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1 Introduction

Logiweb is a system that resembles the World Wide Web (WWW) in that it
allows people to make information accessible to other people. Logiweb differs
from WWW in that it is specially tuned towards presentation of mathematics
and computer science. Mathematics includes presentation of mathematical ty-
pography, axiomatic systems, lemmas, and formal proofs in such a way that
computers can check the proofs. Computer science includes presentation of
programming languages, programs, design and requirement documents and test
reports in such a way that computers can execute the programs and can make
soundness checks.

1.1 Components

The Logiweb system has a number of components:

Web The Logiweb web is a varying collection of Logiweb pages. Each page
consists of a bit vector and a bibliography where the bibliography is a list
of pointers to other Logiweb pages. The pages and bibliography pointers
form the nodes and edges, respectively, of a directed, acyclic graph.

Server Logiweb servers are programs that cooperate on maintaining a web.
Users may submit pages to servers which then make the pages available
to other users.

Browser Logiweb browsers are programs that allow a user to view and manip-
ulate pages.

Codex Every Logiweb page contains a set of definitions. Such a set of defi-
nitions is called a Logiweb codex. Logiweb specifies an algorithm which,
given a page in a web, returns the codex of the page. The codex of a
page may contain definitions of computable functions, axioms, axiom sys-
tems, lemmas, and proofs. The codex of a page may also define how to
display the page on a screen, how to print the page, and what interac-
tive behaviour the page has. The codex may also contain definitions of
letter shapes and font metric data. In general, a codex can contain any
definition that can be formalised and stored on a computer.

Abstract machine The Logiweb machine is an abstract machine that can
execute functional programs and can interact with the world around it.
The Logiweb machine is a Turing complete computing machine. When a
Logiweb machine is started, it bootstraps from a Logiweb page. What the
machine does after that depends of the contents of that boot page. The
Logiweb browser is intended to run on a Logiweb machine.

Logiweb gates A Logiweb gate is a http reference to a Logiweb page.
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Logiweb citation index The Logiweb citation index allows users to establish
associations between pages. The pages and the citation index form a
general, colored graph as opposed to the bibliographic references that
form an acyclic graph.

User interface The Logiweb user interface is the interface of the Logiweb
browser.

1.2 Open questions

How should other data types be embedded in S-expressions? Possible solutions:

• Quote solution. This involves modification of eval and puts substitution
of equals to danger.

• Constructor solution. Easy. One may consider Quote as a macro that
expands (x : : y) to 〈A, 〈A, 〈P〉, x〉, y〉 (or 〈P, x, y〉).

• Keyword package solution. Requires special handling af those packages
that do have proper atoms. Gives tags for free.

• Extra ID solution. Costs some extra memory. Gives tags for free. Allows
one page to contain several litteral types.

ANSWER: The “Symbols” section has been rewritten such that a symbol now
has form 〈p, i1, . . . , iq〉. This is essentially the “extra ID” solution.

SECOND THOUGHT: No. It complicates the value function. The constructor
solution is clean. Use it.

Should 〈Interrupt, Exit, p〉 be changed to 〈Interrupt, 〈Exit〉, p〉? Benefit: Fixed
position of p combined with flexible number of parameters of interrupts. YES.
And the 〈Interrupt, . . . , p〉 layout should be kept so that p does not need to be
included in each and every interrupt term.

Should input events, output events, and interrupt identifiers be described in the
representation chapter?

Should Logiweb pages have an unpack function? YES.

Should the “data structures” and “representation” chapters be combined?

Should boot/value representation be de-Curried? Could allow to apply S, K,
and P to parameters without the use of A. In that case A should be replaced
by CI. NO. The basic constructs should follow the standard. That allows to
display basic constructs without special attention.

2 The environment of Logiweb

2.1 Hardware platform

At the hardware level, Logiweb is supported by a number of host machines that
are interconnected by a number of host networks. As an example, if Logiweb
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runs on a number of pc’s that are interconnected by the internet, then the pc’s
are the host machines and the internet is the host network.

Computers and networks that host Logiweb need not be dedicated to Logiweb
alone. Rather, computers and networks that host Logiweb will typically host
other systems as well.

2.2 Logiweb nodes and messages

At any time, Logiweb comprises a number of Logiweb nodes and a number of
Logiweb messages. Logiweb nodes are programs that run on the host machines
and which supply the services offered by the Logiweb system. Logiweb mes-
sages are messages that the Logiweb nodes send to one another across the host
networks.

Examples of Logiweb nodes are Logiweb browsers which allow users to interact
with Logiweb. A Logiweb host may host more than one Logiweb node. As an
example, two users of a Logiweb host may run a Logiweb browser each.

Logiweb messages are messages that are internal to Logiweb and which conform
to a specific format. Logiweb nodes are able to send a receive such messages.
Logiweb nodes may also be able to send and receive messages that are not
Logiweb messages. As an example, a Logiweb browser that uses the X11 window
system will use X11 messages to communicate with the X11 server. Such X11
messages are not Logiweb messages.

2.3 Software platform

At the software level, Logiweb is supported by a number of host operating sys-
tems, a number of host programming languages and a number of host protocols.

A host operating system is a piece of basic software that runs on a host machine
and which allows Logiweb nodes to start up on that machine. The host operating
system may also supply services needed by the Logiweb nodes after start up.
Examples of host operating systems could be Windows or Linux or a PC-BIOS.
As an example, one may implement a Logiweb node as an EXE file on a Windows
system. In that case, the node may be started up by double clicking the EXE
file. As another example, one may implement a Logiweb node as a boot floppy
disk and insert the boot floppy in a PC. In that case, the node may be started
up by powering up the PC.

Logiweb has its own, native programming language, but some of Logiweb has
to be implemented in programming languages different from the native one. As
an example, one may use C as host programming language for those parts of
Logiweb that cannot be expressed in the native language. As another example,
hard core programmers may write e.g. a boot floppy or an EXE file using a hex
editor, in which case the machine language of the host machine is used as host
programming language.

When Logiweb nodes exchange Logiweb messages across a host network, the
messages will be routed and delivered using some protocol such as TCP or UDP.
Protocols that are used for transmission of Logiweb messages will be refered to
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as host protocols.

As mentioned before, Logiweb messages must conform to a specific format.
That format and the rules for exchange of such messages will be referred to as
the Logiweb protocol. A Logiweb message that is transfered using UDP must
conform to both the UDP protocol and the Logiweb protocol. Such a message
will be said to be a Logiweb/UDP message.

From the point of view of UDP, a Logiweb/UDP message is a UDP message
whose cargo happens to conform to the Logiweb protocol. From the point of
view of Logiweb, a Logiweb/UDP message is a Logiweb message with some
header and trailer bytes which are irrelevant to Logiweb. If, in turn, the UDP
message is transfered using IP, i.e. as a UDP/IP message, then the result-
ing message is a Logiweb/UDP/IP message which contains information that
adresses three different systems.

3 Logiweb data structures

3.1 Logiweb binary trees

The most fundamental data structure in the Logiweb system is the Logiweb
binary tree. Logiweb binary trees serve the same purpose in Logiweb as the byte
serves in a traditional computer: It is an efficient and general data structure
that is useful when implementing other data structures.

The easiest way to introduce Logiweb binary trees is to introduce a syntax for
expressing such trees. Let B be the syntax class defined by the following BNF
definition:

B ::= T|(B,B)

Some examples of Logiweb binary trees are:

T
(T, T)
((T, T), T)
(T, (T,T))
((T, T), (T,T))

The syntax class B has the property that there is a one-to-one correspondence
between Logiweb binary trees and elements of B. In other words, any Logiweb
binary tree can be expressed in one and only one way using the syntax above.

From the example above it is obvious that there is a countable infinity of Logiweb
binary trees.

3.2 The naive representation

Inside a Logiweb node, a simple (but wasteful) way to represent a Logiweb
binary tree is to represent T as a nil pointer and (x, y) as a pointer to a two
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element record structure. In C, the declaration of the data type bin and the nil
pointer T could read:

typedef struct bin_record {struct bin_record *head,*tail;} *bin;
#define T ((bin)0)

The representation above is too naive (i.e. wasteful w.r.t. memory usage) for
most applications, but nevertheless illustrates how Logiweb binary trees could
be implemented.

3.3 The Polish prefix representation

When transmitting a Logiweb binary tree over a network, it is important to
keep the size of the representation small in order to save band width. The Polish
prefix representation given in the following is designed for situations where size
is a primary concern.

To introduce the Polish prefix representation, we first introduce an alternative
syntax B̂ for Logiweb binary trees in which (x, y) is written Pxy:

B̂ ::= T|PB̂B̂

The “P” in Pxy stands for pair.

The Polish prefix representation of a Logiweb binary tree may be obtained
thus: Express the tree in the syntax B̂ and then replace T and P by 0 and 1,
respectively. The following examples illustrate the translation.

B B̂ Polish prefix
representation

T T 0
(T, T) PTT 100
((T, T), T) PPTTT 11000
(T, (T,T)) PTPTT 10100
((T, T), (T,T)) PPTTPTT 1100100

Hence, as an example, the Polish prefix representation of (T, (T, T)) reads 10100.
In general, the Polish prefix representation of any Logiweb binary tree is a bit
vector that consists of an odd number of bits.

The Polish prefix representation of a Logiweb binary tree always belong to the
syntax class bintree, which is defined thus:

bintree ::= 0 | 1 bintree bintree

The Polish prefix representation is self-terminating in the sense that if one re-
ceives a Logiweb binary tree followed by arbitrary dribble bits, then it is possible
to see where the binary tree ends and the dribble begins. As an example, the
eight bit pattern 10100110 represents the Logiweb binary tree (T, (T, T)) fol-
lowed by the dribble bits 110.

8



The Polish prefix representation of a Logiweb binary tree X is space efficient
compared to the naive representation except when X contains many repetitions.
As an example where the naive representation is superior, define

t1 =̇ T
tn+1 =̇ (tn, tn) (t = 2, 3, . . .)

The Polish prefix representation of tn takes up 2n− 1 bits whereas the smallest
naive representation of tn takes up r(n− 1) + p bits where r is the size in bits
of one record and p is the size in bits of one pointer. For large n, the naive
representation is smaller than the Polish prefix one.

The Polish prefix representation is useful for transmission and storage of Logi-
web binary trees that contain few repetitions.

3.4 Representation of physical quantities

Logiweb is fundamentalistically metric. Any length is measured in meters. Any
time interval is measured in seconds. Any mass is measured in kilograms.

As an example, a font size is a length and, hence, it is measured in meters. It
is of course inconvenient for a user to specify a font size of e.g. 0.003 meters,
but that is a problem for the designer of user interfaces, not something that
concerns the core of Logiweb.

As another example, Logiweb needs time stamps. Logiweb time stamps indicate
the number of seconds that have elapsed since the zero of Unix time. In other
words, Logiweb uses the same clock as Unix. A Logiweb time stamp is a decimal
fraction. A number d is a decimal fraction if there exist integers m and e such
that

d = m · 10e

Logiweb also uses derived units. As an example, area is measured in square
meters and paper quality in kilograms per square meter.

3.5 Decadic suffixes

For convenience, the following decadic suffixes are used in Logiweb:

9



Y yota 1024

Z zeta 1021

P peta 1018

E exa 1015

T terra 1012

G giga 109

M mega 106

k kilo 103

U unit 100

m mili 10−3

µ micro 10−6

u micro 10−6

n nano 10−9

p pico 10−12

f femto 10−15

a atto 10−18

z zepto 10−21

y yocto 10−24

Note that there are two non-standard decadic suffixes: U stands for 100 so that
a “unit meter” is the same as a meter. Furthermore, u is introduced as an
alternative for µ. Also note that only powers of 1000 are included so that centi,
deci, deca, and hekto are omitted.

Since Logiweb is a mathematical, logical, and computational system, the decadic
suffixes will be attached to numbers rather than physical units. As an example,
3m stands for the number “three mili”, which is the number 0.003. In Logiweb,
decadic suffixes extend the syntax for writing numbers rather than extending
the syntax for writing physical units.

As an example of use, if a font has size 3m or 3000µ, then the font has size
0.003 meters. Hence, in Logiweb, there is nothing called a “milimeter”, but it
is possible to say that a font has size “three-mili meters”.

Use of more than one decadic suffix is legal, so that 3µm denotes “three micro
mili”, i.e. 3 · 10−9. As an example, a mass of 3µm denotes “three micro mili
kilograms”, i.e. three micrograms.

Powers of suffixes are also allowed, such that 3m2 denotes “three square mili”,
i.e. 3 · 10−6. As an example, an area of 3m2 denotes “three square mili square
meters”, i.e. three square milimeter.

In physics, decadic prefixes are called prefixes because they are put in front
of physical units. In the Logiweb system, decadic suffixes are called suffixes
because they are put after the digits of a number.
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3.6 Binary coded decimal representation

In some situations where the size of the representation is important, Logiweb
uses the following binary coded decimal representation for decimal fractions:

digit ::= 0000 | 0001 | 0010 | 0011 | 0100 |
0101 | 0110 | 0111 | 1000 | 1001

natural ::= digit+

plus ::= 1010
minus ::= 1011
sign ::= plus | minus
integer ::= natural | sign natural
fraction ::= integer 1111 | mantisa exponent 1111
mantisa ::= integer
exponent ::= sign natural

As an example, 3.14 equals 314 · 10−3, so 3.14 may be represented thus:

0011 0001 0100 1011 0011 1111

3.14 also equals 3140 · 10−4, so 3.14 may also be represented thus:

0011 0001 0100 0000 1011 0100 1111

One may also prepend a plus sign:

1010 0011 0001 0100 0000 1011 0100 1111

The sign of the mantisa is optional whereas the sign of the exponent is manda-
tory. The latter is mandatory because the sign of the exponent marks where
the mantisa ends and the exponent begins.

2k may be represented as 2 · 103:

0010 1010 0011 1111

2k may also be represented as 2000:

0010 0000 0000 0000 1111

The definition natural ::= digit+ states that a natural number is a sequence of
one or more digits. In particular, the empty string does not represent a natural
number. Leading zeros are allowed.

Every decimal fraction ends with the pattern 1111. This allows to see where
the decimal fraction ends if it occurs inside some other structure.
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3.7 The Logiweb-160 global hash function

The Logiweb system uses a global hash function which we shall refer to as
Logiweb-160. Logiweb-160 is a slightly modified version of RIPEMD-160.

Both Logiweb-160 and RIPEMD-160 take a bit-vector v of arbitrary length as
input and produces a 160-bit bit-vector as output. Logiweb-160 and RIPEMD-
160 coincide on byte vectors. Furthermore, for every collision one can find for
Logiweb-160, one can immediately construct a collision for RIPEMD-160 and
vice versa.

Logiweb-160 and RIPEMD-160 disagree on the numbering of bits inside bytes
in that Logiweb-160 considers the least significant bit to be the first one and
RIPEMD-160 considers the most significant bit to be first.

When applied to a sequence of bytes, Logiweb-160 and RIPEMD-160 produce
the same result because the different conventions have no effect on the actual
computations.

When applied to a sequence v of bits, Logiweb-160 and RIPEMD-160 pack the
bits into bytes in different ways and then apply the same algorithm. For this
reason, any Logiweb-160 collision can be converted easily into a RIPEMD-160
collision and vice versa.

When applied to a bit vector, the Logiweb-160 algorithm is as follows:

1. Concatenate a “one”-bit at the end of the bit vector.

2. Pad the bit vector with “zero”-bits so that its length is a multiple of eight
bits. This adds from zero to seven bits to the vector.

3. Reverse the order of the last eight bits. This reversal ensures that Logiweb-
160 and RIPEMD-160 will produce the same hash code when applied to
byte vectors.

4. Add “zero”-bits until the bit vector is 64 bits short of being a multiple of
512 bits.

5. Express the length of the original bit vector as a 64 bit binary number
with the least significant bit first and concatenate the number at the end
of the bit vector. If the original bit vector contains 264 bits or more, use
the length modulo 264.

6. Convert the bit vector into a byte vector by placing bit n of the vector in
bit (n mod 8) of byte (n div 8). In each byte, bit 0 and 7 are the least and
most significant bits, respectively.

7. Apply RIPEMD-160 (without any padding) to the byte vector.

An alternative (and less efficient) formulation of Logiweb-160 is as follows: Con-
vert the bit vector into a byte vector and pad it to a multiple of 512 bits as
specified by RIPEMD-160. Then reverse the order of bits in each byte up to
but not including the byte that contains the stop bit.
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3.8 Logiweb pages

Logiweb pages constitute another fundamental data structure in Logiweb. The
format P of a Logiweb page reads:

P ::= reference contents
contents ::= bibliography body
reference ::= version key timestamp
version ::= 0000 0001
key ::= bit160

bit ::= 0 | 1
timestamp ::= fraction
bibliography ::= reference∗ 0000 0000
body ::= bintree

The definition key ::= bit160 says that a key consists of exactly 160 bit.

As can be seen from the syntax, every Logiweb page is a bit vector.

Every Logiweb page consists of a version followed by a key followed by a se-
quence of bits. The sequence of bits that follow the key will be referred to as
the vector of the page. Hence, an alternative definition of the syntax class P of
Logiweb pages read:

P ::= version key vector
vector ::= timestamp contents

The version, the key, and the vector of a Logiweb page are the three bit vectors
that arise when splitting up the page according to the syntax

P ::= version key vector

The timestamp and the contents of a Logiweb page are the three bit vectors
that arise when splitting up the vector of the page according to the syntax

vector ::= timestamp contents

The reference of a Logiweb page is the first of the two bit vectors that arise
when splitting up the page according to the syntax

P ::= reference contents

Hence, the reference equals the concatenation of the version, the key, and the
timestamp of the page.

The bibliography and body of a Logiweb page are the bit vectors that arise when
splitting up the contents of the page according to the syntax

contents ::= bibliography body
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The relation between the various concepts may be displayd thus:

P ::=

reference︷ ︸︸ ︷
version key timestamp

contents︷ ︸︸ ︷
bibliography body

P ::= version key timestamp bibliography body︸ ︷︷ ︸
vector

A Logiweb page is locally valid if the following holds:

• The key of the page equals the Logiweb-160 global hash key of the vector
of the page.

• All timestamps in the bibliography are positive.

• The timestamp of the page is greater than each timestamp in the bibliog-
raphy.

As can be seen, the version of any valid Logiweb page is 0000 0001. When and
if RIPEMD-160 is cracked by hackers or it otherwise becomes easy to generate
RIPEMD-160 collisions, the definition of Logiweb pages has to be extended in
a backward compatible manner so that any page that conforms to some, future
standard must have versions different from 0000 0000 and 0000 0001. As long as
RIPEMD-160 serves its purpose of generating unique keys, it is hard to imagine
a purpose for changing the definition of Logiweb pages.

3.9 Logiweb webs

A Logiweb web is a finite, non-empty sequence of Logiweb pages. A Logiweb
web is consistent if it satisfies the following properties:

• Every page in the web is locally valid.

• Any two pages in the web that have equal references also have equal
vectors.

• For every reference in every bibliography in the web, there exists a page
in the web with that reference.

The requirement that every page must be locally valid implies that the times-
tamp of each page must be greater than all timestamps in the bibliography of
that page. This rules out circular bibliographic references. Hence, the pages of
a web and their bibliographic references form a directed, acyclic graph. Since,
furthermore, every Logiweb web is required to contain at most finitely many
pages. This ensures that every web is well-founded in the sense that there are
no infinite sequences (p0, p1, . . .) such that pi refers to pi+1 for all natural num-
bers i. For this reason it is possible to prove properties about pages of a web
by induction in their bibliographic references.

The requirement that any two pages with equal references have equal vectors
ensures that every web defines a function from references to vectors. In other
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words, given a web, and given the version, key, and timestamp of a page in
the web, it is possible to look up the bibliography and body of the page. The
bibliography and body will be uniquely determined even if the web contains
several copies of the given page.

3.10 Logiweb addresses

Whenever a Logiweb node sends a message, it sends it to some Logiweb address.
Since Logiweb can be supported by several host protocols, a Logiweb address
must identify the host protocol and, furthermore, identify the exact address in
some host protocol specific format.

At present, Logiweb is supported by the host protocols UDP and TCP, which
in turn are hosted by IP version 4. At present, any Logiweb address is eight
bytes long. If a Logiweb node sends a message to a given Logiweb address, then
the first two bytes of the address indicates which host protocol (UDP/IPv4 or
TCP/IPv4) to use, the next two bytes indicates which port to send to, and the
next four bytes indicates the IP address to send to.

The syntax of a Logiweb address is:

address ::= udp ip v4 address | tcp ip v4 address
udp ip v4 address ::= family udp ip v4 id port ip
family ::= 0000 0001
udp ip v4 id ::= 0000 0000
tcp ip v4 address ::= family tcp ip v4 id port ip
tcp ip v4 id ::= 0000 0001
port ::= portlsb portmsb
portlsb ::= byte
portmsb ::= byte
ip ::= byte4

As an example of an address, udp-port 5 of a network interface with ip address
1.2.3.4 will have the following Logiweb address:

0000 0001 0000 0000 0000 0101 0000 0000
0000 0001 0000 0010 0000 0011 0000 0010

Each Logiweb node must have at least one Logiweb address. A Logiweb node
may have more than one Logiweb address. As an example, a Logiweb node may
have both a UDP and a TCP address. As another example, a Logiweb node
may have more than one connection to the internet.

4 Representation by Logiweb binary trees

4.1 Introduction

Within Logiweb, many quantities are represented by Logiweb binary trees. The
following paragraphs present some of the representations.
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4.2 Truth values

Truth and falsehood are represented by T and (T, T), respectively. Let F denote
(T, T). Now truth and falsehood are represented by T and F, respectively.

T and F will be referred to as the canonical representation of truth and false-
hood. In addition to the canonical representation we also introduce a liberal
representation. In the liberal representation, T represents truth whereas all
Logiweb binary trees of form (x, y) represent falsehood.

4.3 Bits

The binary terms (bits) 0 and 1 are canonically represented by T and (T, T),
respectively. T liberally represents 0 whereas all binary trees of form (x, y)
represent 1.

Note that 0 and T are represented by the same binary tree. This is in line with
recursion theory in general and Gödels 1931 paper in particular. Note that the
convention is opposite of e.g. the C programming language.

4.4 Pairs

We shall use x : : y as an alternative notation for (x, y). x : : y is right associative
such that e.g. x : : y : : z means x : : (y : : z).

4.5 Tuples

A tuple 〈a1, . . . , an〉 is represented by a1 : : · · · an : : T. As an example, the
empty tuple 〈 〉 is represented by T.

4.6 Bitvectors

Bit vectors are represented as tuples of bits. In tuples of bits, bit number zero is
the first bit in the tuple. When written as sequences of bits, bit zero is written
rightmost. Hence, when writing out a tuple of bits, one has to reverse the order
of the bits. As an example, the bit vector

(01100)bit

is represented by the tuple

〈0, 0, 1, 1, 0〉

As examples, the empty bit vector ( )bit is represented by T and the one element
bit vector (T)bit is represented by 〈T〉 = (T,T).

4.7 Bytes

A byte (eight bit word) is represented as an 8-bit bit vector.
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4.8 Characters

Characters in ASCII / ISO Latin 1 are represented as bytes. As an example,

Achar

is represented by

(00100001)bit

which in turn is represented by

〈1, 0, 0, 0, 0, 1, 0, 0〉

In the binary number representation, the bitvector above represents the number
65.

4.9 Strings

A string is represented as a tuple of characters. The first character in the tuple
represents the first character in the string. As an example

“AB”

is represented by

〈Achar,Bchar〉

4.10 Binary number representation

In the binary number representation, a bit vector represents a natural number.
When written as a tuple, the least significant bit is the first bit in the tuple.
When written as a bit vector, the least significant bit is rightmost. As examples,

(01100)bit

and

〈0, 0, 1, 1, 0〉

both represent twelve in the binary representation. For all natural numbers
n we shall use binary(n) to denote the shortest bitvector that represents the
number. As examples, binary(12) = 〈0, 0, 1, 1〉 and binary(0) = T.
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4.11 Small natural numbers

When size is a primary concern, small natural numbers will be represented using
a rather complicated scheme that is represented in the following:

The Polish prefix representation of a Logiweb binary tree x is a sequence of
bits. Let ord(x) denote the value of that sequence when it is interpretted as a
binary number with the least significant bit rightmost (i.e. opposite of the binary
number representation). The following table gives some examples of values of
ord(x):

x prefix ord(x)
representation

T 0 0
(T, T) 100 4
(T, (T,T)) 10100 20
((T, T), T) 11000 24
(T, (T, (T, T))) 1010100 84

If the binary trees x and y are different, then ord(x) and ord(y) are also different,
so ord(x) determines x uniquely. We shall refer to ord(x) as the ordinate of x.

Let #0 denote the binary tree that has the smallest ordinate, i.e. #0 .= T.
Let #1 denote the binary tree that has the second smallest ordinate, i.e. #1 .=
(T, T). Let #2 denote the binary tree that has the third smallest ordinate, i.e.
#2 .= (T, (T,T)) and so on.

With these definitions, #0,#1, #2, . . . is an enumeration of all binary trees.

When size is important and i is a small, natural number, we shall use #i to
represent the number i.

4.12 Digits

We shall use small numbers to represent the digits 0 to 9.

The following table displays the definitions of the ten digits.

0digit
.= T

1digit
.= (T, T)

2digit
.= (T, (T, T))

3digit
.= ((T,T),T)

4digit
.= (T, (T, (T, T)))

5digit
.= (T, ((T,T), T))

6digit
.= ((T,T), (T, T))

7digit
.= ((T, (T,T)),T)

8digit
.= (((T, T), T),T)

9digit
.= (T, (T, (T, (T, T))))
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4.13 Decimal number representation

In the decimal number representation we represent a natural number as a list
of digits with the least significant digit first. As an example

〈3digit, 2digit, 1digit〉

represents the number 123. We shall use decimal(n) to denote the shortest
list of digits that represents the number n. As an example decimal(123) =
〈3digit, 2digit, 1digit〉.

4.14 Sign magnitude representation

In the sign magnitude representation, we represent an integer as a pair whose
elements represent the sign and magnitude, respectively, of the integer. A plus
sign is represented as T and a minus sign as F. As an example,

〈F, 3digit, 2digit, 1digit〉

represents −123. The number zero can be represented by an arbitrary sign fol-
lowed by an arbitrary number of zero digits. We make the additional convention
that T represents zero in the sign magnitude representation, so that zero can
be represented as the empty tuple.

We shall use signmag(n) to denote the shortest tuple that represents the integer
n in the sign magnitude representation. Some examples read:

signmag(123) = 〈T, 3digit, 2digit, 1digit〉
signmag(0) = T
signmag(−123) = 〈F, 3digit, 2digit, 1digit〉

4.15 Decimal fractions

We shall represent decimal fractions as three element tuples 〈m, e, p〉 where m
and e are sign magnitude representations of integers M and E, and p represents
a truth value. In the decimal fraction representation, 〈m, e, p〉 represents the
value

M · 10E

regardless of the value of p.

We shall refer to m, e, and p as the mantissa, exponent, and exactness, re-
spectively, of the decimal fraction. The exactness has no influence on the value
that the tuple represents, but it does have effect on operations such as the plus
operation. To be more specific, the exactness affects whether or not the plus
operation involves rounding of the result.

A decimal fraction is said to be an exact fraction if its exactness is T and is said
to be a floating fraction if its exactness represents falsehood.
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We shall refer to the number of digits of the mantissa of a floating fraction as
the precision of the floating fraction. When counting the digits, all digits count,
even zero digits at the beginning and end of the mantissa. As an exception, if
the mantissa has no digits (in which case the mantissa represents zero) then the
precission is 1 by convention.

Two decimal fractions are added thus: If both are exact, they are just added
with no rounding. As an example, 10100 + 10−100 has 201 digits. If both are
floating and if they have different precision, the result is an exception. If the
decimal fractions are floating and have the same precision, then they are added
as exact fractions and after that the result is rounded to the common precision
of the two floating fractions. If one of the decimal fractions is exact and the
other is floating, then they are added as exact fractions and after that the result
is rounded to the precision of the floating fraction.

We shall use the prefix F to denote that a decimal fraction is floating. As an
example

1.23F

may be represented thus:

〈〈T, 3digit, 2digit, 1digit〉, 〈F, 2digit〉, F〉

4.16 Symbols

As mentioned in Section 3.8, Logiweb references are bit vectors. A Logiweb
reference is represented like any other bit vector as described in Section 4.6.

A symbol is a pair p : : i where p and i are referred to as the page and id of the
symbol, respectively. The page of a symbol must be T or a Logiweb reference.
The id can be any Logiweb binary tree.

Logiweb symbols correspond to Lisp atoms and to Common Lisp symbols. A
Logiweb symbol with page p and id i corresponds to a Common Lisp symbol
with name i that occurs in package p. Contrary to Common Lisp, a Logiweb
symbol has one and only one page whereas a Common Lisp symbol may occur
in zero, one or more packages. Also contrary to Common Lisp, the name i of a
Logiweb symbol is a rather unreadable Logiweb binary tree whereas the name
of a Common Lisp symbol is a more readable string of characters.

Symbols whose page is T are referred to as predefined symbols. Predefined
symbols have fixed meanings as specified later.

Symbols whose page is a Logiweb reference are referred to as defined symbols.
Given a Logiweb web W , the meaning of a defined symbol p : : i relative to W
is defined by the page referred to by p. The details are specified later.

NOTE: It seems wiser to let symbols have form 〈p, i1, . . . , iq〉. That allows
indefinite extension so that e.g. a page Decimal could have two infinities of
symbols:

〈Decimal,Exact,mantisa, exponent〉
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and

〈Decimal,Float, mantisa, exponent〉

One can then look up the meaning of a symbol by successively taking in more
and more of the symbol until a meaning is found (e.g. 〈Decimal〉 has no mean-
ing, 〈Decimal, Float〉 has. However, this way of looking at symbols does not
contradict the definition above, so why bother too much.

4.17 Predefined symbols

Define

bi
.= (T, #i)

where #i was defined in Section 4.11. The sequence b0, b1, b2, . . . constitutes an
enumeration of all predefined symbols. Now define

T = b0 Computable constructs
P = b1

A = b2

S = b3

K = b4

Stderr = b5 Output event identifiers
Exec = b6

Extend = b7

Boot = b8 Input event identifiers
Interrupt = b9

Stdin = b10

Extended = b11

Exit = b12 Interrupt identifiers
Watchdog = b13

Memory = b14

X = b15 Codex inconsistency
Codex = b16 Second level indices
Subcache = b17

Parsetree = b18

Page = b19

Pagename = b20 Aspects
Unpack = b21

Symbolname = b22

Parameters = b23

TeXname = b24

Codify = b25

Value = b26

4.18 Terms

A Logiweb term is a list with at least one element whose first element is a symbol
and whose remaining elements (if any) are terms.
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Logiweb terms correspond to Lisp S-expressions.

In a Logiweb term 〈r, t1, . . . , tn〉, r will be referred to as the root of the term
and ti will be referred to as the i’th subterm of t.

4.19 Association lists

An association list is a list

〈k1 : : v1, . . . , kn : : vn〉

where n is a natural number, where k1, . . . , kn and v1, . . . , vn are Logiweb binary
trees, where v1, . . . , vn all differ from T, and where

ord(k1) < ord(k2) < · · · < ord(kn)

In the association list, k1, . . . , kn are referred to as keys and v1, . . . , vn are re-
ferred to as values.

As no two keys in an association list are equal, an association list a defines a
function from keys to values.

The ordering imposed on keys is completely arbitrary. Any total ordering would
do. The purpose of the ordering is to allow off stage implementation of associa-
tion lists in a way in which the ordering of associations is lost. As an example,
one may implement association lists as binary search trees behind the scenes.
As long as one merely access the association list using the functions described in
the following, access will happen efficiently. The moment one takes the head of
the association list, the system will have to convert the off stage representation
back to a genuine association list which is handed to the “head” function. When
doing this conversion, the convention above allows to sort the associations in a
well defined order.

4.20 Association list access functions

For all association lists a and for all Logiweb binary trees k, let

〈a|k〉

denote the unique Logiweb binary tree v for which k : : v belongs to the list a if
such a v exists, and let 〈k|a〉 denote T otherwise.

We shall use 〈a|k1, . . . , kq〉 to denote 〈a|〈k1, . . . , kq〉〉.
For all association lists a and for all Logiweb binary trees k and v, let

〈a|k:=v〉

denote the unique association list a′ for which 〈a′|k〉 = v and which otherwise
coincides with a. Note that 〈a|k:=v〉 may add or change an association when
v 6= T and may remove an association when v = T.
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For all lists p and q let p · q denote p concatenated with q.

For all association lists a and for all Logiweb binary trees p let

trie get(p, a)

denote the unique association list a′ for which

〈a′|q〉 = 〈a|p · q〉

For all association lists a and v and for all Logiweb binary trees k let

trie put(k, v, a)

denote the unique association list a′ for which trie get(k, a′) = v and which
otherwise coincides with a.

4.21 Association list merge function

For all Logiweb binary trees x and y define value merge(x, y) thus:

value merge(x, y) = x if y = T
value merge(x, y) = y if x = T
value merge(x, y) = x if x = y
value merge(x, y) = X otherwise

For all association lists a and a′ define a⊕ a′ such that

〈a⊕ a′|v〉 = value merge(〈a|v〉, 〈a′|v〉)

4.22 Codices

A Logiweb codex is an association list c for which all keys have form 〈p, s, a〉
where p is a Logiweb page reference and s and a are symbols.

We shall refer to 〈c|p, s, a〉 as the aspect a of the symbol s as defined on page p
w.r.t. the codex c.

As an example, 〈c|s head, s, Value〉 denotes the Value aspect of the symbol s as
defined on the home page of s w.r.t. the codex c. This corresponds to (symbol-
function s) in Common Lisp when s denotes a Common Lisp function.

As another example, 〈c|s head, s, Macro〉 denotes the Macro aspect of the symbol
s as defined on the home page of s w.r.t. the codex c. This corresponds to
(symbol-function s) in Common Lisp when s denotes a Common lisp macro.

As a third example, 〈c|s head, s, Name〉 denotes the Name aspect of the symbol
s as defined on the home page of s w.r.t. the codex c. This corresponds to
(symbol-name s) in Common Lisp.
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More generally, 〈c|s head, s, a〉 corresponds to the property a of the property list
of the symbol s in Common Lisp. Furthermore, a Logiweb codex corresponds
to a Common Lisp environment.

If p 6= (s head) then 〈c|p, s, a〉 has no immediate correspondence in Common
Lisp.

4.23 Lambda terms

We shall represent computable functions using the computable part of Map
Theory. Expressed in the framework of lambda calculus, the syntax T̄ of the
computable part of Map Theory reads:

V ::= x | y | z | · · ·
T̄ ::= V | λV.T̄ | T̄ T̄ | T | if(T̄ , T̄ , T̄ ) Lambda terms

The reduction rules of the computable part of Map Theory read:

(λx.y)z → 〈y | x := z〉
Tz → T
if(T, y, z) → y
if(λu.v, y, z) → z

Lambda reductions

Above, 〈y | x := z〉 denotes the term y in which the variable x is replaced by
the term z with suitable renaming of bound variables to avoid variable clashes.

The computable part of Map Theory uses normal order reduction and reduction
proceeds until a term is on root normal form. A term is on root normal form
when it has one of the forms T or λx.y.

A term is said to be on atom normal form if it is identical to the term T. A
term is said to be on function normal form if it is on root normal form without
being on atom normal form. Hence, a term is on function normal form when
it is of form λx.y. With these conventions, the reduction rules may be stated
thus:

(λx.y)z → 〈y | x := z〉
Tz → T
if(x, y, z) → y if x is on atom normal form
if(x, y, z) → z if x is on function normal form

4.24 Combinator terms

On a computer, however, it is inconvenient to reduce terms that are expressed
in a syntax that includes variables. This is so because the operation 〈y | x := z〉
is complicated. For that reason, the engine of the Logiweb machine implements
a combinatorial version of the computable part of Map Theory. In the combina-
torial version, terms are expressed using T plus the following three combinators:

S
.= λx.λy.λz.xz(yz)

K
.= λx.λy.x

P
.= λx.λy.λz.if(z, x, y)

Combinators

Using these combinators, the syntax T of terms may be written thus:

T ::= T T | S | K | T | P Combinator terms
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The reduction rules may be stated thus:

Sxyz → xz(yz)
Kxy → x
Tx → T
PxyT → x
Pxy(S) → y
Pxy(Su) → y
Pxy(Suv) → y
Pxy(K) → y
Pxy(Ku) → y
Pxy(P) → y
Pxy(Pu) → y
Pxy(Puv) → y

Combinator reductions

The engine still reduces until root normal form. In the combinator formulation,
a term is on root normal form when it has one of the following forms:

S K T P
Su Ku Pu
Suv Puv

Root normal forms

A term is still said to be on atom normal form if it is identical to the term T
and a term is still said to be on function normal form if it is on root normal
form without being on atom normal form. Hence, a term is on function normal
form if it has one of the following forms:

S K P
Su Ku Pu
Suv Puv

Function normal forms

With these conventions, the reduction rules may be stated thus:

Sxyz → xz(yz)
Kxy → x
Tx → T
Pxyz → x if z is on atom normal form
Pxyz → y if z is on function normal form

The reduction order in the combinator version is thus:

Sxyzu1 · · ·un → xz(yz)u1 · · ·un

Kxyu1 · · ·un → xu1 · · ·un

Txu1 · · ·un → Tu1 · · ·un

Pxyzu1 · · ·un → xu1 · · ·un if z is on atom normal form
Pxyzu1 · · ·un → yu1 · · ·un if z is on function normal form

If z is neither on atom nor on function normal form then reduction of

Pxyzu1 · · ·un

leads to reduction of z. This last requirement has the consequence that the
reduction order of the combinator version differs from normal order reduction.
We shall say that the reduction order is call by need.
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4.25 The value function

For all terms t, symbols s, and codices c we shall define the value vct of the
term t and the value V cs of the symbol s w.r.t. the codex c as follows:

vc〈s, t1, . . . , tn〉 = V cs(vct1) . . . (vctn)
V cs = vc〈c|s head,Codex, s, Value〉

if s 6∈ {A,S,K,T,P}
V cA = SKK
V cS = S
V cK = K
V cT = T
V cP = P

For completeness we define vcT = T so that vct and V cs are defined for all
Logiweb binary trees c, t, and s.

4.26 The boot representation

The boot representation allows to represent computable functions by logiweb
binary trees in a particularly simple way.

The boot representation is defined by a function b. Given a Logiweb binary tree
t, bt equals the computable function represented by t. The function b and the
auxiliary function (t last) are defined thus:

bt = T if t = T else
bt = vTt if v head = A else
bt = b(t tail last)
t last = t head if t tail = T
t last = t tail last otherwise

To represent a computable function in the boot representation, one can represent
the computable function by a term of syntax T , and then one can represent the
term as a Logiweb binary tree thus:

xy is represented by 〈A, x, y〉
S is represented by 〈S〉
K is represented by 〈K〉
T is represented by 〈T〉
P is represented by 〈P〉

The definition of bt says that b recursively descends to the rightmost subterm
of t until it finds an A. This allows to construct a Logiweb binary tree that
represents a mathematical text and which, in its last appendix, contains a com-
putable function expressed in the boot representation.

4.27 The eval function

The eval function e takes three arguments: a codex c, a message m , and a term
t. A message m consists of an aspect a followed by submessages m1, . . . ,mp.
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We shall refer to ecmt as the result of sending the message m to the term (or
object) t.

The definition of the eval function e reads:

ecm = vc if m head = Value
ecm = b if m head = Boot
ecm = vcmc otherwise

5 Unpacking of pages

5.1 Logiweb caches

For all Logiweb webs W and all page references r let page(r,W ) denote the page
in W referenced by r if such a page exists and let page(r,W ) = T otherwise. If
p is a page then let Ref(p), Data(p), and Bib(p) denote the reference, data, and
bibliography, respectively, of p.

Given a Logiweb reference r, the task of a Logiweb browser is to fetch and
“unpack” the Logiweb page page(r,W ) where W is the web maintained by all
connected Logiweb servers at that given moment. Unpacking a page allows the
browser to extract definitions, executable code, theorems, fonts, and many other
data structures from the page, and ultimately allows the browser to display the
information to a user.

Among other, unpacking a page produces a parse tree and a codex.

A codex is a set of definitions. A codex can define values, functions, executable
code, theorems, proofs, fonts, and anything else that a computer can manipulate.

The parse tree of a page is a representation of the page which is particularly
suited for displaying and editing the page, and it is also the basis for finding the
codex of the page. To display a page, a browser has to do “reverse parsing” of
the parse tree. This is in contrast to ordinary programming languages in which
the human readable form of a program is “parsed” to obtain the parse tree. In
Logiweb, the parse tree is the primary form which has to be reverse parsed to
give a human readable form.

To unpack p = page(r,W ), the browser first has to unpack all pages q1, . . . , qn

in the bibliography of p; and before that the browser must unpack all pages
in the bibliographies of q1, . . . , qn and so on. Hence, to unpack a page p, the
browser first has to unpack all pages reachable through one or more bibliographic
references starting at p.

A Logiweb browser typically needs to access the same pages over and over again,
and for that reason it is convenient for a browser to maintain a Logiweb cache
of pages. A Logiweb cache is an association list whose keys have form r : : r′

where r must be a page reference. Unpacking a page page(r,W ) results in a
number of different pieces of information, all of which are stored under keys of
form r : : r′.

Now suppose W is a Logiweb web and that b is a list of page references. To
unpack all pages referenced by b, a Logiweb browser has to construct a Logi-
web cache C(b,W ) which contains information about all pages referenced by b
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together with all pages reachable from those pages through one or more biblio-
graphic references. The definition of C(b,W ) defines the notion of unpacking.
The definition of C(b, W ) reads:

C(T,W ) = T
C(r : : b,W ) = C1(r,W )⊕ C(b,W )
C1(r,W ) = let p = page(r,W ) in

let s = C(Bib(p),W ) in
let t = parse(p, s) in
letx = codex(t, s) in
〈s|

r,Page := p|
r,Subcache := s|
r,Parsetree := t|
r,Codex := x〉

The functions codex(t, c) and parse(p, c) are described in the following.

We shall refer to C1(r,W ) as the minimal cache of the reference r w.r.t. the web
W . Given a reference r and a cache c that contains r, the minimal cache of r
equals C2(r, c) which is defined thus:

C2(r, c) = let p = 〈c|r,Page〉 in
let s = 〈c|r,Subcache〉 in
let t = 〈c|r,Parsetree〉 in
let x = 〈c|r,Codex〉 in
〈s|

r,Page := p|
r,Subcache := s|
r,Parsetree := t|
r,Codex := x〉

5.2 The parse tree transformation

Suppose a Logiweb page p has reference r, bit-vector d and bibliography b =
〈b1, . . . , bn〉. The parse tree transformation parse(p, c) inspects

u = 〈c|bn,Codex, bn : : T, Unpack〉

If u differs from T then parse(p, c) returns vcup.

If u equals T then the transformation does a “default parse tree transformation”
as follows: First, the transformation converts d from Polish prefix representation
to a Logiweb binary tree x. Then the transformation does page references
substitution as follows:

Page reference substitution in a Logiweb binary tree x proceeds thus: Write x
on form 〈q : : i, x1, . . . , xn〉. Then do page reference substitution in x1, . . . , xn.
Then interpret q as a small, natural number. If q = 0 then replace q by r. If
0 < q ≤ n then replace q by the bq. If n < q then replace q by T.
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5.3 The codex transformation

The codex transformation has the following property:

codex(〈Definition, 〈s, . . .〉, 〈a, . . .〉, v〉, c) = 〈T|〈s, a〉:=v〉

Now suppose t = 〈s, t1, . . . , tn〉 where s 6= Definition. The codex transformation
codex(t, c) inspects

u = 〈c|s head,Codex, s, Codify〉

If u 6= T then codex(t, c) returns ecut. If u = T then codex(t, c) does a “default
codex transformation”, i.e. it returns codex(t1, c)⊕ · · · ⊕ codex(tn, c).

5.4 Default unpacking

By default, a page is unpacked by a default parse tree transformation followed
by a default codex transformation. One may override the default parse tree
transformation by defining an unpacker 〈c|r,Codex, r : : T,Unpack〉 in the last
bibliographic reference r and one may override the default codex transformation
by placing a symbol s at the root of the parse tree for which 〈c|s head,Codex,
s,Codify〉 6= T.

The intension is that default unpacking should be used for unpacking a few,
fundamental Logiweb pages such as pages that define non-standard unpacking.
Hence, default unpacking is intended for bootstrapping the system, not for
general use.

As examples, custom parse tree transformations may be used for decompressing
compressed pages and decrypting encrypted pages.

As another example, if one defines e.g. a Logiweb font metric (lfm) file format
and one wants to convert e.g. a TEX font metric (tfm) file to that format, then
it is possible to use the tfm file verbatim as the data part of a Logiweb page as
long as the unpacker for that page converts tfm to lfm format. If, furthermore,
the Logiweb server represents Logiweb pages as a reference, a bibliography, and
a link to a file that contains the data, then it is possible to let the Logiweb
server and a TEX system on the same host share the tfm file.

5.5 Presentation of pages

Given a reference r and a web W , one may present the page of W referenced by
r. A “presentation” is something a human being can absorb. A “presentation”
is typically an image on a screen or a print on paper, but it can also be other
things such as an electronic voice reading the page.

Contrary to “representations”, a presentation may not capture all information
about a page. In general, it will be impossible to reconstruct a page from a
presentation. Actually, good presentations typically suppress information that
is considered irrelevant.
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Presentations may be interactive. As an example, a screen presentation may
respond to mouse clicks and keystrokes.

A page will typically have many presentations. As an example, a page may
have one presentation suited for display on a screen, one suited for printing, one
suited for editing, and so on.

Presentations are identified by messages. Hence, to present a page, one needs
a web W , a page reference r, and a message m which indicates how the page
should be presented.

Given a web W , a page reference r, and a message m, let c be the minimal cache
that contains r and also contains all pages referenced from m. The presentation
of r specified by m is now given by f = ecmr. The function f is then used as
initial function in a Logiweb machine.

How output events from the Logiweb machine are interpretted depends on the
browser in use. It is also the browser that supplies input events to the Logiweb
machine. The browser is typically defined by the boot page (see later).

Two particularly simple presentations are predefined, however. They are called
the Lisp form and the TEX form, respectively. Both forms present a page as a
string of Ascii characters (“newline” plus characters in the range from 32 to 127).
The Lisp form is an S-expression suited for manipulation by Lisp programs. The
TEX form is suited for running through TEX and then displaying using some DVI
tool.

5.6 The Lisp presentation

The Lisp presentation is based on the aspects Pagename and Symbolname.
The Lisp presentation of a page pointed out by a reference r in a web W can
be constructed using the definitions below. The Lisp presentation gives some
human readable information about the page. One cannot reconstruct a page
from the Lisp presentation alone, but in many situations the Lisp presentation
will capture all information about a page of interest to the human reader.

The name of the page referenced by r (w.r.t. the cache c) is given by

nr = 〈c|r,Codex, r : : T,Pagename〉

nr must be a string of small letters (a-z), digits, and hyphens. Furthermore, nr

must contain at least one character and the first character must be a letter. If nr

fails to satisfy these conditions, then the name of the page is the one character
string “!”. If distinct pages in c have the same name, an “!” is appended to
the name (unless the name is “!” in which case no “!” is appended). As an
exeption, the name of the page T is the empty string.

The individual name of the symbol s = r : : i (w.r.t. the cache c) is given by

ns = 〈c|r,Codex, s,Symbolname〉

ns must satisfy the same requirements as nr, or else the symbol name is “!”. If
distinct symbols on a page have the same name, an “!” is appended to the name
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(unless the name is “!” in which case no “!” is appended). Predefined symbols,
i.e. symbols of form T : : bk are treated differently. The predefined symbols
listed in Section 4.17 have the names indicated in that section (e.g. T : : b0 has
the name t. The individual name of an unlisted, predefined symbol T : : bk is
bd1 · · · dj where d1 · · · dj is the decimal representation of k. As an example, the
individual name of T : : b117 is “b117”.

The full name Ns of a symbol s = r : : i (w.r.t. the cache c) is the string nr: ns,
i.e. the name nr of the page r appended to a “colon” appended to the individual
name ns of the symbol. For completeness, the full name of T is defined to be
“!”, so T is the only structure whose full name contains no “colon”.

Let denote a space character. The S-presentation of an S-expresion t (w.r.t.
the cache c) is thus: If t has form

〈s, t1, . . . , tk〉

then the S-presentation is

(Ns T1 . . . Tk)

where Ns is the full name of the symbol s (w.r.t. the cache c) and Tj is the Lisp
presentation of tj (j ∈ {1, . . . , k}). The S-presentation of T is ().

The Lisp presentation of the page referenced by r in a web W is

(n (b1 · · · bi) T )

where n is the name of r (w.r.t. the minimal cache that contains r), bk is the
name of the k’th bibliographic reference (w.r.t. the minimal cache that contains
r), and T is the S-presentation of the parse tree of the page (w.r.t. the minimal
cache that contains r).

• 〈c|r,Codex, r : : T,Pagename〉.
• 〈c|r,Codex, r : : T,Unpack〉: Translation to parse tree.

• 〈c|r,Codex, s,Symbolname〉.
• 〈c|r,Codex, s,Parameters〉.
• 〈c|r,Codex, s,TeXname〉.
• 〈c|r,Codex, s,Codify〉: Translaton to codex

• 〈c|r,Codex, s,Value〉: Definition as seen from value function.

5.7 Initial editing of pages

6 Logiweb machines

A Logiweb machine is an abstract machine that can execute Logiweb programs.
Logiweb machines themselves are written in some host programming language.
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6.1 The structure of Logiweb machines

A Logiweb machine consists of one program. The program has two logical
components, namely the engine and the interface.

The engine is the component where most CPU-time is spent. The engine is
able to execute pure functional programs. More precisely, the engine can reduce
combinator terms to root normal form.

The interface is the component that does all the things a pure functional pro-
gram cannot do such as communicating with the outside world. The interface
activates, preempts, and reactivates the engine.

Among other, the interface has a facility for dynamically loading code into the
Logiweb machine. Such code can make the engine run more efficiently and can
add facilities to the interface. A Logiweb machine is said to be virgin from the
moment it starts until first time it loads. The virgin Logiweb machine has very
few facilities and is very inefficient.

6.2 The boot sequence

When the Logiweb machine is started, the interface reads the command line
arguments (argc) and the environment in effect (env). The interface converts
argc and env into lists of strings.

The interface uses one particular Logiweb page as its boot page. The interface
decides on what boot page to use in some, unspecified way. As an example,
the interface may use the second element of argc as the reference of the boot
page (the first element is the name of the command that started the Logiweb
machine).

The interface fetches the boot page and converts the body B of the boot page
into a computable function f using the boot representation. We shall refer to
that function as the boot function.

Then the interface forms a boot event x0 of form

x0 = 〈Boot, argc, env, B〉

A boot event is an input event, i.e. a data structure that represents information
that comes to the Logiweb machine from the outside world (c.f. Section 6.6).

Then the interface forms a term x of form

x = 〈x0〉

The term x is a one-element list whose sole element is the boot event.

Then the interface commands the Engine to reduce fx. The result of the re-
duction is a list

〈y1, y2, . . . , yn〉
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whose elements are output events (actually, the full truth is a bit more compli-
cated since the engine merely reduces to root normal form and not necessarily
to a list, but the details are deferred).

Each output event represents an action which the interface has to execute. The
interface is said to execute an event when it executes the action represented by
the event.

The interface executes each output event in turn. In principle, the Logiweb
machine quits when it has executed all the output events. There are, however,
output events that command the interface to reactivate the engine, and this
allows the Logiweb machine to enter a loop.

6.3 Output events

The virgin Logiweb machine defines the following output events:

〈Stderr, string〉 stderr event
〈Exec, process, handler〉 exec event
〈Extend, string〉 extend event

A stderr event commands the interface to write the given string on the users
terminal. Under Unix (e.g. Linux), a stderr event more precisely commands the
interface to send the given string to the stderr output stream. As an example,
if the boot function is

λx.〈〈Stderr, ”Hello world”〉〉

then the Logiweb machine will write “Hello world” on stderr and then quit.

Exec and extend events are treated in Section 6.4 and 6.5, respectively.

6.4 Exec events

An exec event

〈Exec, p, h〉

contains a process p and a handler h, which are computable functions. An exec
event commands the interface to perform the following actions:

First, the interface aborts all events that come after the given exec event. At
the time the interface takes action on the exec event, it has already executed
the events that occur before the given exec event in the list of output events.
For that reason, a list of output events will typically contain at most one exec
event and the exec event, if any, will typically occur at the end of the list.

Then the interface commands the engine to reduce p where p was the process
of the exec event.

During reduction of p there is an upper bound on the cpu time and memory
available. The amount of allocated time and memory is system dependent.

The amount of allocated time may be a measure of the number of miliseconds
the cpu spends on reducing p. The amount may also be an amount of real time
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such that reduction of p is interrupted by a real time clock regardless of the
amount of time the cpu has spent on the reduction. The amount may also be a
count of reductions, so that the engine counts how many reductions it performs
and suspends p when it has performed a certain number of reductions.

The amount of allocated memory may be e.g. all memory available minus a fixed
amount of memory that is held in reserve.

If reduction of p is suspended due to time out, it is said to be interrupted by
the watchdog interrupt. If reduction of p is suspended due to memory shortage,
it is said to be interrupted by the memory interrupt. If reduction of p succeeds
before the watchdog or memory interrupts occur then the reduction is said to
be interrupted by the exit interrupt.

In any case, reduction of p ends with an interrupt. Each interrupt has an inter-
rupt id which is a Logiweb binary tree. The interrupt ids of the exit, watchdog,
and memory interrupts are Exit, Watchdog, and Memory, respectively.

When an interrupt occurs, the interface forms an interrupt event x0 of form

x0 = 〈Interrupt, 〈i, i1, . . . , in〉, p′〉

where i is the interrupt id, i1, . . . , in are parameters of the interrupt (if any)
and p′ denotes whatever the engine has reduced p to.

Then the interface collects all pending input and forms associated input events
x1, . . . , xn. Each input event represents some input. As an example, if the
interface has received a character from stdin, then the list will contain a stdin
input event that contains the character. The input events of the virgin Logiweb
machine are presented in Section 6.6.

Then the interface constructs a list

x = 〈x0, x1, . . . , xn〉

where x0 was the interrupt event and x1, . . . , xn were other input events.

Then the interface commands the engine to reduce hx where h was the handler
of the exec event.

From this point on, the Logiweb machine behaves exactly like it did when re-
ducing fx during the boot sequence.

During reduction of hx there is no limit on the time and memory available
to the engine (if the engine runs short of memory during reduction of hx, the
Logiweb machine prints an error message and quits). Furthermore, the output
events generated by hx are sent directly to the interface for execution. In other
words, the handler function h has complete control over the Logiweb machine.
In contrast, the process p has limited control over the Logiweb machine since it
has limited time and memory available and since the output from p is sent to h
and not to the interface.

The Logiweb machine is said to be in supervisor mode when it reduces the boot
function f or a handler h; it is said to be in user mode when it reduces a process
p.
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6.5 Extend events

An extend event commands the interface to load the given string. How the string
is loaded is system dependent, but the string should typically be expressed in the
host language in which the Logiweb machine is implemented. As an example,
a Logiweb machine written in C would typically use the C compiler to compile
the string and then use the dynamic loader to load the object code into the
running Logiweb machine. A Logiweb machine written in Lisp would typically
use the Lisp system to load the string.

Extend events allow the Logiweb machine to load software modules into the
running Logiweb machine. Such software modules will be refered to as exten-
sions. Extensions may define new interfaces, and they may define plugins to
the engine that makes the engine more efficient.

When the Logiweb machine needs to load an extension, it will typically need
some information about the system on which it is running (e.g. type of hardware,
name of host operating system, name of host language, name of compiler). By
convention, such information must be present in the boot page.

The Extension interface has to be guarded by anti-virus measures. The simplest
and most efficient antivirus measure is to let the boot function load all extensions
that have to be loaded and then load an extension that disables the extension
interface.

6.6 Input events

The virgin Logiweb machine has the following input events:

〈Boot, argc, env, boot〉
〈Interrupt, int,process〉
〈Stdin, character〉
〈Extended, bool, string〉

The interface forms a boot event during the boot sequence and an interrupt
event each time an interrupt occurs.

Whenever the interface executes an exec event, it consults stdin to see if there is
any pending input. If there is, the interface reads one character from stdin and
forms an input event. The interface reads at most one character from stdin each
time it executes an exec event. This prevents the system from being flooded if
someone pipes or pastes large amounts of characters into stdin.

When the interface executes an extend event, it immediately loads the given
string. The result of loading the string is expressed in an Extended event which
contains a Boolean and a string. The Boolean has value T if loading succeeded
without errors and has value F otherwise. The string contains a human readable
message which can contain whatever the interface thinks might be of interest to
someone.
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6.7 Restrictions on extensions

By convention, extensions are not allowed to alter the functional behaviour of
the engine. Loading an extension may have the effect that the engine can store
data in a more efficient format or may have the effect that it can execute certain
functions more efficiently. However, any function that the engine can compute
after loading should, at least in principle, be computable by the virgin engine.

As an example, an extension is not allowed to add a function whose return value
is the time of the day since such a time function is not computable in the virgin
engine. If the time of the day is needed, then one has to load an extension which
extends the interface such that the interface produces input events that contain
the time of the day.

The time function above is an example of an imperative function. Functions
that perform input and output are other examples of imperative functions. Im-
perative functions are not allowed in the engine; they must be placed in the
interface and must be made available through input and output events.

As another example, a software module is not allowed to add the parallel “or”
function to the engine. Parallel “or” is extensional (as opposed to imperative),
but it is nevertheless forbidden in the engine because the virgin engine cannot
compute it.

The convention that extensions are not allowed to add previously uncomputable
functions to the engine simplifies porting of code and correctness proofs.

An extension may e.g. extend the engine such that it can store integers orders
of magnitude more densely than the virgin engine does. An extension may
allow the engine e.g. to compute the sum of two integers orders of magnitude
faster than the virgin engine. An extension may add e.g. tcp/ip and wallclock
interfaces to the interface. These are the intended applications for extensions.

In general, extensions may add any facility to the Logiweb machine, but what-
ever does not fit into the engine must be put into the interface.

6.8 Authentication

As a special case, extensions may be used for authentication. As an example,
consider a public key crypto system in which a public key k is the product of
two large primes p and q.

Given k, the virgin engine can, in principle, compute p and q. The owner of the
public key (who knows p and q) may extend the engine with a function which
can factor any number n, but which returns p and q immediately in the special
case where n = k.

Such a function speeds up the factoring function in one, special case. In practice,
only the engine that belongs to the owner of the public key will be able to factor
k. All other engines will require ages to factor k, and that allows the owners
engine to do authentication.
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6.9 Identification of extensions

By convention, each extension should be placed on a Logiweb page. That Logi-
web page will be refered to as the home page of the extension.

The typical way of loading an extension would be as follows:

First, the boot function constructs and loads a string which enables access to
Logiweb. Then, whenever the program running on the machine needs further
extensions, it uses Logiweb messages to fetch the home pages of the extensions.
Then a string is extracted from the home page using some function that is built
into the program. Finally, that string is loaded using an extend event.

Each input and output event is a list. We shall refer to the first element of an
event as the event identifier.

Extensions may define new input events, new output events, and new interrupts.
These new events and interrupts must be identified by new event and interrupt
identifiers. By convention, all such identifiers must have form

p : : i

where p is the reference of the home page of the extension and i can by any
Logiweb binary tree.

By convention, the home page of an extension must contain documentation of
the extension in addition to the actual code.

7 The Logiweb protocol

7.1 Purpose

The Logiweb protocol allows a collection of Logiweb nodes to cooperate on
maintaining one, consistent Logiweb web. The Logiweb protocol allows nodes
to publish Logiweb pages, i.e. to make pages available on the web. Furthermore,
the protocol allows the nodes to retreive pages from the web and to perform
various book keeping.

7.2 Servers and clients

The Logiweb nodes come in two sorts: servers and clients. Servers are nodes
that

• are able to publish pages,

• which conform to the entire Logiweb protocol, and

• which are always up running and always attached to the host networks.

The last requirement is an ideal requirement rather than an absolute require-
ment. Technological malfunction may prevent a node from running or detach
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it from the host networks at any time. However, the last requirement says that
whoever launches a Logiweb server should try to make it available always.

If a user wants to make a page available on a Logiweb web, then the user must
submit the page to a server. Once submitted and accepted, the server publishes
the page. That a page is published actually means that whenever some Logiweb
node asks the server for a copy of the page, the server is willing to send such a
copy via the host networks.

Submission, acceptance, and rejection of pages is out of the scope of the Logiweb
protocol. Any server must have its own mechanism for submission and its own
policy for accepting and rejecting pages. As an example, a server may assign
a disk quota for each of its users and may have the policy to publish a page if
and only if the submitter stays within that users quota.

Logiweb clients have the following properties:

• They are unable to publish pages.

• They merely conform to part of the Logiweb protocol.

• They don’t need to be attached to the host networks permanently.

Logiweb clients can be all sort of programs: browsers, booking systems, software
developments systems, editors, proof assistants, or whatever. One may even
implement compilers and operating systems as Logiweb clients. The definition
of a Logiweb client is essentially negative: a Logiweb client is a program that
supports part of the Logiweb protocol, but which does not qualify to be a server
(and, hence, is forbidden to submit pages).

7.3 Logiweb messages

As mentioned in Section 2.2, Logiweb nodes exchange Logiweb messages. A
Logiweb message consists of a sequence of bytes. Each byte consists of eight
bits. The overall format of a Logiweb message is thus:

message ::= sender receiver cargo
sender ::= address
receiver ::= address
cargo ::= family operation msglength msgbody
operation ::= byte
msglength ::= cardinal
msgbody ::= byte∗

byte ::= bit8

cardinal ::= 0 bit7 | 1 bit7 cardinal

A Logiweb/UDP/IPv4 package consists of an IPv4 header, a UDP header, and a
Logiweb cargo structure. The sender and receiver part of the Logiweb message
must be deduced from the UDP and IPv4 headers. In Logiweb/UDP/IPv4 there
is a one-to-one correspondence between Logiweb messages and UDP packages:
Each UDP package contains one and only one Logiweb message, and Logiweb
messages are never split into more than one UDP package.
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A Logiweb/TCP/IPv4 package consists of a cargo structure which is sent over
a TCP/IPv4 connection. The sender and receiver part of the Logiweb message
must be deduced from the TCP and IPv4 headers. Two Logiweb nodes may
exchange several Logiweb message back and forth over a single TCP/IPv4 con-
nection. Logiweb messages are sent back-to-back over the TCP/IPv connection.
It is unspecified in the Logiweb protocol when a TCP/IPv4 connection should
be closed, and it can be closed by either end, but typical behaviour would be
to let the connection stay open until it is closed by the party that created it.
In Logiweb/TCP/IPv4 there is no connection between individual TCP/IPv4
packages and Logiweb messages.

A cardinal is a finite sequence of bit7 with some 0 and 1 bits in between which
indicate where the cardinal ends. The value of a cardinal equals the binary
value of the concatenation of all the bit7 pieces of the cardinal. A cardinal is
represented with the least significant bit7 piece first. As an example, the value
of

1000 0000 0000 0011

is 3 · 27.

The value of cardinal must be equal to the length of the entire message (including
family, operation, length, and body).

Note that host protocols may impose restrictions on the length of a message.
As an example, transmission of Logiweb messages using UDP puts restrictions
on the length of the messages.

When a message is transmitted using e.g. UDP, then the bytes of the message
are transmitted left to right so that the family byte is the first byte transmitted.
Each individual byte of the message is transmitted right to left so that the “one”
bit of the family byte is the first bit transmitted.

7.4 Challenge and response

Many Logiweb messages contain a challenge or a response in their cargo. The
syntax of challenges and responses reads:

challenge ::= scheme cardinal
response ::= scheme cardinal
scheme ::= byte

If a Logiweb node sends a Logiweb message that contains a challenge, then the
receiver is expected to send some Logiweb message with an associated response.
From now on, the sender of a challenge will be named the challenger, and the
sender of the associated response will be named the responder.

The purpose of sending a challenge is to ensure the identity of the responder.

A challenge and a response consist of a scheme and a cardinal each. If the
scheme of a challenge is 0000 0000, then the associated valid response is a bit
string identical to the challenge.
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If the scheme is different from 0000 0000, then the responder applies a responder
specific signature function to the challenge to form a response. The scheme of
the response must be equal to the scheme of the challenge and the cardinal of
the response must be a function of the scheme and cardinal of the challenge.
The response may also depend on other things such as the various fields of the
Logiweb message in which the response occurs. To be of any use, the challenger
must know something about the signature function of the responder so that the
challenger can use the response to validate the identity of the responder. How
the challenger gets to know something about the signature function is out of
the scope of Logiweb.

The default signature function is the identity function, i.e. the function that
returns a response which is identical to the given challenge.

If a challenger knows nothing about the signature function of the responder, then
the challenger may still get some confidence in the identity of the responder by
using scheme = 0000 0000.

A Logiweb message may contain both a challenge and a response. This occurs
when two parties need mutual confidency in the identity of the other party.

7.5 Get page

When a server receives a getpage1 message, then it typically responds with one
or more getpage2 messages. If the server does not store a copy of the requested
page, then it responds with a getpage3 message.

The syntax of the getpage messages introduced so far reads:

getpage1 ::= challenge index length reference
getpage2 ::= response index length reference bit∗

getpage3 ::= response index reference
index ::= cardinal
length ::= cardinal

The response of getpage2 and getpage3 messages must be valid responses to the
challenge of the associated getpage1 message.

getpage1 messages may come from clients as well as other servers. The sender
of the getpage1 will be referred to as the requester.

A getpage1 message contains the reference of a page, an index to a bit within
the page, and a length. A getpage1 requests the server to transmit a number of
bits of the page, starting with the one pointed out by the index. length indicates
how many bits the server should transmit.

If the requested range of bits extends beyond the end of the page, then the server
does not respond at all. This is a punishment servers use against requesters who
ask for information without knowing how much they ask for.

If the length of the getpage1 is zero, then the getpage1 message is considered
malformed and is discarded by the server.

If the server stores a copy of the requested page, if length is positive, and if the
requested range of bits fall within the page, then the server either responds with
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one getpage2 message that contains all of the page or with a number of getpage2

messages that contain a part each. Each getpage2 message contains an index
and a length which indicate which page bits the message contains.

If the server responds to a getpage1 message by several getpage2 messages, then
the response of each getpage2 message is computed individually. If the scheme
of the challenge of the getpage1 is 0000 0000, then all responses will be identical
to the challenge. Otherwise, the signature function may depend on the contents
of the getpage2 message so that each getpage2 gets its own, individual signature.

7.6 Get page validation

If a server for some reason finds that a getpage1 request smells suspicious, it
may send a getpage4 message to the requester. The requester must respond
with a getpage5 message within a reasonable time span before the server starts
or resumes its transmission. Otherwise, the server will consider the original
getpage1 request to be an attempt to spam the given requester.

It is out of the scope of the standard to define when a getpage1 smells suspicious.
Typical behaviour would be to let a server send a getpage4 message whenever
the requested page is larger than some threshold.

The getpage4 and getpage5 messages are identical to getpage1 messages except
that they contain additional challenges and responses. The syntax reads:

getpage4 ::= index length challenge response reference
getpage5 ::= index length challenge response reference

The response of the getpage4 message must be a valid response to the challenge
of the initial getpage1 message. The response of the getpage5 message must be a
valid response to the challenge of the getpage4 message. When the server starts
or resumes transmission after receiving a valid getpage5 message, it does so with
getpage2 messages that contain valid responses the the challenge in the getpage5

message.

A requester can ask for a getpage4 be sending a getpage6 instead of a getpage1, or
by sending a getpage6 after the server has started its transmission. The syntax
reads:

getpage6 ::= index length challenge reference

7.7 Reference query

A requester can use query messages to find out which pages a server stores. A
requester may also use query messages to locate a page for which it knows the
reference but does not know where to find it.

The body of a Logiweb page can be encrypted, so a server is able to publish
pages that are secret in the sense that only nodes that can decrypt them can
read their contents.

However, due to the query messages, any node can find out exactly which pages
a server publishes. Hence, encryption can hide the contents of a page but not
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the existence and length of the page. Servers are not allowed to keep pages
invisible to the query system.

Furthermore, any node can read the bibliography of any page. In other words,
it is permissible to hide the contents of the body using encryption, but the
bibliography cannot be hidden. Anyone who wants to make a secret reference
to some other page must include the reference as an encrypted soft link in the
message body and must keep the reference out of the bibliography.

The syntax of query messages reads:

query1 ::= challenge reference
query2 ::= response pagelength biblength reference
query3 ::= response timestamp prefixlength address reference
query4 ::= response timestamp prefixlength reference
pagelength ::= cardinal
biblength ::= cardinal
preflength ::= cardinal

When a server receives a query1 message it responds with a query2, query3, or
query4 message.

A query2 message indicates that the server stores a copy of the requested page
and indicates the total length of the page and the length of the bibliography of
the page. The requester can use the length of the page to allocate buffers and
then send one or more getpage1 messages to receive the page. The requester can
use biblength if it merely wants to receive the bibliography. The latter allows
a client to locate all descendants of a page before it starts requesting the page
and its descendants.

A query3 message indicates that the server stores no copy of the requested page
but knows whom to ask next. The address field of the query3 message points
out a server which is supposed to know more about the given page than the
present server.

A query4 message indicates that the server stores no copy of the requested page
and does not know whom to ask for more information.

A query3 and query4 message contains a prefixlength whose value is a number n.
The value n indicates that the server stores a page whose reference is identical
to the requested reference up to but excluding bit n of the references (bit 0 is
the first bit of the reference). The prefixlength is the largest number n for which
that is true. As an example, suppose a server stores two pages, one with address
〈0, 0, 0〉 and one with address 〈0, 1, 0, 0〉. If that server receives a query1 for a
page with reference 〈0, 1, 1, 0〉, then it responds with a query3 or query4 where
preflength is 2.

A requester may efficiently find all pages published by a server by a sequence
of query1. However, a server may publish or withdraw pages over time, and for
that reason query3 and query4 messages contain a timestamp which indicates
the time at which the given information was valid.

If a requester R sends a query1 message to a server S, then S is merely allowed
to point out another server S′ using a query3 message if S′ can respond to the
query1 message either by a query2 message or by a query3 message with a larger
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prefixlength.

If a server receives a query1 message for a page it does not store, then the
server could pretend that it stored the page by fetching the page from some
other server and then answering that it did store the page. That, however, is
forbidden. However, if a server receives a getpage1 message for a page it does not
store, then the server is allowed but not required to fetch the page from some
other server and pass it on to the requester. Hence, servers are required to give
immediate responses to query1 messages which honestly reflect the situation at
the moment the message is received.

7.8 Complaints

If a requester tries to locate a page, it will typically send a query1 message to
some server which responds with a message M1. If M1 is a query3, then the
requester will send a query1 message to the server pointed out in M1 which
responds with a message M2 and so on. The process can stop in four ways:

1. After a while, the requester receives a query2 message in which case the
search was successful.

2. After a while, the requester receives a query4 message in which case the
search was unsuccessful.

3. After a while, the requester receives a query3 message whose prefixlength
is less or equal the prefixlength of the previous query3 message. The search
is considered unsuccessful.

4. After a while, the requester hits a non-responding server in which case the
search was unsuccessful.

If a requester receives one or more query3 messages but the search ends without
success, then all the query3 messages are considered misleading. The requester
should inform the servers that they give misleading answers. The requester does
so by sending a query5 message. The syntax reads:

query5 ::= timestamp reference

The query5 is a complaint that says that the requester was dissatisfied with the
answer it got. The timestamp must be a copy of the timestamp of the query3

which the requestor complains about. It is outside the scope of Logiweb to
specify how servers should react to query5 messages.

If a requester performs and unsuccessful search but then manages to locate the
page anyway, then the requester may tell where it found the page using a query6

message:

query6 ::= timestamp address reference

As can be seen, any client must know the address of at least one server to get
started. It is outside the scope of Logiweb to define how a client finds the first
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server, but since servers are required to be always on, the programmer of a
client may e.g. decide to place the Logiweb address of a server in an environ-
ment variable. In this case, the Logiweb address could be expressed in some,
external format such as “UDP/IPv4:logic.dk:117”, where the domain name can
be translated into an IP address using DNS.

7.9 Summary

The table below summarises the syntax of all Logiweb messages and gives the
operation code “op” of each message type.

name op syntax
getpage1 0 challenge index length reference
getpage2 1 response index length reference bit∗

getpage3 2 response index reference
getpage4 3 index length challenge response reference
getpage5 4 index length challenge response reference
getpage6 5 index length challenge reference
query1 6 challenge reference
query2 7 response pagelength biblength reference
query3 8 response timestamp prefixlength address reference
query4 9 response timestamp prefixlength reference
query5 10 timestamp reference
query6 11 timestamp address reference

8 A Logiweb machine implementation

8.1 Cells

The vast majority of data structures in the Logiweb machine are kept in the
heap. The heap is a collection of cells. Each cell contains four cell pointers (i.e.
pointers to cells). The four cell pointers are named root, head, tail, and link,
respectively. Cells are of of type cell and cell pointers are of type pnt. The
declarations of the types read:

typedef struct cellstruct cell;
typedef cell *pnt;
struct cellstruct{pnt root,head,tail,link;};

To begin with, the heap consists of a single array of cells:

cell heap[INIT_HEAP_SIZE];

Using the extension interface, the Logiweb machine may allocate more memory
for the heap. In that case, the heap will no longer consist of a single array of
cells but will consist of a collection of arrays. Each array, i.e. each consecutive
area of cells will be referred to as a chunk.
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8.2 Scalar types

The virgin Logiweb machine works with three scalar types: cell pointers, dy-
namic functions, and integers. Whenever the Logiweb machine stores a scalar in
a cell, it casts the scalar to be a cell pointer. Hence, even though a cell formally
contains four cell pointers, it may actually contain a mixture of cell pointers,
dynamic functions, and integers.

Dynamic functions are pointers to functions that take no arguments and produce
no return value. Dynamic functions are of type fct:

typedef void (*fct)(void);

It is important for the implementation that an integer or a dynamic function can
be cast to a cell pointer and back without loss of information. In other words,
cell pointers must take up at least as much memory as integers and dynamic
functions. Furthermore, it is important that integers can be large enough to
count all cells twice. In other words, if the largest integer is N then the heap is
not allowed to contain more than N/2 cells.

8.3 Organisation of the heap

The Logiweb machine stores a number of cell pointers in global variables. These
global variables are accessible to all code of the Logiweb machine, including code
that is loaded using the extension interface. All access to the heap goes through
these global variables. In particular, dynamic functions read from and write to
the global variables.

The heap is said to be consistent whenever the cells and global variables are
organised as described in the following. Whenever the heap is consistent, it is
possible to tell the type of every field of every cell if one has access to all global
variables and all cells.

The heap is required to be consistent at various points in the code of the Logiweb
machine. These points will be referred to as check points.

Among other, the heap must be consistent whenever the Logiweb machine calls
a dynamic function, and the heap must be consistent whenever a dynamic func-
tion returns. Extensions may introduce new dynamic functions, and it is the
responsibility of the programmer of the extension to ensure that each new dy-
namic function maintains consistency.

It is very difficult to write functions that maintain consistency, but violation of
consistency has grave consequences. If one is very lucky, the Logiweb machine
produces a core dump, but the machine may also begin to behave strangely at
some point in time long after the consistency was violated. For that reason, one
should think more than twice before writing an extension, and one should think
more than twice before using an extension written by others.

For the sake of test and debugging, the Logiweb machine contains condition-
ally compiled code that can check the heap for consistency at all or at some
checkpoints.
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8.4 Reference counts

All global variables and all cell fields, are classified as counted or uncounted as
follows:

• Global variables are classified as uncounted.

• Root and link fields are classified as uncounted.

• The head field of a cell is classified as counted if and only if the least
significant bit of the root is non-zero.

• The tail field of a cell is classified as counted if and only if the second least
significant bit of the root is non-zero.

We shall refer to the least and second least bits of the root of a cell as the mode
bits of the cell.

A cell is referred to as a counting cell if there is at least one counted field that
points to it.

The link field of a counting cell contains an integer. This integer will be referred
to as the reference count of the cell.

The reference count of each counting cell must be equal to the number of counted
pointers that point to the cell. As can be deduced from the statements above,
the reference count of any counting cell is positive. The reference count cannot
be zero since, by definition, a cell is counting if at least one counting pointer
points to it.

8.5 Linked lists

A cell is referred to as a linked cell if it is not counting. The contents of the link
field of a linked cell will be referred to as the link pointer of the cell.

At each check point, every link pointer must be null or point to a linked cell,
no two link pointers are allowed to point to the same cell, and the link pointers
must form an acyclic graph.

The consistency rules above ensure that the linked cells form a number of disjoint
lists, each of which has a start and an end. We shall refer to these lists as the
linked lists of the heap. As a special case, a linked list may have only one element
in which case that element is both the start and the end of the list.

As can be deduced from the rules above, all pointers to linked cells are uncounted
since if they were counted, the cell would be counting.

8.6 Root functions

As mentioned, the mode bits of each cell determine whether or not the head
and tail fields are counted. The remaining bits of the root constitute a dynamic
function which we shall refer to as the root function of the cell. To obtain the
root function of a cell one must clear the two least significant bits of the root
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and then cast the result to a dynamic function. If p points to a cell, then one
may get the root function of the cell thus:

(fct)(p->root&~3)

Executing the dynamic function may be done thus:

(fct)(p->root&~3)();

As a special case, a root function may be null in which case it does not make
sense to execute it. The root function of counted cells are never null.

8.7 The chunk list

As mentioned, the heap consists of a number of chunks where each chunk is a
consecutive area of cells. The first cell in each chunk will be referred to as a
chunk cell. Chunk cells are linked cells.

At each check point, all chunk cells must form a single, linked list. The global
variable chunk must point to the start of this chunk list.

The root of each chunk cell must be zero. The head of each chunk cell must
point to the first memory location after the chunk. Note that the head of each
chunk cell is uncounted since the root is zero. The tail of each chunk cell must
be zero.

The chunk list is merely used for consistency checks. It serves no purpose in
production versions of the virgin Logiweb machine, but extensions may depend
on the presence of chunk cells.

8.8 The free and reserved lists

The global variables free and reserved point to linked lists of cells. We shall
refer to those lists as the free list and reserved list, respectively.

Whenever the Logiweb machine needs to allocate a new cell, it uses the cell that
“free” points to and moves “free” to the next cell in the list.

If the Logiweb machine is in supervisor mode and “free” is NULL when the
Logiweb machine tries to allocate a cell, then the Logiweb machine writes an
error message to stderr and quits.

If the Logiweb machine is in user mode and “free” is NULL when the Logiweb
machine tries to allocate a cell, then the Logiweb machine sets “free” to the
value of “reserved” and sets “reserved” to NULL. Then the Logiweb machine
clears the stack as described in Section 8.9 and then it performs a memory
interrupt as described in Section 6.4.

Whenever the Logiweb machine takes a cell from the free list, it looks at the
mode bits of the allocated cell. If these bits indicate that the head or tail fields
contain counted pointers, then the Logiweb machine decrements the reference
count of the cells that these fields point to. If a reference count of a cell reaches
zero, then that cell is put on the free list. Hence, in some cases, allocation of a
cell makes the length of the free list increase.
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8.9 The stack

The two global variables top and bottom point to the start and end of a linked
list. We shall refer to this list as the stack.

The stack is manipulated by dynamic functions. When an interrupt occurs,
the Logiweb machine sets the link field of the end of the stack to the value of
“free” and then sets “free” to the value of “top”. Effectively, all of the stack
is deallocated in a short, fixed amount of time. This allows the machine has
to respond immediately to interrupts, which is important e.g. if some extension
makes the machine handle hardware interrupts.

Deallocation of the entire stack in case of interrupts has the drawback that the
machine has to spend time on rebuilding the stack when a process is resumed. It
is a design choice to accept this drawback. The choice is motivated by two ben-
efits: Firstly, interrupts can be handled immediately. Secondly, having stacks
of stopped processes hanging around makes it dangerous to let handlers share
memory with user processes.

8.10 The superlist

The virgin Logiweb machine has four linked lists that are described until further:
the chunk list, the free list, the reserved list, and the stack. Extensions may
add to the number of linked lists. To allow the consistency check code to access
all lists, the superlist is a list that refers to all linked lists except the chunk list
and the superlist itself. Furthermore, the superlist may refer to counted cells.
The latter allows counted cells to exist even if they are not referred to from any
other linked list.

The global variable super refers to the start of the superlist. The elements of
the superlist have the following format: The head of the element points to the
start of a linked list or to a counted cell. The root of the element is zero if the
head points to a linked list and one otherwise. The tail of the element points
to the previous element of the superlist so that the superlist is a doubly linked
list. The tail of the first element of the superlist is null.

8.11 Representation of terms

The Logiweb machine constantly has to reduce terms. The term to be reduced
can be the boot function f applied to the init message, it can be a process p,
and it can be a handler h applied to input messages.

Terms to be reduced are represented by structures of counted cells. Such counted
cells will be referred to as nodes.

In the virgin Logiweb machine, the root field of nodes can have eleven possible
values which will be referred to under the following names (c.f. Section 4.24):

S S1 S2

K K1

P P1 P2

T I A
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The eleven entities above all denote values of type pnt which contain two mode
bits and a function pointer.

The mode bits of T, S, K, and P are both zero, so nodes with these values in the
root field contain no counted pointers in the head and tail fields. Nodes which
these values in the root field must contain zeros in the head and tail fields.

The mode bits of A, S2, and P2 are both non-zero, so nodes with these values
in the root field contain counted pointers in both the head and the tail fields.

The mode bits of I, S1, K1, and P1 indicate that nodes with these values in the
root field contain contain a counted pointer in the head field and no counted
pointer in the tail field. Nodes which these values in the root field must contain
a zero in the tail field.

A node with S in the root field and zeros in the head and tail fields will be
denoted

(S)

A node with S1 in the root field, x in the head field, and zero in the tail field
will be denoted

(S1x)

A node with S2 in the root field and x and y in the head and tail fields, respec-
tively, will be denoted

(S2xy)

Nodes with other of the eleven possible root values are treated similarly.

Nodes represent terms as follows:

Node Term
(S) S
(S1x) Sx
(S2xy) Sxy
(K) K
(K1x) Kx
(P) P
(P1x) Px
(P2xy) Pxy
(T) T
(Ix) x
(Axy) xy
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8.12 Reduction rules

The virgin Logiweb machine uses the following reduction rules to reduce terms:

(A(S)u) → (S1u)
(A(S1x)u) → (S2xu)
(A(S2xy)u) → (A(Axu)(Ayu))
(A(K)u) → (K1u)
(A(K1x)u) → (Ix)
(A(P)u) → (P1u)
(A(P1x)u) → (P2xu)
(A(P2xy)u) → · · ·
(A(T)u) → (IT)
(A(Ix)u) → (Axu)
(A(Axy)u) → · · ·

The Logiweb machine reduces (A(Axy)u) by reducing (Axy) to some form r that
does not have A in the root and then reducing (Aru). The Logiweb machine
reduces (A(P2xy)u) by reducing u to some form r that does not have A in the
root and then reducing (A(P2xy)r) according to the following rules:

(A(P2xy)(S)) → (Iy)
(A(P2xy)(S1s)) → (Iy)
(A(P2xy)(S2st)) → (Iy)
(A(P2xy)(K)) → (Iy)
(A(P2xy)(K1s)) → (Iy)
(A(P2xy)(P)) → (Iy)
(A(P2xy)(P1s)) → (Iy)
(A(P2xy)(P2st)) → (Iy)
(A(P2xy)(T)) → (Ix)
(A(P2xy)(Is)) → (A(P2xy)s)

In addition to the rules above, the Logiweb machine uses the following reduction
rule whenever possible:

(I(Iz)) → (Iz)

More precicely, whenever the Logiweb machine forms a node of form (Ix) it
performs the reduction above if x is of form (Iz). For that reason, the head of
an I node never points at an I node. The consistency check code tests this.

8.13 Reduction algorithm

The Logiweb machine reduces a term t thus: It sets the global variable redex to
point at t. If t neither has form (Axy) nor (Ix) then reduction halts because the
term is already on normal form. If t has form (Ix) then the Logiweb machine
sets “redex” to point at x and starts over.

If t has form Axy then the Logiweb machine allocates a cell from the heap and
sets “stack” to point at the cell. The head, tail, and link fields of the cell are set
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to zero and the root is set to point at a function to be executed when reduction
ends.

(fct)(redex->head->root&~3)();

9 A server implementation

This chapter gives the details of one particular server implementation. The
server is written in C and runs under Linux.

9.1 Name

lgws - Logiweb server

9.2 Synopsis

lgws LGW ADM WD

9.3 Description

Starts up a Logiweb server.

LGW and ADM are udp/ip port numbers and WD is the name of a working
directory. The server uses LGW for the Logiweb protocol and uses ADM for
the administration protocol which is described later.

9.4 Page submission

To submit a page, a user must store the contents of the page in a file and place
the file somewhere under the working directory of the server. Then the user
must notify the server via the administration protocol. The notification must
contain the name of the file (relative to the working directory of the server).

The contents of the file must have the format

contents padbits

where padbits denotes from zero to seven “zero” bits which ensure that the total
length of the file is a multiple of eight bits.

When the server is notified about a submission, it assigns a reference to the
page. To do so it assigns a time stamp and computes a key. Then the server
writes the reference and the file name to a file named “assoc” in the working
directory. The assoc file thus defines the association between references and
file names. Then the server publishes the page, i.e. it makes it available to the
outside world via the Logiweb protocol.

The purpose of the assoc file is to allow the server to restart after a system
crash.
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The user id of the assoc file equals the user id of the server. The assoc file has
protection -rw-r--r--.

9.5 Administration protocol

The administration protocol has a facility for translating between file names and
Logiweb references. The Logiweb messages for translating between file names
and Logiweb references are as follows:

getref 1 ::= name
getref 2 ::= reference
getref 3 ::= name
getname1 ::= reference
getname2 ::= name
getname3 ::= reference
name ::= length bit∗

When the server receives a getref 1 message, it

A user may request translation from a file name to a Logiweb reference by
sending a getref 1 message to the server. The getref 1 message contains the
name to be translated.

When a server receives a getref 1 message, it responds with a getref 2 message
if it stores a Logiweb page with that local name and is willing to translate the
name. Otherwise, it responds with a getref 3 message.

A user may request translation from a reference to a local name by sending a
getname1 message to the server. The getname1 message contains the reference
to be translated.

When a server receives a getname1 message, it responds with a getname2 mes-
sage if it stores a Logiweb page with that reference and is willing to translate the
reference into a local name. Otherwise, it responds with a getname3 message.

Even though it is legal to let a server assign several local names to a single
Logiweb page, the Logiweb protocol merely allows to ask for one of them. If a
Logiweb page has several local names, it is up to the server to choose which one
it will translate a given reference into.

getref and getname

getref 1 0 name
getref 2 1 reference
getref 3 2 name
getname1 3 reference
getname2 4 name
getname3 5 reference

10 Index

(x, y), 6
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address, 14
administration protocol, 48
aspect, 33
association list, 31
atom normal form, 27

B, 6
B̂, 7
biblength, 19
bibliography, 12
binary coded decimal representation, 10
binary term, 22
binary tree, Logiweb, 6
bintree, 7
bit, 12, 22
bit, mode, 43
body, 12
boot event, 36
boot function, 36
boot page, 36
boot representation, 29
byte, 16

Cpre, 29
call by need, 29
canonical representation, 22
cardinal, 16
cargo, 16
cell, 41
cell pointer, 41
cell, chunk, 44
cell, counting, 43
cell, linked, 43
challenge, 17
challenger, 17
check point, 42
chunk, 41, 44
chunk cell, 44
client, Logiweb, 15
coded decimal representation, binary, 10
combinators, predefined, 29
consistent, 42
construct, 33
contents, 12
count, reference, 43
counted, 43
counting cell, 43

decimal fraction, 8
decimal representation, binary coded, 10
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defined symbol, 26
digit, 10
dynamic function, 42

engine, 35
event identifier, 41
event, boot, 36
event, execute, 36
event, input, 36, 38
event, interrupt, 38
event, output, 36
exact fraction, 25
execute event, 36
exit interrupt, 38
exponent, 10
extension, 39

family, 14
fct, 42
floating fraction, 25
form, atom normal, 27
form, function normal, 27
form, root normal, 27
fraction, 10
fraction, decimal, 8
fraction, exact, 25
fraction, floating, 25
free, 44
free list, 44
function normal form, 27
function, boot, 36
function, dynamic, 42
function, Logiweb-160 global hash, 11
function, root, 43
function, signature, 17

getname, 49
getpage, 17–19
getref, 49
global hash function, Logiweb-160, 11

hash function, Logiweb-160 global, 11
head, 41
heap, 41
home page, 40
host machine, 5
host network, 5
host operating system, 5
host programming language, 5
host protocol, 5
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id, 26
identifier, event, 41
index, 17
input event, 36, 38
integer, 10
interface, 35
interrupt event, 38
interrupt, exit, 38
interrupt, memory, 38
interrupt, watchdog, 37
ip, 14

key, 12, 31

language, host programming, 5
length, 17
liberal representation, 22
link, 41
link pointer, 43
linked cell, 43
linked list, 43
list, association, 31
list, free, 44
list, linked, 43
list, reserved, 44
list, super, 45
load, 38
locally valid, 13
Logiweb binary tree, 6
Logiweb client, 15
Logiweb machine, 35
Logiweb message, 5
Logiweb node, 5
Logiweb page, 12
Logiweb program, 35
Logiweb protocol, 6
Logiweb server, 15
Logiweb web, 13
Logiweb-160 global hash function, 11

machine, host, 5
machine, Logiweb, 35
mantisa, 10
memory interrupt, 38
message, 16, 33
message, Logiweb, 5
minus, 10
mode bit, 43
mode, supervisor, 38
mode, user, 38
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msgbody, 16
msglength, 16

name, 49
natural, 10
need, call by, 29
network, host, 5
node, 45
node, Logiweb, 5
normal form, atom, 27
normal form, function, 27
normal form, root, 27

operating system, host, 5
operation, 16
ordinate, 24
output event, 36

Pxy, 7
P, 12
page, 26
page, boot, 36
page, home, 40
page, Logiweb, 12
pagelength, 19
pair, 7
parse tree, 33
plus, 10
pnt, 41
point, check, 42
pointer, cell, 41
pointer, link, 43
Polish prefix representation, 7
port, 14
portlsb, 14
portmsb, 14
precision, 26
predefined combinators, 29
predefined symbol, 26
prefix representation, Polish, 7
preflength, 19
program, Logiweb, 35
programming language, host, 5
protocol, administration, 48
protocol, host, 5
protocol, Logiweb, 6

query, 19, 21

receiver, 16
redex, 47
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reference, 12
reference count, 43
representation, binary coded decimal, 10
representation, boot, 29
representation, canonical, 22
representation, liberal, 22
representation, Polish prefix, 7
requester, 18
reserved, 44
reserved list, 44
responder, 17
response, 17
RIPEMD-160, 11
root, 41
root function, 43
root normal form, 27

S-expression, 27
scheme, 17
self-terminating, 7
sender, 16
server, Logiweb, 15
sign, 10
signature function, 17
stack, 45
submessage, 33
submit, 15
subterm, 33
super, 45
superlist, 45
supervisor mode, 38
symbol, defined, 26
symbol, predefined, 26
system, host operating, 5

T, 6
tail, 41
tcp ip v4 address, 14
tcp ip v4 id, 14
term, 33
term, binary, 22
terminating, self-, 7
timestamp, 12
tree, Logiweb binary, 6
tree, parse, 33

udp ip v4 address, 14
udp ip v4 id, 14
uncounted, 43
unpacking, 31
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user mode, 38

valid, locally, 13
value, 31
vector, 12
version, 12
virgin, 36

watchdog interrupt, 37
web, Logiweb, 13
web, well-founded, 13
well-founded web, 13
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