[Logiweb] Re: Quantifier elimination leads to variable clash
Kasper H0st Frederiksen
tofu at diku.dk
Fri Jun 10 10:39:04 CEST 2005
Than you for you help.
> My guess is that the proof will go through if you just use another
> variable name than "meta b" - for instance, "meta a".
Your guess truns out to be partially correct. If I replace all "meta b" in
the proof with "meta a" I get the same error, _but_ if i replace all "meta
b" in BOTH proof and the lemma statement with "meta k" the proof checks as
correct.
There still seems to be a deeper problem though. If the proof uses only
"meta k" and the lemma statement uses only "meta j" then I get a
Lemma/Proof mismatch.
The folowing proof works:
---------------
"[ intro lemma one point eight
index "L1.8"
pyk "lemma one point eight"
tex "L1.8"
end intro ]"
"[ math
in theory system prime s
lemma
lemma one point eight
says
all meta k indeed parenthesis meta k peano imply meta k end
parenthesis
end lemma
end math ]"
"[ math
system prime s
proof of
lemma one point eight
reads
arbitrary meta k end line
line ell a because axiom prime a two indeed
parenthesis meta k peano imply parenthesis parenthesis meta k peano
imply meta k end parenthesis peano imply meta k end parenthesis end
parenthesis
peano imply
parenthesis parenthesis meta k peano imply parenthesis meta k peano
imply meta k end parenthesis end parenthesis peano imply parenthesis meta
k peano imply meta k end parenthesis end parenthesis
end line
line ell b because axiom prime a one indeed
meta k peano imply parenthesis parenthesis meta k peano imply meta
k end parenthesis peano imply meta k end parenthesis
end line
line ell c because rule prime mp modus ponens ell a modus ponens ell
b indeed
parenthesis meta k peano imply parenthesis meta k peano imply meta
k end parenthesis end parenthesis
peano imply
parenthesis meta k peano imply meta k end parenthesis
end line
line ell d because axiom prime a one indeed
meta k peano imply parenthesis meta k peano imply meta k end
parenthesis
end line
because rule prime mp modus ponens ell c modus ponens ell d indeed
meta k peano imply meta k
qed
end math ]"
-------------------
But this proof gives a Lemma/Proof mismatch:
-------------------
"[ intro lemma one point eight
index "L1.8"
pyk "lemma one point eight"
tex "L1.8"
end intro ]"
"[ math
in theory system prime s
lemma
lemma one point eight
says
all meta j indeed parenthesis meta j peano imply meta j end
parenthesis
end lemma
end math ]"
"[ math
system prime s
proof of
lemma one point eight
reads
arbitrary meta k end line
line ell a because axiom prime a two indeed
parenthesis meta k peano imply parenthesis parenthesis meta k peano
imply meta k end parenthesis peano imply meta k end parenthesis end
parenthesis
peano imply
parenthesis parenthesis meta k peano imply parenthesis meta k peano
imply meta k end parenthesis end parenthesis peano imply parenthesis meta
k peano imply meta k end parenthesis end parenthesis
end line
line ell b because axiom prime a one indeed
meta k peano imply parenthesis parenthesis meta k peano imply meta
k end parenthesis peano imply meta k end parenthesis
end line
line ell c because rule prime mp modus ponens ell a modus ponens ell
b indeed
parenthesis meta k peano imply parenthesis meta k peano imply meta
k end parenthesis end parenthesis
peano imply
parenthesis meta k peano imply meta k end parenthesis
end line
line ell d because axiom prime a one indeed
meta k peano imply parenthesis meta k peano imply meta k end
parenthesis
end line
because rule prime mp modus ponens ell c modus ponens ell d indeed
meta k peano imply meta k
qed
end math ]"
-----------------------
-Kasper Frederiksen
More information about the Logiweb
mailing list