[Logiweb] Quantifier elimination leads to variable clash
Kasper H0st Frederiksen
tofu at diku.dk
Thu Jun 9 15:22:53 CEST 2005
I have been trying all day to prove Mendelson lemma 1.8, but i continue to
be stopped by the logiweb diagnose error:
"Quantifier elimination leads to variable clash ...."
I am preatty shure the proof is correct, because i can "mess up" any
one line and get a unifikation error instead, or i can remove the last
line and get a "Lemma/Proof mismatch..." error. This must meen that I am
using all the axioms corectly and that the conclusion matches the lemma i
am trying to prove.
Here is my definition can anyone spot my error:
"[ intro test lemma
index "test lemma"
pyk "test lemma"
tex "test lemma"
end intro ]"
"[ math
in theory system prime s
lemma
test lemma
says
all meta b indeed meta b peano imply meta b
end lemma
end math ]"
"[ math
system prime s
proof of
test lemma
reads
arbitrary meta b end line
line ell a because axiom prime a two indeed
parenthesis meta b peano imply parenthesis parenthesis meta b peano
imply meta b end parenthesis peano imply meta b end parenthesis end
parenthesis
peano imply
parenthesis parenthesis meta b peano imply parenthesis meta b peano
imply meta b end parenthesis end parenthesis peano imply parenthesis meta
b peano imply meta b end parenthesis end parenthesis
end line
line ell b because axiom prime a one indeed
meta b peano imply parenthesis parenthesis meta b peano imply meta
b end parenthesis peano imply meta b end parenthesis
end line
line ell c because rule prime mp modus ponens ell a modus ponens ell
b indeed
parenthesis meta b peano imply parenthesis meta b peano imply meta
b end parenthesis end parenthesis
peano imply
parenthesis meta b peano imply meta b end parenthesis
end line
line ell d because axiom prime a one indeed
meta b peano imply parenthesis meta b peano imply meta b end
parenthesis
end line
because rule prime mp modus ponens ell c modus ponens ell d indeed
meta b peano imply meta b
qed
end math ]"
-Kasper Frederiksen
More information about the Logiweb
mailing list