10

The importance of cardinality,
separability, and compactness in
computer science with an example
from numerical signal analysis

Kraus E. GRUE

Abstract

This chapter gives an example where topological guidance has been
essential in developing a numerical algorithm for solving a problem
from signal analysis. The chapter explains the importance of car-
dinality, separability, and compactness in numerical analysis, and
provides examples of spaces that can be made separable or compact
by a non-standard choice of topology. Furthermore, the chapter sug-
gests a definition of ‘approximate computability’ and analyses some
immediate consequences of the definition.

10.1 Introduction

Computers can perform accurate computations on some sets like the set
of integers, and approximate computations on other sets like the set of
real numbers. There are also sets on which computers can perform neither
accurate nor approximate computations. One observation to be stated is
that computers can only perform approximate computations over separable
spaces (separability is necessary but not sufficient). In particular, comput-
ers can only perform approximate computations over spaces of cardinality
at most 2%,

In the example to be given, the problem is to find a bounded real
function with certain properties. As the set of bounded real functions has
cardinality exceéeding 2%°, the problem is reformulated to take place in Lo,
which has cardinality 2%°.

We equip Lo, with the so-called weak*-topology to obtain separabil-
ity. The unit sphere (w.r.t. ||e||1,.) in Lo is compact (w.r.t. the weak*-
topology), and this result is used as follows:

257



258 The importance of cardinality, separability, and compactness

L. to prove that solutions to the problem exist;

2. to prove that the sequence of approximations generated by the numer-
ical algorithm has a subsequence that converges towards a solution;

3. to prove a property about the solutions.

From the point of view of numerical analysis, it may be somewhat sur-
prising that it is possible to compute with bounded functions (or, rather,
Loo-functions) without imposing any further restrictions on these functions.
Applications of computation on Ls, are numerous. As one example, a grey
tone screen image can be represented as an L.,-function which gives the in-
tensity of each point as an L.o-function of time and two spatial coordinates.
Colour images can be represented as three Loo-functions. By representing
computer images this way it becomes possible to write programs that pro-
duce images independently of screen resolution and refresh rate.

The concept of ‘computability’ is important in computer science. The
chapter ends by giving some suggestions of what ‘approximate computabil-
ity’ could mean and states the observation (well known from intuitionistic
logic) that merely continuous functions can be ‘approximately computable’.

The example is interdisciplinary in nature, but the results needed
from each discipline are not particularly deep.

10.2 An optimization problem

The problem which was actually solved by topological guidance is described
in (Grue 1985). However, this chapter considers a slightly different problem
which is more interesting from the point of view of topology and exhibits
less technicalities.

The problem to be considered is the following ‘optimization problem’.
Let a;,...,an, € R (the set of real numbers). Let hg,...,h, € L;, that
is, let hg,...,hn : R — R be real functions such that

lhills = /_+oo [hi(t)|dt < +00 i€ {0,...,n}

o]

(All integrals are Lebesgue integrals.) Find a function g : R — R such that
VEeR:|g(t)] €1

and
+o0o
ohd) = [ gmd < ap i€ (... n)

—00

+o0
(g, ho) =/ g(t) ho(t) dt is maximal

—00



An optimization problem 259

(Also prove the existence of g.) The importance of this problem follows
from Golomb and Weinberger (1959), except that Golomb and Weinberger
deal mainly with finite energy signals (L2) rather than bounded signals.
Furthermore, an application of the solution to the problem is stated in the
Appendix.

The importance of separability

Let Z denote the set of integers, and let D = {m2" | m,n € Z} be the
set of finite binary expansions. The set D is countable, which means that
elements of D can be represented using finitely many bits in a computer.
Different elements of D may require different numbers of bits, and elements
of D may require arbitrarily many bits, but each element of D merely re-
quires finitely many bits. The set D is a dense subset of R, which means
that any element of R can be approximated arbitrarily well by elements
of D. D is suited to numerical computations in R exactly because D is a
countable dense subset of R. A topological space is ‘separable’ if it has a
countable dense subset. Hence, a necessary requirement to make approxi-
mate computations in a topological space is that the space is separable.

As any separable space has cardinality at most 2% another necessary
requirement is that the space has cardinality at most 2o,

Satisfaction of the cardinality condition

The optimization problem mentioned above aims at finding a bounded
function g. However, the set of bounded functions has cardinality exceeding
2% and so we formulate the problem to require g € Lo, |91, < 1 instead
of g:R—R,VteR: |g(t)] < 1. Assuming g € Lo means the following.

1. We identify functions that are equal almost everywhere, that is, we
identify functions g; and g, for which f_+;° lg1(t) — g2(t)| dt = 0.

2. We assume that fom g(t) dt is defined and finite for all z € R.

Both these restrictions are inessential to the optimization problem. The two
restrictions together reduce the space to be considered to cardinality oo,

Satisfaction of the separability condition

The norm ||e||;, induces a topology on L, which, unfortunately, is not sep-
arable. Fortunately, however, the so-called weak*-topology on L., makes
L separable. The weak*-topology is uniquely determined by the follow-
ing property.

Let ¢,¢1,92,... € Loo. We have g; — g for i — +oo w.r.t. the
weak*-topology iff (g;,h) — (g, h) for all h € L;.



260 The importance of cardinality, separability, and compactness

UVl e, ‘__O

() ....... '_O
(VTR S H
T e

Fig. 10.1 An example step function

One may think of this concept of convergence as an adaptation of
pointwise convergence to L.

The choice of the weak*-topology has another benefit. Alaoglu’s the-
orem (Rudin 1973) states that the unit sphere

B = {9€Ls gl <1}

is compact w.r.t. the weak*-topology, that is, any sequence ¢i,go,... € B
has a subsequence which converges w.r.t. the weak*-topology (and the limit
of any such sequence again belongs to B).

A countable dense subset of Lo

Let n 2 1 and let v = (V1,...,Up—1) € D™ !, Let d = {di,....d,} C D
be a set of n distinct elements of D (the set of finite binary expansions),
and let (di,...,d,) be the d;s sorted in ascending order. We define the
step function S, 4(t) as

0 forte (*OO,dl)
Su,d(t) = { v; forte [di,dit1),i € {1,...,n-1}
0 fort € [ap,+o00)

In particular, for n = 1, we define Sv,a(t) = 0for t € (—oo, 00). Figure 10.1
shows S(’Ul,-uyv4),{dl:--'sd5} for some vy,...,v, and diy...,ds.
Ifd C Dhasn elements, then we define

Va = {Sya|veDr 1}



An optimization problem 261

The set Vj is an (n — 1)-dimensional vector space. Further define V as the
union of the Vys:

V = | J{Vald C D,d finite }

The set V' is a countable dense subset of L, (with respect to the weak*-
topology). Hence, V is a candidate for performing approximate computa-
tions with elements of L. Any countable superset of V may also serve as
a candidate, as any superset of V is also dense in L

A numerical solution to the optimization problem

Let d1,ds, . .. be an enumeration of D, that is, let dy,ds, . .. be any sequence
without repetitions such that {d;,d,...} = D. Define e(i) = {dy,...,d;}.
We can easily verify that

V= U{Ve(i) | i €N}
Ver) € Ve € -+

We may use this observation to outline a numerical algorithm for solving
the optimization problem. The algorithm is not known to be present in
the literature. Let

W = {9 € Lo | llglhoe S1A{g,h1) Sar A+ A{g, hn) < an}

We may state the optimization problem as follows: find g € W such that
(g, ho) is maximal (and prove the existence of g).

If W = 0 then, obviously, the problem has no solutions, and so we rule
out this case. In the problem considered in the Appendix, we have a; > 0,
i € {1,...,n}, and so the zero function is an element of W in that case.

Further, to rule out pathological cases, we assume that W is the
closure of W NV, that is, that any element of W can be approximated
arbitrarily well by elements of V. This will normally be easy to verify for
practical applications.

As an example of a pathological case, let n = 2 and let hy be the
constant function h;(t) = 1. Let a; be any real number which has no finite
binary expansion (for example, 7) and let hy = —hy and ay = —a;. We
have W = {g € Lo | llgll1oe < 1A {g,h1) = a1} so that W # @ and
wnv =20 "~

From the assumptions we deduce that W NV # (. Hence, for any
sufficiently large k¥ € N, we have W N Veky # 0. Now, for each i > k we
may solve the following problem: find g; € W N Veiy such that (g, ho)
is maximal. As we shall see later, this may be done using the simplex
method (Rockafellar 1970). According to Alaoglu’s theorem, as llgillie <1



262 The importance of cardinality, separability, and compactness

for i > k, the series gi,gr+1,... has a convergent subseries (w.r.t. the
weak*-topology), and the limit ¢ for such a series obviously maximizes
(g, ho) for g € W. *

Hence, we have a method for finding a series g, gk+1,... Which can
be thinned into a convergent subseries. The process of actual thinning
is irrelevant for the problem in the Appendix, where it is the value of
(g, ho) which is needed. The series (8k» ho), (8k+1, o), . .. of real numbers
converges monotonically towards (g, hg).

As the sequence dy,dy,... may be any enumeration of D, a clever
implementation of the above method may determine this sequence ‘on the
fly’ such that d; is placed where g is expected to be most dynamic.

The simplex method

The set Vg(;) consists of all functions Sue(i) Where v = (vq,...,v;,_1) €
D1 Tofind g; € W N Ve such that (g;, ho) is maximal we need to solve
the following problem: find v = (vy,...,v;_1) € D"~ such that

~1<vy <1 je{l,...,i-1}
ViCik+ -+ vieiciong S a5 k€ {l,...,n}
V1C10 + -+ Vi—1C(i-1)0 is maximal

where

diy:
- _—_/ hi(t) dt

i

Hence we have 2{ —2+n linear inequalities and one linear form to optimize,
which is exactly what the simplex method can solve.

The above problem may have several solutions. Among these so-
lutions one can find solutions for which at least i — 1 of the inequalities
become equalities (Rockafellar 1970). Hence, one can find solutions for
which |v;] = 1 for at least i — 1 — n different j, and lvj| # 1 for at most
n different j.

A property of the solutions

We have now outlined a nmerical algorithm which finds a sequence
8k»8k+1,... Where each g; is found using the simplex method. The se-
quence is known to have a convergent subsequence, and the limit of any
such sequence is a solution to the optimization problem. Each function g;
is a step function S, 4 where v = (Biyims s Wi

If we choose each g; such that |v;| # 1 holds for at most n values,
then any limit g of any convergent subsequence must satisfy |g(t)| = 1 for



Further work 263

almost all t. To see this, proceed as follows: for any h € L; we have

+oo .
/ (1-|gi@®hh@)dt = 0 -+

—0o0

and hence

+o0
/ (1 lg(t)) h(t)dt = 0

—o0

As this holds for all h € L1, 1 — |g(t)| = 0 for almost all .

Hence, among the solutions to the optimization problem there are
functions that bounce back and forth between —1 and 1. This indicates
that it is reasonable to approximate solutions to the optimization problem
by step functions. This is an important result seen from the point of view
of numerical analysis. For other problems it might be more reasonable
to approximate by piecewise linear continuous functions, splines, or other
countable dense subsets of Lo,. The choice of a countable dense subset
of L affects the pace of convergence and thereby the efficiency of the
algorithm.

10.3 Further work

An interesting issue which remains to be studied is the notion of ‘approxi-
mate computability’. It is clear that for example, addition of real numbers
can be approximated arbitrarily well by computers. It is also possible to
verify that the Fourier transform F' : Ly — Ly can be approximated ar-
bitrarily well if, for example, we choose V defined earlier as a countable
dense subset of Ls.

The signum function f : R — R defined by f(z) = -1 for z < 0,
f(0) = 0, and f(z) = 1 for £ > 0 is not approximately computable,
for if y = 0, then regardless of the accuracy with which the computer
knows y, the computer cannot decide whether f(y) = —1, f(y) = 0, or
f(y) = 1. (This is a standard example from intuitionistic logic (Heyting
1966).) However, the function g : R\ {0} — R defined by g(z) = —1 for
z < 0 and g(z) = 1 for z > 0 is computable. As we can see, a necessary
condition for a function g to be approximately computable is that ¢ is
continuous.

Just as with the concept of ‘computability’, it is not obvious what ‘ap-
proximate computability’ should mean. For the concept of ‘computability’,
a number of suggestions have been made by Markov, Turing, Herbrand-
Godel, and- others, and all these suggestions have been proved to be equiv-
alent (Mendelson 1979). It seems reasonable to follow the same approach
for ‘approximate computability’, that is, to state definitions of the concept,



264 The importance of cardinality, separability, and compactness

to study consequences of the definitions, and to compare various definitions
to see if they are equivalent. ’

One defirition of ‘approximate computability’ could proceed as fol-
lows. We first choose a domain S for performing computations. The choice
of domain is somewhat arbitrary. The choice and its impacts are discussed
later.

Choice of domain

Let (5, <) be the ‘cpo’ (complete partial order) given by the domain equa-
tion (Schmidt 1986, Scott 1982):

S = ({nil}+8x89),

Further, let S; be the finite elements of S, that is, let S be the least set
such that nil € S¢, L € S¢, and Vz,y ¢ Sg: (z,y) € Sf. Let S, be the
set of maximal elements of S, that is, let S, = {zeS|vweS: z ¢y}
Ifz,y € S and z < y, then we say that z ‘approximates’ y.

One property of S is: for each maximal element y there is a chain
Z1 S T2 < - of finite elements such that y is the only element of S for
which z; <y, i € {1,2,.. .}. In other words, maximal elements may be
approximated arbitrarily well by finite elements.

The cpo S is interesting from a computer science point of view be-
cause computers can, to some extent, compute with elements of S¢. The
qualification ‘to some extent’ covers the fact that computers cannot do
just anything with elements of S #- In particular, a computer cannot do
anything reasonable with the bottom element | of the cpo, because L
represents ‘total absence of information’.

Representation of topological spaces

Let T be a topological space, let S’ C S,,, and let ' be a surjective (or
‘onto’ or ‘epimorphic’) function of type ' : §' — T. For each 2’ € §' we
say that =’ is a ‘representation’ of ¢/(z') € T.

For all z € S define ¢(z) = {¢/(z') |2’ € S' Az < z'}. We have that ¢
is a function of type t : § — P(T) where P(T) denotes the powerset of T'.
For each z € S we say that z is an ‘approximate representation’ of each
y € T for which y € ¢(z). Hence z € S is an approximate representation
of any element of t(z).

We say that ¢t : S — P(T) is a ‘representation’ function for T if it
can be formed as above and the following holds: for any y € T and for any
open neighbourhood Y of y, there is an z € Sgsuch that y € t(z) CY. In
other words, ¢ is a representation function if it is possible to approximate
any element of T arbitrarily well by finite elements of S.



Further work 265

P(T) P(U)

f applied to set of values

Fig. 10.2 Representing the function f by g

We say that a topological space T is ‘representable’ if there exists a
representation function for T. As a direct consequence, any representable
T is separable. To see this, choose (by the axiom of choice) an element
e, € t(z) for each z € Sy, and form E = {e; | # € Sy}. E is a dense subset
of T and, as Sy is countable, E is also at most countable.

It is trivial, but somewhat lengthy, to prove that the following topo-
logical spaces are representable: the real numbers with the usual topology;
the integers with the point topology; any Ly space, p € [1,+00), with the
[|e]|1,-norm topology; the space Loo with the weak*-topology. Further, if A
and B are representable, then the cartesian product A x B and the direct
sum A @ B are representable.

Representation of functions between spaces

Now let T and U be representable topological spaces and let ¢ and u be
representation functions for T' and U respectively (see Figure 10.2). Let f
and g be functions of type f: T — U and g: S — S respectively. We say
that f and g are ‘compatible’ (w.r.t. ¢ and u) if f(t(z)) C u(g(z)) for all
¢ € S where f(t(z") is shorthand for {f(y) | y € t(z)}. Hence, if f and g
are compatible, and if z € S represents y € T, then g(z) represents f (y)-
Further, we say that g ‘represents’ f if f and g are compatible and the
following holds: for all y € T and all neighbourhoods Z of z = f (y) e U,
there exists a neighbourhood Y of y such that

Vz € S:(t(x) CY = u(g9(z)) € 2Z)

In other words, we can approximate f(y) arbitrarily well by g(z) if only =
approximates y sufficiently well.

We say that f : T — U is ‘approximately computable’ (w.r.t. t and
u) if there exists a computable g : § — S which represents f. Hence,



266 The importance of cardinality, separability, and compactness

approximate computability is defined in terms of usual computability. Any
of the equivalent definitions of usual computability will do. As an example
we may state that the lazy Lisp (Friedman and Wise 1976, Henderson and
Morris 1976, Henderson 1980) functions of type S — S are exactly the
computable functions.

As a direct consequence, any approximately computable function is
continuous. To see this, consider any element y € T and any neighbour-
hoods Z of z = f(y) € U. There exists a neighbourhood Y of y such that
Ve € S (tz) €Y = u(g(z)) € Z). Combined with f(t(z)) C u(g(z))
this gives Vz € §: (t(z) CY = f(t(z)) C Z). For each =’ € T there exists
an z € § such that ¢(z) = {«’}. HenceVz' € T: (2 € Y = f(z') € Z).
The continuity of f follows directly.

It is trivial but somewhat lengthy to prove that the following func-
tions are approximately computable (w.r.t. suitable representation func-
tions): addition, subtraction, and multiplication of real nunibers and inte-
gers; division by non-zero real numbers and integers; addition of elements
of Ly, p € [1,+00]; multiplication of elements of Ly, p € [1,+c] by real
numbers and integers; Fourier transformation of elements of Ly. As exam-
ples, addition of real numbers is an approximately computable function of
type R x R — R, and division is an approximately computable function of
type R x (R\ {0}) — R.

Further, the following is trivial to prove: if f; : Ty — T, and
f2 + To — T3 are approximately computable (w.r.t. suitable represen-
tation functions), then f, o f; is also approximately computable. The
identity function on any representable topological space is approximately
computable. If fy : T — Ty and fo : T — T, are computable, then
[T — Ty xT, given by f(z) = (fi(x), f2(z)) is computable. Further, the
projections f1 : T — T; and f : T — T, of any approximately computable
[+ T — T x Ty are approximately computable. Similar results hold for
direct sums.

Negative results

If T (# ) and U are topological spaces and U is of cardinality 2%¢, then
there exist constant functions k : T — U that are not computable, for there
are 2% constant functions but merely Ry computable functions. Likewise,
if U is a representable topological space of cardinality 2% with a repre-
sentation function wu, then there exists z € U such that {z} = u(y) holds
for no computable constant y € 9. Hence, representability of U does not
ensure computability of each of its elements.

The domain S itself is not representable. An explanation of this phe-
nomenon is that S contains elements that are only ‘partially defined’ in
computer science terms. From a mathematical point of view, the set S
is well defined and each element of S is a distinct object. From a com-



Further work 267

puter science view, however, non-maximal elements are elements that are
only partially defined. In particular, the bottom element L is completely
undefined, and any process that does anything with L except passing it
around, is doomed to loop indefinitely (as a consequence of Turing’s halt-
ing problem (Mendelson 1979)). Hence, fr~m a computer science point of
view, L is not a distinct object, for any attempt to distinguish it from any
other object by means of a computer makes the computer loop indefinitely.
Intuitively, the definition of ‘representation function’ rules out spaces with
partial objects. The definition of representability has been chosen to fit the
normal mathematical view that topological spaces consist of well-defined
distinct objects.

Consequences of the choice of domain

The choice of the domain S above was somewhat arbitrary. Many other
choices will lead to the same class of ‘approximately computable func-
tions’. The choice of one particular domain is useful when proving the
approximate computability of compositions of approximately computable
functions. The domain S above is the simplest that makes trivial the proof
of the representability of cartesian products and direct sums.

Some relations to the literature and representation of real
numbers

It is interesting to compare the above framework with the programs in
(Boehm et al. 1986). Boehm et al. consider several possible representations
of real numbers and provide computer programs for addition, subtraction,
multiplication, and division with arbitrary precision for these representa-
tions. For simplicity, we merely consider a simplified version of one of the
representations.

Expressed in the framework above, the representation of elements of
[~1,1] in (Boehm et al. 1986) is as follows. Consider the cpo S given by

ﬁ = ({_1503 1} X Q)J_
The maximal elements of S are infinite sequences (a1, az,...) where a; €

{-1,0,1} fori € {1,2,...}. Now, for each maximal element « = (a1, as,...)
of S define

+0o0 )
thx) = ZaiZ"
i=1

Then define ¢t : § — P([-1,1]) by t(z) = {¢/(z') | 2’ € S,, Az < 2'}, and
let $: S — S be any computable surjective function that maps maximal



268 The importance of cardinality, separability, and compactness

elements to maximal elements. We have that ¢ o ¢ is a representation
function for the topological space [—1,1] (with the usual topology). (Boehm
et al. (1986) also state representations of all of R.)

As explained in (Boehm et al. 1986), usual binary expansions, that
is, elements of S’ = ({0,1} x §'), cannot be used to represent elements of
[0,1]. One problem with §’ is that the addition 1/341/6 = 1/2 requires
infinite carry look ahead and hence cannot be performed in finite time.
If S is substituted for S in the definition of ¢ above, then t o ¢ does not
become a representation function. Furthermore, as explained in (Boehm et
al. 1986), the use of 8" = ({-2,-1,0,1,2} x S”), instead of S increases
the efficiency of algorithms by reducing the need for carry look ahead.

For further inspiration, Clenshaw and Olver (1980, 1986) provide
algorithms for computing certain real functions with arbitrary precision,
and Collatz (1966) is an exponent for using functional analysis in numerical
analysis.

10.4 Conclusion

e Any set of cardinality greater than 2%¢ is out of reach of computers.
e Approximate computations are only possible in separable spaces.

e In order to keep the cardinality at 2%° when working with functions f :
R™ — R™, identify functions that are equal almost everywhere, and
require f to satisfy that fOI‘ e foz“ f(t1,.. . tn) dty - dt, is defined
and finite for all real z1,...,z,.

e In order to obtain separability when working in L., use the weak*-
topology.

e Use Alaoglu’s theorem, that is, make use of the fact that any closed
subset of Lo, which is bounded w.r.t. lloll1o, is compact w.r.t. the
weak*-topology.

e In numerical analysis, do not hesitate to represent real functions as
data structures rather than as computer programs.

In addition to the above conclusions, the chapter has suggested a def-
inition of ‘approximate computability’ and investigated some immediate
consequences.

Acknowledgements
My thanks are due to Nils Andersen, DIKU, for comments on the

manuscript, and to Professor Dr. Dieter Spreen and others at the con-
ference for useful comments and corrections.



An example from numerical signal analysis 269

¢ —{t}—c

Fig. 10.3 The filter h

Appendix An example from numerical signal analysis

In signal analysis, a ‘filter’ is a physical device which takes a signal as input
and delivers a signal as output. Such filters may be electrical filters that
input and output electrical signals or they may be other kinds of filters such
as microphones that input a sound signal and output an electrical signal.

The ‘linear filters’ are of particular interest because of their well
understood properties. A linear filter is characterized by an ‘impulse re-
sponse’ H, and its output G depends on the input g as follows:

+00

G(t) = (g H)(t) = / o(r)H(t - 7)dr

—00
We define the ‘inverse impulse response’ h by h(r) = H(—7). Hence

+00

G(t) = (g H)(t) = / g(r)h(r = t)dr

—00

In particular we have G(0) = (g, h).

Graphically, we represent the filter as in Figure 10.3. In signal analy-
sis it is customary to assume g € Ly even though g € L is more reasonable
for most physical signals. The assumption g € L, leads to simpler mathe-
matics. In this Appendix, however, we assume g € L,,. Correspondingly,
we assume h € Lj.

Now assume that we want to build a filter with inverse impulse re-
sponse h € L; which is going to filter signals g € L, for which ||g[|1,, < 1.
However, for economic reasons, we have to use a number of cheap filters
with impulse responses hi,...,h, € L; and to combine these into one
filter with approximately the impulse response h as in Figure 10.4. In
Figure 10.4, F represents a function of type F : R® — R. We have

)

—~
5

~
|

= F(Gi(b),...,Ga(t))

+o0
Gi(t) = / g(rhi(r — £) dr + ex(t)

—00



270 The importance of cardinality, separability, and compactness

Fig. 10.4 Combined filters hy ... hn

The functions e; are unknown error functions which describe the imperfec-
tion of the filters Ay,..., h,. We assume |e;||;, < €,1 € {1,...,n}, where
€1,...,€, € Ry are known constants.

For any choice of F' we define the ‘error bound’ Er as the maximal
difference between the G of Figure 10.3 and the G of Figure 10.4:

Er = sup{||G —Gll1
|9 € Loc Miglhioe S 1A lleilliy Se,i€{l,...,n}}

Hence

Ep = SUP{|<gvh> —-F((g,h1>+d1,...,(g,hn>+dn)|
|9 €L Alglhoe S TA|di] < &}

One somewhat surprising result (Golomb and Weinberger 1959) is that
among the functions F : R* — R which minimize Ep, there is at least one
which is linear in its arguments. To see this, proceed as follows: define

|9 € Lo AMigllie S 1A ] €€}

Obviously, C' is a closed bounded convex subset of R**!, and C is sym-
metric around (0,...,0). Define A = sup{z¢ € R | (z0,0,...,0) € C}. We
have that (4,0,...,0) is on the boundary of C. From (Rockafellar 1970)
we have that there is at least one tangent to C through (4,0, ...,0) which
is not parallel to (1,0,...,0). Let g = a12; + -+ + ap,z, + A be such a

tangent, and let F(z1,...,2,) = a121 + -+ + apz,. We have
V(flfo,,.z‘n) ect$0“E(xl~~$n)l SA

and equality is obtained for (4,0, ...,0) and (-=A4,0,...,0). Hence, Erp=A
for this particular F. However, as (4,0,...,0) and (=A,0,...,0) both
belong to C, Er > A for any F, and so F minimizes Er.




References 271

To find A we have to find sup{zo € R| (20,0,...,0) € C}, that is, to
find the maximal value of

Io = <gv h>

where
9€Lo gl €1
(g:h) <er (g,—h1) < e

(gshn> < € <g”“hn> < €pn

This is exactly the optimization problem stated in the main text. To find
F, that is, to find ay,...,a,, one has to perform numerical differentiation
of the surface of C' at the point (A,0,...,0) and hope that C is differen-
tiable. The numerical differentiation requires the optimization problem to
be solved n times with small perturbations of ey,...,e,, and 2n times if
differentiability has to be verified. We omit the details.

We have now outlined one optimization problem in signal analysis
which can be solved by solving the optimization problem in the main text.
Many similar optimization problems in signal analysis can be solved the
same way.

References

Boehm, H. J., Cartwright, R., Riggle, M., and O’Donell, M. J. (1986) Exact
Real Arithmetic: A Case Study in Higher Order Programming. 1986
ACM Symposium on Lisp and Functional Programming.

Clenshaw, C. W., and Olver, F. W. J. (1980) An unrestricted algorithm
for the exponential function. SIAM Journal on Numerical Analysis.
Vol. 17, pp. 310-331.

Clenshaw, C. W., and Olver, F. W. J. (1986) Unrestricted algorithms for
reciprocals and square roots. BIT, ¥ol. 26, pp. 476-492.

Collatz, L. (1966) Functional Analysis a:ud Numerical Mathematics. Aca-
demic Press.

Friedman, D. P., and Wise, D. S. (1976) CONS Should Not Evaluate Its
Arguments. In: S. Michaelson and R. Milner (Ed.), Automata, Lan-
guages and Programming. Edinburgh University Press, pp. 257-284.

Golomb, M., and Weinberger, H. F. (1959) Optimal Approximation and
Error Bounds. In: R. Langer (Ed.), On Numerical Approximation,
pp. 117-190. The University of Wisconsin Press.

Grue, K. E. (1985) Optimal Reconstruction of Bandlimited Bounded Sig-
nals. IEEE Transactions on Information Theory, Vol. IT-31, No. 5,
pp. 594-601.



272 The importance of cardinality, separability, and compactness

Henderson, P., and Morris, J. H. Jr. (1976) A Lazy Evaluator. Conference
Record of the Third ACM Symposium on Principles of Programming
Languages. ’

Henderson, P. (1980) Functional Programming, Application and Implemen-
tation. Prentice-Hall.

Heyting, A. (1966) Intuitionism, An Introduction. North-Holland Publish-
ing Company.

Mendelson, E. (1979) Introduction to Mathematical Logic. D.Van Nostrand
Company.

Rockafellar, R. T. (1970) Convex Analysis. Princeton University Press.

Rudin, W. (1973) Functional Analysis. McGraw-Hill Book Company.

Schmidt, D. A. (1986) Denotational Semantics. Allyn and Bacon Inc.

Scott, D. S. (1982) Domains for denotational semantics, in LNCS 140:
Proc. 9th ICALP, pp. 577-613, Springer.




