
Logiweb sequent calculus, Appendix

Klaus Grue

GRD-2006-03-06.UTC:13:37:57.803308

Contents

1 Introduction 1

2 Notation 2
2.1 Hiding construct . 2
2.2 Metaquantification . 2
2.3 The ‘Arbitrary’ proof constructor 4
2.4 Macro indentation . 4
2.5 Protected macro expansion . 4
2.6 Object quantification . 4
2.7 Proof constructs . 4
2.8 Modus ponens at the object level 5

3 Side conditions 5
3.1 Logiweb terms . 5
3.2 Deduction . 6
3.3 Avoidance . 8
3.4 Substition . 8

4 Proofs 9
4.1 Proofs of FOL axioms using the inference of deduction 9
4.2 A proof of x + y = y + x . 10

1 Introduction

The present appendix is part of the Logiweb page available at
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/
01827245F0F167F3F10B82632D74D1466DB6371642ECC689ADACF5A00806/2/
body/tex/page.pdf.

The hex number which contains a RIPEMD-160 [DBP96] hash key and a
time stamp identifies the present paper uniquely on Logiweb. The part before
the hex number is the address of a Logiweb relay which redirects the users
browser to the paper. That part can be replaced by the address of any Logiweb

1

http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/01827245F0F167F3F10B82632D74D1466DB6371642ECC689ADACF5A00806/2/body/tex/page.pdf
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/01827245F0F167F3F10B82632D74D1466DB6371642ECC689ADACF5A00806/2/body/tex/page.pdf
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/01827245F0F167F3F10B82632D74D1466DB6371642ECC689ADACF5A00806/2/body/tex/page.pdf

relay. The part after the hex number indicates the address of the body of the
paper relative to the official, binary representation (2/ is shorthand for ../../).

Actually, the present page is rendered as three pdf files present at 2/body/
tex/page.pdf, 2/body/tex/appendix.pdf, and 2/body/tex/chores.pdf where ap-
pendix.pdf is the present appendix. Many proofs and definitions are deferred to
the present appendix to spare the reader of the main paper in the page.pdf file.
The chores.pdf file defines how to render each construct in TEX. A good place
to start browsing is 2/index.html.

Each Logiweb page has a Logiweb bibliography which lists previously pub-
lished pages which the present page relies on. The present Logiweb page refer-
ences the base page at
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/
018040352BB22FB1B6433E6EBEAC52191C8D2C270588A4F6A5EEDBA00806/2/
body/tex/page.pdf.
which defines the proof system used to verify the present page (c.f. 2/bibliography
/tex/page.pdf).

As mentioned in the main paper, the user friendliness of the Logiweb sequent
calculus is achieved by using the Turing complete macro expansion facility of
Logiweb. To see the proofs present in the main paper after macro expansion,
consult 2/expansion/tex/page.pdf. To see the proofs of the present appendix
after macro expansion, consult 2/expansion/tex/appendix.pdf.

2 Notation

2.1 Hiding construct

[xhide ./ “hide”] proclaims xhide to denote hiding. We introduce it here to
have a visible hiding construct instead of the invisible ‘unicode start of text’
operator normally used for hiding, c.f. the base page. The use of hiding in
[x macro→ λt.λs.λc.M̃4(t, s, c, d[x =̈ y]e)]hide later in this appendix is play for the
gallery since the x is introduced on the base page and since macro definitions
only have effect when they occur on the home page of the construct being macro
defined.

2.2 Metaquantification

The following macro definition makes e.g. ∀a:∀b: ∀c: d expand into ∀a:∀b: ∀c: d.
Note that ∀x: y is meta quantification as defined on the base page which, unfor-
tunately, is rendered exactly like object quantification in the present document.
Such notational clashes are unavoidable in mathematics in general but becomes
extremely visible in a system like Logiweb where referenced papers are only a
click away. To avoid confusion between the two, identically looking quantifiers,
we only use the meta quantifier from the base page in the macro definition below
and otherwise use ∀objx: y to denote object quantification. The x operator used
in the definition protects against macro expansion. The left hand side of the

2

http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/01827245F0F167F3F10B82632D74D1466DB6371642ECC689ADACF5A00806/2/body/tex/page.pdf
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/01827245F0F167F3F10B82632D74D1466DB6371642ECC689ADACF5A00806/2/body/tex/page.pdf
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/01827245F0F167F3F10B82632D74D1466DB6371642ECC689ADACF5A00806/2/body/tex/appendix.pdf
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/01827245F0F167F3F10B82632D74D1466DB6371642ECC689ADACF5A00806/2/body/tex/chores.pdf
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/01827245F0F167F3F10B82632D74D1466DB6371642ECC689ADACF5A00806/2/index.html
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/018040352BB22FB1B6433E6EBEAC52191C8D2C270588A4F6A5EEDBA00806/2/index.html
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/018040352BB22FB1B6433E6EBEAC52191C8D2C270588A4F6A5EEDBA00806/2/body/tex/page.pdf
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/018040352BB22FB1B6433E6EBEAC52191C8D2C270588A4F6A5EEDBA00806/2/body/tex/page.pdf
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/018040352BB22FB1B6433E6EBEAC52191C8D2C270588A4F6A5EEDBA00806/2/body/tex/page.pdf
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/01827245F0F167F3F10B82632D74D1466DB6371642ECC689ADACF5A00806/2/bibliography/tex/page.pdf
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/01827245F0F167F3F10B82632D74D1466DB6371642ECC689ADACF5A00806/2/bibliography/tex/page.pdf
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/01827245F0F167F3F10B82632D74D1466DB6371642ECC689ADACF5A00806/2/expansion/tex/page.pdf
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/01827245F0F167F3F10B82632D74D1466DB6371642ECC689ADACF5A00806/2/expansion/tex/appendix.pdf
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/018040352BB22FB1B6433E6EBEAC52191C8D2C270588A4F6A5EEDBA00806/2/index.html
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/018040352BB22FB1B6433E6EBEAC52191C8D2C270588A4F6A5EEDBA00806/2/index.html
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/018040352BB22FB1B6433E6EBEAC52191C8D2C270588A4F6A5EEDBA00806/2/index.html

macro definition is protected against macro expansion as is the ‘recursive’ call
of the macro that occurs in the right hand side.

[Πx: y macro→ λt.λs.λc.M̃(If(¬t1
r= dx, ye, Q̃(t, d∀x: ye, dxe : : t1 : : dye : : t2 : : T),

Q̃(t, d∀x: Πy: ze, dxe : : t11 : : dye : : t12 : : dze : : t2 : : T)), s, c)]

The definition above is a general macro definition as opposed to more restricted
macro definitions like [Arbitrary À i; p macro→ λt.λs.λc.M̃4(t, s, c, d[Arbitrary À
i; p =̈ Πi: p]e)] which just define a left hand side to expand into a right hand
side. The [x macro→ λt.λs.λc.M̃4(t, s, c, d[x =̈ y]e)]hide construct itself is defined
by a general macro definition and happens to expand into a general macro
definition, so the [x macro→ λt.λs.λc.M̃4(t, s, c, d[x =̈ y]e)]hide construct is just
syntactic sugar.

A general macro definition assigns a ‘macro’ aspect to the principal operator
of the right hand side. The definition ignores the parameters of the principal
operator. Instead, the right hand side of the general macro definition must take
three arguments, t, s, and c. When a macro aspect is invoked, it is applied to
the term t to be expanded, a ‘macro state’ s, and a ‘Logiweb cache’ c.

The macro state should itself be a function of three parameters t, s, and c
and it is the function to be invoked when continuing the macro expansion. A
macro like the macro protection macro x protects its argument x against macro
expansion by returning it instead of calling s on it. The construct above calls
the general macro expansion invokation function M̃(t, s, c) which simply applies
s to t, s, and c. So the definition above does something to t and then continues
macro expansion.

The Logiweb cache c is the cache of the home page of t, i.e. the page on
which t occurs. The cache contains, among other, all definitions present on
the home page and all pages transitively referenced by the home page. It also
contains other things like compiled versions of all value defined constructs. This
is badly needed for efficiency reasons because macro expansion is done not by
the Logiweb computing engine itself but by a self-interpretter which is run by
the Logiweb engine and simulates the Logiweb engine. This self-interpretter,
which resides inside the macro state s, fetches compiled versions of constructs
from the cache c for efficiency reasons.

The term t has the structure described in Section 3.1. t2 is the second subtree
of t and t12 is the second subtree of the first subtree of t. t

r= t′ is true when t
and t′ have the same principal operator.

The Q̃(t, p, a) construct expands the pattern p according to the association
list a. Some day, when the author has some spare time, a new version of Q̃(t, p, a)
will be implemented in which the association list is replaced by a facility like
the ‘comma’ in Lisp backquotes.

The construct Q̃(t, p, a) not only expands the pattern p according to the
association list a, it also extracts the ‘debugging information’ of the principal
operator of t and installs that debugging information in all operators that come
from the pattern p. The debugging information indicates the exact location of
the construct before macro expansion.

The dte construct evaluates to the Logiweb representation of the term t.

3

2.3 The ‘Arbitrary’ proof constructor

The ‘Arbitrary’ proof constructor defined on the base page does not take ad-
vantage of the meta quantification macro above. For that reason we introduce
a new construct for introducing arbitrary meta variables:

[Arbitrary À i; p macro→ λt.λs.λc.M̃4(t, s, c, d[Arbitrary À i; p =̈ Πi: p]e)]
Actually, the definition above was used as an example of a simple macro

in Section 2.2. When the same aspect of the same construct is defined more
than once (e.g. the macro aspect of ∀i: p), only the first definition has effect.
But the Logiweb compiler prints a warning if the same aspect of the same
construct have definitions that contradict each other. The repeated definition
of ∀i: p above gives no warnings since the two definitions have identical right
hand sides.

2.4 Macro indentation

The following construct increases the left margin. Should be used in inline math
mode only. Should be replaced by automatic indentation inside blocks as soon
as possible.

[MacroIndent(x) macro→ λt.λs.λc.M̃4(t, s, c, d[MacroIndent(x) =̈ x]e)]

2.5 Protected macro expansion

The following construct is a general macro definition construct which both pro-
tects its left hand side against macro expansion and renders its left hand side
using the tex name aspect. To see the definitions of the tex and tex name
aspects of [x macro→ y]hide consult the chores part of the present Logiweb page.

[[x ◦= y] macro→ λt.λs.λc.M̃4(t, s, c, d[[x ◦= y] =̈ [(x)p macro→ y]]e)]

2.6 Object quantification

The following is a repetion of Section 2.2 but concerns object quantification. It
allows to write ∀objx: ∀objy: ∀objz: u for ∀objx: ∀objy: ∀objz: u.

[∀x: y macro→ λt.λs.λc.M̃(If(¬t1
r= dx, ye, Q̃(t, d∀objx: ye, dxe : : t1 : : dye : : t2 : : T),

Q̃(t, d∀objx: ∀y: ze, dxe : : t11 : : dye : : t12 : : dze : : t2 : : T)), s, c)]

2.7 Proof constructs

The b; p construct puts a parenthesis around the block b and places a cut op-
erator between b and p. The construct is complicated by the line number l
which should be macro defined locally to denote the conclusion of the block b.
This is non-trivial since the conclusion is the last line prefixed by all premises,
side-conditions, and meta-quantifiers introduced in earlier lines.

[Begin b; l : End; p macro→ λt.λs.λc.Block1(t, s, c)]

4

http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/018040352BB22FB1B6433E6EBEAC52191C8D2C270588A4F6A5EEDBA00806/2/index.html
http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/01827245F0F167F3F10B82632D74D1466DB6371642ECC689ADACF5A00806/2/body/tex/chores.pdf

[Block1(t, s, c)
val→ t!s!c!let1(λb.let1(λx.let1(λq.let1(λq.Q̃(t, db; qe, dbe : : b : : dqe : :

q : : T),M̃(q, s, c)), Q̃(t, dlet l =̈ x in pe, dle : : t2 : : dpe : : t3 : : dxe : : x : :
T)),Block2(b)),M̃(t1, s, c))]

[Block2(b) val→ If(b r= dx ` ye, Q̃(b, dx ` ye, dxe : : b1 : : dye : : Block2(b2) : : T),
If(b r= dx `̀ ye, Q̃(b, dx `̀ ye, dxe : : b1 : : dye : : Block2(b2) : : T), If(b r= d∀x: ye,
Q̃(b, d∀x: ye, dxe : : b1 : : dye : : Block2(b2) : : T), If(b r= dx; ye, Block2(b2), If(b r=
dx À ye, b2,⊥⊥)))))]

[Last block line a À i ; macro→ λt.λs.λc.M̃4(t, s, c, d[Last block line a À i ; =̈ (a À
i)]e)]

2.8 Modus ponens at the object level

We shall apply modus ponens to two arguments so often that this idiom deserves
its own macro:

[x ¥ y
macro→ λt.λs.λc.M̃4(t, s, c, d[x ¥ y =̈ MP ¤ x ¤ y]e)]

3 Side conditions

3.1 Logiweb terms

Metavariables, object terms, statements, and sequent terms are all implemented
as Logiweb terms which essentially have the following syntax:

pdigit ::= “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”
digit ::= “0” | pdigit
positive ::= pdigit | positive digit
cardinal ::= “0” | positive
reference ::= cardinal
identifier ::= cardinal
symbol ::= “(” reference“Ã” identifier “)”
arglist ::= “)” | “Ã” term arglist
term ::= “(” symbol arglist

The only thing omitted from the syntax is a third element of symbols which
contains debugging information. For details on debugging information, consult
the base page.

Each Logiweb page introduces one or more new constructs. As an example,
the present page introduces the binary operation x ⇒ y.

Each Logiweb page has a unique reference, and each construct introduced
by a page has an identifier which is unique within the page. Hence, reference
and identifier together determine a construct uniquely.

5

http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/018040352BB22FB1B6433E6EBEAC52191C8D2C270588A4F6A5EEDBA00806/2/index.html

3.2 Deduction

[Ded(p, c) macro→ λt.λs.λc.M̃4(t, s, c, d[Ded(p, c) =̈ λx.Ded0(dpe, dce)]e)]
True if the premise p implies the conclusion c according to the de-
duction rule. The construct quotes its arguments and pass them on
to Ded0(p, c). The quoting and the λx. · · · makes λx.Ded0(dpe, dce)
suited as a side condition. The present side condition ignores x. But
when a side condition is invoked, it is applied to the cache of the
home page of the side condition (the page on which the side condition
occurs). That way the side condition gets access to all definitions
present on the home page and all pages transitively referenced by
the home page. As an example, that has allowed to define an ‘axiom
of definition’ in another theory on another Logiweb page in which all
value definitions automatically become axiom schemes. This possi-
bility has been excluded from the present paper because of the Ijcar
page limitation and because the facility is not particularly useful in
Peano arithmetic. It is much more useful in theories that build on
lambda calculus.

[Ded0(p, c) val→ c!If(Ded8(p, T), Ded1(Ded7(p), c,T),F)]
True if the premise p implies the conclusion c according to the de-
duction rule. The function checks the premise for meta-closedness,
strips meta-quantifiers from p and then calls Ded1(p, c, s) with an
empty list s of side conditions. The x!y construct evaluates and
discards x and then returns y. It is included to ensure strictness
of Ded0(p, c) which in turn increases the efficiency. Some day the
present author will define a ‘strict value definition’ operator so that
users don’t have to add x!y operators manually. The x!y construct
takes zero CPU-time when used in functions that are ‘fit’ for opti-
mization. See the base page for details on ‘fitness’ analysis.

[Ded1(p, c, s) val→ If(c r= dx `̀ ye, Ded1(p, c2, c1 : : s), Ded2(p, c, s))]
Move side conditions from the conclusion c to the list s. x

r= y is
true if the terms x and y have the same root (i.e. the same prin-
cipal operator) so c

r= dx `̀ ye is true if the principal operator of
c is an endorsement. c1 and c2 are the first and second argument,
respectively, of the endorsement.

[Ded2(p, c, s) val→ s!p r= dx ` ye∧c
r= dx ⇒ ye

{
Ded3(p1, c1, s, T) ∧Ded2(p2, c2, s)
Ded4(p, c, s, Ded6(p, c, T, T))]

This function is true if the premise p is equal to the conclusion c
except that inferences are replaced by implications. If(x, y, z) and

x

{
y
z

express the same conditional construct. Choosing between

the two is a purely stylistic choice.

[Ded3(p, c, s, b) val→ If(¬c
r= d∀objx: ye,Ded4(p, c, s, b), If(p r= d∀objx: ye ∧ p1 t= c1,

6

http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/018040352BB22FB1B6433E6EBEAC52191C8D2C270588A4F6A5EEDBA00806/2/index.html

Ded4(p, c, s, b), Ded3(p, c2, s, c1 : : c1 : : b)))]
Ded3(p, c, s, b) moves quantified variables from the premise p to the
association list b of ‘bindings’. Each quantified variable x is added
to b as the pair x : : x indicating the x should be replaced by x (which
is a way of saying that the variable cannot be instantiated). Moving
of bound variables stops when there are no more bound variables to
move or when the premise and conclusion happen to quantify the
same variable. In both cases we have reached a point where premise
and conclusion should be identical except for instantaition of vari-
ables. x

t= y is true if the terms x and y are identical. Logiweb terms
contain debugging information which indicates the precise location
each operator before macro expansion. x

t= y ignores this debugging
information when it tests two terms for identity.

[Ded4(p, c, s, b) val→ s!b!If(p r= dxe, lookup(p, b,T) t= c, If(¬p
r= c,F, If(p r=

d∀objx: ye, p1 t= c1∧Ded4(p2, c2, s, p1 : : p1 : : b), If(¬p
r= dxe, Ded∗4(p

t, ct, s, b),
p1 t= c1 ∧Ded5(p, s, b)))))]
Test that the premise p is identical to the conclusion c except for
instantiation of object variables as specified by the association list
b. A term is an object variable if the root of the term is the ‘ob-
ject variable operator’. For that reason, one can test whether or not
a variable is an object variable by comparing its root to the root
of an arbitrary object variable. For each meta variable, check that
there are side conditions which ensure that the meta variables denote
terms whose free object variables do not get caught in the context.
Meta variables are recognized the same way as object variables. The
object variable x and the meta variable x macro expand into x and x,
respectively, adding the object and meta variable operator, respec-
tively, to the term x. The term x is neither an object nor a meta
variable. x is a Logiweb programming language variable because no
Logiweb definition assigns a value to it.

[Ded∗4(p, c, s, b) val→ c!s!b!If(p,T, Ded4(ph, ch, s, b) ∧Ded∗4(p
t, ct, s, b))]

Elementwise application of Ded4(p, c, s, b). xh and xt denote the head
and tail, respectively, of the pair x. Terms are represented as lists
comprising the principal operator followed by arguments just like
Lisp S-expressions. The principal operator in turn is a list whose
first two elements are cardinals that identify the operator followed
by debugging information.

[Ded5(p, s, b) val→ p!s!If(b, T, ddxe#0dyeeh : : dd∗eeh : : bhh : : T : : ddxeeh : : p : :
T : : T ∈t s ∧Ded5(p, s, bt))]
For each variable that is bound in the context according to the as-
sociation list b, check that the list s of side conditions ensures that
the meta variables p denotes a term whose free variables do not get

7

caught in the context. x ∈t y is true if the term x belongs to the list
y of terms.

[Ded6(p, c, e, b) val→ p!c!b!e!If(p r= dxe, p ∈t e

{
b
p : : c : : b

, If(¬p
r= c, T, If(p r=

dae, b, If(p r= d∀objx: ye, Ded6(p2, c2, c1 : : e, b),Ded∗6(p
t, ct, e, b)))))]

[Ded∗6(p, c, e, b) val→ p!c!b!e!If(p, b,Ded∗6(p
t, ct, e, Ded6(ph, ch, e, b)))]

Elementwise application of Ded6(p, c, e, b).

[Ded7(p) val→ p
r= d∀x: ye

{
Ded7(p2)
p

]

Removal of all metaquantifiers.

[Ded8(p, b) val→ If(p r= d∀x: ye, Ded8(p2, p1 : : b), If(p r= dae, p ∈t b, Ded∗8(p
t, b)))]

True if all free meta variables of p occur in the list b of meta variables.

[Ded∗8(p, b) val→ b!If(p, T, If(Ded8(ph, b),Ded∗8(p
t, b),F))]

Elementwise application of Ded8(p, b).

3.3 Avoidance

[xvar val→ x
r= dxe]

[x#y
macro→ λt.λs.λc.M̃4(t, s, c, d[x#y =̈ dxe#0dye]e)]

[x#0y
val→ λc.xvar ∧ yC ∧ x#1y]

[x#1y
val→ If(yvar,¬x

t= y,

If(¬y
r= d∀objx: ye, x#∗yt,

If(x t= y1, T, x#1y2)))]

[x#∗y val→ x!If(y, T, If(x#1yh, x#∗yt, F))]

3.4 Substition

[〈a≡b|x:=t〉 macro→ λt.λs.λc.M̃4(t, s, c, d[〈a≡b|x:=t〉 =̈ 〈dae≡0dbe|dxe:=dte〉]e)]

[〈a≡0b|x:=t〉 val→ λc.xvar ∧ 〈a≡1b|x:=t〉]

[〈a≡1b|x:=t〉 val→ a!x!t!
If(If(b r= d∀obju: ve, b1 t= x, F), a t= b,

If(bvar ∧ b
t= x, a

t= t, If(
a

r= b, 〈at≡∗bt|x:=t〉, F)))]

[〈a≡∗b|x:=t〉 val→ b!x!t!If(a, T, If(〈ah≡1bh|x:=t〉, 〈at≡∗bt|x:=t〉, F))]

8

4 Proofs

4.1 Proofs of FOL axioms using the inference of deduction

We now prove axiom schemes A1 and A2 from [Men87]. Furthermore, we prove
two, particular instances of A4 and A5 in a way that generalizes to arbitrary
instances of those axiom schemes.

Furthermore, we prove a Repetition lemma which says ∀a: a ` a by a ‘hand
made proof’, i.e. by giving a proof metatactic explicitly which generates the
sequent proof.

A page is verified by a top level verifier. The top level verifier of the present
page is defined on the base page. That verifier invokes, among other, a proof
verifier. The proof verifier invokes each proof (where each proof is supposed
to be a proof metatactic). When it does so, it applies the proof metatactic to
a Logiweb cache c and a pair n : : l. The cache c is the Logiweb cache of the
home page of the proof, i.e. a structure which contains all definitions present on
the home page plus all transitively referenced Logiweb pages. n is the identifier
of the lemma (a cardinal which identifies the lemma uniquely within the home
page) plus the contents of the lemma. The proof metatactic given below for
proving Repetition ignores both arguments and just constructs a sequent term
that proves ∀a: a ` a. All other proofs in the present paper macro expand into
proofs that are proved by a metatactic which scans the proof for object tactics
and invokes those object tactics. The only object tactic used is named À and
does unification.

[Repetition stmt→ S ` ∀a: a ` a]

[A1′ stmt→ S ` ∀a:∀b: a ⇒ b ⇒ a]

[A2′ stmt→ S ` ∀a:∀b: ∀c: a ⇒ b ⇒ c ⇒ a ⇒ b ⇒ a ⇒ c]

[A4′ stmt→ S ` ∀objx:∀objy: x + y = y + x ⇒ 2 + 3 = 3 + 2]

[A5′ stmt→ S ` ∀objx: 2+3 = 5 ⇒ 2+3+x = 5+x ⇒ 2+3 = 5 ⇒ ∀objx: 2+3+x =
5 + x]

[Repetition
proof→ λc.λx.dS ` ∀a: aIe]

[A1′
proof→ λc.λx.P(dS ` ∀a:∀b: ∀a:∀b: a ` b ` Repetition ¤ a À a; Ded ¤

∀a: ∀b: a ` b ` a À a ⇒ b ⇒ ae,p0, c)]

[A2′
proof→ λc.λx.P(dS ` ∀a: ∀b: ∀c: ∀a:∀b: ∀c: a ⇒ b ⇒ c ` a ⇒ b ` a ` MP¤a ⇒

b¤a À b;MP¤a ⇒ b ⇒ c¤a À b ⇒ c;MP¤b ⇒ c¤b À c; Ded¤∀a:∀b: ∀c: a ⇒
b ⇒ c ` a ⇒ b ` a ` c À a ⇒ b ⇒ c ⇒ a ⇒ b ⇒ a ⇒ ce,p0, c)]

[A4′
proof→ λc.λx.P(dS ` x + y = y + x ` Repetition ¤ x + y = y + x À x + y =

y + x; Ded ¤ x + y = y + x ` x + y = y + x À ∀objx:∀objy: x + y = y + x ⇒ 2 + 3 =
3 + 2e, p0, c)]

9

http://www.diku.dk/cgi-bin/cginetd/grue/relay/go/018040352BB22FB1B6433E6EBEAC52191C8D2C270588A4F6A5EEDBA00806/2/index.html

[A5′
proof→ λc.λx.P(dS ` 2+3 = 5 ⇒ 2+3+x = 5+x ` 2+3 = 5 ` MP¤2+3 =

5 ⇒ 2+3+ x = 5+ x¤ 2+3 = 5 À 2+3+ x = 5+ x; Gen¤ 2+3+ x = 5+ x À
∀objx: 2 + 3 + x = 5 + x; Ded ¤ 2 + 3 = 5 ⇒ 2 + 3 + x = 5 + x ` 2 + 3 = 5 `
∀objx: 2 + 3 + x = 5 + x À ∀objx: 2 + 3 = 5 ⇒ 2 + 3 + x = 5 + x ⇒ 2 + 3 = 5 ⇒
∀objx: 2 + 3 + x = 5 + xe, p0, c)]

4.2 A proof of x + y = y + x

[Prop 3.2a stmt→ S ` ∀a: a = a]

[Prop 3.2b stmt→ S ` ∀a: ∀b: a = b ` b = a]

[Prop 3.2c stmt→ S ` ∀a:∀b: ∀c: a = b ` b = c ` a = c]

[Prop 3.2d stmt→ S ` ∀a: ∀b: ∀c: a = c ` b = c ` a = b]

[Prop 3.2e stmt→ S ` ∀a:∀b: ∀c: a = b ` a + c = b + c]

[Prop 3.2f stmt→ S ` ∀a: a = 0 + a]

[Prop 3.2g stmt→ S ` ∀a: ∀b: a′ + b = a + b′]

[Prop 3.2h stmt→ S ` ∀a: ∀b: a + b = b + a]

[Prop 3.2a
proof→ λc.λx.P(dS ` ∀a: S5 À a + 0 = a; S1 ¤ a + 0 = a ¤ a + 0 = a À

a = ae, p0, c)]

[Prop 3.2b
proof→ λc.λx.P(dS ` ∀a: ∀b: a = b ` Prop 3.2a À a = a; S1 ¤ a =

b ¤ a = a À b = ae, p0, c)]

[Prop 3.2c
proof→ λc.λx.P(dS ` ∀a: ∀b:∀c: a = b ` b = c ` Prop 3.2b ¤ a = b À

b = a; S1 ¤ b = a ¤ b = c À a = ce,p0, c)]

[Prop 3.2d
proof→ λc.λx.P(dS ` ∀a: ∀b:∀c: a = c ` b = c ` Prop 3.2b ¤ b = c À

c = b; Prop 3.2c ¤ a = c ¤ c = b À a = be, p0, c)]

[Prop 3.2e1
stmt→ S ` ∀a:∀b: a = b ⇒ a + 0 = b + 0]

[Prop 3.2e1
proof→ λc.λx.P(dS ` ∀a: ∀b: ∀a:∀b: a = b ` S5 À a+0 = a; Prop 3.2c¤

a+0 = a¤a = b À a+0 = b; S5 À b+0 = b; Prop 3.2d¤a+0 = b¤b+0 = b À
a+0 = b+0; Ded¤∀a:∀b: a = b ` a+0 = b+0 À a = b ⇒ a+0 = b+0e,p0, c)]

[Prop 3.2e2
stmt→ S ` ∀a: ∀b: ∀c: a = b ⇒ a + c = b + c ⇒ a = b ⇒ a + c′ = b + c′]

[Prop 3.2e2
proof→ λc.λx.P(dS ` ∀a: ∀b:∀c: ∀a: ∀b:∀c: a = b ⇒ a + c = b + c ` a =

b ` MP ¤ a = b ⇒ a + c = b + c ¤ a = b À a + c = b + c; S2 ¤ a + c = b + c À
a+ c′ = b+ c′; S6 À a+ c′ = a+ c′; Prop 3.2c¤a+ c′ = a+ c′¤a+ c′ = b+ c′ À

10

a+c′ = b+c′; S6 À b+c′ = b+c′; Prop 3.2d¤a+c′ = b+c′¤b+c′ = b+c′ À
a+c′ = b+c′; Ded¤∀a: ∀b:∀c: a = b ⇒ a+c = b+c ` a = b ` a+c′ = b+c′ À
a = b ⇒ a + c = b + c ⇒ a = b ⇒ a + c′ = b + c′e, p0, c)]

[Prop 3.2e
proof→ λc.λx.P(dS ` ∀a:∀b: ∀c: a = b ` Prop 3.2e1 À x = y ⇒ x + 0 =

y+0; Prop 3.2e2 À x = y ⇒ x+ z = y+ z ⇒ x = y ⇒ x+ z′ = y+ z′; S9 @ z¤x =
y ⇒ x + 0 = y + 0 ¤ x = y ⇒ x + z = y + z ⇒ x = y ⇒ x + z′ = y + z′ À x = y ⇒
x + z = y + z; Ded ¤ x = y ⇒ x + z = y + z À a = b ⇒ a + c = b + c;MP ¤ a =
b ⇒ a + c = b + c ¤ a = b À a + c = b + ce,p0, c)]

[Prop 3.2f1
stmt→ S ` 0 = 0 + 0]

[Prop 3.2f1
proof→ λc.λx.P(dS ` S5 À 0 + 0 = 0; Prop 3.2b ¤ 0 + 0 = 0 À 0 =

0 + 0e, p0, c)]

[Prop 3.2f2
stmt→ S ` ∀a: a = 0 + a ⇒ a′ = 0 + a′]

[Prop 3.2f2
proof→ λc.λx.P(dS ` ∀a:∀a: a = 0 + a ` S2 ¤ a = 0 + a À a′ =

0 + a′; S6 À 0 + a′ = 0 + a′; Prop 3.2d ¤ a′ = 0 + a′ ¤ 0 + a′ = 0 + a′ À a′ =
0 + a′; Ded ¤ ∀a: a = 0 + a ` a′ = 0 + a′ À a = 0 + a ⇒ a′ = 0 + a′e, p0, c)]

[Prop 3.2f
proof→ λc.λx.P(dS ` ∀a: Prop 3.2f1 À 0 = 0 + 0; Prop 3.2f2 À x =

0 + x ⇒ x′ = 0 + x′; S9 @ x ¤ 0 = 0 + 0 ¤ x = 0 + x ⇒ x′ = 0 + x′ À x =
0 + x; Ded ¤ x = 0 + x À a = 0 + ae,p0, c)]

[Prop 3.2g1
stmt→ S ` ∀a: a′ + 0 = a + 0′]

[Prop 3.2g1
proof→ λc.λx.P(dS ` ∀a: S5 À a′+0 = a′; S5 À a+0 = a; S2¤ a+0 =

a À a + 0′ = a′; Prop 3.2d ¤ a′ + 0 = a′ ¤ a + 0′ = a′ À a′ + 0 = a + 0′e, p0, c)]

[Prop 3.2g2
stmt→ S ` ∀a: ∀b: a′ + b = a + b′ ⇒ a′ + b′ = a + b′′]

[Prop 3.2g2
proof→ λc.λx.P(dS ` ∀a: ∀b: ∀a: ∀b: a′+b = a+b′ ` S2¤a′+b = a+b′ À

a′ + b′ = a + b′′; S6 À a′ + b′ = a′ + b′; Prop 3.2c ¤ a′ + b′ = a′ + b′ ¤ a′ + b′ =
a + b′′ À a′ + b′ = a + b′′; S6 À a + b′ = a + b′; S2 ¤ a + b′ = a + b′ À a + b′′ =
a + b′′; Prop 3.2d ¤ a′ + b′ = a + b′′ ¤ a + b′′ = a + b′′ À a′ + b′ = a + b′′; Ded ¤

∀a: ∀b: a′+b = a+b′ ` a′+b′ = a+b′′ À a′+b = a+b′ ⇒ a′+b′ = a+b′′e,p0, c)]

[Prop 3.2g
proof→ λc.λx.P(dS ` ∀a: ∀b: Prop 3.2g1 À x′+0 = x+0′; Prop 3.2g2 À

x′ + y = x + y′ ⇒ x′ + y′ = x + y′′; S9 @ y ¤ x′ + 0 = x + 0′ ¤ x′ + y = x + y′ ⇒
x′+ y′ = x+ y′′ À x′+ y = x+ y′; Ded¤ x′+ y = x+ y′ À a′+ b = a+ b′e,p0, c)]

[Prop 3.2h1
stmt→ S ` ∀a: a + 0 = 0 + a]

[Prop 3.2h1
proof→ λc.λx.P(dS ` ∀a: S5 À a + 0 = a; Prop 3.2f À a = 0 +

a; Prop 3.2c ¤ a + 0 = a ¤ a = 0 + a À a + 0 = 0 + ae, p0, c)]

11

[Prop 3.2h2
stmt→ S ` ∀a: ∀b: a + b = b + a ⇒ a + b′ = b′ + a]

[Prop 3.2h2
proof→ λc.λx.P(dS ` ∀a:∀b: ∀a: ∀b: a+b = b+a ` S2¤a+b = b+a À

a + b′ = b + a′; S6 À a + b′ = a + b′; Prop 3.2c ¤ a + b′ = a + b′ ¤ a + b′ =
b + a′ À a + b′ = b + a′; Prop 3.2g À b′ + a = b + a′; Prop 3.2d ¤ a + b′ =
b + a′ ¤ b′ + a = b + a′ À a + b′ = b′ + a; Ded ¤ ∀a:∀b: a + b = b + a ` a + b′ =
b′ + a À a + b = b + a ⇒ a + b′ = b′ + ae, p0, c)]

[Prop 3.2h
proof→ λc.λx.P(dS ` ∀a:∀b: Prop 3.2h1 À x + 0 = 0 + x; Prop 3.2h2 À

x + y = y + x ⇒ x + y′ = y′ + x; S9 @ y ¤ x + 0 = 0 + x ¤ x + y = y + x ⇒ x + y′ =
y′ + x À x + y = y + x; Ded ¤ x + y = y + x À a + b = b + ae, p0, c)]

References

[DBP96] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-
160: A strengthened version of RIPEMD. In Fast Software
Encryption, pages 71–82, 1996. http://citeseer.nj.nec.com/
dobbertin96ripemd.html.

[Men87] E. Mendelson. Introduction to Mathematical Logic. Wadsworth and
Brooks, 3. edition, 1987.

12

http://citeseer.nj.nec.com/dobbertin96ripemd.html
http://citeseer.nj.nec.com/dobbertin96ripemd.html

	Introduction
	Notation
	Hiding construct
	Metaquantification
	The `Arbitrary' proof constructor
	Macro indentation
	Protected macro expansion
	Object quantification
	Proof constructs
	Modus ponens at the object level

	Side conditions
	Logiweb terms
	Deduction
	Avoidance
	Substition

	Proofs
	Proofs of FOL axioms using the inference of deduction
	A proof of x + y = y + x

