Logiweb(TM)

Logiweb aspects of prop three two g two in pyk

Up Help

The predefined "pyk" aspect

define pyk of prop three two g two as text unicode start of text unicode small p unicode small r unicode small o unicode small p unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small g unicode space unicode small t unicode small w unicode small o unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of prop three two g two as text unicode start of text unicode newline unicode capital p unicode small r unicode small o unicode small p unicode backslash unicode space unicode three unicode period unicode two unicode small g unicode underscore unicode two unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of prop three two g two as system s infer all metavar var a end metavar indeed all metavar var b end metavar indeed ( ( ( metavar var a end metavar suc plus metavar var b end metavar ) equal ( ( metavar var a end metavar plus metavar var b end metavar ) suc ) ) imply ( ( metavar var a end metavar suc plus ( metavar var b end metavar suc ) ) equal ( ( metavar var a end metavar plus ( metavar var b end metavar suc ) ) suc ) ) ) end define

The user defined "the proof aspect" aspect

define proof of prop three two g two as lambda var c dot lambda var x dot proof expand quote system s infer all metavar var a end metavar indeed all metavar var b end metavar indeed ( ( all metavar var a end metavar indeed all metavar var b end metavar indeed ( ( ( metavar var a end metavar suc plus metavar var b end metavar ) equal ( ( metavar var a end metavar plus metavar var b end metavar ) suc ) ) infer ( ( ( axiom s two modus ponens ( ( metavar var a end metavar suc plus metavar var b end metavar ) equal ( ( metavar var a end metavar plus metavar var b end metavar ) suc ) ) ) conclude ( ( metavar var a end metavar suc plus metavar var b end metavar ) suc equal ( ( metavar var a end metavar plus metavar var b end metavar ) suc suc ) ) ) cut ( ( axiom s six conclude ( ( metavar var a end metavar suc plus ( metavar var b end metavar suc ) ) equal ( ( metavar var a end metavar suc plus metavar var b end metavar ) suc ) ) ) cut ( ( ( ( prop three two c modus ponens ( ( metavar var a end metavar suc plus ( metavar var b end metavar suc ) ) equal ( ( metavar var a end metavar suc plus metavar var b end metavar ) suc ) ) ) modus ponens ( ( metavar var a end metavar suc plus metavar var b end metavar ) suc equal ( ( metavar var a end metavar plus metavar var b end metavar ) suc suc ) ) ) conclude ( ( metavar var a end metavar suc plus ( metavar var b end metavar suc ) ) equal ( ( metavar var a end metavar plus metavar var b end metavar ) suc suc ) ) ) cut ( ( axiom s six conclude ( ( metavar var a end metavar plus ( metavar var b end metavar suc ) ) equal ( ( metavar var a end metavar plus metavar var b end metavar ) suc ) ) ) cut ( ( ( axiom s two modus ponens ( ( metavar var a end metavar plus ( metavar var b end metavar suc ) ) equal ( ( metavar var a end metavar plus metavar var b end metavar ) suc ) ) ) conclude ( ( metavar var a end metavar plus ( metavar var b end metavar suc ) ) suc equal ( ( metavar var a end metavar plus metavar var b end metavar ) suc suc ) ) ) cut ( ( ( prop three two d modus ponens ( ( metavar var a end metavar suc plus ( metavar var b end metavar suc ) ) equal ( ( metavar var a end metavar plus metavar var b end metavar ) suc suc ) ) ) modus ponens ( ( metavar var a end metavar plus ( metavar var b end metavar suc ) ) suc equal ( ( metavar var a end metavar plus metavar var b end metavar ) suc suc ) ) ) conclude ( ( metavar var a end metavar suc plus ( metavar var b end metavar suc ) ) equal ( ( metavar var a end metavar plus ( metavar var b end metavar suc ) ) suc ) ) ) ) ) ) ) ) ) ) cut ( ( deduction modus ponens all metavar var a end metavar indeed all metavar var b end metavar indeed ( ( ( metavar var a end metavar suc plus metavar var b end metavar ) equal ( ( metavar var a end metavar plus metavar var b end metavar ) suc ) ) infer ( ( metavar var a end metavar suc plus ( metavar var b end metavar suc ) ) equal ( ( metavar var a end metavar plus ( metavar var b end metavar suc ) ) suc ) ) ) ) conclude ( ( ( metavar var a end metavar suc plus metavar var b end metavar ) equal ( ( metavar var a end metavar plus metavar var b end metavar ) suc ) ) imply ( ( metavar var a end metavar suc plus ( metavar var b end metavar suc ) ) equal ( ( metavar var a end metavar plus ( metavar var b end metavar suc ) ) suc ) ) ) ) ) end quote state proof state cache var c end expand end define

The pyk compiler, version 0.grue.20060417 by Klaus Grue,
GRD-2006-03-06.UTC:13:37:57.803308 = MJD-53800.TAI:13:38:30.803308 = LGT-4648369110803308e-6