Formal Logic

Lasse Nielsen & Morten Ib Nielsen
Department of Computer Science, University of Copenhagen

July 12, 2006

1 Initial remarks

Initially we planned to show a simple result of Group Theory namely the unique-
ness of the neutral element. Our idea was to develop propositional logic and
predicate calculus first. Based on these we planned to develop the axiomatic
set theory ZFC and finally when we had sets we could define groups. Unfortu-
nately it turned out that this was much more cumbersome than we thought both
because we are newcommers to Logiweb™and also because core Logiweb™is
very low level. Being newcommers to Logiweb™we have used a lot of time
trying to find out how to use the system. This hasn’t been easy due to the
total absence of a hands on users manual. Thus we wasted a lot of time early on
trying to parse other peoples code from earlier years in order to understand how
to use pyk (the language used to construct proofs ect. in Logiweb™). This was
a very frustrating and non-trivial task since this years pyk syntax is different
from earlier years! A lot of emailing back and forth with Klaus Grue helped
us, but progress was slow. Very late in the course we had the oportunity to sit
down with Klaus in a kind of assisted programming session, where Klaus helped
us with our problems as they occured - this was very rewarding. After that we
revised our goals with respect to this project and we found that even though
we were now able to prove things in Logiweb™our initial goal was out of range
because of the assembler like nature of our predicate calculus. Instead we de-
cided to take the first step towards a more high level interface to our predicate
calculus.

2 Conclusion

This Logiweb™page is an exam project on the course 202 Logik spring 2006 at
the Department of Computer Science, University of Copenhagen. The purpose
with this page is to use Logiweb™ to publish a machine checkable proof for a
theorem of our choise - which we have done. Since both of us have backgrounds
in mathematics and formal methods in computer science we started out having
high ambitions. As hinted we had to revise our goals along the way for several
reasons. Instead of doing a large and complicated proof we have decided to show

how to use the Logiweb™system to define a theory (a set of axioms), define and

prove lemmas in a theory (both using axioms aswell as allready proved lemmas).
Along the way we have explained key parts of the Logiweb™notation. It is our
hope that this Logiweb™page will serve as a helping hand to future students
on this course providing the getting started manual that we have been missing
so much.

We start out defining a theory called pred calc containing one possible set
of axioms and inference rules for the predicate calculus. Since these axioms are
very low level we define, inspired by Natural Deduction (see | D), a set of
higher level (and more intuitive) proof rules wich we prove. Finally we use these
higher level rules to prove the sequent: TODO.

3 Introduction

This Logiweb™page is formally correct. This means that it has been verified
and found correct by the Logiweb™ proof engine. Therefore we can say that it
is correct modulo errors in the proof engine. Is the content correct then? Well
yes, but only in the sense that the lemmas we have proved are consequences
of the axioms and proof rules we have introduced. There is no guarantee of
soundness of our axioms and proof rules.

We have structured this document as follows. In section 4 we define the
axioms and proof rules of predicate calculus. We conclude the section with
two simple proofs namely the very (intuitively) obvious lemma trivia 4.1 and
the lemma repeat 4.3. Then in section 5 we state and prove lemmas inspired
by Natural Deduction. Finally in section 6 we use these lemmas to prove the
sequent: TODO.

4 First order predicate calculus

Based on mathworld! and thus on Kleene (2002) we define first-order predicate
calculus below. We note that the axioms 1 through 10 together with the in-
ference rule modus ponens (pcmp) constitutes the propositional calculus. Our
definitions are not excately like those found on Mathworld for two reasons. First
we have made = right associative in order to get rid of unnecessary parenthisis.
This means that F = G = F really means F = (G = F) below. Second we had
to express formulations such as in which x occurs free in a machine checkable
way.
The [Theory pred calc] contains the following axioms:

1. [pred calc rule pcl: ILF,G: F = G = F|
2. [pred calc rule pc2: UF, G H: (F=G)= (F=G=>H) = F = H]
3. [pred calc rule pc3: IIF,G: F = G = F AG]

Thttp:/ /mathworld.wolfram.com/First-OrderLogic.html.

[pred calc rule pcd: IIF,G: F = F V G]

[pred cale rule pe5: ILF,G: F = GV F]

[pred cale rule pe6: ILF,G: FAG = F|

[pred calc rule pc7: IIF,G: FAG =]

[pred calc rule pe8: IIF, G, H: (F=G)= (H=0)=FVH=(]
[pred calc rule pc9: IIF,G: (F = G) = (F = =G) = —~F]

[pred calc rule pcl0: IIF: -—F = F]

© 2 N e

10.

11. [pred calc rule pcll: X, R, G, F: X#R + X#G + (G=F|X:=R) t
VX (F) =]

12. [pred calc rule pcl2: IIX, R, G, F: X#R + X#G H (G=F|X:=R) t+
G = 3X.(F)

The proof rules in the [Theory pred calc] are:

e [pred calc rule pemp: IIF,G: F+ F = G+ G|

e [pred calc rule pcia: ILF, G, X: X#G I G = F+ G = VX.(F)]
e [pred calc rule pcie: IIF, G, X: X#G W+ F = GF 3IX. (F) = G]
e [pred calc rule pcdeduction: ILA, B: Ded(A, B) - A+ B]

4.1 A conservative extension

The rule pededuction is not really a part of Predicate Calculus acording to
mathworld but it is a conservative extension in the sence than we cannot prove
anything using this rule that we cannot prove without it. We include it in order
to make proofs shorter and thus easier to understand for humans. As a curiosity
we cannot prove that pededuction is a conservative extension formally 2.

4.2 Notation

Some of the notation used above is most likely unfamilliar. So let’s spend a
few paragraphs explaining it before we continue. The meaning of the axioms
and proof rules above are of course given by their definition but in order to
understand the definitions we need to explain the basic syntax (or at least the
part of it we use) in Logiweb™definitions and proofs.

e The symbol I is placed between two propositions. The meaning of A - B
is that if A can be proved then so can B. - can be used sequentially in the
way that A F B F C means if A can be proved, then if B can be proved,
then so can C. That is if A and B can be proved then so can C.

2In a machine checkable way.

The symbol > is placed between a rule and a line number. It is the
opposite of I in the sence that if R is a rule saying that A+ B and L is a
line concluding A, then R > L concludes B.

Explanation of >. A line in a proof consists of the symbol > with the
use of a rule on the left, and the conclusion on the right. The example
above would give the line R>L > B.

The meaning of I is almost the same as . If the condition on the
left evaluates to true, then the proposition on the right can be proved.
The condition on the left of a IF is a so called side-condition. The only

side-conditions we use are expressed using substitution and f (explained
below).

The » symbol is used much like >, but it is the opposite of I instead of
F, thus the line number on the right of the symbol must conclude that the
side-condition is fullfilled.

The side-condition (A =B | C:=D) is fulfilled, if the proposition A
where any occurrence of the meta-variable C is replaced by the proposition
D is exactly equal to the proposition B. Another way to express this using
a more common notation of substitution would be B = A[D/C].

The side-condition AfB is fulfilled if the meta-variable A does not occur
in the proposition B.

4.3 Some small proofs

Having explained the syntax of definitons and proofs we continue with two
simple, but usefull, lemmas just to show how it is done. Lemma 4.1 is proved
using only axioms and proof rules while the proof of lemma 4.3 uses the result
of lemma 4.1 aswell.

Lemma 4.1 [pred calc lemma trivia: VF: F = F|

pred calc proof of trivia:

LO1:
LO02:

LO03:
L04:

LO05:
LO6:

Arbitrary > F :
pc2 > (F=F=F)=(F=F=
F)=F)=F=F ;
pcl > F=F=F :
pemp > L03 > L02 > (F=F=>F=>F=>F=
F ;
pcl > F=(F=F)=>F ;
pcmp > LO5 > L04 > F=F O

Lemma 4.2 [pred calc lemma trivia2: VF: F = F|

pred calc proof of trivia2:

LO1: Arbitrary > F ;
L0O2: Block > Begin ;
L03: Arbitrary > F ;
L04: Premise > F ;
L0O5: repeat > L04 > F ;
LO6: Block > End ;
L07: pcdeduction > L06 > FEF O

Lemma 4.3 (Repetition) [pred calc lemma repeat: IIF: F = F|

pred calc proof of repeat:
LO1: Arbitrary > F ;
L02: Premise >
L03: trivia >
L04: pcmp > LO2 > LO3 >

=F

W %9

5 Natural deduction

The axioms and proof rules in [Theory pred calc] constitutes a very low level
proof system. In order to ameliorate this we introduce and prove some higher
level (and more intuitive) proof rules. These proof rules are inspired by natural
deduction as defined in |]. We conclude this section by justifying why we
have replaced two rules from |] with a new rule.

Lemma 5.1 [pred calc lemma andintro: IIF,G: F G F AG]

pred calc proof of andintro:

LO1l: Arbitrary > F,G ;
L02: Premise > F ;
L03: Premise > g ;
L04: pe3 > F=G=FANG ;
L05: pcmp > L02 > L04 > G=FANG ;
L06: pemp > LO3 > LO5 > FAG o

Lemma 5.2 [pred calc lemma andelim1: IIF,G: FAGF F]|

pred calc proof of andeliml:

LO1: Arbitrary > F.G ;
L02: Premise > FAG ;
L03: pc6>> FANG=>F ;
LO4: pcmp > L0O2 > L03 > F d

Lemma 5.3 [pred calc lemma andelim2: IIF,G: F AG F G|

pred calc proof of andelim2:

L01: Arbitrary > F.G ;
L02: Premise > FAG ;
L03: pc7> FANG=G ;
L04: pcmp > L02 > LO3 > g U

Lemma 5.4 [pred calec lemma orintrol: IILF,G: F = F V G]

pred calc proof of orintrol:

LO1: Arbitrary > F.G ;
L02: Premise > F ;
L03: pcd > F=FVGg ;
LO4: pcmp > LO2 > L03 > FVGg a

Lemma 5.5 [pred calc lemma orintro2: IIF,G: G+ FV G]

pred calc proof of orintro2:

LO1: Arbitrary > F.G ;
L02: Premise > g ;
L03: pch > G=FVg ;
L04: pcmp > LO02>L03 > FVG =]

Lemma 5.6 [pred calc lemma orelim: IF, G H: FVG+F (FFH)F (GF
H) - H]

pred calc proof of orelim:

L01: Arbitrary > F.G,H ;
L02: Premise >> FVvGg ;
L03: Premise > FEH ;
L04: Premise > GFH ;
LO5: pcded > LO3 > F=H ;
L06: peded > LO4 > G=>M ;
LO7: pe8>> (F=>=H) = (G=>H) = FV
G=H ;
L08: pcmp > LO5 > LO7 > G=>H)=FVG=H ;
L09: pcmp > L06 > LOS > FVG=H ;
L10: pcmp > L0O2 > L09 > H]

Lemma 5.7 [pred calc lemma notintro: ILF,G: (FF G)F (FF —G) b ~F]

pred calc proof of notintro:

LO1: Arbitrary > F.G ;
L02: Premise > FrG ;
L03: Premise > F -G ;
L04: pcded > L02 > F=G ;
L05: pcded > L0O3 > F =G ;
L06: pc9 > (F=0)=(F=-G) =-F ;

L07: pcmp > L04 > LO6 > (F=-G)=~F
LO8: pcmp > LO05 > LO7 > -F m|

Lemma 5.8 [pred calc lemma notnotelim: IIF: =—F + F]

pred calc proof of notnotelim:

LO1: Arbitrary > F :
L02: Premise > -—F ;
L03: pcl0o> -—F=F ;
L04: pcmp > LO2 > L03 > F O

Lemma 5.9 [pred calc lemma forallintro: IF,G, X: X#GV-G + F EVX.(F)]
pred calc proof of forallintro:

LO1: Arbitrary > F,G, X ;
L02: Side-condition > X#GV -G ;
L03: Premise > F ;
LO4: lem > GVv-g ;
L05: Block > Begin ;
L06: Arbitrary > Gg,F ;
L07: Premise > Gv-g ;
LO8: repeat> L0O3 > F ;
L09: Block > End ;
L10: pededuction > L0O9 > GVvV-G=>F ;
L11: pcia > LO2 > L10 > GV -G =VX.(F) ;
L12: pempr> LO4 > L11 > VX (F) O

Remark 5.10 In lemma 5.9 we use the side condition X#G V =G. We would
like to use the equivalent X#G instead but we haven’t been able to find a way
to prove the former side condition from the latter.

Lemma 5.11 [pred calc lemma forallelim: X, R, G, F: X#R I X#G 1+ (G=F

VX (F)F G
pred calc proof of forallelim:

LO1: Arbitrary > X,R,G,F ;
L02: Side-condition > X#R ;
L03: Side-condition > X#G ;
L04: Side-condition > (G=F|X:=R) ;
L05: pcll > L0O2 > LO3 > LO4 > VX (F)=¢ ;
L06: Block > Begin ;
L07: Arbitrary > X, G, F ;
L08: Premise > VX (F) ;
L09: pcmp > LOS > LO5 > g ;
L10: Block > End ;
L11: pcdeduction > L10 > VX (F)FG a

Lemma 5.12 [pred calc lemma ezistsintro: IIX, R, G, F: X#R t X#G t (G=J
G+ 3X.(F)

pred calc proof of existsintro:

LO1: Arbitrary > X,R,G, F ;
L02: Side-condition > XH#R ;
L03: Side-condition > X#G ;
L04: Side-condition > (G=F|X:=R) ;
L05: pcl2 > LO2 > LO3 > L04 > G=3X.(F) ;
L06: Block > Begin ;
LO7: Arbitrary > X, G, F ;
L08: Premise > g ;
L09: pcmp > LO8 > LO5 > 3IX.(F) ;
L10: Block > End ;
L11: pcdeduction > L10 > GF3X.(F) O

Lemma 5.13 [pred calc lemma ezistselim: ILX, F,G: X#G = 3X. (F) + (F+
g)-d]

pred calc proof of existselim:

LO01: Arbitrary > X, F,G ;
L02: Side-condition > X#G ;
L03: Premise > Jx.(F) ;
L04: Premise > FrG ;
L05: peded > LO4 > F=g ;
L06: pcie > L02 > LO5 > IX.(F)=¢6 ;
L07: pcmp > L03 > LO6 > g U

5.1 Derived lemmas

Below we apply the theorems above to prove some other fairly standard rules.

Lemma 5.14 [pred calec lemma mit: IIF,G: F = G F -G F —F|

pred calc proof of mt:

LO1: Arbitrary > F.G ;
L02: Premise > F=gG ;
L03: Premise > -G ;
L04: Block > Begin ;
L05: Arbitrary > F.G ;
L06: Premise > F ;
L07: pcmp > L06 > LO2 > g ;
L08: Block > End ;
L09: pcdeduction > LO8 > FEG ;
L10: Block > Begin ;
L11: Arbitrary > F.G ;
L12: Premise > F ;

L13: repeat > L03 > -G ;

L14: Block > End ;
L15: pcdeduction > L14 > FE-G ;
L16: notintro > L09 > L15 > -F O

Lemma 5.15 [pred calc lemma notnotintro: IIF: F b ——F]

pred calc proof of notnotintro:

LO1: Arbitrary > F ;
L02: Premise > F ;
L03: Block > Begin ;
L04: Arbitrary > F ;
L05: Premise > F :
L06: Premise > -F :
LO7: repeat > L05 > F :
L06: Block > End :
L08: pcdeduction > L06 > F=-F=F :
L09: pcmp > LO2 > LO8 > -F=F :
L10: trivia > -F = -F :
L1l: pc9> (—~F=F)=-F=-F) =

L12: pcempr>LO9>L11 > (~F = -F)=F :
L13: pcmpr>L10>L12 > —-—F m|

Lemma 5.16 [pred calc lemma pbe: IIF,G: (-F F G) F (-F - -G) F F]

pred calc proof of pbc:

L01: Arbitrary > F.G ;
L02: Premise > -FEG ;
L03: Premise > -F -G ;
L04: notintro > L02 > L03 > -—F ;
L0O5: notnotelim > L04 > F o

5.2 Law of the Excluded Middle
In this section we prove the Law of the Excluded Middle.

Theorem 5.17 [pred calc lemma lem: IIF: FV —F|

pred calc proof of lem:

LO1: Arbitrary > F :
L02: Block > Begin :
L03: Arbitrary > F :
L04: Premise > —(FV —F) :
L05: Block > Begin :
L06: Arbitrary > F :
LO7: Premise > F :

L08: orintrol > LO7 > FV-F ;

L09: Block > End ;
L10: pcdeduction > L09 > FEFV-F ;
L11: Block > Begin ;
L12: Arbitrary > F ;
L13: Premise > F ;
L14: repeat > L04 > —(FV-F) ;
L15: Block > End ;
L16: pcdeduction > L15 > F=(FV-F) ;

L17: notintro> L10 > L16 > -F ;

L18: orintro2 > L17 > FV-F ;
L19: Block > End ;

L20: pcdeduction > L19 > (FV-F)FFV-F ;
L21: Block > Begin ;
L22: Arbitrary > F ;
L23: Premise > —(FV —F) ;
L24: repeat > L23 > —(FV —F) ;
L25: Block > End ;
L26: pcdeduction > 125 > —(FV-F)E=(FV-F) ;
L27: notintro > 120 > 126 > —=(FV —=F) ;
L28: notnotelim > L27 > FNV-F a

5.3 A word on L

The proof rules of natural deduction in [] uses bottom. Bottom represents
the concept of unsoundness, that is it should be impossible to prove bottom in a
sound logic. The way to prove bottom would be to prove any absurdity that is
for any proposition A to prove both A and not A. In |] this is captured in
the proof rule %. In |] bottom is used in two ways. First if you under
the assumption of a proposition A can prove bottom then you can conclude
that A is false, that is not A is true. In [?] this is captured by the proof rule

A

ﬁ (notelim). This makes sense if we assume that the logical system is sound,
because this means that it is free of absurdities, so if A was true it would be
impossible to prove an absurdity thus A must be false. Second the assumption
of bottom can be used to conclude anything. In |] this is captured in the
proof rule & (botelim).

Since the predicate logic from Mathworld, which we have used as a basis
for [Theory pred calc|, doesn’t use or define the notion of bottom, we cannot
adopt the rules of natural deduction directly. We have chosen to solve this
problem by replacing the problematic proof rules above with a new proof rule
called notintro. This way we can avoid the use of bottom alltogether while we
preserve the rest of the system.

To justify our actions we hand proof the following metatheorem:

10

Theorem 5.18 Let Nat’ be the system of proof rules introduced in section 5
and let Nat be the same sytem without the rule notintro but with rules notelim
and botelim added. Let F be fized and define L = F A —=F>. The the following
holds:

1. If B can be proved in Nat’ then B can be proved in Nat.
2. If B can be proved in Nat then B[L/F A =F] can be proved in Nat’.

PROOF:

Both claims in this metatheorem is proved by induction on the derivation of
the proof on the left hand side of the implication. To save space we only con-
sider the interesting cases. Therefore we skil all of the lemmas the two systems
have in common.

Proof of 1:

The rule £ J_ﬁA.

Given proofs of A and = A we need to prove F A =F. Using the induction hy-
pothesis on the proofs of A and —A, we get proofs of A’ and —=A’ using our
system of lemmas. Now we have proofs of A’ and —A’, which means that we
can also prove A’ and —A’ using F or —F as assumptions. Now we can construct
the proof of F A —F like this.

—-F -F F F

A’ __ -A’ A’ A/
F —-F

FA-F

The rule ﬁ.

Given proof of F A =F we need to prove A. Using the induction hypothesis on
the proof of F A —F, which means that we can also construct proofs of F and —F
using the andeliml and andelim2 rules. Finally we can prove F and —F under
the assumption of =A. Now we can construct the proof of A like this.

A’ A’

FA-F FA-F
B —F
——A’

A/

The rule ‘i’_Al. Using the induction hypothesis on the proof of A - 1 we obtain

a proof of A’ = FA—F. Using the andelim1 and andelim?2 lemmas, we get proofs

3F must be fixed for all occurrences of bottom e.g. | A L must be translated to (F A =F)V
(F A —F) and can’t be translated to (F A —=F) V (G A =G).

11

of A/ F and A’ F —F. Now we can construct the proof of —=A’ like this.
A’ A’
FA-F FA-F

F —-F
—A

That concludes all the interesting rules. The other rules follow by using the
induction hypothesis on the given proofs, and using the same rule to conclude
the desired proposition.

Proof of 2:
There is only one interesting rule, and that is notintro. Given the proofs of
A+ B and A+ —B we wish to prove =A. We construct the proof like this.

A A

B -B
L
—-A
That concludes all the interesting rules. The other rules follow by using the
induction hypothesis on the given proofs, and using the same rule to conclude
the desired proposition.

5.3.1 A practical lemma

We saw that L could be replaced with A A =A above and that the proof rule
botelim allows us to conclude anything once we have L. This gives rise to the
following very usefull lemma.

Lemma 5.19 [pred calc lemma bottomelim: ILF,G: F N —=F G]

pred calc proof of bottomelim:

LO1: Arbitrary > F.G ;
L02: Premise > FN-F ;
L03: Block > Begin ;
L04: Arbitrary > F.G ;
L05: Premise > -G ;
L06: andeliml > L02 > F ;
L07: Block > End ;
L08: pcdeduction > LO7 > -G F ;
L09: Block > Begin ;
L10: Arbitrary > F.G ;
L11: Premise > -G ;

12

L12:
L13:
L14:
L15:
L16:

andelim2 > L02 >
Block >

pcdeduction > L13 >
notintro > LO8 > L14 >
notnotelim > L15 >

-F

End

-G - -F
-G

g

Lemma 5.20 [pred calc lemma lemnotintro: ILF,G: (F = G A —G) b ~F]

pred calc proof of lemnotintro:

LO1: Arbitrary >

L02: Premise >

L03: Block >

L04: Arbitrary >

L05: Premise >

L06: pcmp > LO5 > L02 >

L07: andeliml > LO6 >

L08: Block >

L09: pcdeduction > LO8 >

L10: Block >

L11: Arbitrary >

L12: Premise >

L13: pcmpr>L121>L02 >

L14: andelim2r>L13 >

L15: Block >

L16: pcdeduction > L15 >

L17: notintror> L09 > L16 >
TO HERE OK.

Finally we note that in first order predicate calculus metavariables used i

F.,G
F=GAN~G
Begin
F,G

f
GgA—G
g

End
FrEG
Begin
F.G

f
GAN-G
Y
End
FE-G
-F

functions F and predicates P are object metavariables.

5.4 Deduction lemma

Lemma 5.21 [pred calc rule peded: IIF,G: (FF G) - F = G]

Lemma 5.22 [pred calc lemma iatest: 11G, V: Y#G i+ G = VY. (Y = G)]

pred calc proof of iatest:

LO1:
L02:
L03:
L04:

6 A nontrivial sequent

Arbitrary >
Side-condition >
pcl >

pcia > L0O2 > L03 >

G,y

Y#G

G=YV=¢
G=VY. (V=3

Lemma 6.1 [pred calc lemma nontriv0: IIP,Q: (P = Q) = O+ Q=P+
P=0QFP

pred calc proof of nontriv0:

L01: Arbitrary > P,Q ;
L02: Premise > (P=9)=9Q ;
L03: Premise > Q=7P ;
L04: Premise > P=0Q ;
L05: pcmp > L04 > LO2 > Q ;
L06: pcmp > LO05>L03 > P u

Lemma 6.2 [pred calc lemma nontrivi: IP, Q: P+ —P + Q]

pred calc proof of nontrivl:

L01: Arbitrary > P,Q ;
L02: Premise > P ;
L03: Premise > -P ;
L04: andintro > L02 > L03 > P AP ;
L05: bottomelim > L04 > Q t

Lemma 6.3 [pred calc lemma nontriv2: IP,Q: =(P = Q) + =P + (P =
Q) NA-(P = Q)]

pred calc proof of nontriv2:

L01: Arbitrary > P,Q ;
L02: Premise > -(P= Q) ;
L03: Premise > -P ;
L04: Block > Begin ;
L05: Arbitrary > P,Q ;
L06: Premise > P ;
L07: nontrivl > L06 > L03 > Q ;
L08: Block > End ;
L09: pcdeduction > LO8 > P=0 ;
L10: andintror> L09 > L02 > (P=9Q)A~(P=Q)]

Lemma 6.4 [pred calc lemma nontrivd: IIP, Q: =(P = Q) + P]

pred calc proof of nontriv3:

LO1: Arbitrary > P,Q ;
L02: Premise > -(P= Q) ;
L03: Block > Begin ;
L04: Arbitrary > P, Q ;
L05: Premise > -P ;
L06: mnontriv2 > L02 > L05 > (P= Q) A~(P=Q) ;
LO7: Block > End ;
L08: pcdeduction > LO7 > -P=(P=Q) A~(P=Q) ;
L09: lemnotintro > LO8 > -=P ;
L10: notnotelim > L09 > P |

Lemma 6.5 [pred calc lemma nontrivj: TP, Q: (P = Q)= QO+ Q=P
P]

14

pred calc proof of nontriv4:
LO1: Arbitrary >
L02: Premise >
L03: Premise >
L04: Block >
L05: Arbitrary >
L06: Premise >
LO07: nontriv0 > L0O2 > L03 > L06 >
L08: Block >
L09: pcdeduction > LO8 >
L10: Block >
L11: Arbitrary >
L12: Premise >
L13: nontrivd> L12 >
L14: Block >
L15: pcdeduction > L14 >
L16: orelim > L09 > L15 >

A Pyk definitions

k

<

“

(Lo -
Lo
L

1

ell aa”|
“ell ab”]

7]
]

kel
12

el
<
~

“ell ac
“ell ad”
“ell ae”]
“ell af”]
“ell ag”|
“ell ah”]
“ell ai”]
“ell aj”]
“ell ak”]
“ell al”]

“ell am”|

!

=
kel
Iz

o

—

79

r{
o
12

—

=
o
12

1

]
ko]
<

~

r{

o
]

12

|

o
kel
<

~

ri

[e]
kel

12

r{

o
e}

12

r(

[e]
iel

Iz

ri

[e]
el

12

—

R

-
o
1

“ell an

~

=
o
12

~

9

r(
[e)
12

“ell ap

—

7

]
“ell a0”|
]
]

=
o
12

“ell aq
“ell ar”]

“ell as”]

e}
<
~

Lo
Lo

g
2

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

1

15

P, 0
(P=9Q) =09
Q=P
Begin

P,Q

P=9

End
Q=Q0FP
Begin

P, Q
-(P= Q)

End
-(P=Q)*FrP

pred calc edy “pred calc”]

pyk
pcl = Vo«

k
02131) «

pyk «

ol

pyk «
pyk «

k
pc8 pl> “

]
]
]
]
pyk Y 4pe5”]
]
]
.]
g Pk«]
pel0 25 “pe10”]
pcll Ledy “pcll”]
Iﬁ%‘ “pel2”]
pemp 2 pcmp ’]
pcunsound 243 “pcunsound”]
pcded pcded”]

pcia ks “pcia”]

pcdeductlon cdy “pededuction”]
trivia 25 “tr1V1a]

trivia2 25 “tr1v1a2”]

iatest 2 “latest”]

andintro 2 “andintro”]
andelim1 —If “andelim1”)
andelim2 25 “andelim?2”)
orintrol 23 “orintrol”]
orintro2 2 “orintro2”]
orelim 2 “orelim”]

notintro Y « “notintro”|
notnotintro 25 “notnotintro’ ’]
notnotelim 2 “notnotelim”]

pyk « t”]

mt
pbc = RAy “pbc”]
repeat idy “repeat”|

[
[
[
[pc
[pc
[pc
[pc
[pc
[
[pc
[
[
[
[
[
[
[
[pcie Yk ‘peie’]
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

lem 2% “lem”]

16

forallintro Iik “forallintro”|

forallelim “forallelim”]
existsintro Y « “existsintro”]
existselim 25 ex1stsehm]
bottomelim 2 “bottomelim”]
lemnotlntro iy “lemnotintro”]
nontrivo 25 “nontriv0”]
nontrivl 25 “nontriv1”
nontriv2 25 “nontriv2”

)

]
]
nontriv3 2 “nontriv3”]
]
]

nontrivs 2 “nontrivs”

pyk .
nontrive 2% “nontrive”|

pyk .
k=% 5 “" getequiv "7

* = “n

setequals "”]
—% pyk “lnot "]
* A “n land "]
Vo P e qop ")

s (%) 2 ¥ “forall " dot " end forall”]

[
[
[
[
[
[
[
[
[
[
[nontr1v4 Y «hontrive’
[
[
[
[
[
[
[
[
EENC) PV wexists " dot " end exists’ ']

<t *

“n

x € x 2 setin "]

[
[problemtwo ° Riy “problemtwo”]
)P

B Tex definitions

[+x & “\neg #1."]

XAy S “#1. \wedge #2.7]

X Vy 41, \vee #2.7]

[x =y = “#1. \Rightarrow #2.”]

[Wy. (b) "= “\forall #1. . \left(#2.\right)”]
[By. (b) & “\exists #1. . \left(#2.\right)”]

[y € b “#1. \in #2.7]

17

tex

o [y=b = “#1. \equiv #2.”]

o [y=b = sl = #27]

C Extra proof line numbers

[Lo tg(«
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
[Lo tg(«
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
[Lo tg(«
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
[Lo tg(«
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
[Lo tg(«
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
[Lo tg(«
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
[Lo tgx «

\if \relax \csname lgwprooflinep\endcsname L_o \else

18

\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
[Lo tg(«
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
[Lo tg(«
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
[Lo tgx «
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
[Lo tg(«
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi 7]
[Lo tg(«
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi 7]
[Lo tgc «
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
[Lo tg(«
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1

19

\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
Lo =
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
Lo = -
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
Lo '
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi 7]
Lo =
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]
L,
\if \relax \csname lgwprooflinep\endcsname L_o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]

D Priority table

Priority table
Preassociative
[problemtwol, [base], [bracket * end bracket], [big bracket * end bracket], [$ * $

[flush left [+]], [x], [y}, [2], [+ > «]], [[x = «]], [pyk], [tex], [name], [prio], [+], [T],

B }
[if (+, *,)], [+ = «]], [vall, [claim], [L], [f(x)], [(+)"], [F], [0], [1], [2], [3], [4], [3], [6],
(71, 18], [91, [0 [1]. 2], [3], [4], [5], [6], [7], 8}, [9], [a], [b]. [c], [d]. [e], [f] [g]. . [},]
(],], [m], [n], [o], [p], [al, [r], [s], [t], [u], [v], [, [(¥)], [If (%, %, %)],_

{ y~){ } x end array], [I], [c], [r], [empty], [(x | *: 7*>% (M), U], U],

M(x)], [apply (x, ¥)], [apply (*, *)], [identifier(x)], 1dent1ﬁer1(*,*)],,[array—

20

plus(x, *)], [array-remove(x, *,)], [array-put (x, , *, x)], [array-add (x, *, *, %, *)],

[bit(x, *)], [bitq (%, *)], [rack], ["vector"], ["bibliography"], ["dictionary"],

"body"], ["codex"], ["expansion"], ["code"], ["cache"], ["diagnose"], ["pyk"],
tex"], ["texname"], ["value"], ["message"], ["macro"], ["definition"],
unpack"], ["claim"], ["priority "], ["lambda"], ["apply"], ["true"], ["if "],
quote"], ["proclaim"], ["define"], ["introduce"], [*hide"], ["pre"], ["post"],

E(x, %, %)], [E2(x, %, %, %, %)], [E3 (%, *, %, %)], [E4(*, *, %, x)], [lookup(x, *, *)],

abstract(* *, * *)] [[*H,[M(*,*,*)],[Mg(*,*,*,*)] [./\/l (, * *)] [macro],

sal. [eip(+,)] [assoes (+, =,)], [(+)P], sel], [+ =], [}« = #], [=+,

[P2), [+ "2 #]), [+ "2 4]], [Priority table[s]], (M), [Ma(x), [

(e,), M, 5, 00, (O, 2], (92, 1)), [Do 5,4,) |
1. [(4)]. display (+)] [statement (+)]. [+]. [+]). laspect (s,)]

aspect(x, ¥, %)], [(+)], [tuple, (+)], [tuple, ()], [leta (+, *)], [lety (x,)],

clatm], [checker], [check (%, *)], [checkg(*,*,*)],[checkg(v*,*,*)],

check” (+, #)], [checks (+, *,)], [[+]], [[+] 7], [[]°], [msg], [+ =" «]], [<stmt>],

stmt], [+ st «]], [HeadNil’], [HeadPair’], [Transitivity’], [L], [Contra’], [T}],

Li], [+], [A], [B], [C], [D], [€], [7), [G], [H], [Z], (7], [K], [£], [M], [N], [O], [P], [9],

I, (S, [T, [], V1, DV]L (X, V) [2], [=], [o =)], (0], [Remainder],

(*)V], [intro(x, *, x, *)], [intro(x, *,)], [error (x *) [errory (, x)], [proof(x, *, *)],

proofs (+, %)), [3(*)], [ST(x, %)), [S (6,)], [ST (%, %)), [SP (s, %) [SP (3, 5, %)),

SH(e 9], 1S (%, %)), [S LIS (e *)] [5* (#)], [ST (%, %, %)),

g 5 (i, %, %, %) S@(*,*)] S5 (+, *)] (8" (o)] ST (5, %,)], [S* (3,)],

Sy

Ms ()],
Q*(*,

(o),

L_”‘Jr
—

F e, n,), (S (%, #)], [S e, 2] 1S3 (e, e,)], (7 (o,),
(a2, 57,)L 183 (o,)] [S3 0 2,0, [T ()], elaims (o,)],
launsz(* *,)] [<pr00f>],[proof] [[Lemma x: %], [Proof of x: *]]
[* lemma *:]|, [[* antilemma x: x]], [rule x:]|, [[* antirule *:]|,
verifier], [V (+)], Va5,)], V(o %, %, 5)], VaCx, 0], Va5 5,5, 2)], Vo5, 5, 9)],
7 (%, %, %, %)], [Cut(x, *)], [Headg (*)], [Tailg (*)], [rule; (x,)] [rule(*)],
ule tactic], [Plus(x,)], [[Theory], [theorys(*, *)], [theoryg(* *)],
theoryy (x, , *)], [HeadNil”], [HeadPair”], [Transitivity”], [Contra”], [HeadNil],
HeadPair], [Tran51t1V1ty] [Contral, [Tg], [ragged right],
ragged right expansion |, [parm(x, *, x)], [parm*(x, *, %)], [i
inst*(x, %)], [occur(x, *, *)], [occur® (x, *, *)], [unify (x = *, x)],
unify(+ = %, #)], [La [Lol, (L], [Lal, [Lel: (Ll (L, (L, (L, (L), 1L, (L1, (Lo,
n; [Lol, [Lpl, [Ligls [T, (L), [T, (Ll (L], [T] [T, [v)s (Lo, [Lal, [Lg], [Lc),
pl; [Lg], [Lr], [Lal, [Lad, [Lal, [Ls], (L], (Lo, [Tl [En], (Lo, [Le], [Lal, [Lrl,
s], [Lr], [Lul, [Lv], [Lw], [Lx], [Ly], [Lz], [L2], [Reflexivity], [Reflexivity,],

st (x, %))
u

nify* (% = *, x)],

Commutativity], [Commutativity,], [<tactic>], [tactic], [+ S «]], [P (x, %, %)],
P*(*, *, %)], [Po], [conclude; (*, x)], [concludes (x, *, *)], [concludes (x, *, *, *)],
coneludes (. #)]. [Lo]. [Lo]. [Lo]. (Lo, [L ol; [Lol, (Lo, (L], (Lo, [Lo); [Lol, [Lo], [Lol,
o]: [Lol, [Lo], [Lol, (Lo, [Lo], [check], [[+ = «]], [Root Visible(x)], [A], [R], [C], [T],
J, [0+, (%], [al, [0], [e], [d], [e], [£1: [g], [, [4], 7], (K1, (2, [m], [nd, [o], [p], [al, [7],
8, [l o], [w), [#], [y], [2], [(= x| =), [(1=0 =], [(e=h 5 | =),

[
["
["
["
[
[
[
[
(M
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[V
[R
[
[
[
[i
[
[L
[L
[L
[
[
[
[L
{
[(x=* * | % :=«)], [Ded(*, x)], [Dedg (*, *)], [Ded; (*, *, *)], [Deda (*, *, *)],

21

Deds (*, *, %, *)], [Dedy(x, *, *, %), [Ded (*, x, *, *)], [Deds (x,

(*, %)),
DedG([* , %, %,)], [Dedg (x, *, *, x)], [Dedy ()], [Dedg (*,)],

[(

[[Dedg (+,)], [S], [Neg],
[MP], [Gen], [Ded], [S1], [S2], [S3], [S4], [S5], [S6], [S7], [S8], [S9], [Repetition],
[A1],[A2'], [A4'], [A5'], [Prop 3.2a], [Prop 3.2b], [Prop 3.2¢], [Prop 3.2d],

[Prop 3.2e1], [Prop 3.2e2], [Prop 3.2¢], [Prop 3.2f1], [Prop 3.2f], [Prop 3.2f],
[Prop 3.2g1], [Prop 3.2g2], [Prop 3.2g], [Prop 3.2h4], [Prop 3.2hs], [Prop 3.2kL],
[Blockj (x, *,)], [Blocka ()], [pred calc], [pcl], [pc2], [ped], [ped], [ped], [peb],
[pc7], [pes], [ch], [pcl0], [pell], [pel2], [pemp], [pcunsound], [peded], [pcial,
[pcie], [pededuction], [trivial, [trivia2], [iatest], [andintro], [andelim1], [andelim?2],
[orintrol], [orintro2], [orelim], [notintro], [notnotintro|, [notnotelim], [mt], [pbc],
[repeat], [lem], [forallintro], [forallelim], [existsintro], [existselim], [bottomelim],
[lemnotintro], [nontriv0], [nontrivl], [nontriv2], [nontriv3], [nontriv4], [nontrivs],
[nontrive];

Preassociative

[*_{*}], [*/indexintro(x, *, x, *)], [*/intro(x, *, *)],
[mameintro(e, 5, %, #)], [¥], []|, [<[x—]], <[=>+]], [<0] [+1], [0B], [s-color(x)]
ecolor” ()] <41, 147 [V e, 4, o, o]), o e 0 591, 21, 4,

ii]ée[fR]’[*O]’ BT, 020, 0], B, B0, %), 7D, 5],), [0, [, (€], €]

[*/bothintro(x, *, *, x, *)],

*
*

* 7],], [(+)*], [string(+) +) [
L s [, [, [, (8], [D0%], [&ex],], [Ce], D], D], (4], o+l [, L4, /4],
[0*][][][][][5][][][*][9]*][][H][>*]H
[@x], [Ax], [Bx], [Cx], D], [Ex], [Fx], [Goe], [H], [L«], [J#], K], [L#], [Ms], [N+],
(O], [P], [Q], [Rxl, [S], [T], [Us], [V], [Wok], [Xt], [Y 5], [Ze#], [[], [\ 4], [1%], [+,
{*][][#], [b], [cx], [d+], [ex], [fx], [g+], [][v[k][][HlT #],], o],
[[

[*
[
Preassociative
[« x|, [string(*) ++ %],
« |

i

X B
;0] B
*], [ax], [rx], [s], [6%], [wx], [v], [w], o], [y], (2], [{], [|%], [F], [+,
Preassociative x; x|, [Postassociative x;], [[*], %], [priority * end],
[newline x|, [macro newline x], [MacroIndent(x)];
Preassociative
aryne
Preassociative
['];
Preassociative
[7], [* ¢ *];
Preassociative
[-], [x -0 #;
Preassociative
[* + *]7 [* +o *]7 [* +1 *]7 [* - *]7 [* -0 *]7 [* -1 *];
Preassociative
e U Lo}, b U], B\)
Postassociative
o] B], B], B 2] o 2
Postassociative
[, %];
Preassociative

[
[m

22

. R *], [*E*], [*g*]7[*z*] [x = %], [*ink] [*é*],[*g*],[*é*],

], [* free in «|, [* free in™ %], [* free for in x|,

% € *], [x Cr *], [* %,
.| <*] [*< *], e <], [=], [£ o], [£7],

[
[
[+ free for* « in *], [€,
[0, [t o],], o =
Preassociative
[_‘*]a [_'*];
Preassociative
[A], % A], [% A], [Ac *], [A];
Preassociative
[Vo], [|| *], [V%], [V%]
Preassociative
[T #], [V %], [vobj*:], [V ()], [F . (1))
Postassociative
[¥ = %], [x = *], [« < «[;
Postassociative
[+ #], [spy], [xl4];
Preassociative
* .
*]’
Preassociative
[As], [A %], [A%],[if * then x else x|, [let * = x in %], [let * = % in];
Preassociative
[x#£];
Preassociative
(], B2 V] B) [+
Preassociative
[@], [o], [1], [3> o], 2 4
Postassociative
[* F x], [x = «], [* L.e. x];
Preassociative
[V], [T];
Postassociative
[+ & #];
Postassociative
[x; +];
Preassociative
[proves x;
Preassociative
[* proof of x : x|, [Line* : * > x; x|, [Last line * > x O],
[Line * : Premise > %; x|, [Line * : Side-condition >> «; x|, [Arbitrary >> x; x|,
[Local > % = x; %], [Begin «; * : End; %], [Last block line % > x;],
[Arbitrary > x; *];
Postassociative
[| #];

Postassociative

[*

23

[*) *]7 [*[*]*]7
Preassociative

[x&x], [=];

Preassociative

[¥*], [* linebreak[4] *], [*\\x];
Preassociative

[* € %]; End table

References

[LiCS] Logic in Computer Science - Modelling and Reasoning about Systems,
Second Edition - 2004.
By Michael Huth & Mark Ryan
ISBN: 0-521-54310-X

24

	Initial remarks
	Conclusion
	Introduction
	First order predicate calculus
	A conservative extension
	Notation
	Some small proofs

	Natural deduction
	Derived lemmas
	Law of the Excluded Middle
	A word on
	A practical lemma

	Deduction lemma

	A nontrivial sequent
	Pyk definitions
	Tex definitions
	Extra proof line numbers
	Priority table

