is either L or a black box, a black box accepts both L and black boxes as
input, and it may produce both L and black boxes as output.

Since L has no input and output, (L x) does not make sense. Nevertheless it is
convenient to define that (1 x) = L for all x. This convention ensures that (fx) is
defined and is a map for all maps f and x.

2.2. White boxes

All black boxes look the same from the outside, but their inner machinery may
react differently to input.
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The limited output facilities of black boxes make them useless, so it is necessary
to enhance them slightly. As an example, consider a black box f which, given an
input x, decides whether or not x has a certain property p(x). How should f
communicate its findings to the outside world?

One possibility is to let f output one black box if p(x) is true and another if p(x)
is false, but that would not be very helpful since all black boxes look the same.

Another possibility is to let f output a black box if p(x) is true and loop indefinitely
if p(x) is false. Then if (fx) produced output, p(x) would be known to be true.
However, if (fx) had not produced output after a while, then this could either
indicate that p(x) is false or that p(x) is true but f needs more time to find out.

To remedy for this, we now introduce the third and last kind of map: a white box
with no input, no output and no machinery inside. The central property of a white
box is that it is immediately distinguishable from any black box. Any two white
boxes are equal.

Now a map is either L or a white box or a black box. Black boxes accept L,
white and black boxes as input and produce 1, white and black boxes as output.

Most theories are based on a logic, but map theory is not. In map theory, by
convention, the white box is used to represent truth and the black boxes are used
to represent falsehood. The map 1 represents undefinedness.

Let T denote the white box. The similarity of the symbols T and L is incidental:
T denotes truth whereas | denotes the bottom element of an ordering to be defined
later.

Since T has no input and output, (T x) does not make sense. Nevertheless, it is
convenient to define that (T x) =T for all x. This convention ensures that ( fx) is
defined and is a map for all maps f and x.

Let 'T', X, and I denote “white”, “black™ and ‘“‘no color”, respectively, and let
r(f) denote the color of f. With these conventions,

r(T) =T,
r(L)=1,
r(x)=2X for black boxes x.

From now on, we refer to black boxes as proper maps, to T, X and I as labels,
and to r(f) as the root of f.

Three-valued logic [16] has three truth values true, false and undefined. Map
theory represents them by T, X and 1, respectively, More precisely, T represents
true, 1 represents undefined, any any proper map represents false.

Let M denote the (naive) set of all maps. The set M is neither a ZFC-set nor an
NBG-class.

2.3. Equality of maps
Two maps f and g are equal iff

r(fx ...x,)=r(gx,...x,)
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for all n=0 and all maps x,,..., x,. This defines equality of maps from equality
of labels. The definition is close in spirit to the definition of equality of sets: two
sets A and B are equal iff xe A< x e B for all sets x. This defines equality = of
sets from equality & of truth values.

Theorem 2.3.1. Two proper maps f and g are equal iff (fx) = (gx) for all maps x.

Proof. Assume fand g are proper,i.e., r(f)=r(g)=A.If f=gandif x isa map then
r(fx)x,...x)=r(fxx,...x,) |
=r(gxx;...x,)
=r((gx)x ... x,)

for all n =0 and all maps x,, ..., x,,s0 (fx)=(gx). On the contrary, if (fx)= (g x)

for all maps x, then r(fxx,...x,)=r(gxx,...x,) for all n=0 and all maps
X, Xy, ..., X%,. Combined with r(f)=r(g) this gives r(fx,...x,)=r(gx,...x,) for
all n=0 and all maps x,,...,x,,s0 f=g 0O

2.4. Well-founded maps

Map theory uses T and proper maps to represent truth and falsehood, respectively.
Map theory also uses T to represent the empty set § and certain proper maps to
represent the nonempty ZFC-sets. Those maps that represent ZFC-sets are going
to be termed well-founded; the others will be termed ill-founded.

A map f is said to be well-founded w.r.t. a set G of maps if

Vx,,%,...e G3aAn: (fx,...x,)=T.

Let G° denote the set of maps that are well-founded w.r.t. G. In particular, let ¢°
be the set of all maps except L.

The set @ of well-founded maps is the least set such that
® Te @, and
e if Go & is a set of “limited size” and Vxe G° (fx)e &, then fc @, where

“limited size” will be defined shortly.

The definition builds up @ in stages. The first state @, merely contains T, so
&, ={T}. Stage a contains all maps whose well-foundedness can be verified, knowing
that all maps on stages before stage a are well-founded. For example, Ax.Te @,
because Yx € ¥°: ((Ax.T) x) =T € @, and because ¢ happens to be a set of limited size.

A well-founded map f is said to be introduced at stage @, if it belongs to that
stage but does not belong to any previous stage. A well-founded map g is introduced
before a well-founded map f if the stage where g is introduced comes before the
one where f is introduced.

The stock of a well-founded f is the set of all those well-founded maps g that
have to be introduced before f can be introduced. However, it is difficult to formalize
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this definition, so we shall use another: The stock of a well-founded f is the set of
all well-founded maps introduced before f. Let /* denote the stock of f.

A set of well-founded maps is of limited size it it is (or is a subset of) the stock
of some well-founded map. Hence, @ is the least set such that
® Te @, and
¢ ccPaAVxeg™: (fx)ed=>fed.

The process of introducing well-founded maps comes to a halt by itself. The size
limitation in the definition of @ prohibits new maps to be introduced at stage o or
later where o is the first strongly inaccessible ordinal (if such a one exists). As a
consequence, the “standard”” model for map theory has no inaccessible ordinals
(but map theory has “nonstandard” models in which strongly inaccessible ordinals
exist).

The universe of ZFC is constructed in a similar manner. However, “limited size”
is not mentioned in the construction of the ZFC universe even though that concept
is central in ZFC. As a consequence, the construction is imprecise in that it does
not specify when the process of introducing sets stops.

One stage approach to ZFC is stated in [25]. In that approach, a set S may only
contain sets introduced before S. Another approach is the transfinite iteration of
the power and union operations described in [22]. In both cases, the constructions
provide support for the axiom of foundation more than they explain how the
paradoxes are avoided.

2.5. Operations on maps

Maps can perform a few basic operations which they can combine in numerous
ways. Among other, they can refer to their input and to the maps T and L, they can
apply one map to another, and they can make abstractions.

Sections 2.1 and 2.2 gave examples of these operations, but the examples are
repeated here for emphasis. The map Ax.x outputs its input x unchanged, so Ax.x
refers to its input. The map Ax.T outputs T irrespective of its input, so Ax.T refers
to T. Likewise, Ax.L refers to L. The map Ax.(x T) refers to its input as well as T,
and applies the former to the latter. The map Ax.Ay.x inputs x and outputs a black
box Ay.x, which in turn outputs x for any input y. Hence, Ax.Ay.x builds an
abstraction.

Consider R=2Az.(zz), R"=Ay.(RR), and R"= Ax.Ay.(R R). When R" receives an
input x, it outputs R’. When R’ receives an input y, it loops indefinitely in the
attempt to compute (R R). Hence, computation of (R” x) does not in itself cause
(R R) to be computed even though it is part of R”. Rather, computation of (R R)
is delayed until R’ receives input. Black boxes are lazy [14] in that they delay all
computations they are not forced to perform. Rather, they stop computing immedi-
ately when they have determined the color (black or white) of their output, and
leaves it to their output to continue the computation if necessary.

Black boxes can perform three more operations: they can select, choose and
classify.
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Selection (if x y z) is an operation on three maps x, y and z If x is a white box,
then y is selected, and if x is black, then z is selected. If x is L, then one must wait
forever for x, and it is impossible to choose between y and z. Hence, (if L yz)= L.
In short,

y ifr(x) :'T',
(fxyz)={z ifr(x)=A2,
Loifr(x)=1.

This construct is the McCarthy conditional ([21, p. 54]), and is well-known in
computer science.

The operations stated so far are all machine executable, and they form a Turing-
complete [22] computer programming language. The last two operations—choice
and classification—are not executable on any real machine, and they are the ones
that make map theory a powerful theory rather than another programming language.

Choice ef is an operation on a single map f. When a black box performs a choice
ef, it first computes (fx) for all well-founded x, and waits for all these infinitely
many computations to terminate. If (fx) loops indefinitely for any well-founded x,
then gf never terminates, i.e.,

Ixcd: (fx)=1 = gf=1. (1)

If (fx) terminates for all well-founded x, then ¢f chooses a well-founded x such
that (fx) =T if such an x exists. Otherwise, £/ chooses a well-founded x such that
(fx)#T in lack of better. In other words,

Vxe®: (fx)#1L = efe®, (2)
Vxed: (fx)Z1Ladxed: (fx)=T = (fef)=T. (3)

The choice operator £ chooses in a deterministic rather than random way as
expressed by Ackermann’s axiom ([ 10, p. 244]):

Vxe®: r(fx)=r(gx) = ef =eg 4)

The construct £f corresponds to Hilbert’s epsilon operator [15].

A map p represents a predicate in the following sense: The predicate is true for
a map x if (px)=T. It is false if (px) is proper, and undefined if (px)= L. The
construct ep attempts to choose a well-founded x that satisfies the predicate p, but
may fail if no such x exists or if (px)= L for some well-founded x. Ackermann’s
axiom states that if p and g express the same three-valued predicate, then e£p and
eq pick the same x.

Classification ¢x is the last operation. It classifies x as well- or ill-founded as
follows:

6 {T ifxed,
x =
1 otherwise.

The predicate ¢ corresponds to the “menge” predicate M(x) in NBG [22].
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The terms of map theory have the following syntax. Any term denotes a map.
variable = x | y | z | ...,
term ::= variable | Avariable.term | (term term)
| T| L | (if term term term) | ¢term | sterm.

As usual, the Ax in Ax.& is said to bind all unbound occurrences of x in . A
term is closed (or is a combinator [3]) if it has no free variables. To be very precise,
a term 9B merely denotes a specific map if B has no free variables.

There are only countably many terms and, intuitively, there are more maps than
there are ZFC-sets. Hence, the terms merely denote a small fraction of the maps.
Further, different terms may denote the same map. For example, Ax.x = Ay.y accord-
ing to Lemma 2.3.1.

2.6. Well-foundedness theorems

Some terms of map theory are said to be simple and some are said to be dual.
Let 3 and 3 denote the syntax classes of simple and dual terms, respectively. Let
Xg,X),... and y,, yy,... denote distinct variables, and let £* denote the syntax
class of simple terms in which x,, x,,... do not occur free. A definition of ¥ and
3 is given by

o=y A [ (Z) | T ep37 | 63 | (iFE£53) | ((A.2) 2),

Yu=x (23] 5

where ey,.o is shorthand for £(Ay,.of) for all terms &,
As shown in Section 7, some important consequences of the definition of & are
given in the following theorems.

Theorem 2.6.1 (Totality). If & is a simple term whose free variables occur among
Yas+ s Vn, then o denotes a well-founded map for all well-founded y,,, . .., y,.

Theorem 2.6.2 (Well-foundedness). If f and a,, a,, ... are well-founded, then there
is an n such that (fa,...a,)=T.
Theorem 2.6.3 (Induction). If
P(T) and Vxed: (Vyed: P(xy) = P(x))
then

Vxe d: P(x).

Theorem 2.6.4 (Primitive recursion). Ifa, be @, if Yxe @: (gx)e P, and if

(fx)=(ifxa (gru(f(x (bu)))))
then fc @.
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These theorems allow to decide the well-foundedness of a wide class of terms
and to prove properties about well-foundedness. As an example of use of Theorem
2.6.1, ax.(if xa b) is well-founded if a and b are well-founded. As an example of
use of Theorem 2.6.2, L isill-founded (i.e. not well-founded) since (L a,...a,) =1 #
T for all n and all well-founded a,, ..., a,.

As a more subtle application of Theorem 2.6.2, I = Ax.x is not well-founded, for
if I was well-founded, then (I'I...I)=T should hold for sufficiently many I's in
succession, but (I'/...I)=T#T.

2.7. Maps as trees

Black and white boxes provide one mental picture of the maps. This “‘box picture”
considers maps as mechanical procedures (or algorithms).

The present section presents another mental picture of the maps in which maps
are thought of as trees. This “‘tree picture” considers maps as data structures, and
the two views complement each other.

The tree representation of a map f is a tree whose nodes are labelled by the labels
T, X and 1, and whose edges are labelled by maps. The tree picture f* of the map
f is constructed as follows.
® If f=T then the root node of f’ is labelled T. If f=_1 then the root node is

labelled 1, and if f is proper then the root node is labelled A.
® If /=T or f= 1, then f' has no other nodes than the root node, and f’ has no

edges. Figure 1 shows the tree pictures of T and L.

e If f is proper, then the tree picture ' of f is constructed recursively: For each
map x, the tree picture ( fx)’ of the map (fx) is constructed. Then (fx)'is attached

to an edge labelled x descending from the root node of f’ as shown in Fig. 2.

Figure 3 shows Ax.T, Fig. 4 shows Ax.(if x (Ay.T) T), and Fig. 5 shows Ax.x. The

® O

Fig. 1. The maps T and L.

Fig. 3. The map Ax.T.
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Fig. 4. The map Ax.(if x (Ap.T) T).

€
a
T @ « b

Fig. 5. The map Ax.x

figures have to be incomplete since the tree picture of any proper map is infinitely

large.

The root r(f) of the map f was introduced in Section 2.2. The root r(f) is the
label of the root node of f

As mentioned in Section 2.3, two maps f and g are equal if

(fxy...x,)=(gx...x,)

for all n=0 and all maps x,, ..., x,. Hence, two maps are equal if their tree pictures
are equal.

When computing (f'x), it is often convenient to use the box picture for f and the
tree picture for x, i.e., f is considered as an algorithm and x as data on which f
acts. While f is computing (fx), it has access to the labels of the tree picture of x
through the operations of selection, choice and classification. The map f cannot
access any further information about x since it has no operations for doing so (cf.
Section 2.5). This justifies the important property

x=y = (fx)=(fy).

2.8. Order and monotonicity

The expression r(fXx, ... x,) denotes the label of the node reached when traveling
from the root node of f downwards along the path x,,...,x,. To find the tree
picture of a map f, it is necessary to compute r(fx,...x,) for various n=0 and
maps x,, ..., X,.

Let n=0, let f, x,,...,x, be maps, and let u=r(fx,...x,). Computation of u
either yields u =T or u = X within “finite” time or loops indefinitely, in which case
r(fx, ...x,)= 1.1f computation of y has given no result after a while, this either
means that more time is needed or that u= 1. Hence, absence of a result after a
while provides no information. As a consequence, u = I means that computation
of u gives no information ever.
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For all labels u, ve{i’,f\, 1} define
U=, 0 uzivu:u.

The relation u =, v states that any information present in u is also present in v,
but v may contain more information than u. We have L < = Tand I =, X because
1 contains no information, so any information present in Iisalso present in T and
1. We neither have T < <, Anori=, T because T and A contain different information.
Figure 6 illustrates the partial order =,. The L in =, refers to label.

For all maps f and g define that f=<g iff

r(fxl "'xn)sl,r(gxl e Xy
for all n=0 and all maps x,,...,x,. Like u <, v, f=<g states that any infor-
mation present in f is also present in g. However, = applies to maps whereas =,
applies to labels. As an example, L contains “less information” than any other map.
One may think of L as a map containing ‘‘no information”.

T A
1
Fig. 6. The partial order <, on labels.

Maps have infinite computational power because their choice operation allow
them to do infinitely many computations in parallel. However, maps still resemble
physical computers in that there are operations they cannot perform. As an example
of such an operation, consider

T ifx=1
Y(x)=
(x) {F otherwise.
Suppose we want the map g to satisfy (g x) = 9(x). Now x= L iff r(x)= 1,so0to
compute (g x), g needs to compute r(x). If r(x) is computable in finite time then
x# J so g can output F. Hence, g can satisfy (gx)= %(x) for x# L. However, if
computation of r(x) loops indefinitely, then g sits and waits forever for the value
of r(x), so g produces no output. Hence, (g x) = L so g cannot satisfy (g x) = 9(x)
for all x.
The operation ¥ is not computable by any map; the operation
1L ifx=1
G'(x)= ’
(x) {F otherwise,
on the other hand, is. The difference is that %’ is monotonicin <,i.e, x < y=>%'(x) =<
%'(y). All maps f are monotonic, i.e.

x=sy = (fx)=(/r).
This is a property that maps inherit from physical computers in general and lazy
functional programs [14] in particular.
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As shown later, the monotonicity property and the existence of L give simple
explanations of Russell’s and Cantor’s paradoxes and allow the notion of truth to
be definable in map theory.

Some immediate consequences of the definition of =< are given in the following
lemma.

Lemma 2.8.1. For all maps x, y and z,
1 =x
T=sx = x=T,
X =y A X is proper = y is proper,
XSYAYSEX =2 X=Y,
XSEYAYySZ = X=72,
x=sy = (xz)=(yz).

The map T is maximal w.r.t. <, but there are other maximal maps, so T is no top
element. As mentioned earlier, T stands for truth rather than top.

2.9. Problems in defining @

The definition of @ is crucial to the expressive power of map theory. This section
considers a few alternative definitions to the authorized one given in Section 2.4
and shows how these alternatives lead to considerably weaker theories. As shown
below, if the set @ is chosen too small or too large, then the expressive power of
map theory becomes less than that of ZFC.

As an example of a too small @, consider the definition

O ={T}.
With this definition,
dx=(ifxTL), ex=(f(xT)TT),

hence, if @ ={T}, then ¢ and ¢ are expressible in terms of the other operations,
and map theory reduces to a computer programming language and, in particular,
becomes weaker than ZFC. In general, if @ has fewer elements than the universe
of ZFC, then map theory is bound to be weaker than ZFC.

As an example of a too large @, consider the definition

@ =M\{L}.

With this definition,
dx=(FfxTT).

Now define & ={T, Ax.L}. We have
xed o Jye (ﬁ:ysx.
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Hence, using the monotonicity of maps, one possible definition of ¢ reads
ex=(f(xT) (if (x Ax. L) TT) (if (x Ax. L) (Ax.L) T)).

Again, ¢ and & are expressible in terms of the other operations. In general, if a set
& of maps has fewer elements than the universe of ZFC,andif xe @3y e b: y=yx,
then map theory is bound to be weaker than set theory.

The monotonicity of maps dictates x < y=>((Az.¢z) x) = ((Az.dpz) y) = dpx < by
so xe @ Ax=y=>yec P, which restricts the possible choices of @. As an example,
if Ax.L € @, then all proper maps belong to &, and map theory becomes trivial.

On this background it would be obvious to define @ to be the set of maximal
elements of M. This possible definition, however, requires further work to investigate.

3. Uses of map theory

3.1. Logical connectives

As mentioned in Section 2.2, T represents truth, 1 represents undefinedness, and
any proper map represents falsehood. Define

F=AxT.

The map F is one of those that represent falsehood.
Define

“x = (ifxFT),

~x = (ifxTF),
Ix = (ifxTT),
ix = (ifxFF),

xiy = (ifx=y),

xvy (if x 1y =y),

x=y = (ifx=yly),
x&y = (ifx =y y).
The dots in =1, A, v, = and & are introduced to distinguish these terms of map
theory from the logical connectives 1, A, v, = and < they emulate. Part II1 uses
dots in a slightly different way.
Figure 7 shows the truth tables of x Ay and y A x. As an example of use, the
fourth line of the table states thatif r(x) =X and r(y)=T,thenxAy=Fand y A x =F.
In other words, if x is false and y is true, then both x A y and y A x are false.

Since x A y and vy A x have identical truth tables, x A y =y A x. A tautology of map
theory is an equation & = B where &/ and % have identical truth tables.
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r(x) rly)  xAy yAx
T T T T
T x F F
T 1 1 n
x T F F
x A F F
X I L 1
I T n 1
I i 1 1
1 I L L

Fig. 7. Truth tables of x Ay and y A x.

Examples of tautologies are
XAYy=yAXx, (xAyYAz=XxA(yAz), “Ax Ay)="1x v T

The formula x v -1x =T is no tautology since, for x = L, x v 1x = L # T. However,
xvox=Ix

is a tautology. Likewise, x A x = x is no tautology, for if x=Ay.L then x Ax=F# x
(actually, the right-hand side of x A x =x does not even have a truth table, which
disqualifies x A x = x as a tautology). However,

XAX===X

is a tautology.

3.2. Quantifiers
Define
Aof = =~(oA esd),
Ix.of = 3(Ax.A),
Ix.of = HFAx. L.
Assume dxe€ @: (fx)= 1. In this case, gf = L. Now let xc @ satisfy (fx)=1.
By monotonicity, 3f = (fef)==~(f L)<=(fx)=L1,so 3f = L.
Now assume Vxe @: (fx)# L. If Axe . (fx)=T, then ¢fe€ ® and (fef ) =T,
so3f=T.IfVxe ®: (fx)#T,thenef € D, 50 (fef ) #T.Since (fef ) # Tand (fef ) #

L A =~(fef) =F.
As aresult, If =1 if Ixe P: (fx)=_1 and

Ixed: (fx)=T = Af=T, Vxed:(fx)#T = 3f=F,

otherwise. The construct 3x..of states that ¢ holds for some x € @ and Vx.f states
that & holds for all x € &. However, 3x.s/ and Vx..f equal L if & = 1 for some x € .
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3.3. Recursion
Define
Sp=(Ax(f (xx))),
Y = A8, 5)),
Yid =(YA.oA).
For any map f,
(Y1) =(58)=((x(f(xx))) $)=(f(SS))
=(f (Y.
Hence, for any f, (Y f) is a g such that (fg) =g For this reason, Y is termed the

fixed point operator [3].
Now consider a recursive definition such as

(gy)=(fy T (g (yF)).
This recursive definition is satisfied by the g given by
g=YfAy(if y T(f (y F))).
As another example,
(gxy)=(if y TAz(g (y2) x))
is satisfied by
g=YfAxap(if y TAaz(f (yz) x)).

In what follows, recursive definitions are shorthand for the corresponding
definitions using Y. Further, a recursive definition like

xly=(if xT(if y F((x DIy TH)
is shorthand for

xjy = ((YfAxAp(ifx T (if y F(f (xT) (y T)))) x»)
where (fxy) plays the role of x|y within the scope of Y.

3.4. Programming

Define
hdx=(xT),
tix=(xF),
nil=T,

xiy=Aaz(ifzxy),
O =nil,
(xy=x::nil,

(X1, oo, X=X Xy e e vy X
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This defines the concepts head or car (hd), tail or cdr (1), the empty list (nil), cons
(:1), and lists (x;, ..., x,) that are typical ingredients of functional programming
languages [14].

As an example of a small program, consider the append function - which satisfies

(xl""axm>'<yl,"'7yn>:<xl9"'axm,yls"'ayn>'

A machine executable definition reads
x-y=(if xy ((hdx)::((tlx) - y))).

As mentioned in Section 3.3, this is shorthand for a definition involving Y.

The definition is machine executable in the sense that a computer can compute
the value of x- y from no other input than x, y and the definition of -.

A definition in map theory is machine executable if it makes no reference to ¢
and & Assuming Church’s thesis [22], map theory can express any computable
function by a machine executable definition. In other words, map theory without
¢ and ¢ is a general (or Turing complete) computer programming language.

The definitions above introduce lists and list operations. It is also possible to
introduce integers, real numbers, arrays, files, exceptions and all other data types
used in programming. It is possible but requires a trick to make map theory as
efficient as contemporary programming languages. These issues are interesting in
themselves, but outside the scope of the present paper.

3.5. Sets
By recursion, define s(f) for all fe @ by
s(T) =9,

s(f)=1{s(fx)|xe @} iffis proper.

For each fe @, s(f) happens to be a set of ZFC, and the well-founded map f is
said to represent the set s(f). Any set of ZFC happens to be representable by at
least one fe .

As an example, F= Ax.T represents {(J}:

s(Fy={s(Fx)|xe @}={s(T)|xc P} ={0|xe P}
={0}.

Now define P = Ax.Ay.Az(if zxy). If a, b € @ represent the sets A and B, respectively,
then (Pab) represents {A, B}:

s(Pab)={s(Pabx)|xe ®}={s(ifxab)|xe &}={s(a), s(b)}
={A, B}.

Hence, P represents the pairing operator. Accidentally, (Pab)=a::b (cf.
Section 3.4).
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3.6. Set equality and membership

Let the relation x =y denote that the well-founded maps x and y represent the
same set. Further, let ¢ and b be proper, well-founded maps that represent A and
B, respectively, i.e.

A={s(au)|uec @}, B={s(bv}|ve ®}.
The maps a and b represent nonempty sets and T represents @, so
T=T =T, T=b = F a=T =F

>

, and
a=b=T & A=B
Now rewrite A= B as follows:
A=B & AcBABc A
& VUeA: UeBAVVeEB: Ve A
S VUeA3VeB: U=VaAVVeBaAUcA: U=V
S VuedIved: (au)=(bv)aVve ®Aue P: (au)=(bv).
This allows a recursive definition of set equality in map theory:
x=y=(fx(ifyTF) (if y F(Vu Au(xu)=(y o)A (Vo Iu(xu)=(yv))).
Further,
s(a)es(b) © IVes(b):s(a)=V
< Ave P:a=(bv).

This allows a definition of set membership in map theory:

aeh = (ifbFAva=(bv)).

Now that =1, =, ¥ and ¢ are all defined, any well-formed formula of ZFC is
also a well-formed formula of map theory. Section 8 goes further by showing that
any theorem of ZFC is provable in axiomatic map theory.

Part 111 goes even further. It proves that for any consistent extension ZFC™ of
ZFC there is an axiomatization Map®" of map theory so that any theorem of ZFC"
is provable in Map°®".

3.7. Further set operators

All the usual set operators are treated formally in Section 8. However, the
definitions of the set operators are stated below to show how short they are.

In this section, let ¢ and {a, b} be shorthand for T and (Pa b), respectively.

A map p is set extensive if x =y implies (px)<&(py); or, stated more formally,
(x=y)=T implies ((px)S(py))=T. Any well-formed formula of ZFC is set
extensive. Now define

(Subsetap)=({fVx.1(p (ax)) ¥ Ax.(if (p (ax)) (ax) (aex.(p (ax))))).
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If a represents A and p is set extensive, then (Subset a p) represents {x € A| p(x)}.
Let {x € &/ | B} be shorthand for (Subset s Ax.RB).
Define

(Power’ a) = Ax.(if x d Ay.(a (x (ay)))),
(Union'a)=Ax.(a (xT) (x F)).

If a represents A, then (Power’ a) and (Union’ a) represent supersets of the power
and union sets of A, respectively. Hence, the power and union set operators are
definable by

x<y=Vz(zex>zey),

(Power a)={x & (Power a)|x < a},

(Union a) ={x & (Union' a)|3y(xeéyiyéa)}
Define

(Choicea)=(if a ® Ax.ey.(y € (a x))).

If a represents a set A of disjoint, nonempty sets, then (Choice a) represents a
choice set of A.
Define

{a}={a, a},

aw b= (Union {a, b}),
(Suca)=au{a},

(wx)=(if x @ (Suc (w (x T)))).

The (recursively defined) map o represents the least infinite ordinal.

3.8. Beyond set theory

Section 3.5 defined s(x) for all x € @, but the definition makes sense for a much
wider range of maps. As an example,

s(Axx) ={s((Axx) y)|ye @} ={s(y)|y € P},
so Ax.x represents the class V of all sets. Further,
s(Ax.ay.y) ={({(Ax.Ay.y) z}|z€ @} ={s(Ap.¥)},

so Ax.Ay.y represents the class {V} whose sole element is the class V of all sets.
This is not only beyond ZFC but also beyond NBG in which classes merely contain
sets. Now define

w=YfAxf
This w satisfies w = Ax.w, so

s(w)={s((Ax.w) y)|ye @} ={s(w)}.
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Hence, w represents a non-wellfounded set [2] W ={ W} which contains itself and
nothing else. The given representation provides exactly one such set (i.e. all sets
with the property W ={W} are equal in the given representation).

Next, define

a ={Power, Union}.

The map a represents the class containing the power and unions set operators. Such
a construction is totally beyond set theory and is syntactically impossible in ZFC.
This shows that map theory has the ability to define more complex structures
than set theory.
Map theory allows quantification over arbitrary classes: Define

Vxéyof =Vx.((Ax.od) (y x)).
For example,
Yf & {Power, Union} Ny, z(y < z=> (fy) < (fz))

states that both the power and the union set operator are monotonic w.r.t. <.

3.9. Map versus set theory

Formally, map and set theory are of approximately the same power. More
precisely, map theory can prove the consistency of ZFC, and ZFC plus the existence
of a strongly inaccessible ordinal can prove the consistency of map theory.

At first sight, ZFC is a very simple theory which has only one concept: the set.
This is not correct, however. Set theory has
® sets,
® truth values,
® the membership relation,
® logical connectives and quantifiers.

Further, in practical work, ZFC is enriched with

® set operators,

® defined relation symbols (and classes [17]).

Map theory can represent them all, but only has one concept: the map.

Previous sections have represented sets and truth values by maps. The membership
relation is representable by the map Ax.Ay.(x € y), and a logical connective such as
=>is representable by the map Ax.Ay.(x = y). Section 3.7 represented the set operator
|_J by the map Union, and a defined relation symbol like € is representable by the
map Ax.Ay.(x < y).

Even the basic operators if, ¢ and ¢ of map theory are representable by the maps
AxAp.Az(if x y z), Ax.ex and Ax.¢x, respectively. Lambda abstraction as such is hard
to represent, but as is well known [3], lambda abstraction may be eliminated by
use of the maps S=Ax.Ay.Az((xz)(yz)) and K =Ax.Ap.x

As shown in Section 3.8, map theory is more coherent than set theory in that it
is possible, e.g., to form classes that contain set operators. This is a syntactic



Map theory 23

impossibility of ZFC. The difference is due to the fact that map theory only has
maps whereas ZFC has several, incompatible concepts like sets, truth values and
set operators.

3.10. Specification

Programmers occasionally specify a program before they write it down [11, 8].
An informal specification of the append program x - y in Section 3.4 may read

The program x - y shall append the lists x and y. (5)
A more formal specification is given by

<x17"'3xm>.<y1""ayn>:<xl’"'axm’yla"',yn>' (6)

(The specifications are incomplete since they merely specify x -y when x and y are
tuples.) Finally, the program x - y reads

x-y={(ifxy ((hdx)::((slx) - y))). (7)

In general, a specification is a predicate and a program is a machine executable
definition. In the example above, the program (7) is said to satisfy the specifications
(5) and (6).

Formal specifications usually involve quantifiers, so when proving that a given
program satisfies a given specification, it is convenient to work in a theory that
supports both guantifiers and machine executable definitions. This is exactly what
map theory does—and does more coherently than other theories around.

Specification followed by implementation is one approach to programming.
Another is as follows: The programmer first writes down the program. However,
the programmer allows himself to use quantifiers and Hilbert’s ¢ operator, so the
program is not really a program, and definitely not machine executable. Next, the
programmer refines the program step by step, and in each refinement step he replaces
quantifiers and ¢ operators by executable code that perform the same operations
(which is not always possible). If the programmer succeeds, the final program is a
genuine, machine executable program. The initial and final programs are mathemati-
cally equal, but the former is short and easy to comprehend whereas the latter is
larger but machine executable. Again, map theory is a suitable environment for
such development activity.

Meta IV [8] also supports various development methods. Meta IV supports
countable infinity, quantifiers, and the & operator (the such that operator). It does
not support uncountable infinities. Hence, contrary to map theory, Meta IV is
unsuited to consider, e.g., topology and its applications to numerical analysis. It is
straightforward to define Meta IV within map theory.

The specification language Z [1] is ZFC set theory plus a number of defined
concepts that are useful in computer science. In comparison with map theory, Z
supports quantifiers and anything set theory supports, but it is impossible to state
machine executable definitions directly in Z.
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ZFC + (A-calculus) [6] supports anything ZFC set theory supports and also
supports executable definitions, but ZFC + (A -calculus) is more like a disjoint union
than a Cartesian product: it is not possible to mix ZFC and A-calculus arbitrarily
as in map theory.

At this place, unfortunately, it is impossible to discuss the wealth of existing
specification languages and compare them all to map theory.

3.11. Russell’s and Cantor’s paradoxes

Define
S={x|x¢x}, P& Ses.

Now
PoSeSeSeix|xegxieoSes
=
This is Russell’s paradox for Frege set theory [13]. Now define
S'=Ax"(xx), P'=(S8S').
In map theory,
P=(58)=((Ax"(xx)) S)="(S5"S")
=P,
However, P'=-P’ is no paradox in map theory; it merely shows P’ = L since 1 is
the unique map in map theory that equals its own negation. Frege set theory is
inconsistent because it has unlimited abstraction but no “‘undefined” truth value L.
Map theory avoids Russell’s paradox by having 1.

Cantor’s paradox is almost the same as Russell’s paradox. To see this, proceed
as follows. Let Pa denote the power set of the set a.

Lemma 3.11.1 (Cantor). For all sets a, a and Pa have different cardinalities.

Proof. Assume f:a — Pa is one-to-one. Define S={xea|x & f(x)}. Define $"ca
such that f(S") = S. Now,

S"ef(S") & S'eS
& §"¢f(S").

Hence, f cannot be one-tc-one so a and Pa have different cardinalities. [

However, let V be the set of all sets. Since ?V is a set of sets, #V < V. Further
(if we do not have uhr-elements), V< 2V, so V=2V and V and ?V must have
equal cardinalities, contradicting Cantor’s lemma. This is Cantor’s paradox.

The identity function i: V— V is a one-to-one function from V onto V =2V.
Using this for f in the proof of Cantor’s lemma yields the definitions $"=S=
{x€ V|x¢x} and the contradiction $"€ §"< §"¢ S”, which is Russell’s paradox.

A translation of Cantor’s paradox to map theory is omitted since Cantor’s paradox

is essentially equal to Russell’s paradox.
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3.12. Burali-Forti’s paradox and stages

Burali-Forti’s paradox says: The set On of all ordinals is an ordinal, and On is
the largest ordinal there is, but On U {On} is even bigger, yielding a contradiction.
The dilemma is that we cannot allow being able to form the largest ordinal as well
as constructing successors of any ordinal. Hence, the problem is to know when to
stop: it is convenient to be able to construct as many ordinals as possible, but
destructive to form the last one (which is On).

One approach to avoid the paradoxes in set theory is outlined in [25]. In this
approach, following [25], a set z can have as members only those sets which are
formed before z. Sets are formed in stages, and at each stage, each collection of sets
formed at previous stages is formed into a set. There are no other sets than those
formed at the stages.

Suppose x is a collection of sets and S is a collection of stages such that each
member of x is formed at a stage which is a member of S. If there is a stage after
all the members of S, then we can form x at this stage.

It would be convenient if any collection S of stages were followed by a stage T,
but then there should be a stage U following all stages. In particular, U should
come after itself, which is impossible (as a minimum, before and after must be
partial orders for the stage approach to make sense).

Again, the problem is to know when to stop. It is convenient to have as many
stages as possible but destructive to have a stage after all stages.

The introduction of stages does not really avoid the paradoxes. Rather, the stages
justify the axiom of foundation that says that x, 3 x,3x;3- - - holds for no infinite
sequence of x’s. The axiom of foundation simplifies set theory, but it is not essentially
needed for any practical application. Further, theories of non-well-founded sets [2]
may happen to be useful.

The theory ZFC is not explicit about when the formation of stages stops, but
it does prevent the formation of a stage after all stages. The lack of explicitness
makes it undecidable, e.g., whether or not ZFC has a strongly inaccessible
ordinal.

The theory NBG has the same stages as ZFC, but also has a “semistage” after
all stages. Collections formed at the semistage become classes rather than sets.
Collections that can be formed at the semistage but not at any previous stage are
proper classes. Proper classes are not members of any set or class since there is no
stage or semistage in NBG where collections containing proper classes can be
formed.

The approach of map theory is somewhat different. Sections 2.1 and 2.2 introduce
the notion of a map by a fairly simple definition, and Section 2.4 introduces the
collection of well-founded maps as the least collection such that

Ted,

geDPAVxeg™: (fx)eDd=>fe .
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The *‘least collection...closed under... -construct tacitly introduces the well-
founded maps in stages but, contrary to ZFC and NBG, the minimality requirement
and the built in size limitation determines the collection of well-founded maps
uniquely. As an example, the natural model of map theory contains no strongly
inaccessible ordinal. (But, as shown in Part 111, there are axiomatizations of map
theory that allow strongly inaccessible ordinals to exist.)

Among other things, map theory is an attempt to form a theory with a simpler
and more intuitively appealing universe than the various theories of sets. Even
though some of the goal has been achieved, map theory is not completely successful
on this point. To see this, consider the map

S =Ax."(xx).
Next define S'e M — M by

T if x=8,
(Sx) otherwise.

-]

Now, x=y=(8" x)=(S"y), so S’ is monotonic and §'¢ (M ™ M);,. However,
S'¢ M, forif ¢ M then §'=S, (S’ S")=T and

T=(5'S")
=(SS)
= ((Ax=(xx)) S")
=-(S'S)
=T
=F.

Hence, T=F which contradicts the definition of =. In conclusion, S’ is monotonic
but not a map.

The problem here is that there is no obvious reason why S’ should not be a map.
Rather, the assumption that S’ is a map leads to a contradiction. This is the same
situation as in ZFC: The assumption that the set of all sets exists leads to a
contradiction, so there is no such set.

The set of all sets would be very convenient to have at hand, whereas there are
probably no uses of S" above. In general, the closure properties of map theory are
strong, and it is hard to think of a useful, monotonic pre-map which is not a map.
However, it is still annoying that map theory offers no precise, positive characteri-
zation of maps.

Note, that no term of map theory denotes S', so S’ does not give rise to a paradox.

It would be a great enhancement if all monotonic, continuous operations were
maps, where continuity would have to be defined somehow. Reasonable definitions
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of continuity exist within computer science, but these definitions rule out noncompu-
table constructs like the £ operator and universal and existential quantifiers.

3.13. The notion of truth

In ZFC, a notion of truth is a predicate p(x) such that p([ s ])& o for closed,
well-formed formulas &f where [ ] denotes the Godel number of . According to
Tarski’s theorem [22,19], the notion of truth of ZFC is not definable in ZFC
(provided ZFC is consistent). In contrast, as shown below, map theory is capable
of defining its own notion of truth.

For each nonnegative integer i define

———
[i=(T,....T).

In particular, [0]=T, [1]=(T) and [2] = (T, T). The equations below assign a Gédel
number [« ] to each term & of map theory.

[T]=T.
[LT=(T).
[x1=([i1,T).
(L B)=([A], [AB],T).
[hx.1=([i], [£],T,T.
[(if ABEV=([],[B], [€],T, T
[ed]=([4],T,T,T,T,T).
(¢ ]1=([4],T,T,T,T,T,T).
Define
x[y]=(if y (hd x) (eI x)[dl y])
(this is a recursive definition of the two-place construct s[+]). Now,
(X0, s X [1]]=x;
for 0=< i< n. Define
[x/y=z]=(ify (z::(ddx)) (hd x::[ 1l x/ tl y = 2])).
Now,

[<x0;"'axn>/(i-'::y]:<x()s"'5xi—layaxi+la"~axn)



28 K. Grue

for 0=<i=n. Define

n

—_——

H' x=1l... tlx,

x'=hd x,

x"=hddx,

x" =hdtllx,

xy:(if(tlo x) T
Gf (el' x) L

(if (¢ x) yx]

(G (11" x) (x} x0)

GF (11 x) Azx{y)ve -

(f (e x) (if xt x7 x7)

(if (11°x) e(x)
d(xINNH).

As an example,
[Axs.(if X3 X, X0) Teapeay = AX2(if x2 ba).

In general, [ ], ., 1s the value of & for x,=ay, ..., X, =a,and X, 1, X2, ... =
T. If & has no free variables, then [« };= .

Now define p(x) = x;. Terms—among others—serve as predicates in map theory,
and p([&/]) = o for closed terms , so p is a notion of truth in map theory defined
within map theory.

3.14. Category theory

A category € is a structure consisting of
® 4 collection € of objects,
® a ternary relation f: A— B,
® a binary operation ¢, and
® a unary operation id, (defined for all Ae €),
which for A, B, C, D€ €, f:A— B, g: B— C and h:C — D satisfies
¢ g°ftA—C,
® (heg)ef=he(ge°f),
® jd.:A— A, and
® feidy=idgef=1
If f:A— B for some A, Be %, then f is a morphism of €.
Category theory is the theory of categories [4] but, contrary to set theory, category
theory has remained informal.
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Within set theory, various formal theories like ZFC and NBG have been proposed,
and each formal theory attempts to cover all of set theory (see [13] and [22] for an
overview of theories of sets). Each formal theory of sets contains ways of forming
sets that are ensured to exist by the theory. Further, for each theory of sets it makes
sense to ask whether or not the theory is consistent.

No generally accepted formal theory attempts to account for all of category theory.
Generally accepted theories of categories do not allow mechanical checking of
categorical proofs, they do not offer ways of forming categories that are ensured to
exist, and it does not make sense to ask whether or not a theory is consistent.
Workers in category theory may encounter paradoxes, but try to avoid them ad hoc.

Section 8 develops all of ZFC set theory within map theory, and Part 111 proves
that for any consistent extension of ZFC there is a matching axiomatization of map
theory with the same expressive power. In conclusion, map theory can do anything
set theory can do.

It is impossible to do the same for category theory since ““all of category theory”
is not sufficiently well defined. In the following, categories are represented in map
theory and the category of all categories is introduced. Formalization of the various
constructions of category theory in map theory would be a substantial task, but the
award would be that category theory became formalized. The ability to define the
category of all categories indicates that map theory is a reasonable basis for such
a formalization. The ability to define the category of all categories is due to the
unlimited abstraction of map theory.

Define

XAy = (P X% Py (P2, po )

Vx.of = Ax.(p, A), Ax.(p, L))

xBy = (py)=(wxy (px) (p2X)A(p2y) = (wxy (p2x) (pr X))
and let s/ be shorthand for (p, &) = (p, &). With these conventions

pi{xy,...x)=x; forl<isn,

W(ALB) & =B,

*(ARB) & (wl) A (xB),

*(gx..szf) S VxeM: »d,

(A B) = ((xd)=>(+B)).

In o £ 3B, w is a witness that testifies that *sf implies » 3.
Map theory may represent a category € as a map (€, M, c, id, w) such that (€ A)
states that A is an object of €, *(/ f A B) states that f: A— B, (¢ f g) denotes fo g,
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(id A) denotes id,, and w witnesses that € is a category. For all maps €, A, B and
f define

AE€ = ((p ) A),
f1ASB = ((p. %) fAB),
fog = (p %) fg),
ids = ((ps %) A),
AL... ,AEE = ALEr NAEC
Further define
(cat€) = VA, B,C, D, f, g h.
(A,B,C,DECN:A5 Brg: B> CrAh:C 5 D

(ps ) “ . « « « €
=g f:AS Crhog)ofEho(gof)
Ridi: AL ANfCid SEfRid ) C fES).
Now, *(cat €) holds iff € represents a category.

Map theory may represent a functor F: € — 9 as a map (F, F, w) such that F is
a mapping of objects, F is a mapping of morphisms, and w witnesses that F is a

functor. Define

F = (pF),

F = (p. F),

(func F€%) = YA, B,C,f g

(A,B,CEE€r A5 Brg:BS C

S (FAEDR(ES):(FA) S (FBMFid )2 id 4

AF (g2 fNE(Fg) < (F)).

Now, *( func F € &) expresses that F: € — 2 is a functor. The identity functor id.,
and functor composition are expressible by

id = (Ax.x, Ax.x, s,

G5 F=Qx(G (Fx)), Ax.(G (Fx)), "),
for suitable terms &’ and «". The category Cat of all categories can be written as

Cat = {cat, func, A\x.Ay.(x3 y), Ax.id ., s{)

for a suitable term .
The above is merely a very rough outline of one approach to formalize category

theory in map theory. It is a substantial task to make the formalization of category
theory fluent and thorough.
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In particular, the “suitable” terms &', &” and & above have to be specified.
There is no point in specifying them directly, since they are large and complex.
Rather, it is reasonable to state and prove metatheorems like

«(A A nA, D A)  for a suitable
«(AZ C)  for a suitable o if (A2 B) and *(BZ (),
«(AZ5 BRC) for a suitable o if (A2 B) and (A= C).

Part I1. Axiomatization of map theory
4. Elementary axioms

4.1. Presentation of axioms

The definition of (if &/ B €) combined with r(T)=T, r(Ax.sf)=X and r(L)=1
gives the following axioms
(Selectl) H(fT B €)= %B.
(Select2) H(if (Ax.sf) B €)= €.
(Select3) FfLBE€)=1.
(Script letters &, %, €, etc. denote arbitrary terms.)
In axioms, —of = % states that &/ =B 1s an axiom. In inference rules, ., =
vy Ay =B, o = B states that A, =B, ..., d, =B, directly infers of = 3.
In metatheorems, &, = RB,; - - ; A, =B, — oA = B states that if o, =B,,..., d, =
B, are all provable, then s = & is provable. Section 5.4 defines a fourth use of .
For terms & and % and a variable x, [/ x:= 2] denotes the result of replacing
all free x’s in &/ by %. The term % is said to be free for x in & [22] if no free
variable in 9 becomes bound in [#/x = RB].

The conventions (T x) =T and (L x) = L and the definition of lambda abstraction
gives three further axioms. '

(Applyl) HTRB)=T.
(Apply2) F(Ax.oA) B)=[A/x:=RB] if B is free for x in A.
(Apply3) (L B)=L1.
The definition of Ax.& shows that the names of bound variables are insignificant:
(Rename) FAx[o/y=x]=Ap[d/x=y]
if x is free for y in & and y is free for x in ..

The following inference rules provide the axiomatic description of equality in
map theory. They describe the transitivity (trans) and substitutivity (subl and sub?2)
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of equality.

(trans) A=RB , A=C +— B=4%.
(subl) A=RB,€=2 - (A4 €)=(B 6).
(sub2) A=RB +— Ax.of = Ax.B.

A formula (or well-formed formula} of map theory has the form & = % where «f
and 98 are terms. Free variables of & and 2 implicitly range over all maps.

Formulas of set theory are more complex; they are composed from atomic formulas
X € y, negation 1, implication &/ => 3%, and quantification Vx: /. As shown later,
map theory treats membership, negation, implication, and quantification as defined
concepts at term level.

Let &/ denote some term. Here is an example of a formal proof of & =« in
map theory.

Proof of «f = .

1. Select! (ifT oA A=A
2. Selectl (ifTAA)=oA
3. 1,2 trans A =4 J

A more terse proof reads as follows.

Proof of & = .
1. Selectl (ifTAA)=o
2. 1,1 trans A =d. |

4.2. Metatheorems of equality

Theorem 4.2.1. For all terms oA, B and €,

oo =,

A=R - B=d,

A=B,B=F€ +— A=1%,
The theorem states that o = o/ 1s provable in axiomatic map theory for any term
o. Further, if «f = % is provable, then 9B = o is provable, and if both & = & and

9B = € are provable, then of = € is provable. The statement & = .o was proved in
Section 4.1.
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Proof of of =B +— B =A.

1. hyp A =R

2. Th.4.2.1 A=

3. 1,2,trans B=doA O
Proof of 4 =B B=€C€+— A=%€

1. hyp A=R

2. 1,Th.4.2.1 B =

3. hyp RB=%€

4. 1,3,trans oA =€, |

Lemma 42.2. [f - =A' +B=RB and -€ =%, then —(if A B €)= (if &' B' €"),
e = e’ and —dpsA = psA’.

Proof of o/ =o'+ ed = e,

1.

2.

Th.4.2.1 AX.eX = Ax.ex
hyp A=
. 1,2,5ubl (Ax.ex)sf) = ((Ax.ex)sd")
. Apply2 ((Ax.ex)d)=esd
. 3,4 trans ((Axex)d') = e
. Apply2 (Ax.ex)A')=¢esA’
. 5,6,trans eAd =esd'. O

The proof of the remainder of Lemma 4.2.2 is analogous.

Theorem 4.2.3. of = o/’ — B = € if € arises from B by replacing o by ' any number
of times.

Proof. The lemma follows by structural induction (or by induction in the number
of connectives) in % from the following fact: If @ = @', € = &€ and % = &' then

FAX.D = Ax.D’
HDE)=(9" &)
HIfDEF)=(fD & F)
eD = eP’

oD = D’

FT=T

Fl=1

Fx=x. O
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Theorem 4.2.4. If of and ' are identical except for naming of bound variables, then
o =5,

The theorem follows from the Rename axiom.

4.3. Metatheorems of reduction

If o/ =3 is an axiom according to one of the schemes (Select 1-3) or (Apply
1-3), and if € and 9 are identical except that one subterm of € of form « is
replaced by % in &, then & is said to be a reduct of €. Let € > % denote that
either & is a reduct of € or & is identical to € except possibly for renaming of
bound variables. Let & £ % denote that the terms &/ and @ are identical.

Let ofy— o, — - -—>sf, stand for of,_, > s for all ie{l,..., n} If
Ay > o, > - of, forsome o, , ..., d, ,,then ofy,*> of,. Obviously, if o = %,
then —sf = B. Also, if of %> B, then —o = B. Hence, we have the following result.

Theorem 4.3.1 (Reduction). If o/ %> € and B+ € for some €, then —A = 2.

Define
F=AxT, “x=(if xFT).
The reductions
ST2(GfTFT) = F,
“F2(f(AxT)FT) ~> F and
HL2GELFT) & 4,

show that
—=T=F, =F=T, —Ll=1.
Define
cons = AxAyAaz(if zx y),
hd = Ax.(xT),
tH=Ax.(x F).

The reduction
(hd (cons xy)) 2 ((Ax.(x T)) (cons x y))
= (consxyT)
2 ((AxAyaz(ifzxy)) xyT)
S (Ayaaz(ifzxy) vy T)
S ((Az(ifzxy)T)
S (if Txy)

r
— X
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shows that
—~(hd (cons x y)) = x.
Likewise
—(t (consx y))=y.
Like in Section 3.3 define
Sp=ax(f (xx))
Y =M(SS)),
Yid =(Y Af.A).
The reduction theorem gives
H(Y o) = (A (Y ).
Further, if Yf.&f is free for f in & then
FYf e =[A/ =Y A]

The map Y is the “fixed point operator” [3]. To define, e.g., a map mirror which
satisfies

(mirror x) = (if x T (cons (mirror (1l x)) (mirror (hd x))}),
the following definition will do:
mirror =Y fAx.(if x T (cons (f (1l x)) (f (hd x)))).

It is possible to strengthen the reduction theorem: &f*> € and % *> € for some
% if and only if of = % is provable from the axioms and inference rules stated until
now. The only if part is similar to the reduction theorem whereas the if part follows
from the Church-Rosser Theorem [3].

Part I11 defines a model of map theory in ZFC. Let = = B denote that «f = B
holds in that particular model. For all terms & and %, —s = 3B implies = = %,
but the opposite is not always true.

A term € is a program if € is built up from application (< B), abstraction Ax.,
selection (if & B €), truth T and bound variables x. If € is a program and € *> F,
then & is a program.

It is fairly easy [26, 3] to define a mechanical procedure (%) which, given a
program &, answers yes if €T, answers no if 1€2T, and loops indefinitely
otherwise. An important property of the model reads: If € is a program and if
neither €T nor 7€2T, then =& = 1. Hence,
® =Z=Tiff P(&) returns yes,
® =5 =Tiff P(€) returns no,

o =% =1 ifft P(¥%) loops indefinitely.
This gives the intended meaning of 1: L stands for infinite looping.
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5. Quartum non datur

5.1. Presentation of QND’

The rule tertium non datur of classical theories states that a formula is true or
false—there is no third possibility. In contrast, Goédel’s incompleteness theorem
[12] states that a formula may be provable, disprovable or undecidable. Classical
theories have no truth value to match undecidability.

The rule quartum non datur of map theory states that the root of a map is T, A
or L—there is no fourth possibility. Here, T,Aand I correspond to provability,
disprovability and undecidability, or to truth, falsehood and nontermination.

To express quartum non datur (QND’) formally, define

F'=Ax.Ay.(xy).

For any x, (F x} is proper and, for any proper x, x = (F’ x) according to Lemma
2.3.1. Hence, if

[o/x=(F x)]=[B/x=(F x)],

then o = % holds for all proper x.
Now, the QND' inference rule is given by

(QOND") If = {d/x=T]=[B/x=T],
[/ x=(Fx)]=[®B/x=(Fx)] and
= [ef/x=1]=[B/x= 1],
then — & = %.
In other words, if &/ =% holds when x is T, 1 or proper, then & = % holds for
all x.
5.2. Tautologies

Let of =B be a formula whose free variables are exactly x,,..., x,. A logical
instance of o/ = 9B is a formula

(/%= €/ - [x,:= C1=B/x =€/ /x, = E,],

where each %, is one of the terms T, L or (F' x;). As can be seen, & = & has exactly
3" logical instances. Repeated application of inference QND' gives the following
theorem.

Theorem 5.2.1. If all logical instances of a formula i = & are provable, then s = B
itself is provable.

A formula &/ = 9 is a tautology if each logical instance is provable by the reduction
theorem. Hence, we obtain the following result.
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Theorem 5.2.2. Each tautology is provable.

If of =2 is a tautology with free variables x,,..., x,, if €,,..., 6, are terms,
and €6,,..., %, are free for x,,...,x, in & and @, then the formula

[L/x,=€,) - /x,=%,]1=[B/x,=€,/ - /x,=6,]

is an instance of o = 9. Since o = B is a tautology, &/ = B is provable so, by
Theorem 4.2.3,

E(Axy . A, )6, L €)= ((AX, .. AX, . BYE, ... 6,),
which entails
LA/ x =€) [xa=C]=[B/x; =%/ - /x,'=%F,]

This proves the following theorem.
Theorem 5.2.3. Any instance of a tautology is provable.

For instance, using the above results one immediately proves
— AAB=RBAA,
H AAA ==,
F Advd =149,

for all terms & and .

5.3. Nonmonotonic implication

Whenever a term & occurs in a position where a formula is expected, & is
shorthand for & =T. For example, if a line of a proof reads —F, then that line states
that 7F=T.

Equality of map theory is nonmonotonic in the sense that a map f would be
nonmonotonic if it satisfies (fxy)=T < x=y. To see this, note that L =1, so
(f L L)=T. If f is monotonic, then L=<x and L<y implies T=(f L L)<(fxy)
which implies (fxy)=T for all x and p, contradicting (fxy)=T & x=y.

Consequently, no map f satisfies { fx y) =T iff x = y since all maps are monotonic
according to (map 11.6.1).

The nonmonotonicity of equality allows to express an implication concept more
powerful than x = y where x = y is monotonic in x and y like any other term of
map theory. To do so, define the guard x:y by

xy=(fxyT)
and define of — (% = €) to be shorthand for
A:B=sA:%.
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If of is proper,then :B=T=of: %, andif =1, then A:B=1=of: € If A =T
then o/:B=P and A:€=%€, so A:B=o:€ if B=% Hence, o — (B =€)
expresses the statement “if & is true, then % equals €.

The expression &/ — 2 is shorthand for & — (% =T) and expresses “if & is true,
then 9 is true”. This relation is nonmonotonic just like equality. For comparison,
(4= B)=T expresses “of and B both differ from 1, and o implies B".

The following lemma is easy.

Lemma 5.3.1. For all terms o, B and €,
A, d = (B=€) — B=1,
A, —> B - B
In other words, if &/ =T and &f: % = &:T are provable, then so is B =T.

The formula &/ — o is a tautology (i.e. &: o = o«f:T is a tautology), which implies
the next lemma.

Lemma 5.3.2. —of — o

If =% =€ then of:%B = /:%€ by Theorem 4.2.3, which proves the following
lemma.

Lemma 533. B=€+— A —> (B=%).

Since (x:y):z=x:(y:z) is a tautology, there is no need to put parentheses in
expressions like s .8, -+ - 15f,,.

Since the formula B — (€ = 9) is shorthand for B:€=RB:D, A — (B — (€=
@)) is shorthand for &/:(B: €)= A:(B:%). In general, of | — - - - — oA, — (€=D)

is shorthand for &f,: - - A, € =oA,: - - :A,:D.
Let oA,,..., o, — (€=2) be shorthand for o, — - -+ — of, — (€ =) which
in turn is shorthand for &,: - -4, €=: - - :4,:%. The following lemma is

trivial but nevertheless important.

Lemma 5.3.4. The formulas
Ayyoo Ay, By, By — (€=9)
and
Ao Ay — (B, ..., B,y — (€=2))
are shorthand for the same term.
As an example, o, B,,...,B,—(¥=9) is the same term as < —
(B,,...,B,— (€=92)), so, by Lemma 5.3.1
A AB ..., Bu—=> (€=D) — B,,..., R, — (€=9).



Map theory 39

Note how semicolons separate antecedents of — whereas commas separate ante-

cedents of —.
Since o:f:€=A4:€ and HA:RB:€ = B:5:€ are tautologies, the following holds.
Lemma 5.3.5. If {«,,..., d,} and {B,, ..., B,.} are the same sets of terms, then
Ay, A= (€=9D)
iff
Biyeor, By—= (€=D).
In other words, repetition and ordering among the antecedents of — are
insignificant.
The following theorem will be used extensively in proofs.
Theorem 5.3.6. (QND). If
Ay, H,—>(€=9D)

is an instance of a tautology, then

The theorem can be used, e.g., to prove
A, d=>B + B.
The QND theorem expresses quartum non datur whereas TND below expresses
tertium non datur.
Theorem 5.3.7 (TND).
Al —=>(B=€),"A—>(B=€) - B=2¢.

Since &/ =T iff of # L, the first antecedent of TND rules out the possibility that
A =1.0nce & =1 is ruled out, tertium non datur holds.

Proof of TND. (See below for an explanation of lines 6 and 7.)

1. hyp R4

2. hyp A — (B=%€)

3. hyp A — (B =%€)

4. 1,QND (ifA(AB) (M A):B))=RB

5. LOND (if A (A:6) ((MA):€))=F

6. 2,3,triv (if A (A:B) (14):B)) = (if I (H:6) ((1A4):€))

7. 4,5,6,triv B="¢. O
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In the proof, line 7 follows “trivially” from lines 4, 5 and 6. An equation € =
follows “trivially” from &, =%,,..., o, =%, if
(1) €=2 is deducible from o, =%B,,..., &, =B, using only the inferences
trans, subl and sub2, and the axioms Select 1-3, Apply 1-3, and Rename;
(2) it is expected to be easy for the reader to fill in the missing details.
From this point on there will be few references to the metatheorems on equality
and reduction since they are “trivial”.

5.4. The deduction theorem

A formula of = B follows hypothetically from the formulas &, = %B,,..., A, = B,
if there is a sequence 6, =%,,..., 6, = 9,, of formulas such that
(a) of =R is the last formula in the sequence;
(b) Each formula of the sequence
(1) is an axiom of map theory,
(2) is one of the hypotheses s{,=RB,,..., 4, =3RB,, or
(3) follows from previous formulas in the sequence by one of the inference
rules of map theory;
(c) The sub2 inference is never used to verify Ax. 6, = Ax.%; from €, =%, if the
latter depends on a hypothesis @, = %; in which x occurs free.
The statement &, =%R,; - ;d,

B, " of =B states that of =% follows
hypothetically from of, = B,,..., o, =%,.

Theorem 5.4.1 (Deduction). If
ol = B
then

H— (A = B).

The deduction theorem is close in spirit to the deduction theorem of first-order
predicate calculus [22]. In particular, that deduction theorem has a requirement
similar to (¢) above.

The deduction theorem validates proofs of the form *“Assume that 7 is true.
Given that # is true, &/ = 9B holds. Hence, # — (s = B)". This will be used later
in this paper when formal deductions are replaced by a more conversational style
of proofs.

From the deduction theorem the following corollary can be obtained.

Corollary 54.2. If

then
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There are two different ways to prove the corollary. One way is to apply the
deduction theorem n times. Another way is to apply the deduction theorem once
with hypothesis #,:---:3,. If the goal is actually to construct a proof of
#,,..., %, — A =3B, the second approach is best since it produces a considerably
shorter proof. This may be critical in computer-based proof systems.

Proof of the deduction theorem. Map theory has five inference rules: trans, subl,
sub2, QND' and ind, where ind will be introduced in Section 7.4. The meaning of
the ind inference is unimportant for now, but its syntax is needed for the proof of
the deduction theorem. It says

A, x — B ol “x, bx, Vy.[B/x=(xy)] > B + A px— B

if x is not free in & and y does not occur (free or bound) in %.
Seven auxiliary lemmas are:

(trans) H—(A=B); % — (A=F) — H— (B=E).
(subl’) H—=>(A=B), H > (€=D) - H— (A C€)=(BD)).
(sub2’) H—=>(Ad=B) = ¥ — (Ax.o =Ax.B) if x is not free in .
(OND")  H— ([o/x=T]=[B/x=T]);
H— ([d/x=F(x)]=[B/x=F(x)];
H—([d/x=1]=[B/x=1])
- H— (A =RB).
(ind") I, st, x — B H, A x, px, V[ B/x=(xy)]—> B — ¥, oA — B.
(axiom’)  # — (A =B) if o/ =3 is an axiom of map theory.
(hyp’) I+~ K

Proof of trans’. The trans’ statement holds since it is a special case of the trans
inference.

Proof of subl’.

1. hyp HA =3B

2. hyp HC=H.9

3. QND H(AC)=3.((H:A) (:%€))

4. OND H(BD)=I:((H:B) (#:9))

5. 1,2,triv H((9:0) (H:€)) = F:((:B) (H:D))

6. 3,4,5,triv HA(AC)=3(B D).
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Proof of sub2'.

1. hyp I A =3B

2. QND FHoax.d = H:Ax. A
3. QND HAXRB=H Ax.H:RB
4. 1,2,3,triv HAx.A =H Ax.9: B.

Note that line 2 is an instance of the tautology y:Ax.z = y:Ax.y:z because x does
not occur free in #. The same is true for line 3.

The proof of QND” is left as an exercise. For ind’, replace & by #:4 in the ind
inference to obtain ind’ (the sole purpose of having & in the ind inference is to
prove the deduction theorem). The axiom’ statement follows from & = B as men-
tioned in Lemma 5.3.3. The hyp’ statement is an instance of a tautology as mentioned
in Lemma 5.3.2.

Now assume that €,=9%,,..., %6, =9%,, deduces &/ =% hypothetically from
# =T. By induction in i and using trans’, sub1l’, sub2’, QND", ind’, axiom' and hyp’,
H— (€ =9).

In particular, for i =m,
H— (A =RB).

This proves the deduction theorem. O3
The following theorem justifies the method of indirect proof.

Theorem 54.3 (Contra). &, "f — F- .

Proof.

1. hyp ld

2. hyp (MA):F= ()T
3. QND =gf =("s):F

4. 2,3 triv =g = ()T

5. 1,OND () T=T

6. 4,5,triv = =T

7. 6,QND A ]

The following theorem can be used in connection with the deduction theorem.

Theorem 5.4.4. (Monotonic deduction).

Vodys e el A Bty — B sl A A S, 2 B

E
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Proof. (See below for an explanation of line 1.)

1. hyp lofyy o1,

2. hyp 'R

3. hyp Ao, A, —> B

4. 1,QND A A A, = (A A, T)

5. 3,4.triv A A A, DA A, B

6. 2,QND A A A, > (A Ay B)=A A AA, DB
7. 5,6,triv A A A A, D B. J

In a proof line,

‘Qfl: l;”';ﬂm:%m}—%lz 1;"';<gn:@n
is shorthand for n statements of the form
ﬂ]: l;..'.%m:%m'_(gizgl

s

forie{l,..., n}.

6. Quantification

6.1. Quantification axioms

If ¢/ =T and (Vx.8)=T, then & is well-founded and B =T for all well-founded
x. In particular, B =T for x =, so ((Ax.%B) «/)=T. Hence,

(Quantify1) - ¢t VX.B — ((Ax.B) ).

For all well-founded x, ¢x=T, so r()=r(px A sf). Hence, by Ackermanns
axiom (4) (Section 2.5),

(Quantify2) Foex.d =ex(dpx A A).
The next axiom expresses (1) and (2) of Section 2.5:
(Quantify3) - pex.sd = Vx4

A verification requires two cases.

® [fVYxe®: (of# 1) then Vxe @: (\sf =T) so (Vx.!ef) =T. Further, according to
(2), ex.d e D so ¢pex.d =T. Hence, pex.od =T=Vx.!.

® IfIxe ®: (f/=1) then Axe ®: (1o = 1) so (Vx.!f) = L. Further, according to
(1), ex.of = L. As mentioned in Section 2.6, L @, 50 pex.of = L =Vx.15.



44 K. Grue

The axioms Quantify 4 and 5 follow directly from Quantify 3 and 2, respectively,
using the monotonicity of maps. It would be more satisfactory to express the
monotonicity directly as an axiom and omit Quantify 4 and 5. A formulation of
monotonicity is complicated, but should be included in next iteration of map theory.

(Quantify4) b 3Ax.od — dex.od.
(Quantify5) - Vx.of =Vx{dx i ).

6.2. Metatheorems of quantification

A direct consequence of the Quantify2 axiom is the following theorem.

Theorem 6.2.1. If o is free for x in B, then
dA NXx.B +— [B)x=d].
Section 8 states proofs in a conversational style as opposed to the more formal
proofs that consist of numbered proof lines. A typical construct in conversational

proofs reads “if x is well-founded, then </ is true—hence, Vx.4 holds”. The theorem
below justifies this conversational construct.

Theorem 6.2.2. dx — o — Vx.o.

Proof.

1. hyp dx. A =o¢dx:T

2. QND dx A A =px A(dPx:sd)
3. QND dx AT=cx A(Px:T)
4. 1,2.3,triv dxAsA=dx AT

5. 4.triv Vxdx hod =Vx.dpx AT
6. S.triv,Quantifys Vx.od =¥xT

7. 6.triv Yx. o,

(In line 7, note that Vx.T=T follows trivially from the definition of ¥ and
(Tx)=T). O

Another conversational construct reads “.of is well-founded, 3x.B # 1, and B
holds for x =&, so Ix.e/ =T (Chapter 8.3 considers conversational proofs sys-
tematically). In many situations in conversational proofs, it will be obvious that &/
is well-founded and 3x.28 # L, in which case the construct reduces to “Z holds for
x =4, so Ax.of”. The construct is justified by the following theorem.
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Theorem 6.2.3. If A is free for x in B, then

oA ;1 Ax. B[ B/x=sf] + Ix.s

Proof.

1. hyp X

2. hyp 13x. B

3. hyp [B)x=d]

4. triv,Quantifyl bst, 1Ax. B — [ B/ x = o]
5. 1,3,4,triv “3Ix.B—F

6. 2,5,indir.pf. Ix.B. O]

In conversational proofs, if 3x.%(x) has been proved, the construct “let u satisfy
R(u)” means “let u be shorthand for ex.Z(x) within this proof or until u is
redefined”. Further, “let u satisfy % (u)” tacitly establishes the fact that R(u)
actually holds for u = ex.R(x) and that u is well-founded as justified by the next
theorem.

Theorem 6.2.4. If u is shorthand for ex.of and u is free for x in A, then

Ax.oA - du [/ x=u].

Proof.

1. hyp Ax.A

2. 1,triv,Quantify4 dex.A

3. 1triv =[d/x=ex.d]

4. 3,QND [/ x=¢ex.oA]. O

The construct “let u satisfy R(u)” becomes clumsy when #(u) is a large,
well-formed formula. In particular, it is clumsy first to state 3x.R(x) and then “let
u satisfy R(u)” for large & since R is stated twice in a row. In such situations,
“let u be such an x” is shorthand for “let u satisfy % (u)” since it is obvious what
R is. Further, “pick x” is shorthand for “let all free occurrences of x be shorthand
for ex.%(x) within this proof or until x is redefined” when it is obvious what % is.

The Quantify2 axiom was justified from Ackermann’s axiom (4). The following
theorem proves Ackermanns axiom from the Quantify2 axiom.
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Theorem 6.2.5 (Ackermann). ¢x — A S B+ ex. oA = ex. RB.

Proof.

1. hyp dx — AR

2. Ltriv dx A AA(Dx:(ASDSB))=dx A A A (Ppx:T)

3. 1,triv OXABADX(ASB))=dx A B A (Ppx:T)

4. QND Ox A A =dx AAA(Dx:T)

5. QND XA B=px A B A (Px:T)

6. QND X AAA DX (ASB))=px A B A(dx:(ASR))
7. 2,3,4,5,6,triv dxAA=dx AR

8. 7 triv eX.OXx A A =ex.dx A B

9. 8.triv,Quantify2 ex.of = ex. 9. O

7. Well-foundedness

7.1. Properties of well-foundedness
As mentioned in Section 2.4, @ is the least set such that
Te @,
gedaAVxeg™ (fx)ed=fec @,
Here, g° is the set of well-founded maps introduced before g, and G° is defined by
G°={feM|Vx,x,,...€¢G3An=0:(fx,...x,)=T}h
In particular, (}° is the set of all maps except L.

Let f <, g denote that f is introduced before g. The relation <, is a well-order
and fe g’ f <, g Since f <, grg <., h=f <, h we have g <, h=>g'c h’.

From the definition of G° one easily verifies G H=H°< G°. Hence, if f <, g
then g™ < f*.

When a proper well-founded map f is introduced, it is introduced by verifying
Vxeg™: (fx)e @ for some ge P. To verify this, g and (fx) have to be introduced
before f. Hence, for all proper, well-founded f,

dgef*Vxeg™ (fx)ef".
In particular,
dgef*V¥xeg™: (fx)e .
The latter statement happens to hold also for f=T, so it holds for all well-
founded f.
If gef*then g <, f and f™c g, so
Vxef™ (fx)ef".
If f <, h then f°c h” and h™ < g™, so
Vieh'Vxeh®™: (fx)eh.
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Lemma 7.1.1. Ifa, be @ then Ax.(if xab)e @.

Proof. If xeT=@° then x# 1L and ((Ax.(if xab))x)e{a, b}< &. Hence, Vxe
T ((Ax(ifxa b)) x)e @, so Ax.(ifxab)e ®. [

Lemma 7.1.2. If a, be & then there is ace @ such that a <,cand b <, ¢
Proof. Let c=Ax.(ifxab). O

Define (u, v) <,{x,)u <, xav=yvov <,xau=y The relation <, is easily
shown to be well-founded.

Lemma 7.1.3. If f, ge @ and g’ a® and a°c g*° for all ac f*, then f*< g*.
Proof. Assume a < f*. From Yxea™: (ax)ea®, g°c a®*, and a°c g°° we have Vx¢

g": (ax) e g™ which entails a € g*° (by the definition of G°). Hence, ac f*=>aec g*.
(]

Lemma 7.14. If f, ge & then f* < g*°.

Proof. Follows from the previous lemma by transfinite induction on <. O
Lemma 7.1.5. Iff, g€ @ then fe g*>°.

Proof. Choose he @ such that f <, h Now feh'cg™ 0O

Lemma 7.1.6. Iff, g @ then (fg)c @.

Proof. Follows from ge f* and Yxe f*: (fx}ed. O

Corollary 7.1.7. If f, ge @ and f#T then (fg) <, f.

Lemma 7.1.8. @ < ¢°.

Proof. Let f, x;,x,,...€ ® and let g, =(fx,...x,). For all n=0 we have g, ®
and g, <, g,+, v g, =T. Since <, is weli-founded, g, <, g,., cannot hold for all n,
s0 g, = T must hold for some n. Hence, Vx|, x,,...€ ® An=0: (fx, ... x,) =T which
proves fe @°. From fe ®=>fec ®° we have ® < P°. [

7.2. Well-foundedness axioms

Well-foundedness is described by ten axiom schemes and one inference rule in
map theory. None of these express the intuition behind well-foundedness. It would
be more satisfactory to have a single axiom that expresses the intuition. The ten
axiom schemes and the inference rule correspond to some extent to the union and
power set axioms, etc., of ZFC that point out that certain sets exist.
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In what follows, the ten axioms and the inference rule are presented, and they
are proved to follow from the intuitive notion of well-foundedness stated in Section
2.4 and repeated in Section 7.1.

Three axioms describe some elementary properties of @ like Apply 1-3 described
functional application and Select 1-3 described selection.

(Welll) oT.
(Well2) PAx. A = PpAX.OHA.
(Well3) dLl=1.

The Welll axiom is shorthand for ¢T=T. It follows directly from Te &. Since
1 ¢ G°for all sets G of maps, we have L & @ which verifies Well3, The Well2 axiom
is more complicated.

Lemma 7.2.1. If Ax.of € @ then Ax.¢pA € P.

Proof. Choose ge @ such that Vxe g™ ((Ax.o) x)e ®. For all xe g™, 4P so
dA =Tec @. Hence, Vxe g ((Ax.pA) x)e @ so Ax.od e d. [

Lemma 7.2.2. If Ax.¢d € @ then Ax.of € D.

Proof. Choose g @ such that Vx e g°°: ((Ax.¢0f) x) € @. Forall xe g™, ¢ € @ so
bA# 1 and A € @. Hence, Vxe g ((Ax.d) x)e @ so ax.ded. I

Lemma 7.2.3. ¢Ax.d = pAX.dA.

Proof. If Ax.sf € @ then Ax.¢pf € @ accordingto Lemma 7.2.150 pAx.f =T = Ax.pA.
If Ax.of ¢ @ then Ax.¢f ¢ @ according to Lemma 7.2.2 50 pAx. o = L = pAx.pA. [

7.3. Construction axioms
Let ¢x.o/ be shorthand for ¢Ax.of and define
P=AaAbAx(ifxab),
Curry = Aa.Ax.Ay.(a (Pxy)),
Prim = AfAa.AbYgAx.(if xa (fAu(g (x (bu))))).

The definition of P ( Pair) is identical to the definition of cons in Section 4.3, and
(Pab) equals a::b defined in Section 3.4.
For any map a, (Curry a) expresses the inverse of Currying of a [7].
If f, a and b are maps, then g=(Primfab) satisfies the primitive recursive
definition
a ifx=T,
(gx)=<1 ifx=1,
(fAu.(g (x(bu))}) otherwise.
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The construction axioms are suited to prove the well-foundedness of a wide range
of maps. They are as follows.

(C-A) da, b — p(ab).
(C-K") dx.T.
(C-P") dx.(ifxTT).

(C-Curry) ¢a — ¢(Curry a).

(C-Prim) Vx.¢(fx), pa, pb—> ¢(Prim fab).
(C-M1) Vu.gx.of = Vudx.((Au.od) (ux)).
(C-M2) Vu.gx.od = Vu.dx.((Ax.) (xu)).

The remainder of this chapter verifies the construction axioms from the intuition
behind well-foundedness.

Lemma 7.1.6 is a verification of the C-A axiom. From Vxe T (Ax.T)x)=Te &
we have Ax.T € @ which verifies the C-K' axiom. Lemma 7.1.1 verifies the C-P' axiom.

Lemma 7.3.1 (The C-Curry axiom). If ae @ then Ax.Ay.(a (Pxy))e &.

Proof. Choose g @ such that Vx e g*: (ax)e @. Assume x, ye g*°. Now Vz,,...¢
g dn:(xz,...2,)=T. If zeg" then z# L so (Pxyz)=xv(Pxyz)=y. Hence,
Vz,z,2,...€g°3n: (Pxyzz, ...z,)=Twhich proves (Pxy)c g”so(a (Pxy))e
@. From Vyeg’™ (a(Pxy))e @ we have Ay(a(Pxy))e®, and from Vxe
g% Ay(a (Pxy))e @ we have AxAyfa (Pxy))ed. O

Lemma 7.3.2. If z€ @ then Ax{axx)e &.

Proof. If xeca™ then (ax)eae® and (axx)={((ax})x)ea’ so Vxea™
{({(ax{axx))x)ea®and Ax(axx)e d. O

Lemma 7.3.3. If Vxe @: (ax)e & and be @ then Ax.(a (bx))e D.

Proof. For all x€b™ we have (bx)e b= ®, so (a(bx))e P. Hence, Vxeb™:
((Ax.(a(bx)))x)e ® and Ax.(a (bx))ed. O

Lemma 7.3.4 (The C-M1 axiom). If we have Yue ®@: Ax.o{c® then Yve P:
Ax.((Ausf) (vx))e d.

Proof. Assume Vuec @: Ax.sde @ and ve @, and define f=AuAix.o. Now Vue
D: (fu)ed, so we have Ay(f(vy))e® according to Lemma 7.3.3 and
Az({Ay.(f(vy))) zz)€ @ by Lemma 7.3.2. By reduction,

(Ap.(f(vy))zz)=(f(vz)z)
=((Aurx.d) (vz) z)
=[d/u=(vz)/x=2z],
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so Az[A/u=(vz)/x=z]e ®. By renaming z to x, Ax[H/u=(vx)]ed, so
Ax.((Aud)(vx))ed. O

Lemma 7.3.5 (The C-M2 axiom). If we have Yue @: Ax.s{ € @ then VYue &:
Ax.((Ax.of) (xu)) e &

Proof. Assume ue @ and Ax.of € @. Let f=Ax.o. Choose ge @ such that f <, g
and u <, g. Assume x € g*°. Since uc g" we have (xu)e g*°and (f (xu))e g°. Hence,

Vxe g (Ax(f(xu) x)e@ so Ax.(f (xu))ed. O

Lemma 7.3.6 (The C-Prim axiom). If Vxe ®: (fx)e ®, a,be P and

's L~

a ifx=T,

(gx)={1 ifx=1,
L SAulg (x(bu)))) otherwise,

then ge .

chimniiin 4 bon s all £ancan A
SHUWIL LU DT weli-1tuunu

induction in x and <,y.

if x =Tthen (g x)=a e @ Now assume x # T and assume (as inductive hypothesis)
Vyeb™(g(xy))ed If ueb™then (bu)e b’ so (g{(x(bu)))e ®. Hence, Vuc b™:
(g (x (bu)))) u)e P so aufg(x (bu)))e P and (gx)=(fru(g(x{(bu))))ec®
as required. [

SO L b e
oy transfinite

Proof. Define x <,my & y#Ta3zeb x=(yz). The relation <, is easily
e € NOW prov X

7.4. The inference of induction

Corollary 7.1.7 states (fg) <, f for all f,ge @, f#T. Since <, is well-founded,
this gives rise to an induction principle: If R(T) is true and Vx e @\{T}: (Vye P:
R(xy)=>R(x)) then Vx e @: R (x). Now let the term & (where x may occur free)

atand far D+ Wa hava
StanG iof Jei X ). vyl 1navé

x— Bix, dpx, Vy[B/x=(xy)]— B +— dx— B,

where y is not allowed to occur in 98. To make it possible to prove the deduction
theorem (Theorem 5.4.1), the inference is stated as follows:

(induction) If x does not occur free in &/ and y does not occur (free or bound)
in 9, then

A, x — By, x, dpx, Vy[B/x=(xy)] = B — o — B.

7.5. The metatheorem of totality

We now state and prove Theorem 2.6.1 formally in a slightly generalized form
which, among other things includes Theorem 2.6.4.
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As in Section 2.6 let T and I denote the syntax classes of simple and dual terms,
respectively. Let x,, X,,... and y, y,,... denote distinct variables, and let 3”
denote the syntax class of simple terms in which x,, x,, ... do not occur free. Let
Y’ denote a sequence of exactly j simple terms. Let f; (i, j€{0, 1, .. .}), denote terms
in which x,, x,,... and y,, ¥2, ... do not occur free. This section defines X to be
slightly more general than Section 2.6 did:

o=y A3 | (E5) | T| en3* | 63| (if£33)
| ((/\ykl.../\yki.f#)fi) | (ﬁ,Zi) | (Prim (Ay,.27) 3 X)),
Sio=x (23| 3

Theorem 7.5.1 (Totality). If o is a simple term, if x|, x,,... and y,, y,,... do not
occur free in d, and if by, ..., by, — d(f; y1 ... yi) for all f; that occur in 54, then $p.oA.

We shall discuss simple terms before proving the totality theorem. If &/ and &
are simple terms, then =, ., i, ", AAB, AVvB, A =>RB and LB are
simple terms. Further, if K =2Ay,.Ax,.y; and S= Ay, Ay..Ax;.(y, x; (¥2 X;)) then
(K o) and (S o RB) are simple terms. If x,, X, ... do not occur free in o then Ay,.of
and Vy,.s are simple terms.

If o is simple and &/ = & holds according to the theorem of reduction, then we
call B almost simple. The totality theorem trivially extends to almost simple terms.
This is particularly useful in the production rule

3 o= (£, 5.

As an example, we prove later that ¢y,, dy. — ¢ (¥, =y,). Hence, Ay, . Ap,.(y, = ¥,)
may take the place of f5; so that

X = ((Ay Ay (yi=y,)) 2 %)

becomes a production rule. Since ({(Ay,.Ay,.(y,=y))) o B)=(d =RB) we have by
the theorem of reduction that & = 2 is almost simple if &/ and % are almost simple.
Hence, the production rule X ::=(f; X') allows to extend the class of almost simple
terms for each theorem of form ¢y, ..., ¢y, — @&

In particular, for i =0, a result of form ¢ & allows to extend the production rules
by X:=% As an example of its use, consider the following proof of
¢y — dpAx.(y (x (yx))), where line 3 is verified by the deduction theorem.

Proof.

1. assume oy

2. 1,totality by — dAx(y (x (¥ x)))

3122 ¢y — oy — dAx.(y (x (yx))). O

Hence, fy0, fo1, - - - in the totality theorem replace y,, ..., y, in Theorem 2.6.1.
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The deduction theorem is used so often, that we introduce a special notation for
it. In proofs, a range of lines (e.g. 1-2 in the proof above) denotes that the deduction
theorem has been applied to that range. The presence of a dash always refers to
the deduction theorem.

The reduction rule

3= (A, - Ay .27 30
is primarily intended to stand for
T LIS YRRy S 5 |

but the former formulation was chosen to avoid variable conflicts, As an example
of its usage, define

A = ey, Ax.ey2.(y1 Xy ¥2),
B = ey, Ax . ((Ays.ey:.(y3 ¥2)) (31 X)),

Now 2 is simple and &/ = B by the reduction theorem, so & is almost simple.
Hence, ¢ holds. On the other hand, & is not simple because ey,.(y, x, y-) is not
simple. The latter is not simple because the production rule 3 ::=¢y,.=” merely
allows ey;.of to be simple if & contains no x; free. Hence, the reduction rule

3= ((Apg - A 27 20

is useful to circumvent the restriction in the production rules
3 = ey.37,
3 = (Prim (A\y.27) X X).

It is not possible to circumvent the restrictions in all cases. As an example, Ax.ey.(y x)
is not well-founded. It is slightly complicated to state exactly when the restrictions
can be circumvented, and we shall avoid stating the rule.

The rest of this section proves the totality theorem. In order to prove the totality
theorem we first prove some lemmas.

Lemma 7.5.2. If x is not free in oA then ¢psf — dx.of.

Proof.

1. assume dA

2. C-K’ o T
3. 1,2,triv ox.pHA
4. 3, Well2,triv ox. A

5. 1-4 b — dpx.oA. U
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Lemma 7.5.3. ¢4, ¢B — (P ARB).

Proof.

1.

assume

C-P

. 1,2,triv

. QOND

. 3,4 triv

. 5, Well2,triv

. 6,triv

1-7

Lemma 7.5.4.
OVises Y= A by, ..., by — Vsl ific{l,..., m}

Proof.

1.

2.

3.

4,

5.

assume
assume
1,2,triv
2,3,Lem.6.2.2

4,QND triv

Lemma 7.5.5.
(a) Vi OV —> A = Py, ..., by, = dx.A if x is not free in sA.

(b) ¥ ..., IV
() oy ..., dyn
(d) ¢)’1,'~-,¢J’m

Proof of (a).

I.

2.

3.

assume
assume

1,2,triv

. 3,triv,Lem.7.5.2

2-4

bst, B

PAxX(IfxTT)

PAx(if x psd ¢RB)

(if x oA dB) = G (if x A B)
PAx.p(if x A RB)
dAx(if x A B)

d(P oA RB)

oA, ¢B — (P A RB). 0

Sy, OV — A

BYisee s DYits DVivts e BVmy Vi

o

Brse s DYty BViits ey BV — Vil
dyy, .-, ¢ym——>Vy,-.&¢. O

> ox. A = Py, ..., Oy, — dx[H/y; = (¥ x)].
= ¢x.d = by, ..., by, — dx[A/x=(xy)]
—>ox.d = ¢y, ..., by, — dlA/x=T].

Oyi, s GYm = SA

Pyis s OV

dA

dx. A

Vi, .-, OV, — dx.A. O
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Proof of (b).

1. assume OV, oo, OV — IX.A

2. 1,Lem.7.5.4 OV1, ., by — Vyidpx.oA

3. 2,C-Mltriv GY1sers OV — VX[ Ay = (y,x)]

4. assume OV, .oy BYm

5. 3,4,triv,.Lem.6.2.1 dx[A/y, = (y;x)]

6. 4-5 OV Py — Ix[A [y = (y; x)]. O

Proof of (¢).

1. assume GV, OV — dx.A

2. 1,Lem.7.5.4 Y1y, GYm— Yy dx.d

3. 2,C-M2,triv OV, bYm— Vyidx[sl/x=(xy)]

4. assume SV, ey OV

5. 3,4, triv,Lem.6.2.1 ox[d/x=(xy)]

6. 4-5 Oy, ..., Oy, — ox[ A/ x = (xy)]. O

Proof of (d).

1. assume dVi, ..., OV, — dX.A

2. assume Vi, .., OV

3. 1,2,triv ox. A

4. 3 Welll,C-A triv d((Ax.s)T)

5. 4,triv ¢/ x=T]

6. 2-5 Yy, .oy Py — O A/ x=T]. O

Now let x and z be distinct variables that do occur among y,, y», ... and define
the syntax class I' of unary simple terms by

o=y | Az((AxY(Px2) | (I'T) | (F(xT*) | T ey.[I/x=T]
| ¢ | (PIT) | ((Ayg, .- Ay LT/ x=TD I™)
| (1) | (Prim QLT /x:=T) '),

where I'* denotes a sequence of zero, one, or more unary simple terms and I
denotes a sequence of exactly i unary simple terms.

Any of the variables x,, x,, ... may occur free in simple terms whereas merely x
may occur free in unary simple terms (apart from y,, y,, ... which may occur free
in simple as well as unary simple terms). We shall prove a theorem about the
well-foundedness of unary simple terms, and then prove the totality theorem from
this special case.
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Lemma 7.5.6 (Unary totality). If 7 is a unary simple term, if y,.,1, Vw2, ... do not
occur in I, and if by, ..., ¢yi— d(fyy\...y) for all f; that occur in J, then

Vs ey Y — OX.T.

Proof. We proceed by structural induction in I” and 7.

Case 1. Assume that 7 is y,.
1. QND DY,y SYm — DY
2. 1,Lem.7.5.5 Vs oy OV — DX,

Case 2. Assume that J is Az.((Ax.f) (Px z)).

1. ind. hyp Vi, oo, OV, — OX.A

2. assume DVis-oos DV

3. 1,2,triv ox.A

4. C-Curry ¢da — ox.Az.(a (Pxz))

5. 3,4.triv dxAz.((Ax. ) (Pxz))

6. 2-5 Gy, .., OV, — dxAZ((Ax.A) (Px 2)).

Case 3. Assume that T is (A RB).

1. ind. hyp Vi, ..., by, — dx. A

2. ind. hyp OV1ses OV — SX.B

3. assume Y1y OV

4. 1,2,3.,triv ox. A, dpx.RB

5. C-A da, b — ¢(ab)

6. 5,Lem.7.5.5 da, pb — ¢x.((ax) (bx))
7. 4.6.triv dx.(A B)

8. 3-7 Vi Y — Ox(ARB).

Case 4. Assume that J is (& (x B, ... B,)).

1. ind. hyp OV, ..., OV — dx.A

2. ind. hyp Vi, OV — OX. B, i€{1,..., n}

3. assume DVisees Vm

4. 1,23 triv dx. A, §px.B,, ..., px. B,

5. QND ¢a, ¢b,, ..., db, — ¢a

6. 5,Lem.7.5.5 da, ¢b, ..., ¢b, — ¢dx.((ax)x (b, x)...(b,x))
7. 4,6 triv ox.(A (x By...B,))

8. 3-7 OV, OV — OX(A (X By ... B, ).
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Case 5. Assume that J is T.

1. assume DV, PV
2. C-K' éx.T
3.1-2 d)yl see ey d)ym - ¢XT

Case 6. Assume that J is £y,.% where @ is shorthand for [//x:=T).

1. ind. hyp IV, ., OV, — XA
2. 1,Lem.7.5.5 Oy QYm— OB

3, assume Ay, ..., d’}’m

4. 2,3 triv ¢B

5. 4,QND 19

6. 3-5 SYys-n, DY, — B

7. 6,lem.7.5.4 SV, oo, OV —Vy, | B
8. 7,Quantify2 triv Ay, ..., DV — PV, B.

Case 7. Assume that J is ¢.o.

1. ind. hyp Y15y GV — Px.A
2. assume Dy, DY

3. 1,2,triv bx.A

4. 3,well2 ox.p A

5. 2-4 dyy, ..., OV, — XA

Case 8. Assume that 7 is (P B).

1. ind. hyp dVyy e, OV — XA

2. ind. hyp Vs, OV — OX.B

3. assume Y1y, BV

4. 1,23,triv ox. oA, ¢px. B

5. C-P da, pb — H(Pab)

6. 5,Lem.7.5.5 da, db — dx.(P (ax) (bx))
7. 4.6,triv dxAP A B)

8. 3-7 d)yla ] ¢ym - (bx(P&f %)
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Case 9. Assume that T is ((Ayy, ... Ay,,.B) €, ... €;) where & is shorthand for
[«/x:=T]. Let B’ be shorthand for (Ay,, ... Ay, .B).

1. ind. hyp DYy, OV — Ix A

2. 1,Lem.7.5.5. SV, OV — B

3. 2,triv OV1sees OV = (B yi o V1)

4. 3 Lem.7.5.5 Y1y s OV — OX(B (i, x) ... (i, X))
5. ind. hyp OV1yees Oym— OX.€;, je{l,... i}

6. assume GVis- s OYm

7. 4,6,triv OVh,s o s OV, = GXAB (yi, x) .. (Yi, X))
8. 5,6,triv dx.€,, ..., dx.G;

9. 7,8triv ox.(B' €, ...%6)

10. 6-9 DViy s OV — XA B E, ... E).

Case 10. Assume that J is (f;; o, ... ;).

1. assume da,...,¢a,— ¢(f;a,...a)

2. ind. hyp Sy OV — b, je{l,..., i}
3. assume SYisees DV

4. 23 triv ox.A,, ..., dx.oA;

5. 1,Lem.7.5.5 da,, ..., da;— ¢x.(f; (a,x)...(a;x))
6. 4,5,triv ox.(f; sty ... L)

7. 3-6 DYy s OV — Ix(f A, ... A}

Case 11. Assume that J is (Prim(Ay,.B) € P) where B is shorthand for
[«/x=T].

1. ind. hyp OVisees Gym— XA

2. 1,Lem.7.5.5 Vi, DY — OB

3. 2,Lem.7.5.4 Vi, BV — ¥y, 0B

4. ind. hyp OYis-es OV — X €

5. ind. hyp BY1see s OV — XD

6. assume DV s DYm

7. 3,4,5,6,triv Vy,-.gb(()\y,-.%‘) i), ox. €, ¢px.9D

8. 7,C-Prim ¢c, dd — ¢x.(Prim(Ay,. B) cd)

9. 8,Lem.7.5.5 ¢c, pd — dx.(Prim(Ay;. B) (cx) (d x))
10. 7,9,triv dx.(Prim(Ay,. B) € D)

11. 6-10 Oyi, ..., OV — XA Prim(Ay;.B) € D). O
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We may now prove the Totality Theorem from the Unary Totality Theorem.

Proof of the Totality Theorem. Let &/ be a simple term that satisfies the conditions
of the Totality Theorem. We may construct a unary simple term % such that
A =[B/x=T] by reduction and such that B satisfies the conditions of the Unary
Totality Theorem. The construction is as follows: Replace all occurrences of Ax;. €
in o by Az.((Ax.€) (Pxz)). Replace all occurrences of x; by

J
————

(xT...TF)

where j is the De Bruijn index of the occurrence of x;. Replace all occurrences of
ey;. 6 and (Prim(Ay,.€) D €) by ey, [6/x:=T] and (Prim(Ay, [€/x=T]) D €),
respectively. Replace all occurrences of (if € 2 €) by (PP € 6). It is left to the
reader to see that B is a unary simple term and that &/ =[%B/x:=T] (note that &
does not depend on x). Since & satisfies the conditions of the Totality Theorem,
it contains no y; free. Hence, neither does %, so ¢x.9 by the Unary Totality Theorem.
From axiom Welll and C-A we have ¢({(Ax.8) T) which shows ¢4 [

8. Development of ZFC

8.1. The syntax and axioms of ZFC

The following axiomatization of ZFC is inspired by [17] and [22]. The syntax
of terms and well-formed formulas (wfl’s) of ZFC reads:

variable ©== x | y | z | -
term ::= variable € variable
wif 1= term | ~wff | (wff=wff) | Vvariable.wiff.

Let £:ZFC(x,, ..., x,) denote that o is a well-formed formula of ZFC whose
free variables occur among x,, ..., x,.
The logical axioms read ([22])

(ZFC-Al) A=>(B=>4)

(ZFC-A2) (A= (B=E))=22(A=B)D(A=F))

(ZFC-A3) (MB=2) (T BA)DRB)

(ZFC-A4) Vxod=[4d/x:=1t] wheretis a term free for x in &

(ZFC-A53) Ux(A=>B)=>(A=>Vx.B) if x is not free in A.
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The inference rules read

(ZFC-MP) A, A=>RB - B

(ZFC-Gen) A - Vx.d.

The axiom of extensionality reads

(ZFC-E) Vz(zex&zey)=>Vz(xezoyez),

where & is defined from = and — as usual. We shall use defined logical connectives
like & and the defined quantifier 3 in stating axioms, but we shall avoid defined
relations like <, and defined functions since they would complicate matters. The

=

axiom of subsets reads
(ZFC-S) Vy3dzVx(xez&xeyasf) where y and z do not occur free in &,

where « is any well-formed formula of ZFC.
The construction axioms of ZFC are easier to state when we have the axiom of
subsets at our disposal [17]. As an example, we state the axiom of pair sets as

(ZFC-P) VxVy3dzxezayez

This axiom states that for any sets x and y there is a z containing both which makes
z a superset of the pair set {x, y}. Having a superset of the pair set, the pair set
itself may be constructed using the axiom of subsets. The axioms of union and
power sets are stated similarly:

(ZFC-U) Vx3yVuVv(ucorvex=ucy)
(ZFC-W) VxAyVz(Vu(uez>uex)=zey).

The axioms of pair and null sets are not strictly necessary, but it is instructive to
verify them in Section 8.10. The axiom of null sets reads:

(ZFC-N) AxVy.yex.

The axiom of replacement reads

(ZFC-R) VzIuVx(xezadyd=Iy.ycunr A)
where z and u are not free in .

The interpretation is as follows: The well-formed formula & may contain x and y
free. Consider &/ as a multi-valued function that maps x to y iff & is true. In
particular, &/ may be a single-valued function, in which case the axiom expresses
the usual axiom of replacement. When &f is multi-valued, the axiom states part of
what the axiom of choice states. Hence, ZFC-R is stronger than the usual axiom of
replacement, but ZFC-R plus the axiom of choice has the same strength as the usual
axiom of replacement plus the axiom of choice.
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Stated without use of defined functions and relations, the axiom of choice is
colossal. We use the formulation that provides a choice set y for any collection x
of disjoint, nonempty sets.

(ZFC-C) VYx[Vuluex=Ivvecu)
AVU, O,w, Z(LEXADEXAWEUAWEDAZEUDZE V)
= FpVuluex=>Ivvecunrvey)
AVU L, W, Z(UEXAVEUNVEYAWEUAWEYAZEDV=DZEW)].

The axiom of restriction says that any nonempty set x contains a set y which is
disjoint from x. This axiom allows to prove the axiom of foundation [22], i.e., that
there is no infinite sequence x,, x,, ... of sets such that x; 3x,3x;3- - -

(ZFC-D) Vx.(dyyex=3Iyyexadzzexnzey).

The axiom of infinity states that there exists an infinite set. Having the axiom of
restriction, it is sufficient to assume that there exists a nonempty set y such that
whenever y contains a set z, then it also contains a set u which contains z. Without
the axiom of restriction, this axiom of infinity would be satisfied, e.g., by any set u
that satisfied u ={u}, and such a u is finite since it merely has one element. The
axiom of infinity reads

(ZFC-1) Ay.((Fzzey)aVz(zey=>Juzcunrucy)).

8.2. The strategy of development

We shall prove that any theorem of ZFC is provable in map theory. More
specifically we shall prove the following result.

Theorem 8.2.1. If o4:ZFC(x,,...,Xx,) is a theorem of ZFC, then ¢x,, ..., dx,— A
is a theorem of map theory.

The theorem follows from the following lemmas.

Lemma 8.2.2. If we have ¢y,,..., ¢y, — A and ¢y, ..., oy, — (A = B) then
(byl LR ] (bym - %'

Lemma 8.2.3. If dy,, ..., ¢y, — A then dy,, ..., ¢y, — V. oA.

Lemma 824. If «:ZFC(y,,..., V) is an axiom of ZFC then ¢y,, ..., ¢y, — .
Lemma 8.2.5. If we have «:ZFC(x,,...,x,) and A:ZFC(y,,...,V,.) then
(i)xl,""(bxl’l-—)(gjiﬁ.¢yl""’¢yln—_)'ﬂ'

Lemmas 8.2.2-8.2.4 are verified in Sections 8.8-8.11, while Lemma 8.2.5 is trivial.
The theorem follows from the lemmas as follows.
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Assume :ZFC(x,, ..., x,) is a theorem of ZFC. Since &« is a theorem, it has a
proof &, ..., o, ending with &/ where each &, is either an axiom or follows from
previous &f;’s by an inference rule. Assume the free variables of o/, ..., s occur
among y,,..., ¥n. It is straightforward to verify ¢y,,..., ¢y, — o by induction
in i using Lemmas 8.2.2-8.2.4. In particular, for i=n, ¢y,,..., ¢y, — &, so
éx, ..., dx, — o by Lemma 8.2.5.

Theorem 8.2.1 would be true trivially if ¢x,, ..., ¢x, — o would hold regardiess
whether or not & was a theorem. To rule out this possibility it is sufficient to find
a single well-formed non-theorem & such that ¢x,, ..., ¢x, — & is not provable.
For example, let & be xex. If ¢x — x € x is provable in map theory then, in
particular, ¢T—TeT is provable so, since ¢T=T, we would have TeT=T.
However, T€ T =F by reduction, so we would have T=F and map theory would be
inconsistent. Hence, if map theory is consistent then Theorem 8.2.1 is nontrivial.

In Sections 8.8-8.11 we shall not prove Lemma 8.2.4 for every list y,,..., y,, of
variables. We merely prove ¢z, ..., ¢z, — o for one list z,,..., z, of variables
after which Lemma 8.2.4 follows from Lemma 8.2.5.

The axioms ZFC-P, ZFC-N, ZFC-U, ZFC-W, ZFC-1, ZFC-S, ZFC-R, ZFC-C
and ZFC-D all assert the existence of certain sets. They are all proved in map theory
by constructing the set explicitly:

(ZFC-P) ( pairset) (Pxy)
(ZFC-N) (emptyset) T
(ZFC-U) (unionset) AzAx (zT)(z F))
(ZFC-W) ( powerset) Aulif u T Ao(x (u (I'xv))))
where (I'xy)=¢ez((xz)=(xy))
(ZFC-1) (infinity) (Prim(Aw.w) TT)
(ZFC-S) (subset) (if y TGF53u(B (yu)) T

Au(if (B (yu)) (yu) (y eul(B (yu))))))
where B = Ax.of
(ZFC-R) (replacement) Ax(u' (zx)) where u' = Ax.ey. oA
(ZFC-C) (choice) Az(y' (xz)) where y'=Az'.ez".2"¢ 2’
(ZFC-D) (restriction) D(x, ew.w € x) where D(x, y)
=(if ("y ATy o) e x) D(x, (yev.(yv) € x)) v).
8.3. Conversational proofs

In the previous sections, the axioms and inference rules of axiomatic map theory
have been introduced. In principle, any theorem of map theory is provable using
only these axioms and inference rules. In practice, however, proofs become exceed-
ingly long and unreadable if they use only axioms and inference rules. We shall
refer to proofs as “formal” if they only use axioms and inference rules.
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Proofs become considerably more manageable when use of metatheorems is
allowed, but they still remain long and difficult to read.

In this section we shall state proofs in the “conversational” style commonly used
between mathematicians. However, since map theory is a new theory such a conversa-
tional style has to be developed first.

The aim of a “conversational proof™ of a theorem is to present the idea behind
the proof in order to convince the skilled reader that it is straightforward to write
out a formal proof in all detail.

Trivial details are omitted from conversational proofs. As an example, suppose
oA = AR is established in the middle of a proof. Further suppose that % = of is needed
to continue the proof. In a formal proof, # = & has to be proven from & = & using
a few proof lines. A conversational proof would neither prove B = .4 nor even
mention that this is necessary for the proof to proceed.

As an example of a conversational proof, consider the following proof of
x = Vyd(x=y):

Proof. Assume x and ¢y. Now x=y=(if y TF)e @ so p(x=y). O

This proof starts out saying “assume x which indicates that either x — & or
x = o will be proved for some term & using the deduction theorem and Theorem
5.4.4. Since the proof is going to prove x — Vy.¢(x = y), it is obvious that the goal
is to prove x — o where of is Vy.dp(x =y).

The proof continues with “‘assume ¢y’ which indicates that ¢y — B, oy = B
or Vy.% will be proved for some term % using the deduction theorem, Theorem
5.4.4 or Theorem 6.2.2. Again, it is obvious that the goal is to prove Yy.% where %
is ¢p(x =y). The assumption ¢y could also be stated y € @ since y € @ is shorthand
for ¢y in conversational proofs.

Next, the proof states x =y = (if y T F) € @. This is shorthand for x =y =(if y TF)
and ¢ (if y TF). The former follows by the reduction theorem if x is replaced by T,
and the latter follows from the totality theorem.

The proof concludes ¢ (x = y); this follows from x=y =(if y TF) and ¢ (if y TF)
by substitutivity, but substitutivity is not mentioned since this is considered trivial.

The proof ends after the conclusion ¢{x = y) even though the goal was to prove
x — Vy.¢(x=y). Hence, it is left to the reader to verify ¢y — d(x=y) by the
deduction theorem, then Vy.¢p(x =y) by Theorem 6.2.2, and then x — YVy.¢(x=y)
be the deduction theorem. However, the proof started by assuming x and ¢y which
implies that this “post processing” is needed.

As another example, consider the following proof of ¥xVy3z(if (x y) z 11z).

Proof. Assume x, y € @. The proof is by TND from the following two cases:
Case 1. Assume (xy) and let z=T. We have (if (xy) z z) =z =T as required.
Case 2. Assume —i(xy) and let z=F. We have (if(xy)zz)="1z=T as
required. [l
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This proof starts out assuming ¢x and ¢y in order to prove VxVy.sf where o is
3z(if (x y) z “1z). Next, it is stated that Jz(if (xy) z ©1z) will be proved from

xy)
(xy)— 3z(if (x y) z 91z)
“(xy)— Jz(if (xy) z ~1z2)

using the TND theorem. The statement !(x y) is not proved explicitly since ¢(xy)
follows directly from the totality theorem and since ¢of — 154 In general, verification
of premises of the form ¢.&f and !/ are omitted whenever the proof is straightforward
(but remember these “‘side conditions” both when reading and writing proofs).

The proofs of (x y) — 3z(if (x y) z “1z) and “1(x y) — 3z.(if (x y) z 1z) are stated
under the headings Case 1 and Case 2. In Case 1, (xy) is assumed. Then 3-8
where & is (if (xy) z z) is proved by giving a z explicitly. This is the usual way
to prove existence in map theory. To make the intention clear, z is locally defined
to stand for T and then (if (x y) z —1z) is verified. It is then left to the reader to apply
Theorem 6.2.3 to conclude 3z.(if (xy)z 1z). Theorem 6.2.3 requires ¢z and
'3z.(if (x y) z =1z), but the proofs of these two requirements are omitted as before.

In Case 2, z is locally defined to stand for F and then the proof is similar to Case
1. The two local definitions z=T and z=F do not conflict with each other since
they apply to different parts of the proof. It is up to the reader’s judgement to
understand the scope of each local definition, and it is up to the writer of the proof
to allow the reader to guess the scope.

The two examples give the flavor of conversational proofs. Conversational proofs
make use of theorems (metatheorems, to be precise) like the deduction theorem
and QND, but they do not always identify the theorems explicitly. Conversational
proofs almost never refer to the reduction, QND and totality theorems since they
are considered “trivial”’. Conversational proofs do not refer to the deduction theorem
and related theorems either, since the use of “assume’ indicate their use.

There are a few constructs of conversational proofs that have not been mentioned.
First, “let x € @ satisfy .&/"” does not choose an arbitrary x but chooses the x chosen
by . In other words, if we say “let x, y € @ satisfy & then x =y. The construct
“let x € @ satisfy & is shorthand for the local definition “let x = ex.&/”" and should
only be used when 3x.o/ has been established. When 3x.s/ has been established,
then o =T follows trivially from x = ex../ and the definition of 3.

Another construct is “The proof is by QND’ from the following three cases™.
This indicates that &/ =% is going to be proved from [A/x=T]=[B/x=T],
[f/x=1]=[B/x=1])and [d/x=F(x)]=[%B/x:=F(x)] for given o and .

A third construct is “the proof is by induction in x> where Vx..s/ or ¢x — o is
proved from x — o and ~x, ¢x, Vy.((Ax.f) (x y)) — <. The two cases x and ~ix,
ox, Vy.((Ax.sf) (x y)) are usually not stated under two headings like Case 1 and
Case 2. Rather, the proof looks like: “The proof is by induction in x. First assume
x... Now, as inductive hypothesis assume ~ix, ¢x, Vy.((Ax.of) (xy))...”
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A fourth and very common construct is to deduce [sf/x = %] from Vx.of using
Theorem 6.2.1. This requires ¢%B to be proved, but the proof of ¢% is omitted if
it is trivial. Use of this construct also requires % to be free for x in .

A fifth construct is the method of indirect proof. If assumption of 1.7 leads to
a proof of F (i.e., of F=T), then & holds according to Theorem 5.4.3 (provided !.o«f
holds, but the proof of !/ is omitted if it is trivial).

The list of constructs that can be used in conversational proofs is open. The sole
purpose of a conversational proof is to convince the reader, so whatever convinces
the reader may be used in conversational proofs.

8.4. Trivial lemmas
The following statements are trivial to prove, and we shall use them without
reference in conversational proofs.
Theorem 8.4.1.
(a) xeyky, du,x=(yu) where u = eu(x=(yu)).
(b)  y, dx+—"xEy).
(c) “x, x =y, put- pu, (xu)=(yu) wherev=cev.(xu)=(yv).
(d) X, x=y, v du, (xu)=(yv) whereu=cu(xu)=(yv).
(e) Sy, x=y, put- dv, (xu)=(yv) wherev=cv(xu)=(yv).
(f) Sy, x=y, pv= du, (xu)=(vv) whereu=-cu(xu)=(yv).
(g)  Vx(xeéy)r y

(h) “Ix, px, du - (xu) € x.
8.5. The totality of =
Theorem 8.5.1. ¢x, ¢y — d(x=y).

Proof. The proof is by induction on x. First assume x =T. Further assume ye &.
Now x=y=(ifyTF)e ® so ¢y — d(x=y).

Next, as inductive hypothesis assume ¢x, “1x and Yu.Vy.¢((xu)=y). Further
assume y, u, v € @, Since (y v) € @ we have ¢((x u)=(yu)). Having VuVv.¢((x u) =
(vv)) the totality theorem gives ¢Vu.3v.((x u)=(yv)) and ¢Vo.du.((x u)=(yv)).
Hence, by the definition of = and the totality theorem, ¢(x =y) so ¢y — d(x=y).
The theorem now follows by induction. O

From now on, we regard the above theorem as part of the totality theorem, i.e.,
the definition of the syntax class X of simple terms is extended to

o= | X=3
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As a consequence we have ¢x, ¢y — ¢(x € y) by the totality theorem. Furthermore,
the totality theorem entails the following corollary.

Corollary 8.5.2. For each &{:ZFC(x,,...,x,) we have ¢x,, ..., dx, — ¢
8.6. Equality properties of =
Theorem 8.6.1 (Reflexivity). If ¢x then x=x.

Proof. The proof is by induction on x. For x =T, x =x holds trivially. Now, as
inductive hypothesis assume ¢x, “1x and Yu(xu)=(xu).

If ¢u then (x u)=(x u). Hence, Vu.3v.(x u) = (x v) and Vo3u(xu)=(xv). Com-
bined with ~1x this gives x =x. The theorem now follows by induction. [

Theorem 8.6.2 (Transitivity). If ¢x, ¢y, ¢z, x=y and x =z then y = z.

Proof. We first prove Vx.Vy.Vz.(x =y A x =z => y=z) by induction on x. For x=T
assume y,z€ ®. Nowx=pAx=z=>y=zby TNDsoVyVz(x=yix=z=>y=17).

As inductive hypothesis assume ¢x, —1x and Vu.Vy.Vz.((x u)=yA(xu)=z=>y=
z). Further assume u, y, z€ @, x =y and x =z. Choose u'€ @ such that (x u’)=(y u)
and choose u"€ @ such that (xu')=(zu"). As a special case of the inductive
hypothesis we have (xu')=(yu)A(xu)=(zu")=>(yu)=(zu"), so (yu)=(zu").
Hence, Yu.3v.(y u) = (z v). Likewise, Yv.3u.(y u) = (z v). Hence, from the definition
of =, y=z

Now, Vx.Vy.Vz,(x =yAx=z= y=z) follows by induction on x. The theorem
follows easily. [

The theorems of reflexivity and transitivity allow us to treat = as an equivalence
relation.

Theorem 8.6.3 (Substitutivity). If ¢x, ¢y, ¢z and x=y then xézSy €z and z¢é
x&zey

Proof. Assume ¢x, ¢y, ¢z and x=y.

® Proof of xéz<& y ez Assume x €z From x € z we have &1z Choose u € @ such
that x = (z u). By transitivity of = we have y=(zu),so y€ z Hence,xcz=>yé z
Likewise, yez=>x€z 80 x€z&y ez,

® Proof of zex&z€y. Assume z€ x. From ze x we have —x, and from x =y we
have &1y. Choose u € @ such that z=(xu). Choose v € @ such that (x u)=(yv).
By transitivity of = we have z=(yv), so z€ y. Hence, z€ x = z < y. Likewise,
zéy=>z€EX, 50 z€xSzey [



66 K. Grue

Corollary 8.6.4 (Substitutivity in ZFC). If A:ZFC(x,x,,...,X,), ¢x, ¢y,
éxy,...,dx, and x =y then AES[ A/ x = y].

The corollary allows us to treat = as an equality relation when dealing with
well-formed formulas & of ZFC.

8.7. Extensionality
Theorem 8.7.1 (Extensionality). If ¢x, ¢y and Vz(zEx&z€ y) then x=y.
Proof. Assume ¢x, ¢y and Vz.(z€x&z € y). The proof is by TND.

Case 1. Assume x. Further assume ¢z We have z€ x<>z € y. Since x =T we have
“1z&€x so 1z€y. Hence, Vz1z€y so dzzey and y =T according to Theorem
8.4.1. From x=y =T we have x=.

Case 2. Assume —x. Further assume u € @. We have (x u) € x. Further, (xu)e @
so (xu)éx<&(xu)eyand (xu)éy From (xu)é y we have 3v.(x u) = (y v). Hence,
Vudov.(xu)=(yv). Likewise, Vo.du.(xu) =(yv),so x=y. [J

8.8. Logical axioms and inference rules

Theorem 8.8.1. Let A, B, €:ZFC(x,,...,x,). We have

(ZFC-Al) Xy, ..., 0x,— A D (B> A)

(ZFC-A2) Oxy,. .., 0%, > (A (BDE))SU(ADRB) D (A E))
(ZFC-A3) X1, ..., 0%, = (B> A) DSBS A) S B).

Proof. Assume ¢x,, ..., ¢x,. Now ¢, ¢&B and ¢¥€ according to Corollary 8.5.2,
50 o = (B = o) and the other two statements are trivial to prove by TND. [

Theorem 8.8.2 (ZFC-A4). Let s{:ZFC(x,,...,x,). Leti,je{1,..., n}, and assume
that x; is free for x; in s{. We have
GX1y ., X, = VXA [/ x,=x,].

Proof. Assume &x,, ..., ®x,, and Vx.o. Now, [/x; = x;] foliows by Theorem
6.2.1. I

Theorem 8.8.3 (ZFC-A5). Let o4:ZFC(x,,...,x,) and let B:ZFC(x, x,,..., X,)
where x does not occur among x,, ..., x, We have

X1y, X, — VXA B) = (A > VX.RB).
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Proof. Assume éx,, ..., ¢x,. Corollary 8.5.2 gives ¢. Further, if ¢x, then ¢% so

$Vx.B. The proof proceeds by TND in o/ and Vx.%.

® If o/ and Vx.% then Vx.(sf = B) = (A DVYx.B)=VXxB>Vx.B=T.

o If & and Vx.B then Vx.(of = B) = (A SVX.B)=Vx.B>VxB=T.

o If “19f and Vx.%B then Vx.(4 > B) = (f DVx.B)=VxF=>VxF=T.

® If -1/ and “Vx.9 then Vx.(d = B) = (A >Vx.B)=VxFS>VxF=T.

Theorem 8.8.4 (ZFC-MP). Let oA, B:ZFC(x,, ..., x,). We have
¢x,,...,0x, > A;dx, ..., 0x, > A=>RB + &x,, ..., dx,— B.

Proof. Assume o¢x,,...,¢x,— A, &x,,...,¢dx, > A>B, and o¢x,,..., dx,.
Now, & and & =% holds, which logically implies @%. Hence,
dxy,...,dx,— B. [

Theorem 8.8.5 (ZFC-Gen). Let of:ZFC(x,,...,x,) and let ic{l,..., n}. We have
OXy, ..., Px,— A dxy, ..., dx, — Vx5

Proof. This theorem was previously stated and proved in Lemma 7.5.4. Here is a
conversational proof: Assume ¢x,,..., dxi_,, Oy, dxiiy,..., dx,, ¢x;.. From
éx,, ..., ¢x, we have o, soVx,.of and ¢x,, ..., dxi_,, Y, IPXisy, ..., bX, — Vx. oA
The theorem follows by renaming y into x;. O

8.9. The axiom of extensionality
Theorem 8.9.1 (ZFC-E). ¢x, ¢y — Vz.(2& x&2Ey) DVz(xczy € z).

Proof. Assume ¢x, ¢y, Vz(z€ x>z ¢€ y) and ¢z From Theorem 8.7.1 we have x =y
Assume x € z and choose u € @ such that x =(zu). We now have y=x=(zu) so
yé€z Hence, x€z= y €z Likewise, yéz=>x<&z s0 x€zSy €z as required. [

8.10. Construction axioms of ZFC
Theorem 8.10.1 (ZFC-P). Yx.Vy.dzxézayéz

Proof. Assume x,ye @ and let z=(Pxy). From (zT)=(PxyT)=x and (xF)=
(PxyF)=y we have x=(zT) and y=(zF),so xézand yez O

Theorem 8.10.2 (ZFC-N). 3x.Vy.~i(y € x).
Proof. Take x=T. [

Theorem 8.10.3 (ZFC-U). Vx.3y.VuVo.(uévivéx=>ucy).

Proof. Assume ¢x and let y =Az(x (zT) (zF)). Assume ¢u, ¢v, uc¢v and véx.
From u € v and v € x we have ~1v and -1x. Choose v’ such that v=(xv’). From u € v
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and v=(xv') wehave u ¢ (xv'). Choose u’suchthat u=(xv' u')andletz=(Pv' u').
Now ¢z and (yz)=(x(zT)(zF))=(xv" u')=u so uéy as required. O

Intuitively, Aw.(if u T Av.(x (v (x v)))) represents the power set of x. However, the
given axiomatization of map theory seems to be insufficient to prove this. Instead,
we represent the power set of x by

Au(if u T Av(x (u (I' xv))))
where I’ is “‘almost” an identity relation. We define I’ (conditional identity) by
I'= AxAy.ez(xz)=(xy).

The following lemma expresses the “almost identity”” property of I'.
Lemma 8.10.4 (I'). If ¢x and ¢y then (x (I' xy))=(xy).
Hence, (I’ x y) behaves like y when occurring as the argument of x.

Proof. Assume ¢x and ¢y and let z=(I'xy)=¢ez(xz)=(xy). From (xy)=(xy)
we have Ju.(xu)=(xy), so (xz)=(yz) as required. [

Note that ¢x — ¢ (I’ x). This is important when using the totality theorem.
Theorem 8.10.5 (ZFC-W). Vx3yVz(Vu(uezDuex)=>zey).

Proof. Assume ¢x and let y = Au.(if u T Av.(x (u (I' xv)))). Assume ¢z and VYu(uée
z=>u € x). We shall prove z€ y and do so by TND from the following two cases.

Case 1. Assume z. From (y T)=Tand z=T we have z=(y T}, so z ¢ y as required.

Case 2. Assume —1z. Define u=Av.(if (xv)€z)(I'xv) (ev.(xv) € z)). To prove
z €y it is sufficient to prove z=(y u), and to prove z = (y u) it is sufficient to prove
ve€z&Sve(yu) for all ve d. Hence, assume ¢v. Note that the definitions of y and
u gives

(yu)=Arv.(x (if ((xv)éz) (I'xv) (sv.(x )€ 2))).
Proof of vé z=> vé (yu). Assume v € z. From Vu.(u € z = u € x) we have v € x so

~“1x. Choose v’ such that v=(xv'). From v=(xv') and v< z we have (xv')€ z so
(yuv)=(x{I'xv))=(xv)=v and veE(yu).

Proofofv e (yu) = véz Assume v € (yu)andchoose v'e @ suchthatv=(yuv’).
We now prove vez by TND from two cases.
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Casea. Assume (xv')€z Inthiscase v=(yuv)=(x(I'xv"))=(xv')ézsoveEz

Case b. Assume (xv') € z In this case v=(yuv')=(xev.(xv) € z). From ~iz we
have (zT)¢ z, and from Vu.(ué z=>ué x) we have (z T)€ x. Choose v” such that
(zT)=(xv"). From (xv")=(zT) we have (xv")€z so Ju(xv)éz Hence, v=
(x ev(xv) € z) €z which proves v € z as required. [

Theorem 8.10.6 (ZFC-1). 3y.(FzzeyAVz(zeéy=>Auzéuiuéy)).

Proof. Let y = (Prim(Aw.w) TT). We have ¢y, 1y, and

(yo)=(foTaw(y (v T))).

Since (y T)=T we have T¢ y so 3z.z¢ y. Now assume ¢z and z€éy. Choose ve @
suchthat z=(y v)and define u = Aw.(y v) and v’ = Aw.v. From (y v') = Aw.(y (v' T)) =
Aw.(yv)=u we have uc¢y and from z=(yv)=(uT) we have z<€u, so
Ju(zeuiucy) O

Theorem 8.10.7 (ZFC-S). If «4:ZFC(x, x,,..., X,) then

Ox,, ..., 0x, > V¥yIzVx(xEzSxeyi o).

Proof. Assume ¢Xx,, ..., ¢x, and ¢y. Let B be shorthand for Ax.f and define
z=(if y T(if 9Fu(B (yu)) TAPF (B (yu)) (yu) (y su(B (yu)))))).

We have ¢z. Assume ¢x. We shall prove x €z x €y A .

Proof of xéz=>xéy Ao Assume x € z, choose u € @ such that x=(zu), and
define v=(if (B (yu)) ueu(RB (yu))). Since o« is a term of ZFC we have
ox, dxy, ..., ¢x, — oA In particular, since ¢x,,..., dx, and ¢y holds, we have
dw — (B (yw)). If y =T orif 13x.(B (y x)) then z =T contradicting x & z. Hence,
=1y and Ax.(B (yx)). If (B (yu))=T then x=(zu)=(yu) so x<y. Further, o =
(Bx)=(B(zu))=(B(yu)=T. If (B (yu)) then x=(zu)=(yeu(B (yu)))
so xéy. Further, since Ju(B (yu)) we have A=(Bx)=(B(zu))=
(B (yeu(B (yu))))=T. In any case, x € y A o as required.

Proof of x€ y A sf = x € z. Assume x € y and . Choose u € @ such that x = (y u).
We have (B (yu))=(B x)=s=T. Hence, Ju.(B (y u)). The definition of z com-
bined with iy, Ju.(B (yu)) and (B (yu)) gives (zu)=(yu)=x so x€z as
required. O

Theorem 8.10.8 (ZFC-R). If 4:ZFC(x,y, x,,...,X,) then
Xy, ..., dx, > VzIuVx(xezhr Ay.of = Ayyeui A).
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Proof. Assume o¢x,, ..., ¢x, and ¢z Define u'= Ax.ey.of and u = Ax.(u' (zx)). We
have ¢u. Assume ¢x, x € z and Iy.s7. Choose v, y € @ such that x=(zv) and o =T.
Now (uv)=(u'(zv))=ep.((Ax.A) (zv)) = ey.((Ax.of) x)=ev.sf = yso y € u. Hence,
yéuhiod as required. (Recall that “choose y€ @ such that & =T means “let
yv=eyd”. O

Theorem 8.10.9 (ZFC-C).
Vx(Vu(uex=3Jvveu)
AV oW, Z(UEXAVEXAWEUAWEDAZE U 2E D)
= AyVu(uéex=>Avvcuiveéy)

AVU, O, W, Z(UEXAVEUAVEYAWEUAWEYAZED=D ZE w)).

Proof. Assume ¢x, Vu.(uéx=>Jovcu)and Vu, v, w, Z(UEXAVEXAWEUAWE
vAizéu=>z€v). Define y'=Az'.ez".2"€z" and y=2Az(y' (xz)). We have ¢y. To
prove the theorem we have to prove Yu(uéx=>Jvvéuivéy) and Yu, v, w,
z{uéxiveuivéyiwéuiweéyizeév=z<&w). Note that

(yol)=(y' (xd))=ez".z"€ (x o)

for any term & that does not contain z” free.

Proof of Yu.(ué x=>3v.vé uivéy). Assume ¢u and u € x. Choose u’' € @ such
that u=(xu’) and define v=(yu')=¢€z".2"é(xu’). From v=(yu’') we have véy
as required. We now prove v € u. From (x u') € x and Vu.(u € x => 3v.0 € u) we have
Ju.ve (xu'). Since v=¢ez".2"¢ (xu') we have v ¢ (xu’) which combined with u=
(xu') gives veu.

Proof of Yu, v, w, z(uéxivéuivéyiwéuiweéyizév=>z¢w). Assume
du, v, dpw, pz, uéx, véu, vy, wéu, weé y and z € v. We shall prove z € w. Choose
u', v, we® suchthat u=(xu’), v=(yv') and w=(yw').

Let v"=(yv)=ez"z"¢(xv"). From (xv')éx and the assumption Yu(ue
x=3Av.v€u) we have 3z".z"¢ (xv') so v"&(xv’). Combined with v"=(yv')=v
this gives v € (x v'). Likewise, w &€ (x w').

We now prove z' &€ (x v')& z € (x w’) for all 2’ € d. Assume ¢z’ and z' € (xv'). The
assumption Yu, v, w, z(UEXADEXAWEUAWE VA ZE u=>2¢ v) combined with
(xv)éx, uéx, vé(xv'), véu and z'¢é(xv’) yields z' € u. The same assumption
combined with ue x, (xw')éx, wéu, we (xw') and z' € u yields z' € (x w'). Hence,
27¢(xv)= z’¢(xw'). Likewise, z' ¢ (xw') = z'€(xv') so ¢z’ = (2’ é(xv) Sz’
(xw)).

By Ackermann’s axiom we have v =¢z".z2" € (x v') = z".2" € (x w') = w which com-
bined with z € v gives z € w as required. [
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8.11. The axiom of restriction

The axiom of restriction states that for any non-empty set x there is a set z€ x
such that x and z have no elements in common. In order to prove this statement,
we introduce a function D(x, y) with the following property: If y € x, then z = D(x, y)
satisfies z € x and has no elements in common with x. We define D(x, y) as follows:
If x and y have no elements in common, then D(x, y)=y. Otherwise, D(x, y)=

D(x ¥ \ where v’ is a common element of x and > The definition D(x \;\ = D(x. v

LA Ay 1ICIC ) 15 a LOININONH CICINLIRT O A ald A0 QORNNI0N ZAA, LI, Y

is recursive. The well-foundedness of y ensures that the recursion terminates (this
is expressed formally in Lemma 8.11.1 below). The formal definition reads

D(x, y)=(if (-iy ATu(yv) € x) D(x, (yev.(yv) € X)) y).
Lemma 8.11.1. Yx.Vy.¢D(x, y).

Proof. Assume ¢x. The proof is by induction in y. For y =T we have D(x, y)=Tc @
s0 ¢D(x, y) holds. Now assume as inductive hypothesis ¢y, =1y and Vu.¢p D(x, (y u)).

We chall nrave Nix v) hy TND from th
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Case 1. Assume Jv.(yv)€ x. Let u=en(yv) €& x. We have D(x, y) = D(x, (yu))e
@ so ¢D(x, y) holds.
Case 2. Assume —3v.(yv) € x. We have D(x,y)=ye @ so ¢D(x, y) holds. O

From now on, we regard the above lemma as part of the totality theorem, i.e.,
the definition of the syntax class X of simple terms is extended to

Y= -] D3 X).

Lemma 8.11.2. ¢x, ¢y > y€x= D(x, y)ex
Proof. Assume ¢x. The proof is by induction in y. Assume y =T and y € x. We have
D(x,y)=y and yé x so yéx= D(x, y)€ x as required. Now assume as inductive
hypothesis ¢y, =1y and Yu.D(x, (yu)) ¢ x. Further assume y & x. We shall prove
D(x,y)€ x by TND from the following two cases.

Case 1. Assume Jv.(yv)€x. Let u= ev(yv)€x. We have (yu)éx so D(x,y)=
D{x,(yu)) and D{x,(yujjéx

Case 2. Assume —13v.(y v)€x. We have D(x, y)=y and y<x so D(x, y) € x as
required. [

Lemma 8.11.3. ¢x, ¢y — Vz.(z ¢ D(x, y)=>zex).

Proof. Assume ¢x. The proof is by induction y. Assume y=T and ¢z From

NDixy viI=Twehave SNy vleog 728 My vl =5 o2& v ac raaiiive d Naow acgiime
U\/\.’)/] 1 YYL 11avwoe IALU\A,)/[ v LCL/\J\,,}/}‘—/ IAC,»\« <ad lu\,luucu J‘UW adsosuliiv

as inductive hypothesis ¢y, =1y and VuVz(z¢é D(x,(yu))=>-1z€ x). Further
assume ¢z and z € D(x, y). We shall prove -1z € x by TND from the following two
cases.
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Case 1. Assume 3v.(yv)éx. Let u=ev(yv)€x. From z € D(x, y)yand D(x, y)=
D(x, (yu)) we have z<€ D(x, (yu)) so, by the inductive hypothesis, —x € x.

Case 2. Assume —13v.(yv) € x. From z€ D(x, y) and D(x, y) =y we have zey.
Choose ue @ such that z=(yu). From “3v(yv)éx we have Yo (yv)éx so
Széx, O

(

Theorem 8.11.4 (ZFC-D). Vx.(Iy.yex=>3Tyyeéxi=Azzéxizey).

Proof. Assume ¢ and 3y.y € x. Choose ue @ such that u ¢ x and let yv=D(x, u).
From Lemma 8.11.1 we have ¢y, from Lemma 8.11.2 we have y ¢ x, and from Lemma
8.11.3 we have dzzeéxizeéy [

Part IIl. The consistency of map theory
9. General concepts and notations

For all axiomatizations of ZFC' of set theory, let Con(ZFC’) be the statement
that there is no proof of Vx: xe x in ZFC’. For all axiomatizations Map’ of map
theory let Con(Map’) be the statement that there is no proof of T=Ax.T in Map".
Let SI be the statement that there exists a strongly inaccessible ordinal.

We shall prove

SI = Con(Map) (8)

where Map is the axiomatization of map theory stated in Part II. It is an open
question whether or not Con(ZFC) = Con(Map) is provable in ZFC.
Let Map® be the axiom system Map where Well2 and the construction axioms
are omitted. We shall prove
' Con(ZFC) = Con(Map®). (9)
Actually, it is merely necessary to exclude Well2, C-Prim and C-M1 from Map® to
prove the above result. Each of these axioms has a strength similar to the axiom
scheme of replacement in ZFC. The other construction axioms can be verified from
Con(ZFC), but the verification on basis of SI gives a better understanding of the
Yintuition behind the axioms.
Further, for any extension ZFC " of ZFC we shall prove

Con(ZFC™) = Con(Map®") (10)

in ZFC" where Map®" is Map® extended with all theorems of ZFC", i.e., the
translation of any theorem of ZFC™ into map theory is an axiom of Map®". The
system Map®" is not interesting in itself, but (10) ensures that for any consistent
extension of ZFC there is a corresponding consistent extension of Map® with at
least the same strength, so ZFC cannot outsmart map theory by additional axioms.
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Before giving an overview of the consistency proof, it is necessary to give a
condensed introduction to the notation used in the proof.

9.1. Basic concepts
The symbols -, = and < stand for negation, implication and bi-implication,
respectively, and

== Ppi=> =Py 1= Py
stands for repeated use of =, i.e.
(pr=>p) A (p2=p3) Ae A (P =D0),

and likewise for . The order of precedenceis<,=>,V,3, v, A, T, e.8. Vx. I A B=
¢ means (Vx.(of A 93))=> €. The symbols |_J and 2 stand for union and power set,
respectively. We have xel JGo3IAye G:xey and xe PGS x< G. Further,

Use o f(») stands for L {f(»)|y € G}. Hence, xe U, f(») &3y e G: xe f(y).

9.2. Functions

The construct (x, y) stands for the Kuratowski pair {{x}, {x, y}} of x and y, and
G x H stands for the Cartesian product {(x, y)|xe Garye H}.
The construct fnc(g) stands for g is a function”, i.e.

fne(g) © 3G, H: g GxH
AVX Yy, z((x,y)egna(x, z)eg=y=12z).
For all functions g we define the domain g and the range g":
xeg? © fac(g)ady:(x,y)eg,
xegh & fuc(g)nIy: (y,x)eg

Note that g?=¢ and g"=¢ if g is not a function. If g is a function and x € g, then
we let g(x) stand for the unique y such that (x, y)e g. If g is not a function or
x £ g we define g(x)=¢, and we actually make use of this convention.

We use G — H to stand for the set of functions from G into H:

geG—H & fac(g)ng®=Gnrg'cH.
For all sets G we define G" and GF as follows:

GD: U gd’ GR: U gr.
gcG geG
For all sets G and H we have (G— H)’=Gif H#@and (G— H)*=H if G#¢.
For all variables x, sets G and terms & of ZFC we introduce x € G — @ as the
function whose domain is G and which maps x to @ (where x may occur free in
@). More formally,

xeG— P ={(x, d)|xec G}
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As an example, x € R — x” is the squaring function on the set R of real numbers.
As another example, if g=xeR~ yeR+> x’+37?, then g(3)=yeR— 9+ and
g(3)(4)=9+16=25. We have ge R— (R— R).

The constructs g h and g|h stand for functional composition and restriction,
respectively:

(xz)egeh & Fy:(xy)ehnlyeg,

(x,y)eglG & (x,y)ecgrxec G

9.3. Ordinals

We use von Neumann ordinals [22]. The term ord(x) stands for ‘x is an ordinal’,
0 stands for @), x* stands for the successor of x, i.e. xu{x}, and w stands for the
least infinite ordinal, i.e. the set of all finite ordinals. The term On stands for the
class of all ordinals, i.e., x € On is shorthand for ord(x).

The variables «, B, etc., implicitly range over ordinals. The variable u implicitly
ranges over limit ordinals. The constructs <, and < are definedbya <, 8 © a€f
and a=,8 & acfBva=0

9.4. Tuples
We represent tuples like in [17]: x is a tuple if x is a function and x%¢ w:
tpl(x) & fac(x)rx‘e w.

We use (Xg, ..., X,_,) to denote {{0, x,), ..., (e —1, x,_,}}. Hence, {x,,..., %, ;)
is the unique tuple x for which x“={0,...,a—1}=«a and x(8)=x; for B¢
{0,..., @ =1} = @. In particular, we use ( ) to stand for the empty tuple ¢ for which
{ Y¥=0=0. G* stands for the set of tuples of elements of G,i.e. G*=_J..., (a« — G)
(G* is written G™“ in [17]). We shall use the following fact extensively:

G*=G
The construct x - y stands for tuple concatenation. We have
Xiyev s X)) " Wis e V) =X, Xy Yis oo, V)

Define G” = w — G. The elements of G are infinite sequences of elements of
G. If fe G and a € w, then (f]a)e G* and (f|«) is the tuple containing the first
« elements of the infinite sequence f.

9.5. Rank

For all sets G and H, G =, H stands for **G has the same cardinality as H”.
<., =,, etc., are defined likewise. We shall use transfinite induction in various
well-founded relations and transfinite recursion in various well-founded, set-like
relations [17]. As an example, we define the rank p(G) by p(G)=\U..c p(x)" by
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transfinite recursion in €. For all sets G, p(G) is an ordinal. G <, H stands for
p(G) <, p(H). We define the transitive closure tc(G) by
te(G)y=Gu | te(x).

xeG

9.6. Relations

In order to have a sufficient supply of names for relations, they are given names
like =,, <, and <,, where the index is part of the name. In general, relations with
names like =, are equivalence relations. Relations with names like <, generally
are strict partial preorders, i.e. they satisfy x ¥ ,x and x <, yry <,z=>x <,z
Relations with names like =<, generally are weak partial preorders, i.e. they satisfy
x=E,xand x S, YAy S, zDXx =,z

Occasionally we shall need parameterized relations like <?. For each x, y and z,
x =7 y is either true or false. The name <7 suggests that x <7 y is a partial preorder
in x and y for each, fixed z.

For all relations <, we define <* as follows:

f<ig & fuc(f)nfuc(g) nfi=g aV¥xef flx) <,g(x).
For example,

(Xl ee s X)) <E ) © a=BAax; <, y1A* A Xy <gVa-
Stars may be applied several times:

f<i*g & fac(f)nfnc(g)nf =g aV¥xef™ flx) <¥ g(x).

Stars may also be applied to relations with names like =, and <, and to parameter-
ized relations like < ¢ to form relations like =% and < **,

9.7. Labels

In Part I we have introduced the labels T, and 1. We now introduce them
formally by the arbitrary definitions 1 =0, X =1 and T=2. The definition of 1 is
not quite arbitrary: If x¢&g® then g(x)=1, and we shall use this result. Let
L={T, X, 1} be the set of labels. We organize L by a partial ordering <, as follows:

Xs,y & x=lvx=y.
For all G< L we define
if Te G,
ifT/eGakeg,
ifTeGaleG.

UG =

=t >0 —2

In what follows, we are going to form |G occasionally, and in each case we have
Vxe G: x <, LG In several cases, however, the proof of Yx & G: x <, UG cannot
be stated immediately after LG is formed.
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9.8. Well-founded functions
We say that a function f is “well-founded on G” if fe G° where
Go={fe G*—{T,}}|Vx, y e G*: (f(x) # A= f(x" y) = f(x))
AVxeG®Facw: f(x|a)=T)

The notion G° corresponds to wf(G) in Part 1. We shall use such well-founded
functions to represent well-founded maps. If fe G° then f“=G* and f*®*=G.
Hence, if f& G° and fe H° then G =% = H. For all sets f and g we introduce the
relation <, as follows:

f<.g2 © g N=AnfeG°rgeG°

rdxe GVye G*: f(y)=g(x) )

where G = g?®. Obviously, <, is well-founded and set-like.

On several occasions we shall need to apply a function f to an argument x such
that f(x)# A=f(x- y)=f(x). In order to obtain this, we define f{x) as follows:
(1) fx)=f(x),
(2) fhx)#X=>f(x - y)=f(x) and
(3) (2) takes precedence over (1);
or, more precisely, for all y and all tuples x define

SEOY = (O,

flx- ) if flxy =14,
JExD otherwise.

If fe G° and x € G* then f{x)=f(x).

JEx - ={

9.9. Gédel numbers

We now introduce Godel numbers for terms of map theory and for well-formed
formulas of ZFC. To do so, define
A(x, y) =40, x, y),

S=(1),
K=(2),
T=(3),
P=(4),
C=(5),

W =16,
L=,

v; = <8, i>,

)\x.y =(9, x, ¥,
(i{‘ xyz)={10,x, y, 2),
ex =(11, x),
bx =12, x),
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;= <8, i>,

x€y=(13,xy),

“ix =(14, x, y),

x=y=(15, x, y),

Vx: y=(16, x, y).

Note that o, = ¢;. We use ¢; when talking about variables in map theory and ¢; when
talking about variables in set theory.

As an example, the Godel number of

Vx: (xex=xey)
is
Vi (X & X35 E )
if we let X = §, and y = ), represent x and y, respectively.

It is customary in the literature to introduce a notation like [ @] for the Godel
number of the well-formed formula &. We shall avoid this notation in order to
ensure referential transparency since this gives most flexibility in nontrivial handling
of Godel numbers.

We use (xyj as shorthand for A(x,y), and (xy1 yz...ya) as shorthand for
(‘ . ((x.yl)y2) . 'yu)'

9.10. Models

In the consistency proofs we shall use a transitive standard model D of ZFC.
However, we use different D in different places of the text. In the proof of (8), i.e.
in the proof of SI= Con(Map) we define D in the obvious way [17]:

Let o be strongly inaccessible,

define @(a)=Jg.. P(P(B)), »
(11)
define D= @(o).

In the proof of (9) and (10), i.e. in the proof of Con(Zi"C)=> Con(Map®) and
Con(ZFC")=> Con(Map°") we proceed like Cohen, i.e. at any time we assume that
D satisfies finitely many axioms of ZFC and ZFC™, respectively, without being
explicit about which ones. In other words, we constantly assume that D satisfies
sufficiently many axioms for the argument at hand. For a discussion of this see
[9,17,5].

For any well-formed formula @ we let | @] stand for the relativization of @ to
D, i.e. the expression obtained by replacing each occurrence of ¥Vx by Vxe D in
®. We say that @ is absolute if Vx,,...,x,: (P |P|) where x,,..., x, are the
free variables of @. We use the relativization and absoluteness results of [17] without
further reference.

The notation | @] is not referentially transparent, i.e. n = 6=(| P(n)] < [P(0)])
does not hold for all terms 7 and 6 and well-formed formulas @ (). We compromise
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on referential transparency in this case since we shall only make trivial use of
relativization.

10. Overview of the model construction

10.1. The semantic model

In this section we give an overview of the model construction rather than stating
formal definitions. The purpose of doing so is to give an intuitive understanding of
the model before defining it. As a starting point we take the description of map
theory from Part I, and then we elaborate the description. In particular, we shall
go into the details of well-founded maps. Later, when it comes to the formal
definition, we start with the details and gradually build up the model.

In Part I, functional application (fx) and the combinators S, K, T, P, C, W and
1 were introduced. In addition to functional application and the combinators, we
shall introduce a number of concepts that are explained below.

The set of maps is denoted M and the set of well-founded maps is denoted .
The function Ae M X M — M is defined by A(f, x) = (fx), so A(f, x) is just another
notation for functional application in map theory. The function me M x M* —> M
is defined by m(f, (x,,...,x.))=(fx,...x,). Hence, A(f, z) denotes f applied to
one argument whereas m(f,{x,,..., x,)) denotes f applied to a list of arguments.
The names A and m stand for “application” and ““multiple application”, respectively.

The function re M — L is defined by

T ifx=T,
rx)={1 ifx=1,
L otherwise.

Hence, r(x) denotes the label of the root of x (r stands for “root”). The func-
tion aeM—(M*— L) is defined by a(f){{x;,...,x0)=r{fx,...x,)=
rim(f,{xy,...,x.)}).- Hence, a(f)({x,,...,x,)) stands for the label of the node
reached by traveling from the root node of f along the path (x,,..., x,) (a stands
for “application” as does A).
According to the extensionality of maps we have f= g iff

r(fxi...x)=r(gx ...x,
for all x,,..., x, € M. In other words,

f=g & a(f)=alg).
We define f=< g iff

F(fxy . ..ox,) s, r(gx;...x,)

for all x,, ..., x, € M. In other words,

f<g o a(f)=%a(g).
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We have
f=sgnrngsf& f=¢

Figure 8 shows the universe M and four of its elements: T, L, Ax.T and Ax.L. The
relation L =T is illustrated by drawing T above 1 and interconnecting the two by
a line. The same is done for the relation L <Ax.L < Ax.T.

Since x <y Ay < z=>x = z, the same information could be represented as in Fig.
9. The only difference is that Fig. 9 displays 1 < Ax.T in addition to L < Ax.1 < Ax.T.

The monotonicity of maps states

fsgrx=sy = (fx)<(gy),
f=grx=*y = m(f,x)=m(g,y),

fsgarx<¥y = a(f)(x)=,a(g)y).

For all well-founded f, x,, x,, ... € @ there exists an ¢ € w such that ( fx, ... x,) =
T. In other words,
ViedVxe P Aacw: m(f, x|a)=T. (12)

For all well-founded f, g @ define
f<ag © f#TarIxec ®: f=(gx).

AM

Fig. 8. Illustration of the < relation.

M

Fig. 9. Another illustration of the < relation.
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This relation is well-founded according to (12). The function s(x) is defined for all
xe P by

( )_{@ ifx=T,
ST sl y))lye @) otherwise.

This can also be written
s(x)={s(y)|y <ax}

which is a valid definition since < 4 is well-founded (and set-like since it is restricted
to the set @). We have that s(x) denotes the set represented by x € ¢. The model
will be constructed such that

s'=D

holds, i.e. such that the representable sets are exactly the elements of the model D.
This is a key result in proving Con(ZFC”)=> Con(Map°").

10.2. Types and observational equivalence

Let fe M. For any x,,...,x,€ M we say that the root of (fx,...x,) is an
“observable property” of f. In other words, the value of a(f)(x) is an observable
property of f for each x € M*, If two maps f, g€ M are observably equivalent, i.e.
if a(f)(x)=a(g)(x) forall xe M* then they are equal according to the extensional-
ity of maps. In other words, a(f)=a(g) © f=g.

IfGe M and x, ..., x, € G, then we say that theroot of (fx, ... x,.) is observable
within G. Furthermore, we say that f and g are observably equivalent within G and
write f=¢g if Vxe G* a(f)(x)=a(g)(x). Observational equivalence is an
equivalence relation for each, fixed G.

Define the “type” 15(f) of f wrt. G by

to(f)=xe G*ra(f)(x).
We have t5(f)€ G*— L and
f=68 < tc(f)=15(g).

Iff,ge M, G= M and f = g, then there exists an he M such that h=<f h=<g,
and h =¢ f =¢ g To see this, define

H=Yh'Af'Ag'.

(if £ (ifg’ T L))

(ifg" L ax.(h' (f"x) (g x))),
h=(H fg).
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10.3. Well-founded maps
Let G M. The map fe M is said to be well-founded w.r.t. G iff, for all

X1, X, ...€ G there exists an « € w such that (fx,...x,)=T. In other words, f is
well-founded w.r.t. G iff Vxe G* a c w: m(f, x|a) =T, which can also be written
t;(f)e G°.

In particular, any f€ @ is well-founded w.r.t. ®.
Let wf(G) denote the set of f€ M that are well-founded w.r.t. G, i.e.

wf(G)={feM|t;(f)e G°}.
Now define

P'(a) = wf(Q'(a)),

?"(a)= U @(B),

Bea
Q'(a)=wf(P"(a)).
o=U @)

BeOn
In the definition of &, B ranges over On which may cause @ to become a proper
class. This is avoided by a modified definition later on.

If f is well-founded w.r.t. G, then f is also well-founded w.r.t. any H < G. Hence,
H < G=>wf(G)< wf(H ). Furthermore, if « <, 8 then

P"(a)c P(a)s P (B)cP'(B)c P Q(B)c Qa).

If ueG® and ve G*— L then us<fvou=v0v If f<sg and fe wf(G) then
t(f) =¥ ts(g) and 15(g)e G°, so ts(f)=1s(f)e G° which proves ge wf(G).
Hence

f=gnfewf(G) = gewf(G)nf=5g,
f<gnrfed(a) = geP'(a),
f=grfed(a) = ged'(a),
f<gnrfeQ(a) = geQ'(a),
f<gafed = ged.

Figures 10, 11 and 12 give a picture of how @'(a), ®"(a), Q'(a) and @ relate
to each other. Figures 10-12 display @'(2), @ and Q'(2), respectively. The figures
illustrate statements like @'2})c P< Q'(2) and fsgarfec d=>gec .

Figures 10-12 do not capture the close relationship between ®@"(a), Q'(«) and

@’'(«). This is done in Fig. 13. However, Fig. 13 does not illustrate statements like
D'(2)cQ'(2)and fsgarfe d'()=>ge P'(2).

10.4. Minimal well-founded maps

We say that the map f€ G is minimal in G if Vge G: (g <f=g=/f). Define the
boundary dG to be the set of minimal elements of G. We say that G is closed if
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0 = ')

(1) = 2"(2)

N (2) = #'(3)

&'(3) = ¢"(4)

L=

Fig. 11. Illustration of @.
Vfe G3gedG: g<f The model M is going to be defined such that d'(a) and
Q'(a) are closed for all a. Define
D'(a)=3P'(a),
Q'(a)=8Q'(a),
() =Upeo P'(B),
&= Ugcon d'(B),
Q=Useon Q'(B).
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/N 2'(0) = @"(1)
OB (1) = 9"(2)
ONE(2) = 9"(3)
N P(3) = @"(4)

7%
X Q'(2)

Q1)

AN Q'(0)

L

Fig. 12. Tlustration of Q'(2).

@ — @"(0)\ ,
P'(0) = <I>"(1)<g,$;
(1) = @"(2)<Q,(2)
®'(2) = 2"(3)2

VR,

<I>’(w) @”(w*)(? (W)

Fig. 13. Illustration of who is defined using whom.

We have
fed'(a) & geP'(a):g<f,
feQ'(a) & FgeQa)g=},
fe@"(a) & Age P"(a): g=</,
fed o Fged:g=<f

Fig. 14 shows @'(a) and Q'(a), and illustrates the relationship between &'(2)
and @'(2). @(2) is the vertical line which forms the lower boundary of @'(2).



34 K. Grue

"(3)
N Q'(2)

Q'(0)
N

Fig. 14. The relation between ®'(2) and ®'(2).

As we shall see later, Q'(0) <, ®'(0) <, Q'(1) <, ®'(1) <,...(actually, we merely
prove Q'(0) <, d'(0) =, Q'(1) <. d'(1) =, ). These relative sizes of the Q'(a)
and @'(B) are illustrated by the length of the lines in Fig. 14.

For all x € ®'(B) there is a y € ®'(B8) such that y < x. In particular, if @ <, B and
xe @'(a) then there is a ye @'(B8) such that y=<x. Fig. 15 displays some typical
relations y < x using the conventions from Fig. 8.

Let H < M be closed. Assume f€ wf(3H) and x|, x,,...€ H. Choose vy, ¥»,...€
aH such that y,<x; for all ie{1,2,...}. Choose a € » such that (fy,...y.)=T.
From T={(fy,...v.)=(fx,...x,) we have (fx,...x,)=T. Hence, Vx,, x,,...€
H3cecw: (fx,...x,)=T, so fe wf(H). Hence, wf(dH)c wf(H). From 0H < H
we have wf(H)< wf(6H) so wf(8H)=wf(H). Hence,

P'(a)=wf(Q'(a) = wf(8Q'(a)),
Q'(a) = wf(P"(a)) = wf(3d"(a)),
We now have
&'(a)=0wf(Q'(a)),  Qa)=dwf(D"(a)),
so @'(a), Q'(a), d"(a), d and Q are definable without reference to @'(a) and

Q'(a).

10.5. Types of well-founded maps

Assume that feawf(G) and f =% g Choose he M such that h=<f h=g and
h=%f=%g Fromh =% fand fe wf(G) we have h € wf(G). From the minimality
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Fig. 15. Illustrations of the = relation.

of fand h=<jf we have h=f Hence, f=h=<g, soif feawf(G)thenf =5 g=f<g
We have previously proved f<sg=f =¢ g if fe wf(G). Hence, if f€owf(G) then

f=6g © f=sg
In particular,
f=6wh @ f<h, g = h © gsh,

for fe ®'(a), ge Q'(a) and he M.

If £, g€dwf(G) then 15(f)=ts(g)f =g fsgnrgsfSf=g so the ele-
ments of dwf(G) are uniquely determined by their type ts(f). In particular, the
elements f of ®'(a) are uniquely determined by 75..,(f) and the elements of O'(a)
BY tota(S)- ] )

We now identify fe @'(a) with t5.,(f) and ge Q'(a) with ts(,,(g). We have
to be slightly cautious because Te @'(a) and Te Q'(«) for all a, so T is identified
with many different types.
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As a consequence of the identification we have
P (a)cQ(a), Qa)c d"(a)
If fe d'(a), then fe Q'(a)®, s0 f= Q'(a)* and f*R=Q'(a), so
fed'(a) = [F=0Q(a),
feQla) = f"=d"(a).

As mentioned earlier, ®'(a) < Q'(B) forall @ and B. If fe ®'(a) < P'(a) < Q'(B)
then there is a unique ge Q'(8) such that g<f From g<f we have g =gp) fr 50
l45)(8) = top)(f). Since we have identified g and tp.,(g), we have g = tgs,(f).
From the definition of tg.5,(f) we obtain g=ve &"(B)* — a(f)(v). Hence, if
fe ®'(a) then

[ve &"(B)* = a(f)(v)]e Q'(B),
[ve D" (B)* — a(f)(v)]=<F.
If fe @' (a)* then
[uefd—ve &(B)* = a(f(u))(v)]e Q'(B)*,
[uefimve ®"(B)*— a(flu))(v)] <*f.

If fe ®'(B) and xe Q'(B)*, then, by the definition of o) We have ts,(f)(x)=
a(f)(x). Since we have identified f and t3.5,(f) we have

a(f)(x)=f(x).

If xe ®'(B) and ye &*, then let y'=ue y?— ve &"(B)* — a(y(u))(v). We have
y'e Q(B)* and y' =*y, so x(¥)=a(x)(y') =, a(x)(y). Since x(y')# 1 we have
x(y")=a(x)(y). Since x** = Q'(B) and x*’ = &"(B)* we may write this result as

a(x)(y)=x(uey'— vex® s aly(u))(v)).

This equation is essential since it makes no reference to yet undefined concepts
like M and it uniquely determines a(x)(y) for all x and y. In a slightly modified
form, it is going to be the first formal definition in the construction of M. The
function defined by the equation gives the correct value for a(x)(y) whenever x @
and ye @* (but we have not yet defined @). Since the function defined in the
equation does not give the correct value for a(x)(y) for all xe M and ye M™*, we
shall refer to it as 4.

10.6. The construction of &

If fe ®'(a) then we have seen that ve @"(B8)* — a(f ) v)e Q'(B). Let J=f¢€
&'(a)—ve D (B)* — a(f)(v). We have Je ®'(a)— Q'(B). We shall define M
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such that J is surjective (or onto or epimorphic) if 8 <, « and injective (or one-to-one
or monomorphic) if @ <, B. This gives rise to the following cardinalities:

g=d"(0)<, Q0 =, PO) <, P'(1) <, - =<, P (w)
< Qo) s, P(w) <. .
Further, since J is surjective for 8 <, a, we have
Vxe Q'(B)Iye d"(a): x=<y

for all B8 <, a.

Lemma 10.6.1. Let f, g ®"(a). We have
f=b 8 & fsgvgsf

Proof. Since we have not yet formally defined the concepts involved in the lemma,
the proof is merely based on the assumptions we have made about these concepts.
Assume f< g v g <f Without loss of generality assume g < f (see Fig. 16). Let h be
the unique element of Q'(a) for which h<g. From h = g={ we have h=<f From
heQ'(a), h=<fand h<gwehave h =ty ,,(f) and h = ty.4,(g). Hence, tg.(f) =
I+a)(g) Which proves [ =5«., & § }
Now assume f =%, g& Let B and y be such that fe @'(8) and ge @'(y).
Without loss of generality assume B8 <,7y. Let x, ¢ Q'(y)*. Choose x, € ®"(a)*
such that x,<*x,. We have x,eQ'(y)*c Q'(y)*< Q(B)*. Choose Xg €
Q'(B)* such that x, <*x,. We have 1#a(f)(xs) <, a(f)(x,)<,a(f)(x,)=
a(g)(x,) =, a(f)(xy);él which proves a(f){(x,)=a(g)(x,). Since this holds for
all x, e Q'(y)* we have f =4+, g which entails g < f. This concludes the proof. []

If fe Q(a) and x, ye D"(a)*, x =%, », then a(f)(x)=a(f)(y) follows from
the lemma. Hence, Q'(a) < @"(a)° can be narrowed down to

Qa)s{fe B"(a)°|Vx, ye B"(a)*: (x =54, y=£(x) = f(¥)}.

, 3
b'(v)
b ()
( h )
Q'(a)

Fig. 16. The relationship between f, g and h.
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To sum up we have
®'(a)c Qa), (13)

Qa)c{fe P (a)|Vx,ye B"(a)*: (x =, y=/(x) = f(¥))}, (14)

Cﬁ"(a)ZBu d'(B), (15)

b= d(p), (16)
BeOn

C>=ﬁL(J) Q'(B). (17)

Again, these statements are independent of M, but they cannot be used as a definition
of @ because (13) and (14) do not determine ¢'(a) and Q'(«) uniquely.

The idea behind the model construction is to replace = by = in (13} and (14).
This certainly produces a universe @ large enough to represent any set, but at the
same time @ becomes a class, and the model construction fater on requires @ to
be a set. To get around this problem, we define

$'(a)=Q'(a),

A

Qa)={fe " (a)°|Vx,ye D"(a)*: (x =%, y=/(x)=f(1)},

d"(a)= U (),

B
b= DB,
BcOn
Q= U Q)
BeOn

and then we define @'(a), Q'(a), "(a), @ and Q as the relativization to D of
d'(a), é'(a), é"(a), b and O, respectively. This ensures that & gets the “richness”
of D and a manageable size at the same time.

Define §(x)={§(x")|x’ <, x}. We say that xe b represents the set §(x). The role
of & in the model construction is to ensure that the model of map theory becomes
rich enough to allow representation of any set of set theory within the model. A
central property of & is the theorem Vy3dxe &: y = §(x), which we shall refer to
as the Adequacy Theorem. Even though it is central, the Adequacy Theorem is only
used when verifying the consistency of Map®".

10.7. The syntactic model

In addition to the semantic model M and the models @ and @ of well-founded
maps we shall construct a syntactic model M.
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The definition of M is simple in itself: It is the least set such that
(S, K, T,B,C, W, i}cM,
Vx, ye M: A(x, y)e M,
b M,
Qc M.
The elements of M are Godel numbers of closed terms of map theory (i.e. terms
with no free variables). However, we allow elements of @ and Q to occurin the terms.

Each term x € M denotes a map c(x)e M. We define 7F(x) to be the root of the
map denoted by x, i.e.

F(x) =r(c(x)).
Likewise, we define
a(x)((y1, - -5 ya)) = ale(x))((e(y1), .. . ,e(ya))),
x<y & cx)<c(y),
xZy & clx)=c(y).
The function m e M x M*—M is defined by

(X (P ) = (Xpr e pa).

10.8. The actual order of the formal definitions

Above, a number of concepts have been introduced based on the yet undefined
set M of all maps. The formal definitions are stated in another order:
® First, 4, & and O are defined as outlined above.
® Second, d, @ and Q are defined by relativization of 4, & and é, respectively.
® Third, 7 is defined by a fixed point construction, and d and = are defined from F
® Last, M is formed by the quotient construction M = M/=, i.e., the elements of
M are equivalence classes of M under =.

11. Construction of the model

11.1. Definition of well-founded maps

Define <,, by (4, v) <,, {(x,y) © uey rvex®° If (u, v) < {x,y)thenu <,y
and v <, x. Hence, <,, is well-founded and set-like. As foreseen in Section 10.5

define 4 by transfinite recursion in <,,:

dRDD

a(x, y)=x(uey?~ vex™®— d(y(u), v)).
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For all sets G define x 2 y<&>Vze G*: d(x, z) = d(y, z). Following Section 10.6
and by transfinite recursion in « define

'(a)=Q'(a)°,
d"(a)=J (),

Bea
Q'(a)={fe ®"(a)°|Vx, ye D"(a)*: (x 2%, y=1(x) =f())}.

Define #(x)&3a: xe &'(a) and Q(x)=3a: xe §'(a).

We shall work with proper classes like {17], e.g., we introduce x € & as shorthand
for <f>(x), x < & as shorthand for Vyex: ye & and x € &* as shorthand for tpl(x) A
x'c P ete.

In accordance with Section 10.2, define the type i;(x) of x w.rt. G by

fc(x)=ve G¥— d(x, v).

Define f%(x) as the coordinatewise application of fy;:
E(x)=uex®— f(x(u)).

For G< & we have
x24y & lo(0)=15()  (x,yed)

x2Py o TEx)=T4(y) (x,ye &%)

fE(x-p) = T5(x) - T5(») (x,yed*)

fi(xla) = (f&(x)la) (xe &)
&(X,y) = X(?jﬂum(y)) (x,ye (ﬁ)
aCx,y) = x(f5. () (xe d'(a),ye ).

11.2. Properties of well-founded maps
Define
Ris © Vxe @'(a): i p(x)e Q(B),
e © (a <, B=Vx, ye D' (a): (x# y=>T55)(x) # Lo (),
e & (a=,B=Vxe Q(B) Iye () x= o (»).

The formula R/, ; states that f(,;/(ﬁ) maps @'(a) into O’(,B), I, 5 states that f(i,(ﬁ)
is injective (i.e. one-to-one, or monomorphic) if « <, B and S/, 4 states that t4.g,
is surjective (i.e. onto, or epimorphic) if « =, 8.
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Theorem 11.2.1. For all ordinals a and 8, R, 3, 1.,z and S, ; hold.

Theorem 11.2.1 justifies several claims from Section 10. In particular, it justifies
Fig. 15. As we shall see, the relativization of Theorem 11.2.1 justifies 75 5,(x) € O/(ﬂ)
and the claims in the beginning of Section 10.6.

Corollary 11.2.2. We have
Vxe d Vye d*: 4(x, y)e{T, i}
Vxe é) Vy [S é*Z é(x y) = x«tA*dRDR(y)»’
Vxe &'(a) Vye $*: dlx, ») = x(F.., (),
Vxe dVye d® Jacw: a(x, yla)="T.

The corollary follows from R/, ;.

Proof of Theorem 11.2.1. Let (v, §) <., {a, B) stand for
(¥ <oan8 <, B)v(y=gand <,B)v(y<,B1r6<,a)
V(Y <,BA0 <, a).

We have that <, is well-founded. Now assume that « and 8 are ordinals and
assume

<Y’ ><oo<a B> = Ryé, (18)
<Y; 8> <oo <C¥ ﬁ) = S'y59 (19)
<77 6) <00 <a5 B) = Ify& (20)

If we can prove R, 4, 1., and S, ; from these assumptions, then the theorem
follows by transfinite induction on <.
For (v, 8) <., {a, B) we have

Vxe d'(y)*: 7 mm(X)EO(S)* (21)
Y <od = Vx,ye &'(y)*: (x# y= 5, (x) # T (), (22)
¥y=,6 = VxeQ'(8)*Iye &'(y)*: x =ik, () (23)

We now prove
Vx, ve &"(B): (x 2 G0 YX 2500, V). (24)

Assume x, y€ <f7"(B) and x 23z . If @ =, B then @”(a)_C_ @"(B) from which
X £ %) y follows. Now assume B <, a. We have (y, B) <., {(a, B) for all y <, B.
Let 8, £ be such that x e @’ (6) and ye &’ (£). Without loss of generality assume
5 =<, ¢ (see Fig. 17). Let uc ®"(a)* and define u' = t(,,( (u). From R/, . we have
u'e Q (g)*. Choose u"e 115”(,8) such that t,,, «,(u")=u’'. This is possible since Sg,
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M 4‘} ‘i’l(ﬁ)

v N\ @
&

3' ()

Q'(e)
Q'(9)

M &5y
(iD,((?)*
WIN R

U ] <i>'((\)*

Q'(e)
Q'(5)*

Fig. 17. The relationship between w, u’, u” and u".

holds. Let u"=7}, (8)(u). And we have u"=17}, w(u) (u)|45”(5) )=

(f;f,,(t (u”)|<D”(5)*)— % s(#"). Therefore, &(x u)=x(f5. <5>(”)) x(t(p (s) (u")):

d(x, u"). Likewise, d(y, u)=da(y, u"). From x ~4) () ¥ we have dlx, u=d(y, u"

Hence, d(x, u) = d(y, u). Since this holds for all u ¢ d)”(a)"‘ we have proved (24).
We now prove R/, ;. Assume x € P’ (a). From i ()= é (a)° we obtain

Yv'e (:)’(a)*: x(v')e {'T', A,
Yo', w'e é’(a)*: (x(v)#A=>x(v' - w)=x(0)),

Yov'e é’(a)“’ FScw: x(v']6) =T
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From Vye 8: R/, we deduce Vve 43”([3): fary(v) € é’(a). Hence
Yoe &"(B)*: x(f4,.,(0) e{T, X},
21 . 3 o . = i
Yo, we @"(B)*: (x(t(ﬁ,,m)(v)) #A=x(l g, (v w)=x(15, (),
Vve @(B)” 36 € w: x(75..,,(0]8)) =T.

Define y = f44)(x). For all ve &"(B)* we have y(0) = Egnp)(x)(v) = d(x, v) =
x(#5..,(v)). Hence

Yoe &"(B)*: y(v)e{T, i},
Vo, we (13”([3)*: (y(v) # A= y(v- w)=y(v)),
Vve é”(B)“’ Jscw: y(v]d) =

which proves y e @”(B)

Now let u, v e @”(B)* satisfy u 2 q, gy - From (24) we have u = ¢ () v, 50 y(u)=
x(f3 (W) = x(15 wa(0))=y(v). Hence, Vuve <D”(B)* (23 o V=2 y(u) =
y(v)) which combined with ye @”(B)" yields ye Q (B). Hence, Vxe
&'(a): T.,(x)=ye Q(B) which proves R, ;.

We now prove S, ;. If & <, B then S/, ; holds trivially, so assume 8 <, a. Let
xe Q'(B). _Define f=ue d"(B8) — f3.0(u). From VyepB: R, we obtain fe
&'(B)— Q'().

Letu,ve (D”(B)* satlsfyf(u) f(v). Fromf(u) f(v) we obtain u 2 3. m) v which
combined with @”(B) c d'(a) givesu 2 (,,”(B) v.Since x € Q (B) we have x(u) = x(v).
Hence,

Vi, ve $"(B)*: (f(u)=f(v)=x(u) = x(v)).

Nowlet G=f"¢c é’(a) and let y' € G* — {T, X} be the unique function that satisfies
Vue d"(B)*: x(u)=y'(fou).

From x € fﬁ”(ﬁ)" one easily deduces y'€ G°. Now define y € é’(a)* —{T, i} by

(u) if ue G*,
<u>~{y ) .
otherwise.

We have ye Q(a)° ¢’ (a). Furthermore, for ue <IJ”(B)* we have t A;f,,w)(y)(u)z
Ay, ) = y({ 3. (w) = y(flu)) = 4 (f(u))=x(u) which proves [5.,(y)=x.
Hence, Vx e Q (B)3ye é"(a): % «p)(y)=x which proves S, ;.

We now prove I,p.-1f B=,athen II,B holds trivially, 50 assume a <, 8. Further
assume x, y € @ (a), x#y. Choose z€ Q (a)* such that x(z) # y(z). From a <, 8
and Vyeg: §,, we obtain S/, ... Choose z'¢ i (a)* such that z= tq,,,((,)(z ). We
have a(x z)=x(f} (a2 =x(z) # y(z) =x(7% FYEN G4 )) =da(y,z’). From z'¢
b’ (a)*c QD”(B)* and d(x, z')# d(y,z') we obtain x # «p) - Hence, x#y=>
X ?fd, wpy Y which proves I, ;. [
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11.3. Relativization of well-founded maps

We now relativize the model of well-founded maps to the transitive standard
model D:

é={xeD||d(x)]},

QO ={xe D||0(x)}},
®'(a)=|P'(a)],
®"(a)=|D"(a)],

Q)= Q)
d=xeP>yed s [d(x,y)].

We use the relativization and absoluteness results of [17, Chapter 4] without further
notice. For example, we have

xed & |xed| for xe D,
xcd o |xc b for xe D,
xe ®* & |xe d¥] for xe D,
a(x)(y) = {d(x,y)| for xe ® and ye d*,

11.4. Definition of the syntactic model
Let M be the least set such that
(S, K,T,PC W 1icM,
dc M,
Qe M,
Vx, ye M: A(x, y)e M.

By reading the somewhat arbitrary definitions of S, K, T, P, C, W, 1, A(x,y), &
and Q very carefully one verifies that

M ={S}u{K}u{Tiu{Pru{CluiWtuiiiu U {Ax v duQ

e M
is a direct sum. . '
Define m(x, (yy, ..., Vo)) ={Xp, ... ¥Y.). Let §(G) be a choice function that satisfies
G(G)e G for G2 d, Gy,
Gy =T.

For all ve M—> L, xed U Q and ye M we define x =7y so that x =7y
“approximates” x = y. According to the isomorphism theorem stated later, the two
relations coincide when v = £ The definition is:

e

x =Py o Vzex’ x(z)=v(m(y, 2)).
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Further, for technical reasons, we introduce = ¢, which in conjunction with x =7 y
gives a “slightly more conservative’” approximation to x <y than x = 2 y alone:
x =9,y © VYzew’ d(x)(2) =v(m(y, 2)).

We are going to define d(x)(y) as F(m(x, y)) where F is going to be defined as
the “minimal fixed point” for a functional 7' € (M— L)— (M — L).Forallx, y, z€
M, ue M* veM— L we ® and w'e Q define:

F(o)(8) =1, (25)
F(o)($x) =1, (26)
F(0)(($xy)) =4, (27)
F(o) (S xy 2), w) = v(ri((x 2 (2]}, ), (28)
F(o)K) =1, (29)
Fo)(Kx) =1, (30)
F(0)(R((K x ), w)) = o0 (x, u)), (31
F(o) (i (T, u) =T, (32)
Fo)P) =T, (33)
Fo)((Px)) =1, (34)
F(o)(Pxy) =, (35)
1 if v(z)=1,
r"(v)(rfz«nyz),u)){v(n’z(x,u» if o(2) =T, (36)
o(r(y,w) if o(z) =1,

FoNCY=1X, (37)
F(e)(m((Cx), )

3 1 if 3ye @: o({xy))=1,

- {v(rﬁ(é({y e Blu({xy))=T}.) otherwise, %)
F o)X W) =T, (39)

A

R e (40)
F(o)(ri(L,u) =1, (41)
#(0) (0w, w)) = wli € u v j & wRP > p(r(u(i), ), (42)

o) (m(w', u))

=[ue M*— U{w(u)|u' e wiau =% unu =% u}l{u). (43)



96 K. Grue

By transfinite recursion in « define 7"{«) as « iterations of 7':

F0)=xeM— 1,
F'la”)=F'(F"(a)),
F(w)=xe M U{F"(a)(x) e e ul}.

Now let £ be the least ordinal with cardinality greater than M — L. We define

=F"(¢).

From r and # we define de M — (M* — L) as follows:

d(x)(y) = F(m(x, y)).

For all x, ye M we define the equivalence relation x < y by x = yod(x)=ad(y).
This relation expresses “‘observational equivalence”. In terms of Part I we could
say that x =y expresses that x and y have the same graphical representation.

Further, we define x<y&d(x) =% d(y) and ®={xe M|3Aye &: y=x}.

The intuition behind (43) is as follows: If ve M — L, we Q'(a), x, ye & and
ze M, then

xZE2,2ayE00 2 D x Thoay .
Hence, if ve M > L, we Q,x, yew®, and z ¢ M, then
x=2, 28y 2P,z = W(X):W(V) (44)

so the set {w'(u’ )lu ewiau =T yau *L * u} has at most one element. Hence, if
veM—L weQ ueM* ue w’d, w =7%u and u' =2% u, then (43) reduces to

Fo)(m(w', u)) = w'(u').

11.5. The fixed point theorem
foveM—L v<%v, weQ xed and ze M, then
x=Pz=>x2l2 (45)
x éfw z = X éfv.w z. (46)
With (44)-(46), it is easy to verify
Vo, v'e M— L: (v=Fv'=F(v) =¥ F'(v)

by a proof by cases using equations (25)-(43) (i.e. by a trivial proof by 19 cases!).
It then becomes easy to verify

Va, B: (a <, B=F"(a) <i F'(B)).

Since F"(a)e M — L for all @ and M — L <, & there exist o, B€ &, a # B such
that F"(a) = 7"(B). It is now straightforward to verify 7"(y) =r7"(8) forall y, 6 =, a.
In particular, F=7"(&)=F"(&)Y=F'(F"(£))=F'(¥} which proves the fixed point
theorem:
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Theorem 11.5.1 (Fixed point theorem). F'(F)=F.

11.6. Extensionality and monotonicity
Theorem 11.6.1 (Monotonicity theorem). If u,v,x,ye M, u<v and x<y, then
(ux)=<(ovy).
Theorem 11.6.2 (Extensionality theorem). If u, v, x,y€ M, u<v and x=y, then
(ux)=(vy).
From the definitions of < and < we have
XLy & xSyay=x

Hence, the extensionality theorem follows from the monotonicity theorem. Further,
from the definition of =< we have

uso = (ux)<(vx).
Hence, to prove the monotonicity theorem, it is sufficient to prove
x<y = (ux)<(uy). (47)

In order to prove this we introduce a set E< M — M of “polynomials”. For
each polynomial f< E we then prove

y<z = f(y)<fl2). (48)

Further, we make sure that ze M +— (xz) is a polynomial for each fixed xe M so
that (47) becomes a special case of (48).
We define the polynomials to be those functions that can be written

zZEM—> &

where @ is an expression built up from z and elements of M by repeated application
of A. More formally, we let E < M — M be the least set such that

(zeMwz)e E
VxeM:(ze Mw—x)e E
Vx,ye E: (ze M — A(x(z), y(z))) e E.

Any polynomial g=xcM—~ & can be written on the form g=z¢€
M (D, D, ... &) where @ =0 and where D, is either an element of {S, K, T, P,
C, W, 1}u @ U Q or the variable ““z”. Hence, for all ge E there exist xe{S, K, T,
P, C, W, i}u®duQandh,...,h, cE such that

g(z)={xh(z)... h(2)) (49)
or

g(z)=(zh(z)... h,(2)). (50)

To prove (48) we first prove an auxiliary lemma.
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Lemma 11.6.3.
YoeM— LYy, ze M: (y<zaVfeE: o(f(»)) =, F(f(z))
= Vge E: F'(v)(g(y)) <. A(g(2))).

Proof. Assume ve M — L, y,zeM y<zVfeE: vo(f(») =, 7(f(z))and g E. We
split the proof of F'(v){(g(y¥)) =<, F(g(2)) in two cases.

Case 1. Assume that (49) holds. From the definition of 7’ and Vfe E-
o(f(y)) =, F(f(z)) we deduce

Fo){xh(p) .. h () < F(AOUxhy(2) .. ko (2)).
The proof is similar to the proof of Yu, v'e M — L: (v <% p'=F'(p) <% F'(v')).
From 7'(F)=f and g(u) ={xh,(u) ... h,(u)) we deduce F'(v)(g(y)) =<, r(g(z))
Case 2. Assume that (50) holds. From Vfe E: vo(f(y)) =, F(f(z)) we deduce
Fi(o)(g(y) =F )y () .. h, (D) < Ay h(z) .. h(2)))
as in Case 1. From ys z we obtain
F(yhi(2) .. h (2)) <, F({zhy(2) ... h(2))) = F(g(2)).
These together entail 7'(v)(g(y)) =, F(g(z)). O
Fory, ze M y< Z we can now prove Yf e E: Fla ) f(y}) <, F(f(2)) by transfinite

induction in a. The Vfe E: Ff{y)) =<, F(f(z)) follows as the special case a =¢
which proves (48} from which the theorems follow.

11.7. The root theorem

Theorem 11.7.1 (Root theorem). For all x < M we have
x=T @ Ax)=T

x=l & Hx)=1

Proof. Define
M'={vc M — L|¥xe MVy, ze M*:
(v(r(x, y)) # A= v(m(x, y- 2)) = v(m(x, y))}.

Let ve M’, xe M and ye M*. One easily verifies 7'(v)(x) # A=>F(v)(m(x, y)) =
F'(v)(x) by a proof by cases in x using (25)-(43). Hence, '(v) ¢ M'. We now have
F(a)e M' by transfinite induction in a and 7€ M’ as the special case a = £ The
theorem now follows trivially. [J
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11.8. Isomorphism

Theorem 11.8.1 (Isomorphism). We have
Vxe dVye d*: d(x)(y)=d(x)(y), (51)
VxedVyeM: (x 2% yox<y). (52)

Proof of (51). For xe & and ye $* we have
a(x, y) = x({mon(y))
= x( Famon(y))
=x{uey’— vex® s d(y(u), v)).
By relativization we obtain
d(x)(y)=xqueyt— vex®™? = a(y(u)(v))

for xe & and y € &*. Using the fixed point theorem, d(x)(y)=F(m(x, y)) and (42)
we obtain

a(x)(y) =xque y' > ve x> d(y(u)(v)).

Equation (51) of the isomorphism theorem now follows by transfinite induction on
(x, y) using the well-founded relation <,, defined in Section 11.1. O

Equation (52) requires a considerably longer proof. We prove it by a series of
lemmas.

Lemma 11.8.2, If

Vxe ®@"(a) Vyex® x(y)=d(x)(y)
then

Vxe Q'(a) Vyex® x(y)=d(x)(y).
Proof. Assume Vxe @"(a) Vyex®: x(y)=d(x)(y), xe Q'(a) and y e x* = d"(a)*.
Inspired by (43) let G={x(y")|y' € ®"(a)*ry' ZP* yry’ = 2% y1 Forze @"(a) we
may prove z=7z by z=PzoVuez®: z(u)=d(z)(u)oVuez® d(x)(u)=
d(z)(u). Further, we may prove z=<2 z by z 22 zoVuexd d(x)(z)=
Am(x, z))oVuex?: d(x)(z) = d(x)(z). Hence, x(y) € G. Since G has at most one
element according to (44), we have G ={x(y)} and LI G = x(y), so d(x)(y)=x(y)
follows from (43). O
Lemma 11.8.3. If

Vxe Q'(a)Vyex®: x(y)=d(x)(y)
then

Vxe @' (a)Vyexd: x(y)=d(x)y).
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Proof. Assume Vxe Q'(a)Vyex® x(y)=d(x)(y), xc ®'(a) and yex?= Q'(a)*.
Using (42) we have
d(x)(y)=xfuey®—vex™—da(y(u))(v))
=x{uey’—vex™ s y(u)(v))
= x{y)
=x(y). O

Lemma 11.84. Vxe @ Vyex®: x(v) = d(x)(y).
Proof. Follows from the preceding two lemmas by transfinite induction. [
Lemma 11.8.5. Vxe ®Vye M: (x=y=x =7 y).

Proof. Assume x€ & and ye M. We have
xsy & Vze M*: d(x)(z) =, d(y)(z)
= Vzex® d(x)(z) =, d(y)(z)
© Vzex® x(z) =, d(y)(z)
& Vzex': x(z)=d(y)(z)
o x=? y. ]

This establishes half of (52).

Lemma 11.8.6. If
Vxe @(a)VyeM: (x ¥ y=>x=y)
then

Vxe Qla)VyeM: (x =% y=>x<y).

Proof. AssumeVxe ®(a)Vye M: (x 2% y=>x<y),xe Q'(a),ye M,x =¥ y and
ze M*. We shall prove d(x)(z) =, d(y)(z). We divide the proof in three cases:
d(x)(z)=1, d(x)(z)=1 and d(x)(z)=T.

If d(x)(z) = L then d(x)(z) <, d(y)(z) is trivial.

If d(x)(z)=2X then let z'e x* = ®"(a)* satisfy z' =F* zaz' £9¥ z (if no such 2’
exists, then d(x)(z)= I by (43) and the fixed point theorem). From z’ 2P 7 we
obtain z' <* z so, by the monotonicity theorem and x =%y, d(x)(z)=x(z")=
d(y)(z') =, d(y)(z). )

If d(x)(z)=T then let a be the least ordinal such that d{x){(z|a)=T and let
2 e x satisfy 2’ 5% (zla) a2’ £9% (z]a). From z' £7* (z]a) we obtain z' < (z|a).
Hence, T= dix)(zle)=x(zY=a(y )=, d(y)(z|la), soO d(y)z)=T and
d(x)(z) =, d(y)(z). O
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Lemma 11.8.7. If
VxeQ'(a)Vye M: (x £ y=>x<y)
then

Vxe d'(a)Vye M: (x 27 y=x<y).

Proof. Assume Vxe Q'(a)Vye M: (x éf’y:>xéy), xed'(a),ye M,x =2 yand
ze M*. We shall prove d(x)(z) <, d(y)(z). We divide the proof in three cases:
d(x)(z) =1, d(x)(z)=X and d(x)(z)=T.

If d(x)(z) =1 then d(x)(z) <, d(y)(z) is trivial.

If d(x)(z)=A then let z’=uez?— vex®P— d(z(u))(v). We have d(x)(z)=
x(z')and z'e x4= Q'(a)*. From z' = ¥* z we obtain z' <* z. Hence, d(x)(z) = x(z) =
d(y)(z') =, d(y)(2). }

If d(x)(z)=T then let « be the least ordinal such that d(x)(z]a)=T. Let z’=uc¢
(z|a)! = ve x®™®P > d(z(u))(v). We have d(x)(z|a)=x(z') and z’ex*= Q'(a)*
From z' %% (zla) we obtain z'<*(z|a). Hence T=d(x)(zla)=x(z") =
a(y)(z") <, d(y)(zla), so d(y)(z) =T and d(x)(z) <, d(y)(z). O

Lemma 11.8.8. If xc ®, ye M and x =% y, then x < y.
Proof. By transfinite induction using the preceding two lemmas. [J
Lemmas 11.8.5 and 11.8.8 together establish (52).

11.9. Definition of the model

Define the equivalence class c¢(x) of xe M by c(x)={ye M|y =x}. We now
define the quotient M/ =<:

M ={c(u)|ue M}, (53)
& ={c(u)|ue d}, (54)
Alx,y)=U{c(A(u, v))uexrveyl, (55)
S=¢(8), (56)
K =¢(K), (57)
T=c(T), (58)
P=c(P), (59)
C=c(O), (60)
W=c(W), (61)

L=c(l). (62)
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From the extensionality theorem we have that this construction really is a quotient
construction, i.e. we have
A(c(x), e(y)) = c(A(x, ). (63)

As an analogy to (Xy, ys...v.) we introduce (x Y1 Y2-..¥.) as shorthand for

A( . A(A(xs )’1), )’2) e .y(x)'
11.10. The well-foundedness theorem
Lemma 11.10.1. Te @ and L ¢ &.
Proof. Let T=x¢ é’(O)* — T. We have Te <13’(0), soTed. Let T= ﬁ']. We have
Ted and VxeT% T(x)=T. Hence, T2 ¢ T, so T<T which entails Te & and T=
c(Te @.

Now assume x € @'(a) = Q'(a)°. From the definition of Q'(a)° we have x({)) e
{T,1}, so Vxe @: x({)) # 1 which proves Vxe @: x(()# L, Vxe d:x #2 1 Vxe
P:x£1l,lgdand t=c(l)ed 0O

We now verify the property of well-founded maps that gave them their name.

Lemma 11.10.2. Vxe @ Vye ®* Jacw: m(x,y)=T.

Proof. Let x, vy, y>,... € ®. For all « € w choose u, u, € & and v, v, € @ such that
x=c(u), yo=c(v,), v <uand v, <u,. Using the relativization of Corollary 11.2.2,

choose a € w such that a(v)({v,, ..., U,)) =T. From the isomorphism and monoton-
icity theorems we have d(u)({u,,..., u,))=T which entails m(u,(u,,..., u,)) =7
and m(x,{y,,...,¥.)) =T by the root theorem. [

For all x, ye @ define x <,y by
X<,y @ y#xTadzed: x=(yz).
From the above lemmas we conclude the well-foundedness theorem.
Theorem 11.10.3 (Well-foundedness theorem). Te @, L ¢ @ and <4 is well-founded
on @.
Corollary 11.10.4 (Induction theorem). Let R(x) be a predicate. If
R(T)Y and VYxe O\{T}: (Vye &: R(xy)=>R(x))
then

Vxe ®: R(x).
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There is a much deeper way to well-order the well-founded maps: For all xe @
let f(x) be the least ordinal « such that 3z€ &'(a)Iye &:z<yax=c(y) and
define x <, y& f(x) <, f(»). Even though it is not explicitly mentioned in the proof,
the well-foundedness of <; on @ is central in proving the consistency of Map. In
the proofs, induction in <; has been replaced by induction in the ordinals.

The <, relation corresponds to the “‘introduced before™ relation in Section 2.4.
None of the axioms of map theory expresses the well-foundedness of <;, which is
clearly unsatisfactory.

The well-foundedness of <4 corresponds to the well-foundedness of € in ZFC
as expressed by the axiom of foundation. The well-foundedness of <; also relates
to the well-foundedness of €, but in a less clear way. It seems that <, and <, factor
out two distinct sides of the well-foundedness of €. Non-wellfounded sets [2] are
well-founded w.r.t. <; but non-wellfounded w.r.t. <,.

12. Terms and their values

12.1. Representation of terms
Define the set V of syntactic variables by
V={3]icw).

In what follows, X, ¥, z, u, 6, w, f, g, h, etc. stand for arbitrary, distinct variables,
le., X=10;, y=10;, Z=70, etc. where i #j, i#k, j#k, etc.
Let the set M’ of combinator terms be the least set such that

{S,K,T,P,C, W, i} e M/,
Vx,ye M A(x, y)e M/,
Ve M’ and
Mc M.
Let the set M of terms of map theory be the least set such that
M'c M,
Vxe VVfe M: \xfe M,
Vx,ye M: A(x, y)e M,
Vx,y,ze M: (ffxyz)eM,
VxeM:éxeM and

VxeM: ¢xe M.
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12.2. Structural induction

The principle of structural induction for M’ can be stated as follows.

Lemma 12.2.1. Let R(x) be a predicate. If
Vxe V: R(x),
Vxe{S K,T,P,C, W, 1}: R(x),
Vx,ye M (R(x) A R(y)=>R(A(x, ¥))),
Vxe M: R(x),
then Vxe M': R(x).

The principle of structural induction for M is given in the next lemma.

Lemma 12.2.2. Let R(x) be a predicate. If
Vxe V: R(x),
V{S,K,T,P,C, W, 1}: R(x),
VXe VVfe M: (R(f)=R(AXS)),
Vx, ye M: (R(x)n R(1)=>R(A(x, y))),
VX, 3,26 M: (R(X)A R A R(2)=R((F x y2))),
Vxe M: (R(x)=>R(éx)),
VxeM: (R(x)=R(dx)),
then ¥x e M: R(x).

Proofs by structural induction tend to be long and trivial in that they tend to
consist of a long list of trivial cases. For this reason, we shall omit the details of
most proofs that use structural induction.

12.3. Freeness and substitution

Forall i€ V and x € M we define the predicate free(u, x) to stand for “u occurs
free in x”°. The definition is standard: For all 4, v e V, i # ¢ and x, v, z€ M define

Sree(u, i),

free(u, v),

—free(i, x) ifxe{S, KT, P C W, L1},
“free(u, Ai.x),

free(u, \v.x) & free(u, x),

free(u, A(x, y)) & free(u, x) v free(d, y),
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free(u, (if x y z)) & free(u, x) v free(ui, y) v free(u, z),
free(u, éx) © free(u, x),

free(ui, $x) < free(u, x),

“ifree(u, x) ifxe M.

For all ic V and x, y € M we define the predicate freefor(x, i, y) to stand for “y
is free for u in x> [22]. The definition is standard: For all 4, 6€V, u# ¢ and
X, ¥, 2z, WE M define

Jreefor(u, u, w),
freefor(v, u, w),
freefor(x,u, w) ifxe{S K T,PC W, 1},
freefor(Aii.x, u, w),
freefor(Av.x, 1, w) & —ifree(v, w)v —ifree(i, x),
freefor(A(x, y), u, w) & freefor(x, u, w) a freefor(y, u, w),
freefor((if x y z), i, w)

& freefor(x, u, w) a freefor(y, u, w) A freefor(z, u, w),
Sfreefor(éx, u, w) < freefor(x, u, w),
freefor(dx, i, w) < freefor(x, u, w),
Jfreefor(x, u, w) ifxe M.

For all e V and x,ye M we define [x/u = y] to be the result of substituting y
for all free occurrences of i in x. Also this definition is standard: For all i, 6€ V,
u=vand x, y, z, we M define

[u/u=w]=w,

[6/u=w]=14,

(x/u=wl=x ifxe{S,K.T,PC W, 1},
[Aix/u=w]= Alix,

[AG.X/ 4= w]=As[x/1:=w],

[A(x, p)/ = w]=A([x/ = w], [y/ii:=w]),
[(if xy z)/1i:= w] = (i [x/d = w] [y/1i:= w] [2/1i = w]),
[éx/u=w]=é[x/u=w],

[dx/u=w]=d[x/ii:=w],

[x/i=w]l=x ifxeM.
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12.4. Translation of terms

For all ti€ V and x& M’ we now define Ati.x such that Ai.x becomes the com-
binator equivalent of Ai.x. The definition is standard (cf. [3]). Foriie Vand x, ye M’
define

i =(SKK),

;\ld'.x=(Kx) if —free(u, x),

Aixy)= (S;\u.x;\a.y) if free(u. (x y)).
For all terms x € M we now define the translation [x] e M' For all terms x, [x] is
the translation of x into combinator form ([3]). For i€ V and x, y, ze M define

[ul = 4,
Ix]=x ifxe{S K T,PC W, 1},
[Au.x] = Adi[x],
[A(x, y)]= A(lx], [¥D),
[(iF x y 2)] = (P [¥] [0 [xD),
[éx]={(C [x]),
[x]= (W [x]),
[x]=x ifxeM.
Note that M'< M and [x] = x for xe M'.

12.5. Interpretation

Define MY =V — M. Elements d of M" assigns a value d(i) in M to each
variable i€ V, and we refer to elements d of M" as ‘“‘assignments”. For all
combinator terms x € M' and assignments d € M we define the “interpretation”
4X € M to be the value of x when the free variables u of x are assigned the values
d(u). More precisely, forall ie V, x, ye M' and d €« MV we define

at=d(u),
x=x ifxe{S, KT,PC W,L1},
d (X,V) =(ax 4} ),
x=x ifxe M.
For all terms x € M and assignments d € M ¥ we define
X = g[[x]
i.e. the interpretation of a term is found by first translating to combinators. Since

M'c M and [x] = x for x € M’, the definitions of ,x for xe M’ and x€ M do not
conflict. For all combinator terms x, y€ M define

xZy & VdeM": x=
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If we let T represent truth, F falsehood and 1 undefinedness, then we may define
Px © x#1 (x is defined for assignment d),
x e x=T (x is true for assignment d),

"x & ,xe{T,F, 1} (xis three-valued Boolean for assignment d).

13. The consistency of Map®

13.1. QOverview

In this section we prove (9), i.e. we prove that the consistency of Map® follows
from the consistency of ZFC. To do so we prove that the model established above
satisfies each axiom and inference rule of Map°®. For example, to prove that the
model satisfies (Ap2) which reads

(Auxy)=[x/u=y] ifyis free for u in x,
we prove
freefor(x, 1, y) = (hixy)=[x/1i=y]

for all sie V and x,yeM.

As mentioned in Section 9.10 we assume at any time that the transitive standard
model D satisfies finitely many axioms of ZFC without being explicit about which
ones. We just assume that D satisfies the axioms necessary for the argument at hand.

13.2. Semantics of basic concepts

If we let v=7F in (25)-(43) and use the fixed point theorem and F(r(x, y)) =
a(x)(y), we obtain
F({Sxy)) =1,
d((Sxyz))(u)=d({xz{yz))(u),

F{K x)) =14,
d((K xp))(u) = d(x)(u),
d(M(w) =T,

I if f(z) =1,
d((Pxyz))(u)={ d(x)(u) ifi(z)=T,
da(y)(u) iff(z) =4,
ifdyed: A((xy)) =1,
d(§({ye @|F({xy)) =TH)(u) otherwise,
a’((Wx))(u):{T ifdyed:y =2 x,

1 otherwise,

i

d((cx»(u):{

a(L)(u)=1.
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Using the root theorem and the definition of = we obtain
(Sxy)#T,
(Sxy)#1,
(Sxyx)={xz(yz)),
(Kx)#T,
(Kx)# 1,
(Kxy)=x,
1 ifz=1
(Pxyz)<{x ifz=T,

y otherwise,

N ifdyed: (xyj=<1

(Cx)é{v A (xy)=1,

G{ye @|(xy)<T}) otherwise,

Lo [T if3yedy2?

(Wx)é{. t=y ] Y=ok

1 otherwise.

Using d((x y))(u) = d(x)({y) - u) and the root theorem we obtain
(Tx)<T and (Lx)=1.

Using the isomorphism theorem and the definition of & we obtain
co LT ifxed
(Wx)é{. if xe >

4 otherwise.

We now investigate the choice combinator C and the choice function (e). We
first prove Ay e &: (xy) £ Le>Tye &: (xy) £ 1. The =-direction follows from & <
. Now assume that y'e @ satisfies {(x y') < 1. Choose y € @ such that y <y’ (this
is possible due to the definition of @&). From the monotonicity theorem we have
(xy)=(xy') = L whichproves (xy)= Land3ye &: {xy)= L. From3ye d: (xy)=
Lledyed: (xy) = 1 we deduce

N ifdye d: (xy)= 1
(Cx):,{v o ifdye (xy)=1,
G{y e ®|(xy)=T}) otherwise.
Define
. HGAd) ifGnd=y,
q(G>:{‘i ,
4(G) otherwise.
We have

§(GYe G forGe M, G #0,
G =T,
Glye | (xy)£TH=gd({ye ®|(xy) 2T}
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Let xe M and assume Vyc é:(xy)%L. Let G={ye®|(xy)=T} and G'=
{ye ®|(xy)=T}. From & < & wehave G= G’ n . If G' =P then §(G)=T=4(G).
If G'#0 then let y'c G'< & and choose y € ® such that y<y’. From 1 # {(xy)=<
(xy')=T we obtain (xy)=T, so ye G and G=G'n D #0. Hence, 4(G)=§(G)
holds whether G =0 or G#§, so

L. (L if3y€¢3:(xy)éi,
(Cx)=1 . P .
G{ye @|(xy)=T}) otherwise.

If GEM then UGcM, (LJG)eM and ¢(§(! G))e M. Define ¢q(G)=
(g G))e M. We have

qg(G)eG forGe M, G#0, (64)

q(@)=T, (65)

gy e @|(c(x) »)=THh=c(d({ye D|{xy) =T}).

This ends the special investigation of C and ().

From xZy&ce(x)=c(y) and (Sxyz)={xz(yz)) we obtain c¢((Sxyz))=
c((xz {(yz))). From (53)-(63) we obtain (S c(x) c(y) ¢(z)) = (c(x) ¢(z) (c(¥) c(2))).
Since Vx'e M Ax"€ M: ¢(x") = x' we have (Sxyz)=(xz(yz)) forall x,y,ze M.
Likewise,

(Sxy)e{T, L},
(Sxyz)=(xz(yz)),
(Kx)e{T, 1},
(Kxy)=x,
(Tx)=T,

1 ifz=1,
(Pxyz)=4{x ifz=T,
y otherwise,

L ifdye d: (xy)=1,
(Cx)= .

g{ye @|(xy)=T}) otherwise,
(Wx):{T 1fxe?,

1 otherwise,

(Lx)=_1.
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Forall x,y,z¢ M and de MY, the definition of ,x yields

ASxyz)=4xz{yz)), (67)
d.(ny.):dx’ (69)
AT xj= T, (70)
tlj- if dx = J_,
Aifxyz)=4gy ifx=T, (71)
4z otherwise,
) _{i ifdyed: (xy)=1, (72)
¢ q{ye @|(4xy)=T}) otherwise, -
qﬁx—{T ifxe @, .
1L otherwise, (73)
AL x)=,40. (74)

13.3. Binding

We now state a series of well-known lemmas about A-abstraction and substitution.
Each lemma is proved by structural induction and, hence, is a proof involving many
cases to check. Since each proof is trivial, we shall omit the details.

Lemma 13.3.1. Leru,ve V, u# v and x, ye M'. Assume —free(v, y). We have

Av[x/u=y]=[Avx/u=y].
Proof. By structural induction on x. [

Lemma 13.3.2. Letuc V and X, ye M. Assume freefor(x, u, y). We have
[[x/u=yll=1x]/u=1[y1]

Proof. By structural induction on x. The only nontrivial case in the proof is the
case where x has the form Av.x" where ve V, v# u and x’e M is assumed to satisfy
the lemma. In this case we shall prove

[[Av.x'/u=y]] =[[Av.x]/u=[y]].

From x=Av.x' and freefor(x, u, y) we deduce —ifree(v, y)v ifree(u, x'). 1If
—ifree(u, x') then

[Av.x/u=yll=[Avx]=[[Av.x']/u=[y]].
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If —1free(v, y) then we use the definitions of (*) and [*/*:= *], the previous lemma
and the inductive hypothesis that x’ satisfies the present lemma:

([Aox'/u=yl)=olx"/u=y])
= Av([x'/u=y])
= ho[(x)/ u= ()]
=[Avdxy/ u=(p)]
=[(AvxYu=(]. O

Lemma 13.3.3. Let uc Vand x,ye M'. We have
(Auxy)=[x/u=y].
Proof. By structural induction on x using the definition of A and the equations (67)
and (69). In particular, we have
(Auuy)=(SKKy)=(Ky(Ky))=y=[u/u=yl. O
Lemma 13.34. Let uc 'V, xe M and de M". We have jhu.x g {T, L}.
Proof. This lemma is not proved by structural induction. Using (66) and (68) we
prove the lemma by three cases.
® If x =u then jAux=,SKK)e{T, 1}.

o If ~free(u, x) then JAux=(Kx)g{T, L}
e If x=(x'x") and free(u, x) then JAu.x=,(SAux'Aux")e{T,1}. O

13.4. Computation axioms and QND’

Lemma 13.4.1 (Extensionality). Let de M" and x, y M. Assume ;xe{T, L}, 2
{T, 1} and Vze M: [(xz)= [y z). We have ;x = ,y.

Proof. Let x, ye M and assume x #T, x # 1, y#T, y# L and Vze M: (xz) = (y z).
From the root theorem we have #(x)=A=#(y), so d(x)({))=d(x)(()). Let ze M
and ue M*. From (xz) < (y z) we obtain d(x)((z) - u) = d((xz))(u) = d((y z))(u) =
d(y)({z) - u). We now have d(x)(u)=d(y)(u) for all ue M*, so x < y. Hence,

x# Tax#Llay#Tay#1laVzeM: (xz)2{yz)=>x =y
This entails that

x{T, LIaye{T, L}aVzeM: (xz)=(yz)=x=y
for all x, ye M, and

XE{T, LInve{T, LIaVze M: Jixz)=dyz)=>x =4y
forall x,ye ManddeM". O
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Theorem 13.4.2 (Computation axioms). For i, v Vand u, v, x, y, z€ M we have
(Trans) X=yAX=z = y=z

(Sub1) u=vax=y = (ux)=(vy)

(Sub2) X=y = Alx= Ay

(Ren) freefor(x, i, 6) A freefor(x, 6, u) = Au[x/0:=u]=Ao[x/u= 1]

(Ap1) (Txj=T

(Ap2)  freefor(x, i, y) = {(Aixy)=[x/i=y]

(Ap3) (Lx)=1

(Sell) (fTyz)=y

(Sel2) (if Aixyz)=z

(Sel3) (flyz)=1.

Proof. (Trans) follows from ,x =,y A 4x = ;2= 4y = 4z. (Subl) follows from ,u=
JOAax = gy =(qu gx) = (v )= lux) = (vy). (Sub2) Assume x =y. We have Vz e
M: J[x/u:=z]=y/u=z]. Hence, {Ati.xz)= fAuyz) by Lemma 13.3.3. Further,
Aux2{T, 1} and jJAu.y£{T, L} by Lemma 13.3.4, s0 jAu.x = jJAu.y by Lemma 13.4.1.
(Ren) By structural induction in x one easily proves Ai[x/0=ul=Ao[x/u= 0]
for all xe M'. Assume freefor(x, u, v) and freefor(x, v, u). Using Lemma 13.3.2
we have [Au[x/o:=ul]=Au[[x/0:=ul]=ra[[x]/o:=[u]]=re[lx]/i:=]0s]]=
XoJ[x/u=v]] =[Av[x/u = 6]] from which Ren follows. (Ap1) follows from (70).
(Ap2) Assume freefor(x, u,v). From Lemmas 13.3.2 and 13.3.3 we have
dAix y) = [ (Aux p)] = LAu]x] [v]) = flx]/d=[y]] = Jl[x/u= y]] = slx/v=y].

(Ap3) follows from (74). (Sell) follows from (71). (Sel2) follows from (71) and
Lemma 13.3.4 (Sel3) follows from (71). [

Lemma 134.3. Lerde MY, u,ve V, u#v and xe M. Assume ,x £ {T, L}. We have
AAuwAv.(uv) x) = 4x
Proof. Let v'e V satisfy —ifree(v’, x) and v'# u. We have
()\u.}\v.(u v) x) = (AwAv'.(u vy x)= Ao'ix o).
For all ye M we have
(AwAv{uv) x) y)= (Ao (xv) y) = dAv'(xv) y) = dxy)=(uxy).

From Lemma 13.3.4 we obtain JAwAv(uv)x)=Av.{xv')¢{T, 1}. Hence,
AAuwArv(uv) x)=,x by Lemma 13.4.1. [
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Theorem 13.4.4 (QND'). Let u,v,we V, v# w and x, y € M. We have
[x/u=T]=[y/u=T]
Alx/u=Aviw.(ow) u)]=[y/u= (Av.Aw.(ow) u)]
Ax/u=11=[y/u=1]
= x=y.
Proof. We obviously have ,x=/Jx/u=d(u)]. If d(u)=T then [x/u=T]=
[y/u:=T] yields
aXx=dx/u=dw)]=y/u=du)]=ay.
The proof of ,x =,y for d(u)= 1 is analogous. If d(u)&{T, L} then
X=dx/u=dw)]=Jx/u=(Aviw.(vw) d(u))]
= [x/u=(Avaw.(vw) u}]
=Iy/u=(viwlow) u)l=dy/u=(Aviwlow) d(u)}]
=dy/u=du)]= 4.
Hence, ;x =4y forall de MY. [
13.5. Semantics of defined concepts
In Part I we defined T, F, etc. in map theory. When translated into the notation
used for the consistency proof, the definitions are as follows.
T-t
F = axT
“x = (ifx FT).

=x = (ifxTE).
x = (ifxTT).
ix = (ifx FF).

xiy = (fx(fy TF) (ify FF)).

xvy = (ifx (if y TT)(if y TF)).

x=y = (ifx(ify TF (fFy TT)).
x&y = (ifx(ify TF) (iFy FT)).
xiy = (ifxyT).

Y = ML (%5)) Ax(f (% %))).
Yux = (Y Aux).

3 = Ax = (X 6x).

Jux = (Fhux).

Yux = 3ux.
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We have ,T=T and ,F=Fg{T, L}. From (71) we obtain the following lemma.

Lemma 13.5.1. Let d e M". Assume x, y, u, ve M, Su and Jv. We have

i T © 0=0 Te 0=0
oF YF e 0=0 F e 0=1
Bax Dax o Px e u
Bax Dax o Dx =u o tu

Bix Pix & Px u e 0=0
Bix Ij'ix o Dy Tiue 0=1
f}x/\y h)xAy@E,)XA?y Tuiv e Tualy
Zx\'/y [‘,)xVy@f,)X/\[jy Tuve & Juviv
Px=y Ixyo Ixa)y juDv e ju=iv
Bxoy Txoy o Uxaly uev e luelv

Define
x<sy o AxexTAyey: x'<y.
Lemma 13.5.2, Ifx',y'€ M then
c(x)=c(y) & X<y
Proof. Let x',y'e M. Assume x'<y’. From x'ec(x’) and y'ec(y') we deduce
Ix"ece(x’)Ay"ec(y’): x'<=y’ which entails ¢(x’')<c(y'). Hence, x'=y'=c(x") =
c(¥'). Now assume c(x') < ¢(y"). Choose x"€ ¢(x) and y"€ c¢(y) such that x"= "

From x”"€ ¢(x") we have x' = x" and from y” € c(y') we have y' = y” which combined
with x"=y” gives x'=y’. O

From the properties of < we obtain the following result.

Lemma 13.5.3. For all u, v, x, y, z€ M we have
X=X,
XSEPAYEX = X=Y,
XEYAYEZ = X=2,
usvoaxsy = (ux)s(vy),
1=x
xg{T,1} = x&TATZx,
xVE{T, 1} = (xsyoVze M: (xz)s(yz)).
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Lemma 13.54. Ler d e M" and x € M. We have
L ifdyed: {xy)=1,
Ax={F ifVye®: (xy)e{T, 1},
T otherwise.

Proof. Assume d € M"Y and xe M. Assume Jy e @: {xy)= 1. Choose y € & such
that J(xy)=_L. From (72) we have ,6x= L. Hence, 4x<y so [xéx) < [xy)=1
which entails ,(x éx)= 1 and dx=,=(xéx)= L.

Now assume Yy e ®@: J{xy)¢{T, L}. From this assumption, (72), and (65) we have
£Ex=Te ®. Using the assumption Vye @: J{xy)e{T, L} once more we obtain
Ax éx)e{T, L} from which ,3x = 7 (x éx) =F follows.

Now assume =13y e &: [(xy)=1 and ~Vye &: [(xy)2{T, L}. From the assump-
tions we obtain Iye ®: ,(xy)=T. Hence, from (72) and (64) we have ,éxe
{ye ®|{xy)=T} which proves Axéx)=T and Ax= i (xéx)=T. O

From this lemma we immediately conclude Lemma 13.5.5.

Lemma 13.5.5. Letde M" and x, ye M. Assume Vze &: 3(y z). We have
BAx DAxoVzed: Yixz) JAyeIzed: liy:z).
Using this lemma and Ap2 in Theorem 13.4.2 and Lemma 13.5.1 we obtain the
following result.
Lemma13.5.6. Letde MY x, ye Mandue V. AssumeVze M: Uy/u=z]. We have
PMux NBuxoVze ®:Dx/u=z] JAuyeIze d: y/u=1z],

Wux DVuxoVze ®: Jx/u=:z] NuyoVzed: l[y/u=1z].
Using Ap2 in Theorem 13.4.2 several times we obtain Lemma 13.5.7.

Lemma 13.5.7. Letde M", x,y e M and u c V. Assume freefor(y, u,Yu.y). We have
2Yx=4(x Yx),

dYu.y =dy/u=Yuyl.

As stated in Part I, x,,...,x, — y stands for x;: -+ ix,:y=x: - :x,:T, and
this construct is used in several axioms. Define x,,...,x, > y&x;i- - ix,iy=
xi -+ ix,iT. The following lemma is useful for verifying axioms involving —.

Lemma 13.5.8 (Deduction lemma). Let x,, ..., x,,ye Mand de M".
If GX A AgX,=>ay then yx i+« ix, iy =X, ix,:iT.

IfVYdeMY: (Gx\n - adx,=0y) then x,, ..., x, > y.
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Proof. From the definition x:y = (if x y T) we deduce ,x = 1 =>,(x:y)= L and ,x#

(T, L}= xiy)=T. Hence, 4x,: -+ - ix,iy=y4%,: -+ ix,iT holds if jx;,#Tv---v
X #T. Now assume ,x,=---=,x,=T. From the assumption we have ,y=T
SO Xyt ix iy =,4x,1---:ix,:T. The second claim follows from the definition
of > [

13.6. Quantification axioms

Lemma 13.6.1 (Quanl). Let uc V and x, ye M. We have

éx, Vuy > (Auyx).
Proof. Letd e M. Assume Id)x and Z\'fu.y. We have ;xe @ and Vze @: I[y/u =z].
Hence, Vze @: (JAuyz)=T so fAuwyx)=(Auy x)=T. Now the lemma follows
from the deduction lemma. O
Lemma 13.6.2 (Quan2). Let ue V and x e M. We have

gux = u.(du A x).
Proof. Let d e M Y. If ;ue @ then Jdu and Jéu, so x5 du A x and 1x o fdu i x.
The lemma now follows from (72). O
Lemma 13.6.3 (Quan3). Let uc V and x € M. We have

dsux =Vu.lx.
Proof. Let de M. If Azc @: 1 )[x/u=z] then zc &: ~5['x/u=z] so " éu.x
and —5Vu.lx. Hence, JPEux =1 = Nulx. Now assume Vze &: PIx/u=1z]. We
have jéuxec @ so jdpéux. Further, Vze &: J[1x/u:=z] so jVu.!x. Hence, déu.x =
Yulx, O
Lemma 13.6.4 (Quand). Let ue Vand x € M. We have

Aux > déux.
Proof. Letd € M"Y and assume §3u.x. From Lemma 13.5.6 we have Vz € ®: J{Au.x z)

and 3ze ®@: f{Auxz). Hence, by (72), séuxe @ so Ldéux by (73). Now Quand
follows from the deduction lemma. O

Lemma 13.6.5 (Quan5). Let uc Vand xe M. We have
YVux =Vu(du i x).
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Proof. Let d e MY. If ;ue @ then J¢u and Jdu, so Jx =5éu i x and Jx=Jdu i x.
The lemma now follows from Lemma 13.5.6. O

Lemma 13.6.6 (Ind). Let u,ve V, u# v and x,, . .. , Xa, VE M. Assume

freefor(y, u,(uv)) and —free(u, x,),..., free(u, x,).

Assume

Xiyeoos Xo = [y/u=T],

Xiyoony Xe, G, S, Yol y/u=(u )]y (75)
We have

X1y X, Uy,
Proof. Let de M". Assume jx,, ..., x,. From x,,..., x, = [y/u:=T] we obtain

a[y/u=T]. Now assume ze ®@\{T} and Vwe &: J[y/u:=(zw)]. From (75) we
obtain

dy/u=z1=[x;i - ixgiouiwiVoly/u={uv)]iy/u=z]
=dx i ixgiduituiVoly/u={uv)]iT/u=z]
=T

Hence, j[y/u=z] so
Vze O\{T}: (Vwe @: j[y/u=(zw)]=>3[y/u=12z]).

Now Vze @: j[y/u=z] follows from the induction lemma.
Assume ¢u. We have que @ so 1y. Hence, bx,, ..., 3x,, Jdu=>1y so the lemma
follows from the deduction lemma. [

13.7. Well-foundedness axioms

By the well-foundedness theorem we have Te @ and 1 g @. Hence, from (73),
we obtain the following lemmas.

Lemma 13.7.1 (Welll), ¢T=T.
Lemma 13.7.2 (Well3). ¢L=1.

We have now proved (9), i.e. we have proved the consistency of Map® assuming
the consistency of ZFC.
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14. The consistency of Map

14.1. Assuming S1

In this section, and this section only, we assume SI, i.e. the existence of a strongly
inaccessible ordinal o, and we assume that the transitive standard model D is defined
by (11). The central consequence of this assumption is

xcDax<,0 = xeD.

In this section, the variables «, 8, v, etc. range of o, i.e. we tacitly assume a, 8, v € 0.
We have the following absoluteness results for all G, H, a, x, y € D:

| PG| = 2G,
|G- H|=G— H,
|G— V]| =G— D where V is the class of all sets,

|G| = G,
P'(a)=P'(a),
d'(a)=D"(a),
Q'(a)=0'(a).

14.2. Some properties of well-foundedness

Define ¢"G ={c(x)|xe G} and ¢*(f)=uef'— c(f(u)). For G M and fe M*
we have ¢"G< M and ¢*(f)e M*.

Define VG ={xe M|3ye G: y<x} and VG={xe M|3yec G: y<x}. We have
V"G =c"VG forall GE M. The V operation is sort of the inverse operation of the
boundary operation d in Section 10.4. Forsome G< M wehave daVG =G orVaG =G
or both. We shall not define 8 formally.

Define i5(x)=ve G*— d(x)(v) and tg(x)=ve G*— a(x)(v). From the
isomorphism theorem we have t..g(c(x))(c*(v)) = f(x)(v) for all G< M, xeM
and ve G*. We have that ¢;(x) is the type of x w.r.t. G, cf. Section 10.2. Define
the coordinatewise application of iy and t; by fE(f)=uecf®— ic(f(u)) and
t&(f)=ue 2 16(f(u)). )

Like in Section 10.3 define wf(G)={feM|iz(f)e G} and wf(G)=
{fe M|is(f)e G°t. We have wf(c"G) = ¢"wf(G) forall G M. From the monoton-
icity theorem we have Wf(G)=Wwf(VG) for all G< M. Define ®'(a)=Vd'(a),
&"(a)=VP"(a) and Q'(a)=VQ'(a).

Lemma 14.2.1. We have
Q'(a) = wf(D"(a)) = wf(D"(a)),
&'(a) = wf(Q'(a)) = Wwf(Q'(a)).
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Proof.
xeQ'(a) & xeVQ'(a)
AyeQa) y=x
IyeQa)y=lx
Aye Qa)Vzey® y(z) = d(x)(z2)
Fye Q'(a): y = fpa)(x)
fprar(x) € Q')
g (x) € O"()°
xewf(P"(a))
x e wf(VP"(a))
& xewf(d'(a)).
The statement @'(a) = wf(Q'(a)) = wf(Q'(a)) is proved in a similar way. [J

¢t 8¢ 00 ¢ Y

Define @j(a)=c"®'(a), ®)(a)=c"d"(a), Qla)=c"Q(a), ?'(a)=c"d'(a),
®"(a)=c"d"(a) and Q'(a) = c"é’(a). We have @'(a) =V (a), P(a)=VD)(a)
and Q'(a)=VQ/(a). Further, we have

D'(a) =wf(Q'(a)) =wf(Qi(a)),
Q'(a)=wf(P"(a))=wf(P/(a)),
4)”((1):U/3€u (p,(ﬂ)a
@i(a)=Ugea Pi(B) and
@: ¢”(0-)=UB€U ¢,(B)
From &'(a), "(a), Q'(a) € D we obtain ®j(a) <, o, Pi(a) <, 0,and Qj(a) <, 0.

Forall GE H< M we have wf(H) < wf(G). Hence, for all G€ H< M we have
wf(H) < wf(G). For a =, 8 we have @"(a)c< @"(B) which entails Q'(8)< Q'(«)
and @'(a) < ®'(B). Further, we have @'(a) < Q'(B), ®"(a)c Q'(B)and @ < Q'(B)
by transfinite induction on « and B.

If Ge M, x € wf(G) and y € G, then (x y) € wf(G) follows from the definition of
wf(G). Hence, if xe @'(a) and y€ Q'(a) then (xy)e @'(a), and if ye Q'(a) and
xe @"(a), then (yx)e Q'(a). Hence,

as,BrxeP(a)ryeQ(B) = (xy)e P"(a),
a<,Brxe®(a)ryeQ(B) = (yx)eQ'(a),
xeP(a)raye d"(B) = (xy)e P"(a).

If GEM, G#p, xe M and Vy € G: (xy) € wf(G), then x € wf(G). Hence,
a#0axe MaAV¥ye @"(a): (xy)e Q'(a) = xe Q'(a),

xeMaVyeQa):(xy)e d'(a) = xe P'(a).
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Lemma 14.2.2. Let aco. If xe M and (xy)e @ for all yc Q'(«), then xe ®.

Proof. Assume xe M and Vye Q'(a): (xy)e ®. For all ye Q/(a) choose B, such
that (x y) e @'(B,) and define y = « U, o) B From Q}(a) <, o we have ye o.
Further, we have Vy e Q}(a): (xy)e @"(y) so, by the monotonicity theorem, Vy ¢
Q'(y): (xy)e @'(y) which entails xe @"(y)c &. []

Lemma 14.2.3. Let « € o and let R (x) be a predicate. If
R(T)

is true, and if
Vye @"(a): R(xy)=>R(x)

forall xe Q'(a), x#T, then
R(x)

holds for all x € Q'(a).

Proof. For all xe Q'(a), x#T and ye ®@"(a) we have (xy)e Q'(a), tp(u(x)E
D"(@)°, tora(x¥)€ P (@)° and lpr(o)(X¥) <, lpna)(x). The lemma now follows
from the well-foundedness of <. on @"(«)°. O

14.3. Consistency proof for Map

We now verify the consistency of Map.
Lemma 14.3.1 (Well2). For iic V and x € M we have ¢ Au.x = dAii.dx.

Proof. Assume ‘T,}\u.x. From (73) we have d)\u'.x € &. Choose « € o such that jAix e
®"(a). Let ue Q'(a). We have ,Ai.xu)e ®"(a). Hence, [x/ii:=ule ®"(a), so
Jb[x/u=ul=Te ® and [éx/u=u]=Te @ which entails ,(Ai.dx u)e ®. Hence,
JAugxe ® and Ldri.dx. This proves jhAnx=>dAu.dx.

We now prove Tohi.dx="pAix. Assume [ Ai.dx. We have A.gx € d. Choose
a € such that jhi.dxe @"(a). Let ue Q(a). We have [fAuwdxu)e @(a), so
ddx/i=ule ®"(a). Since L @"(«) by the Well-foundedness Theorem we have
dbx/ii=ul= p[x/ti:=ul# L,so fx/i=u]e P by (73). Hence, [Aixu)e ® so
d}\u.xe ¢ and Id))\ux This proves Edu\ud)x:Id))\ux

We now have ldiixeldrigx. From (73) we have ,pAiwxe{T, L} and
dbAidxe{T, L}, so jpAi.x = ,dAi.dx as stated in the lemma. [J

Lemma 14.32 (C-A). %, ¢y = ¢ (% y).

Proof. Let de M"Y, Assume }éx and [dy. We have ,xe @ and ,ye @. Choose
@, B € osuchthat ;xe @"(a)and ;v € @"(B). We have ((x y) € ®"(«). Hence, J(x y) €
¢ and Id&(xy). The lemma now follows from the deduction lemma (Lemma
13.5.8). O
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Lemma 14.3.3 (C-K'). dAuT=T.

Proof. Let de M". For all ue Q'(0) we have JauTu)=,T=Ted, so puTecd
and ,puT=T=,. O
Lemma 14.3.4 (C-P). dru(ifuTT)=T.
Proof. Let de M". We have Q'(0)= M\{L}. Hence, for all uc Q'(0) we have
AAMi(ifu TT u)=Te ®, so aul(ifuTTe® and pri(ifuTDH=T=,T. O
Define

P =A% ApAZ(if 2 %)),

Curry= A% Ap.AZ (% (Py 2)).
We have P= P and P # P, so P and P are semantically but not syntactically equal.
The introduction of P is necessary since axiom C-Curry mentions P rather than P.
Lemma 14.3.5 (C-Curry). Lef x € M. We have

bx = d{Curry x).
Proof. Let d € M". Assume |} éx. We have ,x € ®. Choose a € o such that ;x € @"(a).
Let y, z€ Q'(«). We have

ACurryxy z) = {x (Py z)).
Let ue @"(a). We have u# L. If u=T then

APyzuj=yeQ'(a).
If u#T then ug{T, L} and

d'(lsyzuj =ze Q'(a).

Hence, Yue @"(a): APyzu)e Q'(a) so (Pyz)e Q(a) and Jx (Pyz)ie @'(a),
so 4¢(Curryx). Now the lemma follows from the deduction lemma (Lemma
13.5.8). O

Define

¢, f=(AVxS{fX) f)

Prim= AfAXApYEAZ(if 2% (f Mi(g (7 (y u))))).
Lemma 14.3.6 (C-Prim). We have

b [, %, dy = (Prim fxy).
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Proof. Let d € M. Assume é.f, [éx and | dy. We have Vue &: (fude @, e P,

and gy € @. Define h = (Prim f% y). We have
oh = A (i 23 (f A (h (2 (3611,
Ahz)=0F 2% (f Ak (2 (3 0))))).

Choose a such that sy € ®@"(a). We now prove Vze Q'(a): 4(h z) e @ by induction

on z.

If z=T then  hz)=,cc® Now assume zeQ'(a). z#T and Vve
P"(a): fh(zv))e ®. If ue Q'(a)then ,(yu)e @"(a) and 4 h {z (¥ u))) € @. Hence,
Vue Q'(a): Jruih{z(3u)))u)e®, so we have Aulh(z{(yu)))e® and
Af Ai(h (z (yu)))) e @, which entails (hz)e &.

From Vze Q'(a): [ hz)e ® we have he @ as required. [

Lemma 14.3.7 (C-M). For i, 5€ V, 1i # ¢ and x € M we have
Yi.dv.x > Vido.(Aux (1 0)), (76)
Vi.¢t.x > Yu.do.(Av.x (5 4)). (77)

Proof. Assume de M" and |Vi.¢v.x. From Lemma 13.5.6 we have Vue

&: J[pAvx/ti=ul, so Vue @: JJAv.x/i=ule P by (73).

Now let @ € 0. Foreach u € @/ (a) choose 8, € o such that d[}\z}.x/ u=ule ®@"(B,).
Define y=a Ul e Bu- Since Pf(a)=,0 and o is strongly inaccessible, we

have y € o. Further, we have Vu € @"(«a): [At.x/u:=ule ®"(y),soVue ®"(a)Vve
Q'(v): A[Av.x/ti:=ulv)e @"(y), which entails

Yue @ (a)Voe Q'(y): f[x/o=10]/t=ule ®(y).

We obviously have [[x/¢:=v]/u=u]=[[x/u=u]/v:=10v] for all uyveMc M
since elements of M have no free variables (i.e. Yue M Vi ¢ V: “ifree(u, u)).
Now let ue @"(a)and ve Q'(y). We have (uv)c @"(a)and (vu)e Q'(y). Hence,

dlx/v=(vu)i/u=ule P"(y), (78)
Adlx/v=0)/i=(uv)]e ®"(y). (79)
We have
dlx/o=(vw)]/u=ule ® & J(hox(vu))/u=uled
& [flAbx (su))/v=v]/u=ulcd®
o fAB(Abx (vu)) v)/i=ule P

Since this holds for all ve Q'(y) we have
d[}\v.(}\é.x (vu))/u= ule @
SO

Hév.hox (vud)/ = ul.
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Since this holds for all « € o and u€ @"(a) we have
Yue @: j[o.(Ad.x (04))/ 1= u]
S0
Wau.go.(av.x (vu)).
Now (77) follows by the deduction lemma (Lemma 13.5.8). Equation (76) follows
from (79) in a similar way. O

15. The consistency of Map°™"

15.1. Qverview

We now prove (10) which states
Con(ZFC") = Con(Map°").

Throughout this section we assume that the transitive standard model D satisfies
finitely many axioms of ZFC™". We shall not be explicit about which axioms D
satisfies. Rather, we constantly assume that D satisfies sufficiently many axioms for
the argument at hand (cf. Section 9.10).

In Section 15.2 we introduce s€ @ — D in such a way that

zes(x) © xZTadye @: z=s((xy))
and
s'=D.
In Section 15.3 we prove
Pxéy, ®xéy and Jxéy © s(x)es(y).

for all x, ye @ and d e M". In other words we prove that x €y is T if s(x) € s(y)
and F otherwise.

From these results we may deduce that € inherits the properties of € in D. Further,
since se @ — D and s"= D, we have Vxe D: R(x)&Vyec &: R(s(y)) for all predi-
cates %(x), so V may be used to represent the universal quantifier of ZFC".

Having made these observations, it is obvious that any statement true in D is
also true in Map®”. However, to prove this formally, it is necessary to do some
bookkeeping. In particular, it is necessary to be cautious concerning the handling
of abstraction in set and map theory.

The consistency proofs for Map and Map®" may be combined as follows: If we
define D as in (11), then any statement true in D is also true in the model of Map,
so Map may consistently be extended by any statement true in this D.
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15.2. Representation of sets

Define §(x)={8(x")|x' <, x}. For xe @ define s(x)={s(x")|x' <.x}. We say
that xe @ represents the set 5(x) and that x< @ represents the set s(x). In this
section we prove Vydx e &: y=58(x),Vye D3xeP: y=s(x)andV¥xe @: s(x)e D.
From the definition of s and <, we immediately obtain

yesix) © x#Ta3ue ®: y=s{xu).

Lemma 15.2.1. Let fe H— G, ze G*—> Land z’ e H*—> L. If f'=G and z'(v) =
z(fev) for all ve H* then ze G°&z'c¢ H° and §(z)=35(z').

Proof. Let f, z, and z’ satisfy the assumptions of the lemma. From "= G we have
Voe G: R(v) & VYve H: R(f(v)),
VYve G*: R(v) © Yoe H*: R(fov),
Voe G”: R(v) & Yove HY: R(f - v).
For all predicates R(v). Hence, z € G°< z' € H® follows trivially from the definitions
of G°and H".

In what follows, let z” and w"” be shorthand for ve H*— z(fov) and ve
H*~— w(f o), respectively (note that z is free in z” and w is free in w”). We now
prove Vze G° §(z) = §(z") by induction in z and <. If z(())=T then §(z)=¢=
§(z"). Now assume z(()) =X and Vw: (w <, z=>8(w) = §(w")).

Assume x¢€ §(z). Choose w <,z such that x=§(w). Choose uc G such that
Vve G* w(v)=z{u) - v). Choose u'e H such that f(u')=u We have Vve
H*: w'(w)y=w(fev)=z(u) - (fev))=z"({u) - v), so w'<,z" and x=35§(w")e
s(z").

Now assume x € §(z”). Choose w’ <, z" such that x = §(w'). Choose ue H such
thatVoe H*: w'(v) =z"({u) - v). Letu'=f(u) and w=ve G* > z({u') - v). We have
w<,zandVuec H*: w'(v)=w(fev)=z((u"y - (fov))=2z"((u)- v)=w'(v). Hence,
x=8(w)=35w")=5w)e(z).

We may now conclude §(z)=_5§(z") for all ze G°. From the assumption of the
lemma we have z'=z", so §(z)=5§(z’') holds. O

Lemma 15.2.2. Let € d, Xxc b and xe @. [f X< X and x = ¢(X) then s(x) = §(¥).

Proof. Define
P=yed* > a(x)(y),
F=ye ®* s d(X)(y),
F=ye % d(X)(y),
F=yed* - d(X)(y),
z=ye ®* > a(x)(y),

f=ued—vex™® d(u)(v),

f:ueds»—>c(u).
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Let fe & — & satisfy f(u)< u for ue &\ and f(u) = u for ue &. Choose a such
that ¥ € @'(a). According to the relativization of Theorem 11.2.1 we have

fed—Q'(a), [f=0(a)
Further,

fed—b  f=d
fr=a.

We now prove 3, e @°, 7,7 #°, ze ®° and §(X)=5(2)=3()=§()=3(¢) =
5(z)=s(x).

For ye®* we have 2(y)=d(X)(y)=xuecy®—vex®® = d(y(u))(v))=
#(uey?— f(y(u))=%(foy). Hence, 7€ &° and §(£) = §(X) by Lemma 15.2.1.

From the isomorphism theorem we have =%, so 'c ®° and §(2') = §(2).

Let ye &* from the definition of f we obtain fo ye &* and foy <*y, so I#
d(%)(foy)<,d(%)(y) which entails d(X)(foy)=d(%)(y). Hence, Z(foy)=
d(i)(foy)za’(i)(y):z’(y) which gives 7€ @° and §(%)=$§(2') by Lemma 15.2.1.

Let ye &*. From ¥=x we obtain L # d(X)(y) <, d(X)(y), so Z(y)=d(X)(y) =
d(¥)(y)=Z(y). Hence, 7=7", 7€ &° and §(7') = §(%).

Let ye d* We have 7'(y)=d(X)(y)=a(c())(c*(»))=a(x)(foy)=z(f°y).
Hence, z€ @° and §(z)=§(Z') by Lemma 15.2.1.

In what follows let z and z' be shorthand for ye @* — a(x)(y) and ye
@*— a(x')(y), respectively. We now prove Vx e @: s(x)=5§(z) by induction in x
and < 4.

If x=T then s(x)=@=35(z). Now assume x#T, xc@® and Vx'cd:
(x' <,x=s(x')=35(z")). From x # T we have z({))=AX.

Assume we s(x). Choose x’ <4 x such that w=s(x"). Choose u € ¢ such that
x'=(xu). For all ve ®* we have z'(v)=a(x)(v)=a(xu)(v)=a(x){(u)-v)=
z({u) - v),s0z" <, z. Fromw=s(x")=§(z') and z’ <,. z we conclude w € s(z). Hence,
wes(x)=>we §(z).

Now assume we §(z). Choose z” <, z such that w=§(z"). Choose uec @ such
that Voe F*: z"(v) = z({u) - v). Let x'=(x u). We have x’ < 4, x andVove F*: z/(v) =
z"(v), so w=3(z")=5(z)y=s(x')c s(x). Hence, we §(z)=>we s(x).

We may now conclude s(x)=35(z). Hence, s(x)=5§(z)=38§(z)=8§(2)=5§8() =
§(5)=35%). O

Lemma 15.2.3. tc(H) <, G=3xe G°: H =§(x).

Proof. By induction in H and e: If H=( then let x=ve G*—T. If H#¢ then
for each he H we have tc(h) =, G. For each he H assume by the inductive
hypothesis that k, € G° satisfies h = §(k,,). Let g€ G > H be surjective (i.e. g"'= H)
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(this is possible because H =, G). Define xe€ G° by x{({))=X and Yue G Vve
G™*: x({u) - v) = ky,y(v). The lemma follows from H = §(x), which we may verify
as follows:

$(x) ={8(x")|x" <, x}
={§(x)|que G Vve G*: x'(v) =x((u) - v)}
={§(x")3ue GVve G* x'(v) = ky,\(v)}
={8§(x)|Fue G: x"=ky,)}
={§(ky() | ue G}
={$(k,)|ue H}
={ulue H}
=H. O

Let a <, . From Theorem 11.2.1 we have Cﬁ'(a) =9 O’(B) (this follows from
I,z in Theorem 11.2.1). Further, from the definition of @’(a) we have
é’(a) <. Cﬁ’(a), SO é’(a) <, é’(ﬁ). Hence, there are é’(B) of arbitrarily large
cardinalities. From the definition of @ we have x € cf)<:>E|,B: xe é'(B)". This com-
bined with the previous lemma gives the Adequacy Theorem.

Theorem 15.2.4 (Adequacy Theorem). Vy3xe &: y = §(x).

As mentioned in Section 10.6, the Adequacy Theorem is central in understanding
the role of @ in the model construction.

Corollary 15.2.5. We have Vye D Axe @: y =5(x) and Vxec ®: s(x)e D.

Proof of the corollary. The definition of <, is stated such that <, is absolute.
Hence, § is absolute, so we may conclude VYx e &: §(x) e D. The relativization of
the Adequacy Theorem gives Yy e D Axe @: y=5§(x). Now the corollary follows
from Lemma 15.2.2. [

15.3. Semantics of membership

In Section 13.5 we stated lemmas about the semantics of if, T, F, =, =, 1, i, A, v,
=, <, 3, ¥ and Y. We now proceed by = and €. Define

YiAxAy. (ifx (ify TF) (if y F
Va3 flx ) (5 6)) AVeRa(f () (¥ 0)),

1

equal

x=y = (equal x y),
belong = AX.Ay.(if y F Jui.x=(yu)),
xéy = (belongxy).
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In what follows, let d € M" and x, ye &. Since x# L and y # 1 we have x and
Py. From the semantics of Y we have

X=y = Aifx (ifFy TF) (if y F
Vuds(xu)=(y o) AVoTi(xu)={yv))).
From the semantics of if, T, F and 4 we have
aX=y.

Now assume Vu, z€ @: D{xu) =z From the semantics of if, T, F, A, V and 3 we
conclude Vy e @: Jx = y. Hence, by the Induction Theorem (Corollary 11.10.4) we
have

Ijxiy.
From the previous section we obtain
zes(x) © x#TaJue ®: z=s(xu).
Hence
s(x)=s(y) ©@ x=Tay=Tvx#Tay=T
AVue @ Jve &: s(xu)=s(yv)
AVve @ Jve @: s(xu)=s(yv).
From the semantics of if, T, F, A,V and 3 we have
ix=y & x=Tay=Tvx#Tay=T
AVue ®@Ave ®: j(xu)=(yv)aVve ® Jue ®: j(xu)=(yv).
Hence, by the Induction Theorem we have
ax=y & s(x)=s(y).
From the semantics of if, F, 3 and = we obtain
GxXEy, Pxéy and
iX€y & y#TaTue @: s(x)=s(yu) < s(x)es(y).
15.4. Terms of ZFC and their values

In analogy to the definition of M define the set Z of well-formed formulas of
ZFC and related concepts as follows: Let Z be the least set such that

Yuve ViuéveZ
VxeZ: "1xe Z,
Vx,yeZ:x=>yeZ,
YueVVxeZ:Vu:xeZ
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For u, v, we V and x, y€ Z define
free(u, vEw) S u=vvu=w,
free(u, 1x) <& free(u, x),
Sfree(u, x=>y) & free(u, x) v free(u, y),
free(u, Voix) © u®v A free(u, x).
Define DY =V — D.Forall xe Z and fe D" define the interpretation ,x as follows:
uév & flu)ef(v),
STIX & X,
XY S Xy,
Yuix © Vge DY (Voe V\{u}: f(v) = g(0)=>,x).
For all x € Z define the translation | x of x into map theory as follows:
Huép) = uén,
I7x = 1 x,
x=y = (x)=>Uy),
WVur x = Yulx

Define F¥ = V — d,letde FY,andlet f=s°d We have f< D". From the semantics
of €, 11, = and V, and by structural induction in xe Z we obtain

alx,  Qlx and lx o x

15.5. Consistency proof

As stated previously, Map°®" is Map® extended by the translation of any theorem
of ZFC*. Now that we have defined | x, we may define Map®" more formally: Map®*
contains all axioms and inference rules of Map®. Further, if x is a theorem of ZFC"
whose free variables occur among u, ... u,, then we include

b, ..., pu, = |x

as an axiom of Map®". Map°” is axiomatic since its axioms and hence its theorems
are recursively enumerable. To ensure definedness in Map®* of all well-formed
formulas of ZFC, we also include

d.)uls ey Qéua - '\Lx
for any well-formed formula (theorem or not) of ZFC.
Theorem 15.5.1 (Semantic Adequacy). Ler xeZ. Assume that the free variables of
X occur among u,, ..., u, € V. We have

(ﬁul)"'?(ﬁu(r—:—) '!‘Lx)
buy, ..., du,>|lx & VfeD": x.
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Proof. Let de M V. Assume ‘ou,, ..., Jdu,. We have 4u,,..., 44, € @. Define ec
MY by
dv) ifve{u,,...,u.},
e(v) =

T otherwise.

We have ec FY and ,lx=,{x

Since e F" we have 2| x which entails 7 xand }1x. Hence, ¢u,, ..., du, = !|x
follows from the deduction lemma.

Now assume VfeD": x. Let f=sce. We have fe D", so ;x holds. Further,
xollxellx, so ¢u,. .., du, = |x follows from the deduction lemma. Hence,
YVfe DY: x=duy, ..., dpu, > |x.

Now assume uy, ..., ¢pu, > |x and fe D". Choose ec F" such that f=sce
(this is possible since s € @ — D is surjective, i.e. s'= D). We have Ldu,, ..., rdu,,
so Tlx follows from du,,..., ¢u, = |x. Since [|x&,;x we have verified that
bu,, ..., du, > lx=>VfeD": x. O

We have now proved that the transformation of any ZFC statement which is true
in D, holds in M. Taking D to satisfy (a finite set of axioms of) ZFC" we obtain
the consistency of Map°" as stated in (10).

Taking D to be defined as in (11) we see that we may also consistently extend
Map by the translation of any statement of ZFC true in this D.

16. Conclusion

16.1. Summary of results

Part II documented the expressive power of map theory by developing set theory
in it, and Part 111 has verified the consistency. Furthermore, the notion of truth has
been defined in Section 3 and we have presented a few other constructions that are
beyond the capability of set theory. In conclusion, map theory is an alternative
foundation to set theory.

16.2. Further work

Further work is needed to improve the axiomatization of map theory. In particular,
it is unsatisfactory that well-foundedness is expressed by ten axion schemes and
one inference rule, none of which explain the intuition behind well-foundedness.

It is also not satisfactory that no axiom expresses the monotonicity of maps. Define

xUy=(ifx(ify TL)(fyLAu(xu)(yu))).

We have x<y iff x=xJy, so one formulation of monotonicity could be x=
vy (fx)<(fy) where x<y is shorthand for x=x]y.

The Quantify4 and Quantify5 axioms ought to be superfluous once monotonicity
is stated as an axiom.
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16.3. Equality is better than truth

The author strongly prefers to express theories using equality rather than truth
as the basic concept, i.e. without using logic, logical connectives and quantifiers at
the level of axioms. One reason is that the basic laws of equality such as

X=y;x=zF y=z
are simpler and more appealing than the basic laws of logic such as
(A=(B=26))=2>(A=2>B)=>(A=>€)).

Another reason is that theories based on equality immediately suggest to form term
models and thereby give a better understanding of the nature of Skolem’s paradox
[22]. A third reason is that using equality does not favor one particular kind of
logic, e.g., classical or intuitionistic. One could say that there are many kinds of
logic but only one kind of equality (unfortunately, however, A-calculus traditionally
messes up equality by calling various relations “equality” even though they are
really just equivalence relations on syntactic domains). A fourth reason is that use
of equality as the basic concept eases the definition of “the notion of truth” which
reduces to a self-interpreter for theories based on equality. The formalization of
map theory using equality as the basic concept demonstrates the expressive power
of this approach.
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Index to Part II1

In the index, references in parentheses refer to informal definitions.

Note that in Part III accents are used differently from Parts I and II.

Relations involving stars are omitted from the index. See Section 9.6 for an explanation.

Example of use: The construct x =¢; y has parameters x, y and G. The construct itself consists of an
equal sign, an accent, and the letter a. In the index, the construct could be located under = or under a.
It is located under = because that character comes before a in the index.

The reader can obtain a combined index/glossary directly from the author. The index/glossary extends
the index below with a short explanation of each construct.

Constructs involving parentheses 12.4 Ax.of D
9.2 f(x) 9.7 A 9.2 f4
9.2 (x,y) 11.4 ¢ 9.2 GP
9.4 (x,...,x,) 9.5 p(G) 9.10 D
94 () 9.10 o 125 Do
9.8 f{x) 9.9 &f 154 DY
(10.1) 119 (fx,...x,) 143 ¢, f E
9.9 {(fx,...x,} (103) 119 @ 16 E
9.9 [+] 13.4 P:v 15‘3 equal
9.10 || (10.6) 11.1 @ '
12.3 [sf/x = RB] (10.4) 113 & F
12.4 [A] 114 ¢ 121 f
Constructs involving = (10.3) 142 <1>;(a) 12.5 F
05 G H 142 Pj(a) 13.5 F
(10.7) 11_4f£§ (106) 11.1 &'(a) 9.2 fe(x)
125 o ~ % (104) 113 &'(a) 123 free(x, of)
11 fae 142 @'(a) 12.3 freefor( A, x, &)
DA (10.3) 142 ®"(a)
114 f=5¢g G
¢ 142 @}(a) ,
102 f=¢4¢g P 121 g
a4 g (10.6) 111 ¢"(a)
114 £20 g (104) 11.3 &"(a) H ‘
142 @"(a) 12.1 h
Constructs involving < 93 w I
93 o<, B 9.4 G* 121,
2> G=.H A 9.9 (i'f,x ) 2)
9T x=py (10.1) 142 a(f)(x) ' !
(10.1) 13.5 f<g (10.5) 111 a(f x) K
(10.7) 114 f=<g (108) 113 d(f)(x) (10.1) 119 K
Constructs involving < (10.7) 114 4(f)(x) 99 K
93 a <, B (10.1) 119 A(f x) L
12 x < p 9.9 A4 x) 97 L
95 G<,H
1L x <,y B M
95 G<.H 12.5 8. (10.1) - 11.9 m(f, x)
98 f<.g 15.3 beiong (10.7) 114 #i(f x)
(10.1) 11.10 f <, g c (10.1} 119 M
1110 f<, g (10.7) 114 M
i (10.7) 119 o(f) 121 M
Alphabetic constructs (107) 142 *(f) 11.7 M,
142 ¢"G 12.1 M’
Greek (10.1) 119 C 125 MY
9.9 £x 99 C 9 Map
10.1 Ax.f 9 Con(x) 9 Map®

9.9 Ax.of 14.3 Curry 9 Map®*
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(10.1)

(10.6)
(10.4)
(10.3)
(10.6)
(10.4)

(10.7)

(10.1)
(10.6)
(10.1)

(10.2)

9.3 On

9.3 ord(x)

9.1 2G
119 P
99 P
143 P
14.3 Prim

13.2 4(G)
114 §(G)
13.2 §(G)
11.1
113
142 Q'(a)
11.1 O'(a)
113 Q'(a)
142 Q
142 Q

10.1 r(f)
114 A f)
11.4 F(v)
11.4 #(a)
9.2 f"
92 R
112 R,
92 GR

15.1 s(f)
15.2 §(f)
119 S
99 S
11.2 Shp
9 SI

14.2 15(f)
11 ig(f)

11.2
14.2
14.2
11.1
14.2
9.5
9.4
(10.1) 119
9.9
11.10
11.10
9.7
12.5

12.1
9.1

12.1
9.9
9.9

12.1

12.1
(10.3) 142
14.2
(10.1) 119
9.9

12.1

9.9
13.5

12.1
15.4

K. Grue

’;;(f)
ts(f)
()
"}k;(f)
N
tc(G)
ipl(x)

g e = =

=Y

=

< o

wf(G)
Wf(G)

W

o

Other constructs

(10.1)

(10.4)

9.1
13.5
9.9
135
13.5
9.1
13.5
9.9
9.1
13.5
13.5
9.9
13.5
15.1
9.9
15.3
13.5
13.5
13.5
13.5
13.5
11.9
9.9
9.7
9.2
9.2
9.2

9.2 f
92 f

93
9.3
9.4

—5f
mE:3
1

oA AR
v B
A=RB
A=>B
A=>B
A RB
AESRB
Vx.sd
Vx:sd
Ax.A
xéy
XEy
x=y
=X

ix

ix

xXiy
Xiyeoon X, =¥

9.4'.7

9.7

9.8
14.2
14.2
14.2
15.4
12.5

LIG
G°
4G
VG
VG
L
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