TELEMATICS Vol. 8, No. 4, pp. 425-437, 1991
and Copyright © 1991 Pergamon Press plc. Printed in the USA
INFORMATICS 0736-5853/91 $3.00 + .00

EXPERT OPERATOR’S ASSOCIATE: A
KNOWLEDGE-BASED SYSTEM FOR
SPACECRAFT CONTROL

Mogens Nielsen
Klaus Grue
Francois Lecouat

Abstract— This paper presents the Expert Operator’s Associate (EOA) proj-
ect, which studies the applicability of Expert Systems to day-to-day space
operations. A prototype Expert System is developed, which operates on-line
with an existing spacecraft control system at the European Space Operations
Centre, and functions as an “operator’s assistant” in controlling satellites.
The prototype is demonstrated using an existing real-time simulation model
of the MARECS-B? telecommunication satellite. By developing a prototype
system, it is examined to what extent the reliability and effectiveness of opera-
tions can be enhanced by AI based support. In addition, the study examines
the questions of acquisition and representation of the “knowledge” for such
systems, and the feasibility of “migration” of some (currently) ground-based
functions into future space-borne autonomous systems.

1. INTRODUCTION

Supervising a spacecraft, interpreting the telemetry received, deciding
about the correct on-board operational conditions, reasoning about proper correc-
tions, and executing the appropriate control procedures are complex tasks for modern
spacecraft. During the launch phase of the spacecraft, specialists may be at hand, who
know about the design of the various subsystems on-board, but in the subsequent
operational phases they will usually not be available for immediate consultancy to the
operators responsible for safe day-to-day monitoring and controlling of the spacecraft.

The complexity of modern spacecraft systems, and the resulting high demands on
the personnel operating them, concerns about the potential for human errors, and the
risk of inaccessibility of the people with appropriate expert knowledge, calls for im-
proved methodologies and environments providing computerised support for monitor-
ing and controlling spacecraft. ‘

An essential element in the development of such support is the transfer of parts of
the knowledge regarding the procedures for controlling the spacecraft and regarding
the design of the spacecraft, from the experts who conceived them, to a system that
can be used to assist in working with the spacecraft in the operational phases.

Mogens Nielsen and Klaus Grue are both members of the Space Support Systems group
with Computer Resources International A/S, Bregnerodvej 144, DK-3460 Birkerad,
Denmark. Francois Lecouat works with MATRA ESPACE, z.f. du Palays, 31, nu des
Cosmonautes, 31077, Toulouse, France.

The study is performed under Contract No. 7627/88/NL/DG to ESA for ESOC and
ESTEC. It is carried out by a consortium composed by CRI and MATRA.

425

426 Mogens Nielsen, Klaus Grue, and Frangois Lecouat

This has been the motivation for the Operations Center of the European Space
Agency (ESOC) to define a 3-year-study project, called the Expert Operator’s Associ-
ate (EOA) project, with the aim of developing a prototype expert system for assisting
in the operation of satellites. The MARECS-B2 communication satellite has been
chosen as an example case for demonstration of the prototype. The prototype will be
demonstrated with the aid of ESOC’s “high-fidelity” real-time MARECS-B2 spacecraft
simulator (a software model), which operates in closed loop communication with the
ground control system via simulated telemetry and telecommand links.

The project is structured such that the first phase concentrates on constructing the
basic system. It is here demonstrated how the operator can be assisted in the selection
and execution of Flight Control Procedures (FCP), covering the situations where the
spacecraft operates within the limits prescribed by the specifications of the satellite.

In the second phase of the project, the scope is extended such that some of the
situations where the spacecraft does not operate inside these limits are taken into
account. It is demonstrated how to assist in the situations where the problem can be
diagnosed immediately, and handled by predefined Contingency Recovery Procedures
(CRP).

Finally, several experimental extensions of the system are investigated. One exten-
sion is operator assistance in the situations that cannot be immediately diagnosed.
Another extension is machine learning, where new knowledge (e.g., CRPs) is devel-
oped as a result of a dialogue with a spacecraft expert, and stored in the knowledge
base of the system. Furthermore, the question of to what extent control functions can
be “migrated” from the ground to future spacecraft, and the question of how to
“streamline” the transfer of knowledge from the spacecraft experts to the system, will
be addressed.

The prototype developed is a workstation-based system, controlling the process of
daily operations of the spacecraft. It works in a real-time environment communicating
with the spacecraft operator and the spacecraft.' The user interaction is facilitated by
a graphical user interface utilizing state of the art techniques such as mouse, multiple
windows, and pop-up menus.

At the time of writing, the project is near its completion and the paper presents the
overall results, concentrating on the knowledge representation used, and the system
architecture. In Section 2, the general problem domain and the example case are
further described. Then, in Section 3, the functionality and architecture of the proto-
type system are introduced. In Section 4, the representation and structuring of the
knowledge used by the system, and the expert functions, are described. In Section 5, it
is illustrated how the execution of Flight Procedures is implemented. Alarm processing
is described in Section 6. Finally, Section 7 concludes and the continuation of the
project is detailed further.

2. THE PROBLEM DOMAIN AND THE EXAMPLE CASE

The operating state of orbiting spacecraft is monitored and controlled on the ground
at ESA’s ESOC at Darmstadt, W. Germany, by specialist personnel supported by
on-line spacecraft control computer systems. These computers receive telemetry data
from each spacecraft, typically in near-real-time via ground stations in various parts
of the world. Data from the telemetry are evaluated and displayed to the spacecraft
controller, who in turn can initiate the uplink of telecommands (via the ground station)
to the remote satellite, from his computer console.

lvia the Multiple Satellite Support System (MSSS).

Expert operator’s associate 427

MARECS-B2 is a geosynchronous maritime communications satellite, and is an
interesting example case for an on-line Expert System to support spacecraft control.
MARECS-B2 poses requirements in day-to-day operation, which are typical for the
current generation of telecommunications satellites. The downlinked housekeeping
telemetry data, flowing 24 hours per day, provides a “snapshot” of the spacecraft state
in a “format” of several hundred “parameters” (readings of on-board sensors) every
19.2 seconds.

The spacecraft control computer system for MARECS-B2 is the ESOC Multiple
Satellite Support System (MSSS).

The spacecraft controller monitors only a few of the telemetry parameters at any
time, but the MSSS performs automatic checks on many of the parameters in each
new format when it has been received. If the checks discover that parameters are
outside their normal operating range, or status, audible and visual alarms are raised,
so that the spacecraft controller is aware of a possible problem and can decide what to
do.

In regular day-to-day operation, which is the type of activity which can be most
effectively supported by EOA, the actions of the spacecraft controller are, in principle,
completely defined by a large manual of operations procedures known as the
MARECS-B2 Flight Operations Plan (FOP). This comprises FCP covering nominal
operations, and CRP, which describe the actions to be taken in the event of non-
nominal cases. The existence of the FOP ensures that operations can be carried out
with a high degree of efficiency (speed in effecting configuration changes which affect
the end-user services provided by the satellite), and reliability. Both of these aspects
are of prime importance in the provision of telecommunications services.

Nominal operations of the spacecraft are preplanned, and a schedule is defined a
few days beforehand by a specialist, who selects the FCPs required, and defines the
time at which they are to be performed. However, it occasionally happens that during
operation of the preplanned schedule, the spacecraft exhibits some unexpected behav-
iour. The spacecraft controller then has the task of selecting the appropriate CRPs.
For this, he may need the assistance of a specialist engineer, but the latter may be
unavailable immediately (e.g., in the middle of the night).

It also affects the complexity of the task, that the spacecraft controller must some-
times take account of actions and knowledge about the spacecraft state in the past,
that is, historical information.

One of the functions of the EOA is to assist the spacecraft controller in choosing
the right CRPs in a given non-nominal situation. In many cases, this will be possible
on the basis of straightforward matching of the situation to corresponding descriptions
stored with each CRP. Thus the EOA will effectively speed up the selection process.
However, the situation will sometimes arise where the choice of CRPs is uncertain.
One of the study aims is to show how the EOA can assist in the selection of recovery
action, also in such cases.

3. OVERVIEW OF THE EOA

3.1. Functions

The core functionality of the EOA system is to assist the spacecraft operator in nomi-
nal spacecraft operation. Support is given by:

e Receiving, interpreting, and displaying information regarding the state of the
satellite;

428 Mogens Nielsen, Klaus Grue, and Frangois Lecouat

¢ Proposing selected procedures based on the current operating state of the space-
craft and the user’s indication of the desired state;

¢ Presenting the chosen procedure to the user in both textual and graphical form;

e Preparing the various spacecraft command sequences needed for the execution of
the plan, and on acceptance from the user, sending them to the MSSS;

® Receiving and evaluating reports from the MSSS on commanding activity;

e Continuously verifying the validity of constraints posed by the procedure.

Non-nominal situations are identified by the reception of alarms (e.g., TC verifica-
tion failure alarms or Out Of Limit alarms) or by trend analysis of telemetry parame-
ters. At present the EOA system assists in processing alarms by:

e Investigating the cause of the alarm;
e Distinguishing alarms requiring action from nonrelevant or expected alarms;
e Invoking and executing CRPs.

Situations requiring complex diagnosis before execution of a CRP or requiring
actions that are not implemented in the form of an existing CRP, are considered in the
last phase of the project, and are therefore not yet demonstrated by the prototype.

FCPs and CRP’s are both special cases of Flight Procedures. EOA supports the
execution of procedures in general, and therefore the execution of CRP’s is supported
in the same way as execution of FCPs.

The EOA utilizes the knowledge of experts to perform procedures, and to reason
about problems in much the same way as is done by the experts themselves. It has the
ability to explain its reasoning, and incrementally acquire new knowledge.

Additionally, the EOA is more flexible than conventional software, for example, it
responds opportunistically to incoming data, or situations, and modifies its behavior
under varying conditions. As an example, procedures have to cope with the exigencies
of the current situation, or cope with reconfiguration or modification of the units
considered.

The EOA provides a number of expert functions integrated within the system, which
can be organized along three axes:

e Procedure generation;
e Spacecraft state monitoring;
e Execution scheduling.

These types of function are described in more detail in Section 5, and can be summa-
rised as follows: Concerning procedure generation, the functions range from interpre-
tation and execution of already existing procedures to generation of new procedures.
With spacecraft state monitoring, functions range from conventional verification of
patterns of parameters to complex failure diagnosis. Execution scheduling functions
are initially dedicated to controlling the timing of procedure execution. However, it
happens that procedures compete for execution, and the system provides functions to
arbitrate conflicts. Additionally, EOA has facilities for supporting the spacecraft engi-
neer in editing and maintaining the different types of knowledge in the knowledge
bases. In particular, a syntax driven Flight Procedure editor has been developed, in
addition to standard knowledge maintenance facilities.

Expert operator’s associate 429

3.2. System architecture

The EOA system communicates with two external entities: the user and the MSSS.
The EOA system runs on an independent SUN workstation and communicates with the
MSSS system via an X.25 communication link. It is implemented in the programming
language Common LISP using the expert system shell KEE. However, to ensure proper
speed in performance, and to have proper access to the operating system, parts of the
system taking care of communication with the MSSS and the user is implemented
directly in the C programming language.

The architecture has been designed with special attention to the fact that the EOA is
integrated in a real-time environment, and that it must always be able to respond to
the MSSS (e.g., to process alarms). Furthermore, an aim of the architectural design
has been to construct an open-ended and modular architecture, thereby supporting
maintenance and future extensions.

The result is a multiprocess architecture, consisting of a number of interacting
systems, communicating through a common protocol. The architecture is outlined in
Figure 1. The EOA MANAGER takes care of the overall scheduling in the system,
and the internal communication protocol. The Dialogue System is a monitor for the
User Interface. This interface is described in the next section.

Receiving, buffering, and parsing of information from the MSSS, and formatting
and sending messages to the MSSS is handled by the External Systems Interface. The
TM/TC System is a monitor for the External Systems Interface.

All the system Knowledge Bases have a common interface, called the KB Methods,
through which all accesses are made. The Knowledge Base Management System consti-
tutes a monitor for the Knowledge Bases of the EOA, and contains functions for
retrieving, inferring, and updating knowledge. The Flight Procedure Execution System
is the central system supervising and controlling the execution of procedures (FCPs
and CRPs), interpreting TMs, validating and verifying TCs, etc. The Knowledge Main-
tenance System monitors the execution of the EOA, the user, and MSSS interactions,
and controls the consistency, completeness, and feasibility of the EOA knowledge.
The system proposes updates of the knowledge and also evaluates updates proposed
by the user.

The Fast Response Recovery System takes over control in case of a non-nominal
situation and performs alarm processing and selection of CRP;s to invoke in cases
where this can be done without complex diagnosis.

In other non-nominal situations, control may be transferred to an Advanced Rea-
soning System which, in close interaction with the user, performs complex diagnosis
and generates new procedures if necessary. As indicated in Figure 1, this system is not
implemented in the current prototype so far.

3.3. User interface

There are two main categories of user: spacecraft operators, who control the daily
operations of the spacecraft; and spacecraft engineers, the experts who know about
the design of the spacecraft. Each has a different pattern of communication with the
system.

The User interface utilizes “state of the art” Man Machine Interface (MMI) tech-
niques, including mouse, windowing, and pop-up menus in the user interaction. It has
been designed using the powerful facilities of KEE.

Figure 2 shows the basic layout of the EOA screen used for daily operations. It is
divided into two separate areas, the System Area and the Procedures Area.

‘welshs YOI 8} Jo 81njoslyoly | ainbiy

(SSSIN 151350} VO

a3 ¥1ad -
gy ainpasord 3y -
43 pueWWOMD3, -
g3 Anawapag, -

Buryoayd Aoud)sIsuo)) -

Srutpuey DL/AL dtsed - UoNoBIANUI 135} JNIM -

Kerdsip
[emxa) pue [eorydean) -

SSSIN 01 jul|
UOEIIUNWWOD [3AI] MO] -

isaseg 3dpagmouy

UoNEOIJIIAA D -
uoneiaxdiaur W, -
*09xg d4d JO uoisiaradng -
1waISAS uoIINIIXY
2anpadosg 1y

Suripury uonoesuer] -
S, g3 941 10§ JOUUOA -
(wAshg Judmwadeun

asey adpajmouyy

uoneauagd gy -
sisoudeip paseq [2poN -
(washS sisoudeiq
Butuoseay ‘apy

101pg 210padold YT -
101109 A1jenb 98pajmouy -

1J/1 SWIISAS [RUIIXY FERTIBEXTIS INE1)

UOTINQINSIP UONEWIOJU] -
Sui[pury UONEOIUNWWOD [EUIANU] -
Buinpayos $53001 -
Juswadeurw wWalsAS -

CHIOVNVYIN VOd

§59008 (] Buinpayog -
10 10] J0NUOIA -

$59008 SSSIN Jurnpayos -
/1 1SAS "1xg oY) JOJUORA -

cwasks D L/NL (wRIsLS anoerg

uonoRdas JY0 -
Bu1ssanolg wiely -

:waIsAg K134002y
asuodsay 1se g

cwashg dueuIuIR
adpajmouyy

430

ey

90.268.17.35.22.888: Checking TC acknowledge fo!
r (898) failed.

99.268.17.35.22.0080: Execution of FCP_383 waiti!
ng for ((TC-UPLINK-ACK 898)).

Editor (Lisp) oper

Current time is 83.001.90.12.29.888., The blocki!
ng condition is (DATE >= 98.268.18.80.08.6008 - 06!
.008.09.15.80.000).
¥hat should be the current date ? 98.268.17.58.8!
0.080

Editor (Lisp) prompt.buffer: *

Help can be invoked by typing: Meta-?, Control-?,!

Procedure Proipt Window
]
Procedure FCP_383: Yalue of ?DIRECTION ?

Possible values are (EAST WEST).
> east

Editor (L1sp) External Prompt buffel

CW Editor #5

Fcp-State!
MAIT! TC Verify

Procedure Text:

s 1 to 5 seconds. The number of pulses will be given by the manoeu!

vre planning software.
TCU A ON
TCU A MODE S/K

Editor

(Lisp)

FCP_383.1og: *

378 CB30
898.2 Co33

Editor Command

Figure 2. EOA prototype system screen layout for daily operation.

432 Mogens Nielsen, Klaus Grue, and Frangois Lecouat

In the System Area all system level information and EOA operational information
is displayed, and most user dialogue takes place here. In the basic layout, windows for
querying the user Prompt Window, for logging the operations and tests, are also
placed in the system area. However, these can be moved around by the user. The
system area contains an array of buttons used to select system functions.

In the Procedures Area the active procedures are displayed, and progress of the
procedures is monitored. The area contains, for each active procedure, a group of
windows for the execution and control of that procedure. The procedure is displayed
both textually in the Text window, and graphically as a flow diagram in the Procedure
Execution Path window, where the part of the procedure already executed appears in
highlighted form. There are also windows displaying the information to and from the
satellite (TC Stack and TM Display) window. For each procedure, there is an array of
buttons for the control of the procedure (authorize an action, skip a step, abort
procedure, etc.).

Spacecraft engineers can use another EOA screen’ to display and edit knowledge
bases. It includes a syntax-driven editor permitting procedures to be written.

4. KNOWLEDGE REPRESENTATION

The knowledge structure in the EOA has been organized so as to provide satisfactory
solutions to the specific problems of procedure generation and execution.

Procedures can be structured as sequences of steps. Each step implements a piece of
a procedure, and contains tests, actions (TC uplink, display message, etc.), conditional
statements, go-to-statements, iterations, and transfers to other pieces of information
(e.g., other procedures).

With conventional sequential programming techniques, the order of task execution
within a program is entirely determined by the control structure of the code. Conven-
tional programs are rather nonresponsive to unanticipated situations, and lack flexibil-
ity. The EOA approach is to describe each procedure or part of procedure as a set of
schematic instructions (called scripts), which are expanded (or interpreted) in the con-
text of the execution. Each schematic instruction describes a goal that the system will
try to achieve in executing the procedure. An inference mechanism provides a means
for directly using the knowledge in the system to reach the desired operational goals,
through choices of applicable knowledge.

The declarative sematics, which is used together with the inference mechanism,
provides good flexibility and allows for incremental changes to the system, as well as
explanatory capabilities.

Another issue that comes with conventional programming techniques is that pieces
of code (e.g., subroutines) are named or labelled with arbitrary names that have to be
unique. The drawback of this approach is that the link between a piece of code and
its functionality may be lost, hereby loosing software engineering and explanatory
possibilities. In the EOA, each set of schematic instructions (or scripts) is attached to a
name that specifies its goal. This goal is used by the inference mechanism so as to
achieve the desired operational goals. Therefore, the EOA is goal oriented.

However, attaching a goal to a script is not sufficient. There may indeed be many
ways to achieve a goal, each way being applicable in a specific context. A context is a
set of facts that represent the state of the world, as it is affected by the procedure.
With conventional programming techniques, only the control structure allows to call

By “EOA screen” we mean a specific layout of the workstation display.

Expert operator’s associate 433

different subroutine conditionally. With the EOA, each script has attached not only a
goal but also a context specifier, which specifies in which circumstances the script can
be used to achieve the attached goal. During procedure execution, it is the inference
engine that identifies, for an invoked goal, which script is applicable with respect to
the current execution context.

A context specifier is defined as a list of variables with desired values. This imple-
mentation paradigm has been chosen so as to achieve a double purpose. As explained
above, the aim is to provide a deterministic and unambiguous definition of the context
where the script is applicable. The list of pairs (variables, desired values) represents
the facts that have to be true in the context of the execution. The context specifier may
also be needed to query supplementary information, as needed for the execution of
the script. It is possible in the script to specify the context for a call to a goal, or to
modify the current context. Each context instruction is lexically scoped. Therefore,
the EOA is also context oriented.

The execution of a piece of a procedure described by a script calls for many other
pieces of information that are explicitly or, at times, implicitly stated in a conventional
procedure. These pieces of information have been formalized using the Theory of
Plans (Wilensky, 1983). The selected types of information are:

e Pre-execution checks, which have to be true before continuing the execution of
the piece of procedure;

e Execution constraints, which have to remain true throughout the execution of the
piece of procedure;

e The script itself, which describes the checks or actions to be performed, and goals
to be achieved with this piece of procedure;

e Postexecution checks, which have to be true immediately after the execution of
the piece of procedure;

e Postexecution constraints, which have to remain true after the execution of the
piece of procedure, until they are unset by another piece of information.

It appears then that many pieces of information are attached to a given goal. In the
EOA, the chosen implementation paradigm is to group all this information into an
object, whose facets will hold the various types of information (Figure 3).

As previously explained, several procedures may exist, allowing the achievement of
a given goal in different contexts. These procedures may share common pieces of
information. Therefore, they are grouped in a hierarchy, where the parent procedure
holds the common piece of information, including in particular the goal specification.
The common information is inherited down the hierarchy, until overwritten by local
information specific of a procedure or subhierarchy of procedures. Procedures are
thus implemented as a hierarchical library of objects.

The objective of the knowledge acquisition process is then to feed into each object
complete expert knowledge, so that each object contains necessary and sufficient infor-
mation for object selection and object execution. The sources of knowledge can be
spacecraft design (e.g., for the various subsystems of the spacecraft), or operational
experience (e.g., general technical expertise of mission controllers).

To conclude, the EOA is object oriented, to provide an efficient and convenient
implementation for procedural expert knowledge. The EOA project shares common
goals with PRS (Georgeff, 1985, 1986); namely it aims at building a system that
explicitly represents and reasons about procedural knowledge. The EOA approach is
less general in the sense that control knowledge is not represented as explicitly as in
PRS (e.g., the fact that TC failure alarms have priority over COL alarms must be

434 Mogens Nielsen, Klaus Grue, and Frangois Lecouat

POST-
EXECUTION
CHECKS

PRE-
EXECUTION
CHECKS

BODY OF
ACTIONS

PRIORITY
& MISC.

POST
EXECUTION
CONSTRAINTS

EXECUTION
CONSTRAINTS

Figure 3. EOA prototype system: Object facets.

modified by the implementor). On the other hand, the EOA language is richer. It
permits complex procedures with iteration and conditionals that look quite similar to
real procedures. This facilitates manual validation of procedures.

5. EXECUTION OF FLIGHT PROCEDURES

This section illustrates how the knowledge implemented in the EOA is used for the
execution of flight procedures.

5.1. Procedure generation

The system is used in a goal-oriented way. The user can enter a goal corresponding to
a procedure or a step. The user is prompted if the specified goal does not match
unambiguously one of the goals known by the system.

When one goal is unambiguously identified, its applicability with respect to the
current context is examined by the system. To do so, the system collects the object or
hierarchy of objects that are able to perform the specified goal. Then, using the context
specifier of each object, it tries to find at least one applicable object. The introduction
of required information is done through interaction with the user, whenever informa-
tion is not available in the system. If no object is found applicable, the system leaves
the procedure execution mode and enters a procedure generation mode (to be devel-
oped) where the system tries to construct a small procedure to set the world in a
configuration compatible with the specified goal. This is typically a planning process,
with chaining of “operators” from one state to another.

When a convenient object has been found to achieve the initial goal, its execution is
initiated. The instructions described in Section 4 as pre-execution checks are initially
performed. Execution constraints are asserted and checked periodically. The most
important part of the execution is the interpretation of the script. As mentioned in
Section 4, the script contains a set of instructions, such as actions (Telecommand
uplink), checks (e.g., Telemetry Values), conditional statements, and calls to other

Expert operator’s associate 435

goals. Finally, postexecution check instructions are performed and postexecution con-
straints are asserted.

In the process of cascading the initial goal into subgoals specified in the script, the
inference engine will recursively try to achieve the subgoals. Each subgoal can be called
within a specific context, by locally amending some aspects of the current context.
The initial goal will be considered as achieved as soon as all goals in the cascade of
subgoals are achieved. Achieving each subgoal is done sequentially, respecting the
procedural order described in the script.

An interesting feature is that the inference engine used to perform script instructions
and cascade into subgoals is based on an interpreter that is interrupt driven. Whenever
the execution of instructions finds some reason to stop (e.g., wait for the right time or
detection of anomaly), the returned code contains:

e The context of the current execution;
e The continuation of the execution, that is, all the instructions to be executed as
soon as the execution resumes.

This is a very convenient mechanism for explaining what has been done and what
remains to be done. When something goes wrong in the execution process, the system
analyses the cause of the procedure interruption to assess which measures are needed
to enable the resumption of the execution.

As an example, when the system is waiting for the right time to initiate some action,
no special action has to be performed. In the same way, when some telecommand has
just been uplinked, and the corresponding telemetry check fails, nothing has to be
done since at least one telemetry flow has to come down before the telemetry actually
appears as changed. On the other hand, if the telemetry check still fails after reception
of several telemetry flows, the system reacts to this anomaly. This may result in
uplinking again the Telecommand, or entering a complex diagnostic process. In the
same way, when no object is found applicable for the achievement of a given goal, the
system may ask the user to confirm the goal specification together with the call context,
and later on, initiate the construction of an appropriate new procedure.

5.2. Spacecraft state monitoring

In a first phase, the control of the spacecraft state is done through the verification of
the values of a large set of telemetries, generally grouped into Analogical Displays in
the MSSS workstations. The EOA does not copy all the TM verification carried out by
the MSSS, but focuses on verifying selected parameters in order to assess the progress
of procedures. The basic reaction to an unexpected telemetry value is described in
Section 6.

5.3, Execution scheduling

The execution of procedures may be time driven. For example, the performance of
eclipse operations has to comply with a precise timing. The EOA provides functions
for time monitoring.

Another type of scheduling problem exists when time constrained procedures com-
pete for execution. Another example is a CRP being initiated while a FCP is being
performed. The EOA could include functions to manage earliest start dates (ESD) and

436 Mogens Nielsen, Klaus Grue, and Francois Lecouat

latest completion dates (LCD), and implements heuristics to prioritize a procedure
against another.

When performing procedure generation, the EOA may also need to manage schedul-
ing aspects in order to verify the feasibility of the generated procedures.

6. ALARM PROCESSING

A key skill for spacecraft control is the ability to react quickly to any kind of alarm
from the MSSS. Reactions range from simple actions like calling an expert for help, to
important decisions like ignoring an alarm or choosing and executing a contingency
recovery procedure. For each possible alarm, the spacecraft controller can find in the
FOP a sequence of actions that can be done. Since these actions have been written
conservatively they often lead to a call for help.

One goal of the EOA is to provide assistance to increase reliability, speed, and scope
of day alarm processing. The implemented prototype deals with alarm combinations
that have been foreseen in advance and can be treated by existing emergency proce-
dures.

In compliance with the philosophy of the project, it was not attempted to design
new alarm mechanisms but instead to provide assistance to users of the existing control
center. The EOA must deal with all the alarms of the MSSS. Nevertheless, it is also
possible to implement new kinds of alarms. This can be done by one or several proce-
dures running permanently, to perform a trend analysis, for instance. The MSSS
generates two kinds of alarms:

1. TC verification failures when something goes wrong in a TC uplink, and
2. Out Of Limit (OOL) alarms when some parameters go outside some limits
defined dynamically on the MSSS or have inconsistent values.

Thanks to the multiprocess capability of the EOA, alarms are processed as soon as
they arrive from the MSSS without interrupting procedures. One important problem
is to know which alarm to focus on, since an alarm rarely occurs alone. For this, the
EOA uses different kinds of knowledge: priority number on OOLs, alarm prediction
included in procedures, and mode definitions, which can explain that an alarm has
been caused by another one. In any case, the user can focus on the alarm of his choice
and can discard nonrelevant alarms.

Once an alarm has been selected, a set of rules are evaluated to generate a list of all
the procedures that can be applied. Each procedure can have such a rule, written in
the EOA language, to indicate whether it is appropriate to enter the procedure. If the
rules have been well written, at most one procedure will be applicable. In the other
case, the user has to arbitrate which procedure to start or has to call for help.

The alarm processing scheme described here can be improved in many ways, one of
them being the interface with a diagnostics expert system such as DIAMS (Haziza,
1988), which incorporates spacecraft design knowledge for those situations that require
a sophisticated diagnostics method that cannot be implemented conveniently as a
procedure.

Another direction for improvement consists in developing a more sophisticated pri-
ority scheme. When alarms occur during the execution of the FCP, the EOA may have
to start a CRP in parallel. The default rule is to give priorities to CRPs over FCPs.
Clearly this can be improved, since a FCP may have crucial hanging constraints (e.g.,

Expert operator’s associate 437

turn a component off). One solution would be to acquire from experts priority num-
bers to be attached to each step of a procedure. A more ambitious scheme would be to
infer these priorities from design and operational knowledge.

7. CONCLUSION

A large part of the functions described in this paper have already been implemented,
leading to a prototype that covers assistance to spacecraft controllers for normal daily
operations and simple non-nominal situations. Obviously, there is room for a lot of
improvements and extensions, but the EOA has already shown interesting results.

Eight procedures that are quite representative from the MARECS-B2 FOP have
been implemented, including station keeping, eclipse operations, recovery from pay-
load switch-off, and recovery from automatic reconfiguration. The syntax driven pro-
cedure editor and the knowledge base inspectors together with the methodology for
procedure generation should permit this set to be extended.

A flexible multiprocess architecture for real-time expert systems makes possible the
communication and integration with the ESOC MSSS. Evaluation of the EOA is
carried out in close cooperation with potential users, namely the operators and space-
craft engineers working at ESOC. There are good hopes that the EOA will demonstrate
the feasibility and utility of knowledge based operator assistance for spacecraft con-
trol.

REFERENCES

Georgeff, M. P. (1985). Reasoning about procedural knowledge. In Proceedings of the AAAI 85 Conference
(pp. 41-49).
Georgeff, M. P. (1986). Procedural knowledge. Proceedings of the IEEE 86 Conference, 74(10).

Haziza, M. (1988). An expert system shell for satellite fault isolation based on structure and behaviour. In
Proceedings of the ESA Workshop Artificial Intelligence applications for space projects. ESA ESTEC.
Wilensky, R. (1983). Planning and understanding: A computational approach to human reasoning. Reading,

MA: Addison-Wesley Publishing Company.

