[Logiweb] Error with the new base page
Kasper H0st Frederiksen
tofu at diku.dk
Wed Jun 22 12:00:58 CEST 2005
I just updated my base page reference from:
http://www.diku.dk/~grue/logiweb/20050502/home/grue/base/GRD-2005-06-03-UTC-15-49-33-495567/vector/page.lgw
to:
http://www.diku.dk/~grue/logiweb/20050502/home/grue/base/GRD-2005-06-22-UTC-06-58-05-413682/vector/page.lgw
This is the only change. Now i get a "claim failed"
and a diagnose
"Lemma expected S1'" in one of my proofs that use S1'.
I have attached the page with the error.
-Kasper Frederiksen
-------------- next part --------------
{ Logiweb, a system for electronic distribution of mathematics
Copyright (C) 2004 Klaus Grue
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 021111307 USA
Contact: Klaus Grue, DIKU, Universitetsparken 1, DK2100 Copenhagen,
Denmark, grue at diku.dk, http://yoa.dk/, http://www.diku.dk/~grue/
Logiweb is a system for distribution of mathematical definitions,
lemmas, and proofs. For more on Logiweb, consult http://yoa.dk/.
}
PAGE logik rapport
BIBLIOGRAPHY
base: "http://www.diku.dk/~grue/logiweb/20050502/home/grue/base/GRD-2005-06-22-UTC-06-58-05-413682/vector/page.lgw",
peano: "http://www.diku.dk/~grue/logiweb/20050502/home/grue/peano-axioms/GRD-2005-06-03-UTC-15-58-02-061312/vector/page.lgw"
PREASSOCIATIVE base: bracket * end bracket,
test lemma,
test lemma two,
corollary one point ten a,
corollary one point ten b,
lemma one point eight,
lemma prime l three two b tmp,
lemma prime l three two b,
lemma prime l three two c tmp,
lemma prime l three two c,
lemma prime l three two d tmp,
lemma prime l three two d,
tautology one
PREASSOCIATIVE peano: system s
PREASSOCIATIVE base: * sub * end sub
PREASSOCIATIVE base: unicode start of text * end unicode text
PREASSOCIATIVE base: * bit nil
PREASSOCIATIVE base: * apply *
PREASSOCIATIVE base: * raw head
PREASSOCIATIVE base: * times *
PREASSOCIATIVE base: * plus *
PREASSOCIATIVE peano: * peano plus *
PREASSOCIATIVE base: * term plus * end plus
POSTASSOCIATIVE base: * raw pair *
POSTASSOCIATIVE base: * comma *
PREASSOCIATIVE base: * boolean equal *
PREASSOCIATIVE peano: * peano is *
PREASSOCIATIVE base: not *
PREASSOCIATIVE base: * and *
PREASSOCIATIVE base: * or *
PREASSOCIATIVE peano: peano all * indeed *
POSTASSOCIATIVE base: * macro imply *
PREASSOCIATIVE peano: * peano imply *
POSTASSOCIATIVE base: * guard *
PREASSOCIATIVE base: * select * else * end select
PREASSOCIATIVE base: lambda * dot *
PREASSOCIATIVE base: * init
PREASSOCIATIVE base: * at *
POSTASSOCIATIVE base: * infer *
PREASSOCIATIVE base: all * indeed *
POSTASSOCIATIVE base: * rule plus *
POSTASSOCIATIVE base: * cut *
PREASSOCIATIVE base: * proves *
PREASSOCIATIVE base: locally define * as * end line *
POSTASSOCIATIVE base: * then *
PREASSOCIATIVE base: * tab *
PREASSOCIATIVE base: * row *
BODY
"File page.tex
\documentclass [fleqn]{article}
\setlength {\overfullrule }{1mm}
\input{lgwinclude}
\usepackage{latexsym}
%\setlength{\parindent}{0em}
%\setlength{\parskip}{1ex}
% The font of each Logiweb construct is under tight control except that
% strings are typeset in whatever font is in effect at the time of
% typesetting. This is done to enhance the readability of strings in the
% TeX source generated by Logiweb. The default font for typesetting
% strings is \rm:
\everymath{\rm}
\usepackage{makeidx}
\usepackage{page}
\makeindex
\newcommand{\intro}[1]{\emph{#1}}
\newcommand{\indexintro}[1]{\index{#1}\intro{#1}}
\newlength{\bracketwidth}
\settowidth{\bracketwidth}{$[{}$}
\newcommand{\back}{\protect\makebox[-1.0\bracketwidth]{}}
\usepackage[dvipdfm=true]{hyperref}
\hypersetup{pdfpagemode=none}
\hypersetup{pdfstartpage=1}
\hypersetup{pdfstartview=FitBH}
\hypersetup{pdfpagescrop={120 130 490 730}}
\hypersetup{pdftitle=Introduction to Logiweb}
\hypersetup{colorlinks=true}
\bibliographystyle{plain}
% \tex{something} writes something to page.otx for later inclusion
\newwrite\outex
\newtoks\toktex
\immediate\openout\outex=page.otx
\newcommand{\tex}[1]{\toktex={\item #1}\immediate\write\outex{\the\toktex}}
% \test{something} writes something to page.tst for later inclusion
\newwrite\outest
\immediate\openout\outest=page.tst
\newcommand{\test}[1]{\toktex={\item #1}\immediate\write\outest{\the\toktex}}
% Concerning \catcode`\@=11 : See the TeXbook, Appendix B (page 344).
% \afterheading suppresses indentation once, c.f. latex.ltx.
% \display{something} displays something as a displayed equation except
% that linebreaking is possible and displaymath is not turned on by default.
% The first paragraph after \display{something} is unindented.
% Glue below formulas may be wrong. The definition of \display misses
% something like \addvspace{\belowdisplayskip}.
\catcode`\@=11
\def\afterheading{\@afterheading}
\catcode`\@=12
\newcommand{\display}[1]{\begin{list}{}{\setlength{\leftmargin}{\mathindent}}
\item #1\end{list}
\afterheading}
\newcommand{\statement}[1]{\begin{list}{}{\setlength{\leftmargin}{0mm}}
\item #1\end{list}
\afterheading}
\begin {document}
\title {Kasper's Title}
\author {Kasper Frederiksen}
%\maketitle
%\tableofcontents
"[ ragged right expansion ]"
\section{First Section}
\subsection{Lemma "[ math lemma one point eight end math ]"}
"[ intro lemma one point eight
index "L1.8"
pyk "lemma one point eight"
tex "L1.8"
end intro ]"
\display{
"[ math
in theory system prime s
lemma
lemma one point eight
says
all meta k indeed parenthesis meta k peano imply meta k end parenthesis
end lemma
end math
]"}
"[ math
system prime s
proof of
lemma one point eight
reads
arbitrary meta k end line
line ell a because axiom prime a two indeed
parenthesis meta k peano imply parenthesis parenthesis meta k peano imply meta k end parenthesis peano imply meta k end parenthesis end parenthesis
peano imply
parenthesis parenthesis meta k peano imply parenthesis meta k peano imply meta k end parenthesis end parenthesis peano imply parenthesis meta k peano imply meta k end parenthesis end parenthesis
end line
line ell b because axiom prime a one indeed
meta k peano imply parenthesis parenthesis meta k peano imply meta k end parenthesis peano imply meta k end parenthesis
end line
line ell c because rule prime mp modus ponens ell a modus ponens ell b indeed
parenthesis meta k peano imply parenthesis meta k peano imply meta k end parenthesis end parenthesis
peano imply
parenthesis meta k peano imply meta k end parenthesis
end line
line ell d because axiom prime a one indeed
meta k peano imply parenthesis meta k peano imply meta k end parenthesis
end line
because rule prime mp modus ponens ell c modus ponens ell d indeed
meta k peano imply meta k
qed
end math ]"
\subsection{Corollary "[ math corollary one point ten a end math ]"}
"[ intro corollary one point ten a
index "C1.10a"
pyk "corollary one point ten a"
tex "C1.10a"
end intro ]"
\display{"[ math
in theory system prime s
lemma
corollary one point ten a
says
all meta e indeed all meta k indeed all meta h indeed
parenthesis
meta e peano imply meta k
infer
meta k peano imply meta h
infer
meta e peano imply meta h
end parenthesis
end lemma
end math
]"}
"[
math system prime s
proof of
corollary one point ten a
reads
arbitrary meta e end line
arbitrary meta k end line
arbitrary meta h end line
line ell a premise
meta e peano imply meta k
end line
line ell b premise
meta k peano imply meta h
end line
line ell c because axiom prime a one indeed
parenthesis meta k peano imply meta h end parenthesis
peano imply
parenthesis
meta e peano imply parenthesis meta k peano imply meta h end parenthesis
end parenthesis
end line
line ell d because rule prime mp modus ponens ell c modus ponens ell b indeed
meta e peano imply parenthesis meta k peano imply meta h end parenthesis
end line
line ell e because axiom prime a two indeed
parenthesis meta e peano imply parenthesis meta k peano imply meta h end parenthesis end parenthesis
peano imply
parenthesis
parenthesis meta e peano imply meta k end parenthesis
peano imply
parenthesis meta e peano imply meta h end parenthesis
end parenthesis
end line
line ell f because rule prime mp modus ponens ell e modus ponens ell d indeed
parenthesis meta e peano imply meta k end parenthesis
peano imply
parenthesis meta e peano imply meta h end parenthesis
end line
because rule prime mp modus ponens ell f modus ponens ell a indeed
meta e peano imply meta h
qed
end math
]"
\subsection{Corollary "[ math corollary one point ten b end math ]"}
"[ intro corollary one point ten b
index "corollary one point ten b"
pyk "corollary one point ten b"
tex "C1.10b"
end intro ]"
\display{"[ math
in theory system prime s lemma corollary one point ten b
says
all meta e indeed all meta k indeed all meta h indeed
parenthesis
meta e peano imply parenthesis meta k peano imply meta h end parenthesis
infer meta k
infer meta e peano imply meta h
end parenthesis
end lemma
end math
]"}
"[
math system prime s
proof of
corollary one point ten b
reads
arbitrary meta e end line
arbitrary meta k end line
arbitrary meta h end line
line ell a premise
meta e peano imply parenthesis meta k peano imply meta h end parenthesis
end line
line ell b premise
meta k
end line
line ell c because axiom prime a one indeed
meta k peano imply parenthesis meta e peano imply meta k end parenthesis
end line
line ell d because rule prime mp modus ponens ell c modus ponens ell b indeed
meta e peano imply meta k
end line
line ell e because axiom prime a two indeed
parenthesis
meta e peano imply parenthesis meta k peano imply meta h end parenthesis
end parenthesis
peano imply
parenthesis
parenthesis meta e peano imply meta k end parenthesis
peano imply
parenthesis meta e peano imply meta h end parenthesis
end parenthesis
end line
line ell f because rule prime mp modus ponens ell e modus ponens ell a indeed
parenthesis meta e peano imply meta k end parenthesis
peano imply
parenthesis meta e peano imply meta h end parenthesis
end line
because rule prime mp modus ponens ell f modus ponens ell d indeed
meta e peano imply meta h
qed
end math
]"
\subsection{Lemma "[ math lemma prime l three two b end math ]"}
To avoid variable clash we prove
"[ intro lemma prime l three two b
index "L3.2(b)'"
pyk "lemma prime l three two b"
tex "L3.2(b)'"
end intro ]"
using
"[ intro lemma prime l three two b tmp
index "\hat{L}3.2(b)'"
pyk "lemma prime l three two b tmp"
tex "\hat{L}3.2(b)'"
end intro ]"
\display{"[
math in theory system prime s lemma lemma prime l three two b tmp
says
all meta t indeed
all meta r indeed
meta t peano is meta r peano imply meta r peano is meta t
end lemma end math
]"}
"[
math system prime s
proof of
lemma prime l three two b tmp
reads
arbitrary meta t end line
arbitrary meta r end line
line ell a because axiom prime s one indeed
meta t peano is meta r
peano imply
parenthesis
meta t peano is meta t
peano imply
meta r peano is meta t
end parenthesis
end line
line ell b because lemma prime l three two a indeed
meta t peano is meta t
end line
because corollary one point ten b modus ponens ell a modus ponens ell b indeed
meta t peano is meta r
peano imply
meta r peano is meta t
qed
end math
]"
\display{"[
math in theory system prime s
lemma
lemma prime l three two b
says
all meta e indeed
all meta f indeed
parenthesis
meta e peano is meta f peano imply meta f peano is meta e
end parenthesis
end lemma end math
]"}
"[
math system prime s
proof of
lemma prime l three two b
reads
arbitrary meta e end line
arbitrary meta f end line
because lemma prime l three two b tmp indeed
parenthesis
meta e peano is meta f peano imply meta f peano is meta e
end parenthesis
qed
end math
]"
\subsection{Lemma "[ math lemma prime l three two c end math ]"}
To avoid variable clash we prove
"[
intro lemma prime l three two c
index "L3.2(c)'"
pyk "lemma prime l three two c"
tex "L3.2(c)'"
end intro
]"
using
"[
intro lemma prime l three two c tmp
index "\hat{L}3.2(c)'"
pyk "lemma prime l three two c tmp"
tex "\hat{L}3.2(c)'"
end intro
]"
\display{"[
math
in theory system prime s
lemma
lemma prime l three two c tmp
says
all meta t indeed
all meta r indeed
all meta s indeed
meta t peano is meta r
peano imply
parenthesis
meta r peano is meta s peano imply meta t peano is meta s
end parenthesis
end lemma
end math
]"}
"[
math system prime s
proof of
lemma prime l three two c tmp
reads
arbitrary meta t end line
arbitrary meta r end line
arbitrary meta s end line
line ell a because axiom prime s one indeed
meta r peano is meta t
peano imply
parenthesis
meta r peano is meta s peano imply meta t peano is meta s
end parenthesis
end line
line ell b because lemma prime l three two b indeed
meta t peano is meta r peano imply meta r peano is meta t
end line
because corollary one point ten a modus ponens ell b modus ponens ell a indeed
meta t peano is meta r
peano imply
parenthesis
meta r peano is meta s peano imply meta t peano is meta s
end parenthesis
qed
end math
]"
\display{"[
math
in theory system prime s
lemma
lemma prime l three two c
says
all meta e indeed
all meta f indeed
all meta g indeed
meta e peano is meta f
peano imply
parenthesis
meta f peano is meta g peano imply meta e peano is meta g
end parenthesis
end lemma
end math
]"}
"[
math system prime s
proof of
lemma prime l three two c
reads
arbitrary meta e end line
arbitrary meta f end line
arbitrary meta g end line
because lemma prime l three two c tmp indeed
meta e peano is meta f
peano imply
parenthesis
meta f peano is meta g peano imply meta e peano is meta g
end parenthesis
qed
end math
]"
\subsection{Lemma "[ math tautology one end math ]"}
"[
intro tautology one
index "Tautology 1"
pyk "tautology one"
tex "Tautology 1"
end intro
]"
\display{"[ math
in theory system prime s lemma tautology one
says
all meta e indeed
all meta f indeed
all meta g indeed
parenthesis
parenthesis
meta e peano imply parenthesis meta f peano imply meta g end parenthesis
end parenthesis
infer
parenthesis
meta f peano imply parenthesis meta e peano imply meta g end parenthesis
end parenthesis
end parenthesis
end lemma
end math
]"}
"[
math system prime s
proof of
tautology one
reads
arbitrary meta e end line
arbitrary meta f end line
arbitrary meta g end line
line ell a premise
meta e peano imply parenthesis meta f peano imply meta g end parenthesis
end line
line ell b because axiom prime a two indeed
parenthesis
meta e peano imply parenthesis meta f peano imply meta g end parenthesis
end parenthesis
peano imply
parenthesis
parenthesis meta e peano imply meta f end parenthesis
peano imply
parenthesis meta e peano imply meta g end parenthesis
end parenthesis
end line
line ell c because rule prime mp modus ponens ell b modus ponens ell a indeed
parenthesis meta e peano imply meta f end parenthesis
peano imply
parenthesis meta e peano imply meta g end parenthesis
end line
line ell d because axiom prime a one indeed
parenthesis
parenthesis meta e peano imply meta f end parenthesis
peano imply
parenthesis meta e peano imply meta g end parenthesis
end parenthesis
peano imply
parenthesis
meta f
peano imply
parenthesis
parenthesis
meta e peano imply meta f
end parenthesis
peano imply
parenthesis
meta e peano imply meta g
end parenthesis
end parenthesis
end parenthesis
end line
line ell e because rule prime mp modus ponens ell d modus ponens ell c indeed
meta f
peano imply
parenthesis
parenthesis
meta e peano imply meta f
end parenthesis
peano imply
parenthesis
meta e peano imply meta g
end parenthesis
end parenthesis
end line
line ell f because axiom prime a two indeed
parenthesis
meta f
peano imply
parenthesis
parenthesis
meta e peano imply meta f
end parenthesis
peano imply
parenthesis
meta e peano imply meta g
end parenthesis
end parenthesis
end parenthesis
peano imply
parenthesis
parenthesis
meta f
peano imply
parenthesis
meta e peano imply meta f
end parenthesis
end parenthesis
peano imply
parenthesis
meta f
peano imply
parenthesis
meta e peano imply meta g
end parenthesis
end parenthesis
end parenthesis
end line
line ell g because rule prime mp modus ponens ell f modus ponens ell e indeed
parenthesis
meta f
peano imply
parenthesis
meta e peano imply meta f
end parenthesis
end parenthesis
peano imply
parenthesis
meta f
peano imply
parenthesis
meta e peano imply meta g
end parenthesis
end parenthesis
end line
line ell h because axiom prime a one indeed
meta f
peano imply
parenthesis meta e peano imply meta f end parenthesis
end line
because rule prime mp modus ponens ell g modus ponens ell h indeed
meta f
peano imply
parenthesis meta e peano imply meta g end parenthesis
qed
end math
]"
\subsection{Lemma "[ math lemma prime l three two d end math ]"}
To avoid variable clash we prove
"[
intro lemma prime l three two d
index "L3.2(d)'"
pyk "lemma prime l three two d"
tex "L3.2(d)'"
end intro
]"
using
"[
intro lemma prime l three two d tmp
index "\hat{L}3.2(d)'"
pyk "lemma prime l three two d tmp"
tex "\hat{L}3.2(d)'"
end intro
]"
\display{"[ math
in theory system prime s
lemma
lemma prime l three two d tmp
says
all meta t indeed
all meta r indeed
all meta s indeed
meta r peano is meta t
peano imply
parenthesis
meta s peano is meta t
peano imply
meta r peano is meta s
end parenthesis
end lemma
end math
]"}
"[ math
system prime s
proof of
lemma prime l three two d tmp
reads
arbitrary meta t end line
arbitrary meta r end line
arbitrary meta s end line
line ell a because lemma prime l three two c indeed
meta r peano is meta t
peano imply
parenthesis
meta t peano is meta s
peano imply
meta r peano is meta s
end parenthesis
end line
line ell b because tautology one modus ponens ell a indeed
meta t peano is meta s
peano imply
parenthesis
meta r peano is meta t
peano imply
meta r peano is meta s
end parenthesis
end line
line ell c because lemma prime l three two b indeed
meta s peano is meta t peano imply meta t peano is meta s
end line
line ell d because corollary one point ten a modus ponens ell c modus ponens ell b indeed
meta s peano is meta t
peano imply
parenthesis
meta r peano is meta t
peano imply
meta r peano is meta s
end parenthesis
end line
because tautology one modus ponens ell d indeed
meta r peano is meta t
peano imply
parenthesis
meta s peano is meta t
peano imply
meta r peano is meta s
end parenthesis
qed
end math
]"
\display{"[ math
in theory system prime s
lemma
lemma prime l three two d
says
all meta e indeed
all meta f indeed
all meta g indeed
meta f peano is meta e
peano imply
parenthesis
meta g peano is meta e
peano imply
meta f peano is meta g
end parenthesis
end lemma
end math
]"}
"[ math
system prime s
proof of
lemma prime l three two d
reads
arbitrary meta e end line
arbitrary meta f end line
arbitrary meta g end line
because lemma prime l three two d tmp indeed
meta f peano is meta e
peano imply
parenthesis
meta g peano is meta e
peano imply
meta f peano is meta g
end parenthesis
qed
end math
]"
\clearpage
\appendix
\section{Chores}
\subsection{The name of the page}
This defines the name of the page:
\display{"[ math pyk define logik rapport as "logik rapport" end define end math ]"}
\subsection{\TeX\ definitions}\label{section:TexDefinitions}
\begin{list}{}{
\setlength{\leftmargin}{5em}
\setlength{\itemindent}{-5em}}
\immediate\closeout\outex
\input{./page.otx}
\item \mbox{}
\end{list}
\subsection{Test}
\begin{list}{}{
\setlength{\leftmargin}{5em}
\setlength{\itemindent}{-5em}}
\immediate\closeout\outest
\input{./page.tst}
\item \mbox{}
\end{list}
\subsection{Priority table}\label{section:PriorityTable}
"[ flush left math priority table Priority end table end math end left ]"
\section{Index}
\newcommand\myidxitem{\par\noindent}
\renewenvironment{theindex}{\let\item\myidxitem}{}
\printindex
\section{Bibliography}
\bibliography{./page}
\end{document}
End of file
File page.bib
@article {berline97,
author = {C. Berline and K. Grue},
title = {A $\kappa$-denotational semantics for {M}ap {T}heory
in {ZFC+SI}},
journal = TCS,
year = {1997},
volume = {179},
number = {1--2},
pages = {137--202},
month = {jun}}
@book {church41,
author = {A. Church},
title = {The Calculi of Lambda-Conversion},
publisher = {Princeton University Press},
year = {1941}}
@Article {godel,
author = {K. G{\"!o}del},
title = {{\"!U}ber for\-mal un\-ent\-scheid\-ba\-re
\mbox{S\"!at}\-ze der \mbox{Prin}\-ci\-pia
\mbox{Mathe}\-ma\-ti\-ca und ver\-wand\-ter
\mbox{Sys}\-teme \mbox{I}},
journal = {Mo\-nats\-hef\-te f{\"!u}r Mathe\-ma\-tik und Phy\-sik},
year = {19\-31},
volume = {12},
number = {\mbox{XXXVIII}},
pages = {173-198}}
@book {Gordon79,
author = {M. J. Gordon, A. J. Milner, C. P. Wadsworth},
title = {Edinburgh {LCF}, A mechanised logic of computation},
publisher = {Springer-Verlag},
year = {1979},
volume = {78},
series = {Lecture Notes in Computer Science}}
@article {grue92,
author = {K. Grue},
title = {Map Theory},
journal = TCS,
year = {1992},
volume = {102},
number = {1},
pages = {1--133},
month = {jul}}
@inproceedings{Logiweb,
author = {K. Grue},
title = {Logiweb},
editor = {Fairouz Kamareddine},
booktitle = {Mathematical Knowledge Management Symposium 2003},
publisher = {Elsevier},
series = {Electronic Notes in Theoretical Computer Science},
volume = {93},
year = {2004},
pages = {70--101}}
@article {mccarthy60,
author = {J. McCarthy},
title = {Recursive functions of symbolic expressions and their
computation by machine},
journal = {Communications of the ACM},
year = {1960},
pages = {184--195}}
@book {mendelson,
author = {E. Mendelson},
title = {Introduction to Mathematical Logic},
publisher = {Wadsworth and Brooks},
year = {1987},
edition = {3.}}
@book {TeXbook,
author = {D. Knuth},
title = {The TeXbook},
publisher = {Addison Wesley},
year = {1983}}
End of file
File page.sty
% thebibliography environment from
% /usr/share/texmf/tex/latex/base/book.cls
% with \chapter removed
\renewenvironment{thebibliography}[1]
{\list{\@biblabel{\@arabic\c at enumiv}}%
{\settowidth\labelwidth{\@biblabel{#1}}%
\leftmargin\labelwidth
\advance\leftmargin\labelsep
\@openbib at code
\usecounter{enumiv}%
\let\p at enumiv\@empty
\renewcommand\theenumiv{\@arabic\c at enumiv}}%
\sloppy
\clubpenalty4000
\@clubpenalty \clubpenalty
\widowpenalty4000%
\sfcode`\.\@m}
{\def\@noitemerr
{\@latex at warning{Empty `thebibliography' environment}}%
\endlist}
End of file
latex page
makeindex page
bibtex page
latex page
makeindex page
latex page"
More information about the Logiweb
mailing list