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1 Introduction

This is a Logiweb base page1. The Logiweb system [6] is able to bootstrap using
a page like the present one. Logiweb itself is a system for machine verification
and distribution of formal mathematics.

The base page contains quite a number of elementary definitions:

• On top of the Logiweb computing engine, the base page defines elementary
operations on lists and cardinals (where cardinal means natural number).

• On top of the operations on lists and cardinals, the base page defines a
macro expansion facility and a number of useful macros.

• On top of the operations on lists and cardinals, the base page defines a
proof checker and a number of useful mathematical theories.

• Finally, the base page defines how to render the syntactic constructs de-
fined on the page in the pyk and TEX languages.

1.1 The attributes of a Logiweb page

In general, a page has several attributes:

The reference of a page is a cardinal that identifies the page. The reference
of a page is world-wide unique. The Logiweb system includes Logiweb
servers that can translate Logiweb references to Uniform Resource Loca-
tors (URLs) so that, having the reference of a page, one can locate the
page without knowing which physical mirrors hold a copy of the page.

The vector of a page is the sequence of bytes that encode the page when it
is stored on disk or transmitted over a network. All attributes of a page,
including the reference, can be computed from the vector.

1For the convenience of the reader, things that enter the index are in italics
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The bibliography of a page is a list of references to Logiweb pages. Entry
number zero of the bibliography (i.e. the first element of the list of refer-
ences) is the reference of the page itself. Appart from this self-reference,
Logiweb pages and bibliographic references form a directed, acyclic graph.

The dictionary of a page is a list of all concepts defined on the page.

The body of a page comprises all the text and definitions of the page. When
a user wants to read a Logiweb page, the system renders the body of the
page using the TEX system and shows that to the user. What you read
right now is such a rendering.

The expansion of a page is the macro expanded version of the body. Proof
checking is done after macro expansion.

The codex of a page is an associative structure for fast lookup of all definitions
made on a page.

The cache of a page is an associative structure for fast lookup of any attribute
of any referenced page.

The diagnose (if any) of a page indicates what is wrong with the page (if
anything).

1.2 Base pages

A Logiweb base page is a page whose Logiweb bibliography references no other
pages.

As mentioned, Logiweb bibliographies form directed, acyclic graphs, so if
one follows bibliographic references one can be sure to end up in a base page
eventually.

What you read right now is the body of a base page. The body does not
include the Logiweb bibliography, so you cannot verify that the present page
is a base page by reading the present text. The bibliography at the end of
the present body is an ordinary BibTEX bibliography which is unrelated to the
Logiweb bibliography.

To see the Logiweb bibliography of a page, you must view the page in a
Logiweb browser and open the bibliography. If the page is generated from a
pyk source, you may also see the Logiweb bibliography in that source.

2 Elementary definitions

2.1 Proclamations

2.1.1 Loading

When Logiweb reads a Logiweb page in order to “understand” it, we shall say
that Logiweb loads the page. Logiweb loads a page as follows:
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Resolving Given the reference of the page, Logiweb uses the mesh of Logiweb
servers to resolve the reference, i.e. to locate a mirror that holds a copy
of the page. That mirror typically is the server of the author of the page,
but important pages may exist many places.

Retrieving Once the reference is resolved into a Uniform Resource Locator
(URL), Logiweb retrieves the vector of the page, i.e. the sequence of bytes
that encode the page when it is stored on disk or transmitted over a
network.

Unpacking Once the vector is retrieved, Logiweb unpacks it into a bibliogra-
phy, a dictionary, and a body. During this process, Logiweb recursively
loads all pages referenced in the bibliography of the page.

Codifying Once the bibliography, dictionary, and body are available, Logiweb
codifies the body. Logiweb does so by reading the body over and over
again (c.f. Section 4.4.7). During these iterations, Logiweb is supposed to
obtain a deeper and deeper “understanding” of the page. The iterations
end when the understanding reaches a fixed point. This is similar to TEX
that has to read a TEX source over and over again to get the references
right. The outcome of the codification is a codex and an expansion. The
expansion is a macro expanded version of the body. The codex is an
associative structure for fast lookup of all definitions made on a page.

Verifying Once the page is codified, Logiweb verifies the page. Verification
involves execution of the claim of the page as described later. The claim
of a page typically runs a proof verifyer on all proofs on the page and typi-
cally also does several other chores to ensure that the formal mathematics
presented on the page is correct.

Once a page is loaded, Logiweb can render it using TEX to produce a human
readable version of it.

As a more exotic facility, Logiweb can also render a page in pyk to produce
a pyk source file from which the page can be recompiled. This corresponds to
“view source” when viewing html-pages but is more complex since Logiweb uses
a compact, binary format from which the source has to be reverse engineered.

Finally, Logiweb is supposed to be able to execute the page, but that is
not implemented at the time of writing. The execution facility will be a general
programming facility including general I/O facilities. Logiweb itself is ultimately
intended to be implemented using this facility. At the time of writing, Logiweb
is implemented in Lisp.

2.1.2 Revelations

Logiweb has three kinds of revelation constructs that connect syntactic con-
structs with semantic concepts. The three kinds of revelations are called procla-
mations, definititions, and introductions.
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Logiweb has a small number of predefined concepts; a proclamation connects
a syntactic construct with one of these predefined concepts. Definitions and
introductions allow to connect syntactic constructs with user defined concepts.

On the present page, proclamations are made using the proclamation con-
struct [x ./ y]2. As we shall see in Section 2.1.6, [x ./ y] proclaims [x] to denote
the concept identified by [y].

2.1.3 Logiweb symbols

Every Logiweb construct is identified by a reference and an identifier, both of
which are cardinals (i.e. natural numbers). The reference of a construct equals
the reference of the page that introduces the construct. The identifier identifies
the operation among all operations introduced by that page.

The reference of the [x ./ y] construct equals the reference of the present
page (which is a big number) and the identifier equals one. As we shall see, it
is important to Logiweb that the identifier equals one.

We shall refer to a pair consisting of the reference and identifier of a Logi-
web construct as a Logiweb symbol. Logiweb symbols resemble Common Lisp
symbols [11] which is the same as Lisp atoms in the original sense of the word
[9].

There is a one-to-one correpondence between Logiweb symbols and Logiweb
constructs. But the concepts are not identical; Logiweb constructs are things
one may encounter on Logiweb pages, Logiweb symbols are pairs of integers
that represent the constructs.

2.1.4 Preconceived opinions

To begin with, and with two exceptions, Logiweb does not assign any particular
meaning to any particular construct. The general rule that Logiweb has no
preconceived opinion about the meaning of constructs makes Logiweb flexible
and ensures the notational freedom of each, individual author. The exceptions
allow Logiweb to bootstrap.

The two exceptions relate to page constructs and proclamation constructs.
A page construct is a Logiweb construct whose identifier equals zero. There

is a one-to-one correspondence between Logiweb pages and Logiweb page con-
structs: Given the reference of a page, one just adds a zero to get its page
construct, and given a page construct one just removes the zero to get the
reference of the page.

Page constructs are used whenever there is a need to reference a page in a
context that requires a symbol. As an example, Logiweb allows to assign names
(i.e. pyk names) to symbols. Logiweb does not allow to assign names to pages.
But every page has a page symbol, and the name of the page symbol effectively
becomes the name of the page.

2For the convenience of the reader, mathematics is enclosed in brackets to distinguish it
clearly from other text. Such use of brackets is a stylistic choice which is independent of
Logiweb.
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Page constructs are unrelated to the bootstrapping of Logiweb. Rather,
bootstrapping depends on proclamation constructs.

2.1.5 Bootstrapping and proclamation constructs

As mentioned in Section 2.1.1, Logiweb codifies a page by reading its body over
and over again. At each reading, Logiweb “understands” the page in the light
of what Logiweb already knows. This knowledge includes anything Logiweb
managed to extract from pages referenced in the bibliography and anything
Logiweb managed to extract from the present page at the previous reading.

In one situation, Logiweb has no prior knowledge when reading a page. That
happens when Logiweb reads a base page first time (recall that a base page is
a Logiweb page that references no other pages).

To get started, Logiweb has the preconceived opinion that, on first reading
of a base page, the symbol whose identifier equals one is a proclamation symbol.

The proclamation construct in turn has the preconceived opinion that Logi-
web constructs with identifiers from [97] to [122] denote the small letters from
a to z and that certain sequences of such letters denote particular concepts.
How the constructs with identifiers from [97] to [122] are used to form strings
is treated in Section 2.4.

2.1.6 Self-proclamation

The first task of the proclamation symbol is to secure itself. Logiweb only
has the preconceived opinion that the symbol whose identifier equals one is a
proclamation symbol on first reading of a base page. On the second reading,
Logiweb has no such preconceived opinion. For that reason, we make the fol-
lowing proclamation:

[[x ./ y] ./ “proclaim”]

The proclaimation construct happens to have the preconceived opinion that
the string “proclaim” denotes the proclamation concept. Hence, during first
reading of the present base page, Logiweb sees that [x ./ y] is proclaimed to
denote proclamation and, hence, [x ./ y] denotes proclaimation during second
reading of the base page. During second reading, [x ./ y] is again proclaimed
to denote proclamation and, hence, [x ./ y] denotes proclaimation during third
reading and so on.

Readers with plenty of spare time may find fun in constructing a base page
for which the constructs whose identifiers equal two and three end up being
proclamation constructs whereas the construct whose identifier equals one ends
up not being a proclamation construct.
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2.2 Definitions

2.2.1 Aspects

As mentioned in Section 2.1.2, Logiweb has three kinds of revelations: proclama-
tions, definititions, and introductions. We now proclaim [y x→ z] as a construct
for definitions:

[[y x→ z] ./ “define”]

The construct [y x→ z] states that the [x] aspect of [y] equals [z].
A mathematical definition like [r(x, y) .=

√
x2 + y2] corresponds to a Logi-

web definition in which the value aspect of [r(x, y)] is defined to be [
√

x2 + y2].
In general, ordinary, mathematical definitions correspond to Logiweb value def-
initions. Logiweb, however, allows the user to define a variety aspects of each
construct.

2.2.2 The pyk aspect

A particular important aspect is the pyk aspect. We use [pyk] to denote the pyk
aspect:

[pyk ./ “pyk”]

The pyk aspect of a construct indicates how to render the construct in the pyk
language. That rendering allows to read a Logiweb page using an ordinary
text editor. See Appendix B for pyk definitions of each and every construct
introduced on the present Logiweb page.

One may also use the pyk language for editing Logiweb pages. To construct
a Logiweb page, one may prepare a pyk source file using a text editor and run
the pyk file through the pyk compiler. At the time of writing, the pyk compiler
is the only available tool for producing Logiweb pages. Logiweb, however, is
not tied to the pyk compiler and other tools for producing Logiweb pages may
emerge.

2.2.3 The tex aspect

The tex aspect is another important aspect. The tex aspect of a construct
indicates how to render the construct in the TEX language. We use [tex] to
denote the tex aspect:

[tex ./ “tex”]

Tex definitions for the present page are collected in Appendix A. In that Ap-
pendix, one may find a definition like

[x tex→ x]
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which defines how to render that particular variable. For more information, see
Appendix A.

Note that the tex aspect of x is defined both above and in Appendix A.
Logiweb just uses the definition that is leftmost after macro expansion. The
pyk compiler is a little more touchy: it prints a warning if there are definitions
that contradict one another. The pyk compiler accepts the two tex definitions
of x without notice since all the definitions are identical after macro expansion.

2.3 Associativity and priority

2.3.1 Introduction

A “preassociative” construct is left associative in text that runs left to right,
right associative in text that runs right to left, top associative in text that runs
from top to bottom, counterclockwise associative in text written in left turning
spirals, and so on. Text on Logiweb pages may run in any conceivable direction.
Pyk source text runs from left to right.

The pyk compiler uses associativities when parsing pyk source text. As an
example, if the construct “* plus *” is preassociative then “var x plus var y plus
var z” is interpretted as “(var x plus var y) plus var z. Likewise, if “* pair *” is
postassociative then “var x pair var y pair var z” means “var x pair (var y pair
var z)”.

The pyk compiler also uses priorities. As an example, it “* plus *” has
greater priority than “* pair *” then “var x plus var y pair var z” means “(var x
plus var y) pair var z” and “var x pair var y plus var z” means “var x pair (var y
plus var z)”.

If two constructs have equal priority, then they are forced to have the same
associativity as well. As an example, if “* minus *” has the same priority
as “* plus *” then “* minus *” automatically becomes preassociative. Hence,
“var x plus var y minus var z” means “(var x plus var y) minus var z” and “var x
minus var y plus var z” means “(var x minus var y) plus var z”.

2.3.2 Open and closed constructs

A construct is said to be “preopen” if it starts with an asterisk and to be
“preclosed” otherwise. Likewise, a construct is “postopen” and “postclosed” if
it does and doesn’t end with an asterisk, respectively.

A construct is said to be “open” if it is pre- and postopen and “closed” if it
is pre- and postclosed. A construct is said to be “prefix” if it is preclosed and
post open and “suffix” if it is preopen and post closed. Here are some examples:

parenthesis * end preclosed postclosed closed
* apply * preopen postopen open
lambda * dot * preclosed postopen prefix
factorial preopen postclosed suffix

None of the four constructs above are declared on this page; they are just
included for the example.

Associativity and priority is irrelevant for closed constructs.
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Associativity does affect prefix and suffix constructs. As an example, if
“* apply *”, “lambda * dot *” and “* factorial” have the same priority, then
“lambda var x dot var y apply var z factorial” means “((lambda var x dot var y)
apply var z) factorial” if the constructs are preassociative and “lambda var x
dot (var y apply (var z factorial))” if they are postassociative.

2.3.3 Priority interference

Prefixness and suffixness occasionally interfere with priorities. As an example,
suppose “* apply *” has greater priority than “lambda * dot *” and consider
the following pyk source:

var x apply lambda var y dot var y apply var y
First step in disambiguating the text above is to put parentheses around

the operator that has the lowest priority and to put parentheses around its
parameters:

var x apply (lambda (var y) dot (var y apply var y))
This divides the problem into two smaller problems: disambiguating “var x

apply · · ·” and disambiguating “var y apply var y” both of which are trivial:
((var x) apply (lambda (var y) dot ((var y) apply (var y))))
Hence, the principal operator of “var x apply lambda var y dot var y apply

var y” is the leftmost “apply” which may be surprising since the lambda is the
operator with the lowest priority.

2.3.4 Openness coherence

When defining the pyk and tex aspects of a construct it is important to let
them have the same “openness”, i.e. to make them both open, both closed,
both prefix, or both suffix. As an example, if one renders a pair as e.g. x : : y
which is open then one should ensure that the pyk aspect is also open as in “*
plus *”. If one renders the pair as e.g. (x, y) which is closed then one should
ensure that the pyk aspect is closed as in “pair * comma * end pair”.

Failure to make openness coherent may seriously baffle the reader since it
may make the pyk compiler and a human reader interpret terms differently.

Some constructs are non-trivial to classify. As an example, exponentiation
xy is best classified as a suffix construct because a + xy could mean (a + x)y

or a + (xy) whereas xy + a can only mean (xy) + a and, thus, xy is ambiguous
the way suffix constructs are. Hence, the pyk name of exponentiation should be
something like “* power * end power”.

2.3.5 Priority tables

A Logiweb page may contain constructs from the page itself as well as constructs
from all pages it references in its Logiweb bibliography.

The pyk compiler insists on knowing the associativity and priority af each
non-closed construct that might possibly appear on a page. The pyk com-
piler is somewhat relaxed about whether or not priorities and associativities are
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specified for closed constructs because the associativities and priorities of such
constructs have no effect.

To avoid double work, a Logiweb page should contain a priority table which
the pyk compiler can import when the page is included in the Logiweb bibliog-
raphy of another Logiweb page.

A page should contain one priority table, not one for each construct. Hence,
the priority table is an aspect of the page rather than an aspect of each, indi-
vidual construct. This is a problem because Logiweb allows to define aspects of
constructs but does not allow to define aspects of pages. So what do we do?

2.3.6 The page symbol

As mentioned, every construct in Logiweb is identified by a reference [r] and an
id [i], both of which are cardinals. The reference uniquely identifies the Logiweb
page that introduces the construct and the id identifies the construct within
the page. We shall refer to a construct with reference [r] and id [i] as the [i]’th
construct of page [r].

The zero’th construct of a Logiweb page will be referred to as the “page
construct” of the page. Aspects of the page construct should be thought of as
aspects that concern the entire page.

As an example, consider the following pyk definition of the page construct
of the present page:

[base
pyk→ “base”]

Because of the definition above we shall say that the present page is named
“base”.

To see that [base] is the page construct of the present page one has to open
the present page in a Logiweb browser, find the id of the construct, and see that
the id is zero. In the Logiweb crossbrowser, one may do that by opening the
“dictionary” window. More advanced browsers would probably allow the user
to click on [base] and view its properties somehow.

We do not define a tex aspect of the page construct, and for that reason
the tex aspect defaults to \mathrm{base}. We do not define a tex name aspect
either, and for that reason the tex name aspect defaults to be identical to the
tex aspect.

The page construct is forced to have arity zero, i.e. it has no parameters.

2.3.7 The priority aspect

The priority table is defined as a “priority aspect” of the page construct. We
introduce the priority aspect thus:

[prio ./ “priority”]
[prio tex→ “

\mathrm{prio}”]
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2.3.8 Flush left environment

The priority table is a long, heterogeneous formula which is difficult to linebreak.
For that reason we shall typeset it ragged right or flush left. To do so, we
introduce a [flush left [x]]construct which typesets its argument with a ragged
right margin.

2.3.9 The priority table

For convenience, we introduce a variable named [∗] which we use in pyk, TEX,
and priority definitions where parameter names are ignored.

The priority table itself is given in Appendix D. The number of constructs
in it is colossal, but that is normal for large base pages since the table contains
lots of trivia like characters and variable names.

2.3.10 Priority table constructors

The priority table in Appendix D is constructed from the following four con-
structs:

[Preassociative x; y
pyk→ “preassociative " greater than "”]

[Postassociative x; y
pyk→ “postassociative " greater than "”]

[[x], y
pyk→ “priority " equal "”]

[priority x end
pyk→ “priority " end priority”]

The pyk source of the table looks something like

math define priority of base as

preassociative
priority bracket var x end bracket equal
priority math var x end math equal
...
priority priority end priority

greater than preassociative
priority unicode start of text var x end unicode text equal
...
priority priority var x end priority end priority

greater than postassociative
priority var x , var y equal
priority var x [ var y ] var z end priority

greater than base end define end math

From the structure of the table, the pyk compiler can guess that “priority *
equal *” denotes “equal priority” and that “priority * end priority” marks the
end of a list of equal priorities.
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The pyk compiler can also guess that “preassociative * greater than *” and
“postassociative * greater than *” denote pre- and postassociativity but cannot
guess which is which. For that reason, we have to reveal that to Logiweb
explicitly using proclamations:

[Preassociative x; y ./ “pre”]
[Postassociative x; y ./ “post”]

2.3.11 Tex aspects

Tex aspects of priority table constructors read:
[Preassociative x; y tex→ “

\newline \mathbf {Preassociative} \newline #1.
; #2.”]

[Preassociative x; y name→ “
\mathbf{Preassociative}\, #1.
; #2.”]

[Postassociative x; y tex→ “
\newline\mathbf{Postassociative} \newline #1.
; #2.”]

[Postassociative x; y name→ “
\mathbf{Postassociative}\, #1.
; #2.”]

[[x], y tex→ “
[#1/tex name/tex.
] , \linebreak [0] #2.”]

[[x], y name→ “
[#1.
] , \linebreak [0] #2.”]

[priority x end tex→ “
[#1/tex name/tex.
]”]

[priority x end name→ “
\mathrm{priority} \,#1.
\, \mathrm{end}”]

2.4 Strings

2.4.1 Introduction

The pyk language itself is a rather purist language that merely uses the small
letters from a to z and space and newline characters for expressing Logiweb
pages of arbitrary complexity. Capital letters and punktuation marks have
been omitted to prepare the language for input via a microphone (it is easy,
though, to adapt pyk to allow letters from other alphabets).
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Furthermore, the rather purist Logiweb computing engine described else-
where has sufficient power to render pages all the way from layout to pixels
without resorting to external systems like TEX or BibTEX or whatever. Or, at
least, programs like TEX may be translated to the Logiweb language, placed on
a Logiweb page, and executed from there by the Logiweb engine.

During the early phases of the development of Logiweb, however, too much
purism is unaffordable. TEX is a very mature system that cannot be replaced
overnight. To allow Logiweb pages to include TEX source, the pyk language has
support for strings.

The treatment of strings in the following should make sense in itself, but
the motivation for going through the pain of introducing strings requires quite
some overview of how all the parts of Logiweb play together.

2.4.2 Construction of strings

As mentioned earlier, every construct in Logiweb is identified by a reference [r]
and an id [i], both of which are cardinals.

We shall say that a construct is “blind” if its id is between zero and nine,
inclusive, or between 11 and 31, inclusive. We shall say that constructs whose
ids equal 10 or are greater than 31 are non-blind.

When used in strings, non-blind constructs represents the character whose
unicode equals the id of the construct. Blind constructs represent no characters.

As an example, The id’s of the pyk construct “unicode small a *”, “unicode
small b *”, “unicode small c *”, and “unicode end of text” equal 97, 98, 99, and
3, respectively (to see that one needs access to the pyk source of the present
page or needs to view the page in a Logiweb browser). The expression

unicode small a unicode small b unicode small c unicode end of text

is interpretted as

unicode small a ( unicode small b ( unicode small c ( unicode end of
text ) ) )

When read from left to right, the id’s of the constructs are 97, 98, 99, and 3.
Ignoring 3 which is blind, we are left with 97, 98, and 99 which are the unicodes
for “a”, “b”, and “c”, respectively. For that reason,

unicode small a unicode small b unicode small c unicode end of text

represents the string “abc”.

2.4.3 Pyk strings

Continuing the previous example, the id of the pyk construct “unicode start of
text * end unicode text” equals two. Whenever the pyk compiler sees a string
like "abc" inside a mathematical expression, it translates it to
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unicode start of text
unicode small a
unicode small b
unicode small c
unicode end of text

end unicode text

Ignoring blind constructs, the expression above represents the string “abc”.
Logiweb itself assigns no particular semantics to constructs like “unicode

start of text * end unicode text” and “unicode end of text” whose ids equal two
or three. But the pyk compiler consistently add constructs with these particular
ids whenever it translates a string.

The representation of Logiweb pages is such that characters with codes below
128 take up one byte. A string like “abc” takes up five bytes because the start
and end of text characters also take up one byte.

2.4.4 Rendering of strings

Rendering of “a”, “b”, and “c” is completely straighforward:
[ax

tex→ “a#1.”]
[bx

tex→ “b#1.”]
[cx tex→ “c#1.”]
Pyk and tex definitions for “a”, “b”, “c”, and many other non-blind charac-

ters are collected in the appendix.
The tex aspects of the start of text character clearly show that it is blind:
[“x” tex→ “#1.”]
However, when talking about the start of text character it is inconvenient if

it is blind. Instead, we represent it by double quotes:
[“x” name→ “

\mbox{‘‘}#1.
\mbox{’’}”]

We shall take the liberty to make the end of text character completely blind:
[tex→ “”]
As you can see (or, rather, cannot see), there are no glyphs in the left hand

side of the definition above. That indicates that the left hand side comprises
a unicode end of text. We shall define no other constructs that are completely
blind, i.e. blind when talking about them. Lots of constructs are blind when
using them, but the unicode end of text is the only one that is blind when
talking about it. The unicode end of text should be used with caution is it may
baffle the reader.

2.4.5 Rendering of special characters

The rendering of a backslash reads:
[\x tex→ “\#1.”]
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[\x name→ “
\mbox{$\backslash$}#1.”]

The tex aspect of a backslash generates a backslash character in the input
to TEX. In contrast, the tex name aspect generates a backslash in the output
from TEX.

2.4.6 Talking about strings

The id of the pyk construct “text * end text” equals six so it is yet another
blind construct. The construct is rendered thus:

[(x)t tex→ “#1/tex name.”]
[(x)t name→ “

(#1.
)ˆ{\bf t}”]

The tex aspect of “text * end text” is invisible in itself but has the effect
that all of its argument is rendered using the tex name aspect. As an example,
the expression

text
unicode start of text

unicode backslash
unicode small b
unicode small f
unicode end of text

end unicode text
end text

generates a start double quote, a backslash, a “b”, an “f”, and an end double
quote in the output from TEX. Without the “text * end text”, the expression
generates \bf in the input to TEX which makes TEX change to bold face.

2.4.7 Breaking strings

The id of the pyk construct “text * plus *” equals seven and the construct is
rendered thus:

[string(x) + y
tex→ “

\mathrm{#1/tex name.
}+\newline#2.”]

[string(x) + y
name→ “

\mbox{string}(#1.
)+#2.”]

A term like

text
unicode start of text

unicode small a
unicode small b
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unicode end of text
end unicode text

plus
text

unicode start of text
unicode small c
unicode end of text

end unicode text
end text

denotes the string “abc”. This is so because if one scans the text left to right
(or scans the associated parse tree root to leaf, left to right) then one encounters
the id’s 7, 2, 97, 98, 3, 6, 99, 3 in that order. Ignoring blind codes leaves one
with the sequence 97, 98, 99 which represents “abc”.

The rendering of the string consists of “ab” on one line and “c” on the next.
The “text * plus *” construct allows the author of a Logiweb page to split a
long string over several lines.

The id of the “text * plus indent *” construct equals eight; the construct
does the same as “text * plus *” but also indents the second line:

[string(x) ++ y
tex→ “

\mathrm{#1/tex name.
}\; {++}\newline{}\qquad#2.”]

[string(x) ++ y
name→ “\mbox{string}(#1.

)\mathrel{++}#2.”]

2.4.8 Formulas in text

The id of the pyk construct “" [ " ] "” equals five and the construct is rendered
thus:

[x[y]z tex→ “#1.#2.#3.”]
[x[y]z name→ “#1.

{[}#2.
{]}#3.”]

As an example of use, the pyk source

"abc"[ math var x end math ]"def"

is equivalent to

unicode start of text
unicode small a
unicode small b
unicode small c
unicode end of text

end unicode text
[

math var x end math
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]
unicode start of text

unicode small d
unicode small e
unicode small f
unicode end of text

end unicode text

The tex face of the expression above reads

abc$\mathsf{x}$def

which, when run through TEX, places the variable “x” in the middle of the
string “abcdef”.

In general, the “" [ " ] "” construct allows to place mathematical formulas
in text.

The space character between the left bracket and the “m” in “math” above
is obligatory.

2.4.9 Juxtaposition

The id of the pyk construct “" , "” equals four and the construct is rendered
thus:

[x , y
tex→ “#1.#2.”]

[x , y
name→ “#1.

\mathrel{\mathrm{, }}#2.”]
For that reason one may write

var x, "\cdots", var y

to obtain [x · · · y].

2.4.10 Purism versus pragmatism

Purism is a good thing when defining, designing, implementing, debugging,
testing, explaining, teaching, learning, understanding, and using a computa-
tional system, and one should only resort to pragmatism when neccessary. The
pyk compiler is rather puristic, but resorts to pragmatism in the treatment of
strings: Double quotes, brackets, and commas are treated specially and con-
structs whose id equal two, three, four, and five are used when translating those
special characters.

3 The Engine

This section describes the Logiweb computing engine.
The Logiweb engine is the computing machinery that performs proof check-

ing, macro expansion, and general evaluation in the Logiweb system.
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At a later stage of the development of Logiweb, the engine is supposed to
take over the layout and rendering of Logiweb pages. As mentioned previously,
that task is currently done by TEX[7] and related programs.

The engine is just a computing engine; it has no facilities to communicate
with the outside world. The Logiweb “machine” described elsewhere contains
the Logiweb engine and also contains facilities for input/output.

Apart from introducing the engine, the present page also introduces a num-
ber of operations suited for manipulation of “tagged trees”. Tagged trees are to
Logiweb what Lisp S-expressions are to Lisp[9].

3.1 Elementary concepts

3.1.1 Fundamental, computable constructs

The Logiweb engine has four fundamental, computable constructs: lambda ab-
straction [λx.y]3, functional application [x ’ y], truth [T], and conditional [if(x, y,
z)].

[λx.y] denotes lambda abstraction[2]. Lambda abstraction is a predefined
concept of Logiweb in the sense that knowledge of lambda abstraction is hard-
wired into Logiweb. Logiweb does not connect lambda abstraction with any,
particular syntax, so we must connect the syntactic construct [λx.y] with the con-
cept of lamdba abstraction. We do so using a proclamation: [λx.y ./ “lambda”].

The proclamation [λx.y ./ “lambda”] makes [λx.y] denote lambda abstrac-
tion on the present Logiweb page and on all Logiweb pages that include the
present page in their Logiweb bibliography. This does not exclude other con-
structs from denoting lambda abstraction as well. One may proclaim any num-
ber of binary constructs to denote lambda abstraction. Neither does this exclude
the possibility of using the notation [λx.y] for other concepts than lambda ab-
straction on other Logiweb pages.

[x ’ y] denotes functional application. As an example, if [x] equals [λz.z + 3]
then [x ’ 2] equals [2 + 3] which in turn equals [5]. We connect syntax and
semantics of functional application thus: [x ’ y ./ “apply”].

All computable functions can be expressed in pure lambda calculus, i.e. using
only [λx.y] and [x ’ y]. Doing so is inconvenient, however. As an example,
the range of any function of pure lambda calculus contains one or infinitely
many values, and one often wants a computer program to have a finite range of
possible responses. Just think of a computer program which is required to loop
indefinitely or answer “yes” or “no” for arbitrary input, and which is required to
answer “yes” in certain situations and “no” in certain, other, situations. Such
a computer program cannot be implemented in pure lambda calculus since its
range is finite and contains more than one possible response.

One symptom of the inconvenience of pure lambda calculus is the difficulty of
constructing models for it. Another symptom is the inability so far to construct

3For the convenience of the reader, mathematics is enclosed in brackets to distinguish it
clearly from other text. Such use of brackets is a stylistic choice which is independent of
Logiweb.
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a foundation of mathematics upon pure lambda calculus.
If one adds two more constructs, truth [T] and conditional [if(x, y, z)], then

the problems disappear: One may express functions like [λx.if(x, y, z)] whose
range is finite, one may construct rather simple models[1], and one may extend
the system into a foundation of mathematics by the drop of a quantifier[4].

[T ./ “true”] denotes truth. The main property of [T] is that it differs from
[λx.y] for all variables [x] and all terms [y] (of course, we make the convention
that [λx.y] represents falsehood for all variables [x] and all terms [y]).

Since [T] is no function, it does not make sense to apply it to an argument.
For completeness, however, we make the convention that [T] applied to anything
equals [T] itself: [T ’ x = T].

[if(x, y, z) ./ “if”] is a conditional which allows to test whether [x] equals [T]
or is a function:

[
if(T, u, v) = u
if(λx.y, u, v) = v

]

3.1.2 Reduction system

The Logiweb reduction system is thus:



(λx.y)I ’ z
+→ 〈y |x:= z〉

T ’ z
+→ T

if(T, u, v) +→ u

if(λx.y, u, v) +→ v




〈y |x:= z〉 denotes the result of replacing all free occurrences of the variable [x]
in the term [y] by the term [z], possibly renaming bound variables as needed.

We shall say that a term [z] is on truth normal form if the term [z] is identical
to [T].

We shall say that a term [z] is on function normal form if the term [z] has
form [λx.y] where [x] is a variable and [y] is a term.

We shall say that a term is on root normal form if the term is on truth or
function normal form.

When given a term, the Logiweb engine starts reducing the term using left-
most reduction. The Logiweb engine stops again if the term reaches root normal
form.

3.1.3 Root equivalence

We shall say that a term is a true term if the engine can reduce it to truth
normal form and that it is a function term if it can reduce it to function normal
form. We shall say that a term is perpetual if the engine reduces it forever
without reaching a root normal form.

We shall say that two terms are root equivalent if they are both true terms,
both function terms, or both perpetual. Root equivalence is undecidable in
general but is decidable on terms that have a root normal form.
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3.1.4 Mathematical equality

The Logiweb computing engine does not support the parallel “or” operation
[x ‖ y], but the operation is interesting for theoretical reasons. The parallel “or”
operation has the following properties:




T ‖ y = T
x ‖ T = T
(λx.y)I ‖ (λu.v)I = λx.T




If the parallel “or” operation were added to the Logiweb computing engine, then
the engine would be required to reduce both [x] and [y] in parallel whenever the
engine had to reduce [x ‖ y]. If the engine managed to reduce [x] to [T] then it
should stop reducing [y] and vice versa.

We shall refer to the Logiweb engine extended with parallel “or” as the
parallel engine.

The notions of “root normal form” and “root equivalence” are defined for
the parallel engine as they are for the Logiweb engine.

Two terms [x] and [y] are considered mathematically equal, written [x = y], if
[z ’ x] is root equivalent to [z ’ y] for all terms [z] (where the term [z] is allowed to
include parallel “or”). This defines equality of term [x] and [y] that may include
parallel “or” and, in particular, defines equality of terms that do not include
paralle “or”. Mathematical equality is undecidable in general.

At this point, parallel “or” has played its role and we shall not refer to it
anymore. But we shall use mathematical equality to state things like [(λx.x)I’y =
y]. For an axiomatization of mathematical equality see [4].

3.2 Definitions

3.2.1 The value aspect

One may define many “aspects” of each construct. As an example, the “tex”
aspect of a construct defines how the construct should be rendered using TEX.
Likewise, the “pyk” aspect of a construct defines what the construct looks like
in a pyk source file from which a Logiweb page may be compiled.

An ordinary mathematical definition of a construct corresponds to a def-
inition of the value aspect of the construct in Logiweb. The value aspect is
proclaimed thus: [val ./ “value”].

As an example of a value definition, consider the following:

[f(x) val→ if(x, T, f(x ’ T))]

With the definition above we have [f(λx.λx.λx.T) = f(λx.λx.T) = f(λx.T) =
f(T) = T]
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3.2.2 Parentheses

It is best to macro define parentheses, i.e. to define them by defining the macro
aspect of the parenthesis construct. To keep the present page simple and to the
point, however, we shall not deal with macro definitions here. Instead, we value
define parentheses:

[(x)I val→ x]

3.2.3 Bottom

As mentioned, a term is perpetual if reduction of the term proceeds indefinitely
without yielding a root normal form. As an example, [(λx.x ’ x)I ’ (λx.x ’ x)I] is
a perpetual term. Some authors prefer to use a capital omega for that term.

There are different opinions on whether or not all perpetual terms are equal.
Intuitionists will typically say that there are perpetual terms that are not prov-
ably equal. Other blends of mathematicians go further and claim there are
perpetual terms that are provably different. With the definition of mathemati-
cal equality stated earlier, however, all perpetual terms are equal.

Having decided that all perputual terms are equal or, equivalently, that they
all have the same value, it is reasonable to introduce a name for that unique
value. We shall follow tradition and call that value bottom since it lurks at the
bottom of kappa-Scott domains.

Furthermore, we shall follow tradition and use [⊥] to denote bottom. We do
so by making the following definition:

[⊥ val⇒ (λx.x ’ x)I ’ (λx.x ’ x)I]

The equal sign in the definition deviates slightly from the equal sign used previ-
ously. Formally, that has no effect on the definition. See Section 3.6 for further
details.

With the definition above we have that [⊥] is perpetual, since evaluating
it causes a computer to look indefinitely. For that reason, the value of [⊥] is
bottom.

Mathematics is referentially transparent, meaning that any term silently
denotes the value of the term. For that reason, [⊥] denotes bottom.

By abuse of the language, we shall say that an operator returns [⊥] when
the operator does not return anything ever.

3.3 Peano trees

3.3.1 Raw pairs

Define

[y .̇ . z
val⇒ λx.if(x, y, z)]

[F val⇒ T .̇ . T]
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[xH val→ x ’ T]

[xT val→ x ’ F]

We shall use [T] and [F] to denote truth and falsehood, respectively.
Furthermore, we shall use [y .̇ . z] as the most fundamental (most raw) among

several pair constructs. The components of a pair may be found using the head
operation [xH] and tail operation [xT]:

[(y .̇ . z)IH = y]
[(y .̇ . z)IT = z]
In principle, we may use any definition for [y .̇ . z] as long as it is possible

to compute [y] and [z] from [y .̇ . z]. The definition above differs from anything
tenable in pure lambda calculus: The range of any function in pure lambda
calculus has one or infinitely many elements whereas the range of [(y .̇ . z)I ’ x]
comprises [y], [z], and [⊥].

3.3.2 Peano trees

As is well known, Dedekind and Peano both managed to axiomatize the natural
numbers. Dedekind was first, but Peano had best public relations, so we know
the axioms as the Peano axioms today.

In short, the Peano axioms are axioms for the smallest set [N] which contains
[0] and which contains the successor of [x] whenever it contains [x].

Now consider the smallest set [P] which contains [T] and which contains
[x .̇ . y] whenever it contains [x] and [y]. We shall refer to the elements of [P] as
Peano trees due to the similarity to the structure of natural numbers.

Peano trees are good substitutes for natural numbers in elementary recursion
theory because it is much easier to work with “Gödel trees” than to work with
“Gödel numbers”. Peano trees are early precursors of the maps used in Map
Theory and Logiweb, and they constitute convenient stepping stones for building
up more advanced data structures.

In early versions of Map Theory and Logiweb, Peano trees have been called
“Binary trees”, “Finite trees”, and “Bintrees”, but those names are inconvenient
because it is convenient to reserve “B” for “Boolean” and “F” for “False”. The
“P” in “Peano tree” may be mistaken to denote “Pair”, but that is acceptable
since Peano trees are little more than a bunch of pairs.

As far as possible, we shall represent data structures by Peano trees. As an
example, we represented truth values by Peano trees in the previous section.

3.3.3 Canonical and liberal representations

In Logiweb (as in most computational systems) one has to distinguish between
canonical and liberal representations. By a canonical representation we shall
mean a representation scheme that assigns one and only one representation to
each concept to be represented. By a liberal one we shall mean a representation
scheme that assigns at least one.
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For each set of concepts to be represented, we shall assign a canonical as
well as a liberal representation. And we shall make sure the representations
are compatible in the sense that the canonical representation of any concept is
among the liberal representations of the concept.

We make the convention that [T] liberally represents truth and that any
lambda abstraction liberally represents falsehood. This convention is compatible
with the convention that [T] represents truth and [T .̇ . T] represents falsehood.

[T]4 of Map Theory and Logiweb corresponds to Nil in Lisp and Null in C.
Hence, the convention to let [T] represent truth and anything else falsehood is
opposite to the choice made in Lisp and C. But the choice is in line with Gödels
choice to let 0 denote truth. Gödels choice to make the simplest possible data
structure represent truth and everything else denote falsehood is a smart one;
it has the consequence that when programming primitive recursive functions,
one tends to treat the simple case first and the recursive case afterwards which
enhances the readability of the code. Gödels 1931 paper [3] is the best example
I have ever seen of “literate programming”, and the syntax of that particular
paper has been a driving force in the development of Logiweb since 1984 where
the first version of the “Pyk” compiler was implemented. The present imple-
mentation of Logiweb depends heavily on the existence of TEX and the World
Wide Web.

3.3.4 Eager pairs

We now introduce an eager version of [x .̇ . y]. In many situations, the eager
version is more efficient to compute than the lazy one.

Define

[x : y
val→ if(x, y, y)]

[x .̇ . y
val→ x : y : x .̇ . y]

The guard construct [x : y] equals [⊥] whenever [x] equals [⊥] and equals [y]
otherwise. In Logiweb, one may use guards when one needs the value of one
construct [y] but also wants to force another construct [x] to be computed.

The guard construct is used in the definition of the eager pair [x .̇ . y] above.
Computation of [x .̇ . y] forces [x] and [y] to be computed. Whenever [x] and [y]
differ from [⊥], the eager pair equals the raw pair.

We shall say that [x .̇ . y] is strict in [x] because [⊥ .̇ . y = ⊥] for all maps [y].
Similarly, we shall say that [x .̇ . y] is strict in [y] because [x .̇ . ⊥ = ⊥] for all

maps [x].
Furthermore, we shall say that [x .̇ . y] is “strict” (without mentioning a

particular argument) because it is strict in all arguments.

4It is generally considered to be bad style to start a sentence with a formula. But, in
my opinion, the reasons for deprecating such opening formulas disappear when formulas are
consistently surrounded by brackets.
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We shall say that [x .̇ . y] is lazy in [x] because it is not strict in [x] and lazy in
[y] for similar reasons. We shall say that [x .̇ . y] is “lazy” (without mentioning
a particular argument) because it is lazy in at least one argument.

3.4 Cardinals

3.4.1 Untagged cardinals

Cardinal numbers are the numbers “one”, “two”, “three”, and so on as opposed
to the ordinal numbers “first”, “second”, “third”, and so on.

In set theory, the words “cardinal” and “ordinal” are used in a somewhat
technical sense in which cardinals and ordinals may be infinite. We shall not
use the words in that sense here.

In programming context, the word “cardinal” is sometimes simply used as a
synonym for “natural number”. We shall use the word in that sense here.

We shall use [b0 .̇ . b1 .̇ . · · · .̇ . bn−1 .̇ . T] to represent
[∑n−1

i=0 2iif(bi, 0, 1)
]

As an example, [T .̇ . F .̇ . F .̇ . T] represents six. The rightmost [T] marks the end
of the structure. The other elements, [T], [F], and [F], are the bits of [6 = 1102],
stated with the least significant bit first.

3.4.2 Operations on untagged cardinals

Define

[x +2∗ y
val→ if(x, if(y, T, x .̇ . y), x .̇ . y)]

If [y] is an untagged cardinal, then [T +2∗ y] represents two times [y] and
[F +2∗ y] represents one plus two times [y].

[x +2∗ y] is right associative so that e.g. [T +2∗ F +2∗ T] equals [T +2∗
(F +2∗ T)I] which in turn equals two.

The set of untagged cardinals is the smallest set that contains [T] (which
represents zero) and which contains [T +2∗ y] and [F +2∗ y] whenever it contains
[y].

Now define

[xC val→ if(x,T, xHB +2∗ xTC)]

For all untagged cardinals [x] we have [xC = x]. Furthermore we have [⊥C = ⊥].
We shall say that [x] is a lifted, untagged cardinal if [x] is an untagged cardinal

or equals [⊥]. [xC = x] if and only if [x] is a lifted, untagged cardinal.
Moreover, [xC] is a lifted, untagged cardinal for all maps [x]. Hence, [xC] is

a construct that leaves lifted, untagged cardinals alone and converts everything
else to lifted, untagged cardinals.

From the remarks above it follows that [xC] is idempotent in the sense that
[xCC = xC] for all maps [x].
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We shall say that an operation is a normalization construct or retract for a
set [S] if the operation is unary, strict, idempotent, and its range equals [S∪{⊥}].
Hence, [xC] is a retract for untagged cardinals.

3.4.3 Retracts and representations

Given a map [x] one may use the liberal representation of Booleans to translate
the map to a Boolean and then use the canonical representation to translate the
Boolean back to a map. The operation thus defined is a retract of Booleans:

[xB val→ if(x, T,F)]

In general, any pair consisting of a liberal and a canonical representation defines
a retract.

3.4.4 The untagged cardinals from zero to nine

Define [0 val→ T], [1 val→ F +2∗ 0], [2 val→ T +2∗ 1], [3 val→ F +2∗ 1], [4 val→ T +2∗ 2],

[5 val→ F +2∗ 2], [6 val→ T +2∗ 3], [7 val→ F +2∗ 3], [8 val→ T +2∗ 4], and [9 val→ F +2∗
4].

3.4.5 Tagged cardinals

For all untagged cardinals [y] we shall refer to [T .̇ . y] as the corresponding tagged
cardinal. [T] in [T .̇ . y] is a tag which, in a moment, allows to distringuish tagged
cardinals from other data structures.

3.4.6 Operations on tagged cardinals

For all tagged cardinals [x],

[xU val→ if(xH, xT, T)]

is the corresponding untagged cardinal. The untag operation maps data other
than tagged cardinals to untagged zero or bottom.

Now define

[x +2∗ y
val⇒ T .̇ . xB .̇ . yUC]

If [y] is a tagged cardinal, then [T +2∗ y] represents two times [y] and [F +2∗ y]
represents one plus two times [y].

[0 val⇒ T .̇ . T] is a tagged zero.
The set of tagged cardinals is the smallest set that contains [0] and which

contains [T +2∗ y] and [F +2∗ y] whenever it contains [y].
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3.4.7 The tagged cardinals from one to nine

Define [1 val→ F +2∗ 0], [2 val→ T +2∗ 1], [3 val→ F +2∗ 1], [4 val→ T +2∗ 2],
[5 val→ F +2∗ 2], [6 val→ T +2∗ 3], [7 val→ F +2∗ 3], [8 val→ T +2∗ 4], and [9 val→ F +2∗ 4]

3.5 Tagged trees

3.5.1 Tagged pairs

For all [x] and [y], we shall refer to

[x : : y
val→ (0 .̇ . 0 .̇ . T)I .̇ . x .̇ . y]

as the tagged pair of [x] and [y]. In [(0 .̇ . 0 .̇ . T)I .̇ . x .̇ . y] we shall refer to [x]
and [y] as the head and tail, respectively, of the tagged pair.

The set of tagged Peano trees is the smallest set which contains [T] and which
contains [x : : y] whenever [x] and [y] are tagged Peano trees.

3.5.2 Cardinal trees

The set of cardinal trees is the smallest set which contains [T] and all tagged
cardinals and which contains [x : : y] whenever [x] and [y] are cardinal trees.

Cardinal trees are even more suited to replace Gödel numbers than Peano
trees are. For that reason, Logiweb represents terms by Cardinal trees. In
Logiweb, terms are represented by Cardinal trees as follows:

Every operation in Logiweb is identified by a reference cardinal [r] and an id
[i], which is also a cardinal. The reference cardinal uniquely identifies the home
page of the operation, which is the page that introduces the operation. The id
is a cardinal which identifies the operation among all operations introduced by
that page.

In Logiweb, an operation with reference cardinal [r] and id [i] applied to
arguments is represented by the cardinal tree

[((r .̇ . i .̇ . x)I .̇ . y .̇ . · · · .̇ . z .̇ . T)I]
where [y, . . . , z] are representations of the arguments and [x] is a structure

which is ignored by Logiweb except when generating human readable error mes-
sages ([x] indicates the location the operation in the body before macro expan-
sion so that a browser can locate and highlight it).

3.5.3 Tagged maps

We shall refer to

[M(x) val→ (0 .̇ . 1 .̇ . T)I .̇ . x]

as a tagged map where [0 .̇ . 1 .̇ . T] is the tag and [x] is the map itself.
The set of tagged trees is the smallest set which contains [T] and all tagged

cardinals, which contains [x : : y] whenever [x] and [y] are tagged trees, and
which contains [(0 .̇ . 1 .̇ . T)I .̇ . x] for all maps [x].
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3.5.4 The retract for tagged trees

We define the retract for tagged trees thus:

[xM val⇒ if(x,T, if(xH,T .̇ . xTC, if(xHTH, xTHM : : xTTM,M(xT))))]

We define the constructor operation for tagged pairs such that it normalises its
arguments and, hence, is guaranteed to return [⊥] or a tagged tree:

[x : : y
val⇒ xM : : yM]

Operations that retract their arguments allow certain optimizations to occur
behind the scene (c.f. Section 3.6).

3.5.5 Predicates on tagged trees

The following predicate tests for being data (as opposed to being a tagged map):

[xd val⇒ xMHTHB]

The following predicate tests for being a cardinal:

[xc val⇒ if(x, F, xMHB)]

We shall say that [0] is singular among tagged cardinals, that [T] is singular
among tagged peano trees, and that [M(T)] is singular among tagged maps.
Non-singular entities are called regular. The following predicate tests for singu-
larity:

[xs val⇒ xMTB]

3.5.6 Operations on tagged trees

We define the head of a tagged cardinal [x] to be [T] if [x] is even and [F]
otherwise. All operations on tagged trees are defined such that they retract
their arguments before operating on them. The head operation is defined thus:

[xh val⇒ if(xd, xMTH, T)]

We define the tail of a tagged cardinal [x] to be [x] integer divided by two (i.e.
divided by two and rounded to the nearest cardinal in the direction of minus
infinity). The tail of a tagged pair is the second component of the pair. The
tail of a tagged map or [T] equals [T]:

[xt val⇒ if(xd, if(xc, T .̇ . xMTT, xMTT),T)]

Accessors for the zeroth to ninth element of a list [x] read [x0 val→ xh], [x1 val→ xt0],
[x2 val→ xt1], [x3 val→ xt2], [x4 val→ xt3], [x5 val→ xt4], [x6 val→ xt5], [x7 val→ xt6], [x8 val→ xt7],
and [x9 val→ xt8].
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3.5.7 Selection

The following operation is a retracting if-then-else construct which plays an im-
portant role in connection with optimizations and fitness and strictness analysis
that occur behind the scene:

[If(x, y, z) val⇒ if(xM, yM, zM)]

We shall use selection

[x
{

y
z

val⇒ If(x, y, z)]

as an alternative for [If(x, y, z)]. It would be very natural to macro define se-
lection, but macro definitions depend on the Logiweb self-interpretter which in
turn depends on the definitions presented on the present page. To keep the
present page simple and to the point, we omit introducing the notion of macro
definitions and, hence, avoid macro defining selection.

3.5.8 Semitagged maps

We introduce a semitagged representation of maps as follows:

1. The canonical representation of a map [m] is [M(m)].

2. Any tagged tree [x] liberally represents the map [If(xd, x, xT)].

[U(x)] returns the map represented by the semitagged [x]. The untagger
[U(x)] leaves tagged data untouched and untags tagged maps:

[Ũ(x) val→ if(xd, x, xT)]

[U(x) val→ Ũ(xM)]

The construct [apply(f, x)] applies a tagged map [f] to a semitagged map [x]
and returns the result as a tagged map. If [f] is tagged data then [apply(f, x)]
equals [f]:

[apply(f, x) val⇒ apply1(fM, xM)]

[apply1(f, x)
val→ fd

{
If(xd, f, f)
If(xd,M(fT ’ x),M(fT ’ (xT)I)) ]

A short version of [apply(f, x)] reads:

[f ‘ x
val→ apply(f, x)]
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We shall also introduce a tagged version of lambda abstraction. Logiweb, how-
ever, does not support value definitions of new binding constructs. This is
convenient for designers of proof systems who can rely on lambda being the
only binding construct in Logiweb.

In Logiweb it is the intension that new binding constructs should be macro
defined so that binding constructs are expanded into lambdas before proof check-
ing. At the present stage of the bootstrap of Logiweb, however, we do not yet
have macro definitions.

For that reason we introduce a unary operator [Λx] and use [Λλx.y] to denote
tagged lambda abstraction. At a later stage we introduce a construct that macro
expands into [Λλx.y]. We define [Λx] thus:

[Λx
val⇒M(λu.U(x ’M(u)))]

[UM(x)] is a version of [U(x)] which untags and then normalizes a semitagged
map.

[UM(x) val⇒ U(x)M]

3.6 Optimization

3.6.1 On-stage and off-stage semantics

The Logiweb computing engine maintains an on-stage semantics and off-stage
semantics. The on-stage semantics concerns the input-output relation of op-
erations. The off-stage semantics concerns the run time and memory usage of
operations.

One needs to know the on-stage semantics to make correct programs and
one needs to know the off-stage semantics to make efficient programs.

The on-stage semantics of operations must be the same on all implemen-
tations of Logiweb. The off-stage semantics may vary considerably. For that
reason, it is only possible to say something definite about the on-stage semantics.
The remarks on off-stage semantics below concern one, particular implementa-
tion of the Logiweb computing engine which we shall refer to as the first edition
engine.

The on-stage semantics of [xh] is that the Logiweb computing engine reduces
[xh] to [xMTH] because of the definition [xh val⇒ xMTH].

Logiweb has three kinds of revelation constructs that connect syntactic con-
structs with semantic concepts. The three kinds of revelations are called procla-
mations, definititions, and introductions. The revelation of [xh] above is an in-
troduction rather than a definition. One can see that by looking at the equal
sign which deviates from a normal equal sign.

The first edition engine maintains a list of constructs that it can compute
using hardcoded functions. Whenever the first edition engine sees an introduc-
tion, it runs through its list of known constructs to see, if it can recognize the
construct being introduced. When doing so, the first edition engine is insensi-
tive to names of bound variables, names of parameters, and names of auxiliary
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functions, but apart from that the engine merely recognises an introduction if
its right hand side is identical to something the engine knows. If the first edi-
tion engine cannot recognize an introduction, it prints a warning and treats the
introduction as if it were a definition.

The notion of introduction is proclaimed: [[y x⇒ z] ./ “introduce”].
On the first-edition engine, the off-stage semantics of [xh] is that, behind

the scenes, the engine converts the argument of [xh] to an internal, efficient
representation, then manipulates that internal representation, and then converts
the internal representation back to maps.

The conversion back and forth takes time, but the manipulation of the in-
ternal representation is fast. When computing a single head operation, it does
not pay off to round the internal representation. But when performing a long
sequence of head and other, hardcoded operations, the engine merely has to
convert back and forth once at the beginning and end of the computation.

3.6.2 Optimized bottom

The revelation [⊥ val⇒ (λx.x ’ x)I ’ (λx.x ’ x)I] of bottom is an introduction
Bottom has the property that evaluation of it never returns a value. Genuine

bottom [(λx.x’x)I ’(λx.x’x)I] never returns a value because it makes the computer
run forever.

As any other optimized construct, optimized bottom must have exactly the
same behavior as genuine bottom and, hence, optimized bottom must avoid
returning a value. When evaluated on the first edition engine, optimized bottom
signals an irrecoverable error and, hence, satisfies the requirements.

Another valid implementation of optimized bottom would be to let it de-
crease the priority of the current operating system process so much that the
process received no more cpu-time.

The Logiweb machine described later is multitasking, so the latter imple-
mentation of optimized bottom would be reasonable there.

Please never do “bessermachen” by introducing a construct that can test
for optimized bottomness. That would ruin the applicative behaviour of the
Logiweb reduction system. If a bottomness test seems desirable to have in some
situation, consider using exceptions and exception handling instead; and don’t
try to solve Turings halting problem.

3.6.3 Strictness

Define

[x ∧ y
val→ x

{
If(y, T,F)
If(y, F, F) ]

We shall say that [x ∧ y] is strict in its first argument because

[⊥ ∧ y = ⊥]
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When an equation contains a free variable, it is understood that the equation
holds for all values of the free variable. Hence, above, it is understood that the
equation holds for all [y].

We shall say that [x ∧ y] is strict in its second argument because

[x ∧ ⊥ = ⊥]

We shall say that [x ∧ y] is strict because it is strict in all its arguments.

3.6.4 Types

We shall say that that the return value of [x ∧ y] is of type tagged tree because
[(x ∧ y)IM = x ∧ y]
We shall say that the first argument of [x∧ y] is of type tagged tree because
[xM ∧ y = x ∧ y]
Likewise, we shall say that the second argument of [x ∧ y] is of type tagged

tree because
[x ∧ yM = x ∧ y]
Summing up, we shall say that [x ∧ y] is an operation over tagged trees

because its return value and all its arguments are of type tagged tree.
Being an operation over tagged trees does not exclude being an operation

over other types as well.

3.6.5 User defined strict operations

We shall say that an operation is fit for optimization if the first edition engine
can prove that the operation is a strict operation over tagged trees. The first
edition engine translates operations that are fit for optimization in a particularly
efficient way.

Users of the first edition engine need some understanding of fitness for opti-
mization in order to make definitions that the first edition engine can compute
efficiently.

We shall refer to [T], [0], [xM], [x +2∗ y], [x : : y], [xh], [xt], [xs], [xc], and [If(x,
y, z)] as the basic tagged tree operations.

The first edition engine knows that the basic tagged tree operations are
operations over tagged trees and that all but [If(x, y, z)] are strict.

From this the first edition engine can deduce that all operations defined from
these constructs are operations over tagged trees. This includes operations
that are defined by recursion or mutual recursion. There is one pathological
exception, though. A projection operation like [f(x, y) = x] may be defined
using the functions above zero times but is not an operation over tagged trees.

3.6.6 Fitness analysis

Operations defined from the basic tagged tree operations need not be strict
because [If(x, y, z)] is non-strict. But the first edition engine performs fitness
analysis as follows:
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The engine classifies all operations as “fit”, “unfit”, or “possibly fit” for
optimization. As a fourth classification, the engine classifies [If(x, y, z)] as a
“conditional”.

Among the four elementary, computable constructs, the engine classifies [T]
as fit and [λx.y], [x ’ y], and [if(x, y, z)] as unfit.

Among the basic tagged tree operations the engine classifies [If(x, y, z)] as a
conditional and the other ones as fit.

The engine classifies all other operations as possibly fit, except that it clas-
sifies projection operations as unfit. Then the engine reclassifies possibly fit
operations as unfit according to certain rules described in the following. And
when no further operations can be reclassified as unfit, all remaining possibly
fit operations are reclassified as fit.

In other words, operations are considered fit unless they are provably unfit.
This happens to be completely safe.

Possibly fit operations are reclassified as unfit according to two rules:
A possibly fit operation is reclassified as unfit if its definition contains an

unfit operation.
A possibly fit operation if reclassified as unfit if some variable one the left

hand side of the definition does not occur strict in the right hand side where
“occurs strict” is defined in the next section.

3.6.7 Strict variables

Possibly fit operations are reclassified as unfit according to two rules. The first
is rather simple:

A possibly fit operation is reclassified as unfit if its definition contains an
unfit operation.

The other rule is more complex and makes reference to the notion of a strict
variable. The notion of a strict variable is similar to the notion of a free variable.
In fact, the strict variables of a term comprise a subset of the free variables of
the term.

The notion of strict variables of a term [A] is defined by structural induction
in [A] by the following three cases:

If the term [A] is the variable [x], then the strict variables of [A] comprises
[x].

If the term [A] is an operation applied to subtrees and the operation is
not classified as conditional, then the free variables of [A] comprises the strict
variables of the subtrees.

If the term [A] is a conditional operation applied to three subtrees like [If(x,
y, z)], then the strict variables of [A] comprises the strict variables of [x] plus all
variables that occur strict in both [y] and [z].

As an example, [x] and [y] are the strict variables of [If(x, y, If(y, z, y))].

3.6.8 Fitness of conjunction

The first edition engine classifies
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[x ∧ y
val→ x

{
If(y, T,F)
If(y, F, F) ]

as fit for optimization because conjunction is not the conditional construct and
because the engine does not classify conjunction as unfit. The engine does not
classify conjunction as unfit because the right hand side of the definition above
contains no unfit operations and because both variables, [x] and [y], occur strict
in the right hand side.

3.6.9 Logical connectives

Define

[¬x
val→ If(x, F, T)]

[x ∨ y
val→ x

{
If(y, T,T)
If(y, T,F) ]

The operations above are fit for optimization.
Sometimes, when programming, it is useful to have lazy versions of the

connectives that compute the first argument before they decide whether or not
to compute the second, but we shall not need them here.

If such lazy connectives are needed, one should consider to macro define
them rather than value defining them. If lazy connectives are value defined,
they will be classified as unfit for optimization. On the contrary, if they are
macro defined they will be macro expanded away before fitness analysis and,
hence, they can be used for defining operations that are fit for optimization.

3.6.10 Auxiliary operations

Parentheses cannot occur in definitions that are fit for optimization since [(x)I]
does not normalize its argument.

Later, we macro define parentheses. Once parentheses are macro defined,
they disappear from terms before fitness analysis. Hence, once parentheses are
macro defined, they can be used in optimizable definitions. Until we macro
define parentheses, we shall use a normalizing version of parentheses:

[(x)M val→ xM]

The following normalizing guard operation can be used in definitions for making
the defined function strict:

[x!y val⇒ If(x, y, y)]

3.6.11 Equality

Define

38



[x ≈ y
val⇒ xd

{
If(yd, x

D≈ y, F)
If(yd, F, T)

]

[x
D≈ y

val→ xc

{
If(yc, x

C≈ y,F)

If(yc,F, x
P≈ y)

]

[x
C≈ y

val→ xs

{
If(ys,T, F)

If(ys,F, xh B≈ yh ∧ xt C≈ yt)
]

[x
B≈ y

val→ x

{
If(y,T, F)
If(y,F, T) ]

[x
P≈ y

val→ xs

{
If(ys, T,F)
If(ys, F, xh ≈ yh ∧ xt ≈ yt) ]

[x ≈ y] is an example of an operation defined by mutual recursion which is fit
for optimization.

3.7 Arithmetic

3.7.1 Addition

Addition of cardinals is defined thus:

[x + y =̇ If(xc ∧ yc, x+0 y,T)]

[x+0 y =̇ xs





y

ys





x

xh





yh

{
T +2∗ xt +0 yt

F +2∗ xt +0 yt

yh

{
F +2∗ xt +0 yt

T +2∗ xt +1 yt

]

[x+1 y =̇ xs





y +0 1

ys





x+0 1

xh





yh

{
F +2∗ xt +0 yt

T +2∗ xt +1 yt

yh

{
T +2∗ xt +1 yt

F +2∗ xt +1 yt

]

3.7.2 Comparison

Comparison of cardinals is defined thus:

[x < y =̇ If(xc ∧ yc, x <′ y, F)]
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[x <′ y =̇ ys





x!F

xs





T

xh





yh

{
xt <′ yt

xt ≤′ yt

yh

{
xt <′ yt

xt <′ yt

]

[x ≤′ y =̇ xs





y!T

ys





F

xh





yh

{
xt ≤′ yt

xt ≤′ yt

yh

{
xt <′ yt

xt ≤′ yt

]

3.7.3 Subtraction

Subtraction of cardinals is defined below. Subtraction yields zero when a large
number is subtracted from a small.

[x− y =̇ If(xc ∧ yc, If(x < y, 0, x−0 y), T)]

[x−0 y =̇ ys





x

xh





yh

{
T +2∗ xt−0 yt

F +2∗ xt−1 yt

yh

{
F +2∗ xt−0 yt

T +2∗ xt−0 yt

]

[x−1 y =̇ ys





x−0 1

xh





yh

{
F +2∗ xt−1 yt

T +2∗ xt−1 yt

yh

{
T +2∗ xt−0 yt

F +2∗ xt−1 yt

]

3.7.4 Multiplication

Multiplication of cardinals is defined thus:

[x · y =̇ If(xc ∧ yc, x ·0 y, T)]

[x ·0 y =̇ ys





x!0

yh

{
T +2∗ x ·0 yt

(T +2∗ x ·0 yt)M +0 x
]

3.7.5 Bit access

[bit(x, y)] is true if bit number [x] of the cardinal [y] is zero. The least significant
bit is bit number zero.

[bit(x, y) =̇ If(xc ∧ yc, bit1(x, y), T)]
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[bit1(x, y) =̇ If(xs, yh, bit(x− 1, yt))]

3.8 Quoting

3.8.1 Terms

Terms have form [(r : : i : : d)I : : a] where [r] and [i] are the reference and
identifier, respectively, of the root symbol of the term and the argument list
[a] is a list of terms. The debugging information [d] indicates the location of
the root symbol on the page and allows a browser to highlight the root symbol
even if the root symbol has been moved around by such processes as macro
expansion.

Accessors for the reference, identifier, and debug information of a term [x]
read [xr val→ xhh], [xi val→ xhth], and [xd val→ xhtt], respectively.

[xR val→ xr : : xi : : T] returns the root of the term [x] without debugging
information.

[x r= y]is true if the roots of the terms [x] and [y] are equal except for debug-
ging information:

[x r= y
val→ If(xr ≈ yr, xi ≈ yi, F)]

When testing two terms for identity, one should disregard debugging informa-
tion. [x t= y] tests two terms [x] and [y] for identity disregarding debugging
information:

[x t= y
val→ If(x r= y, xt t∗= yt,F)]

[x t∗= y] tests two lists [x] and [y] of terms for identity disregarding debugging
information:

[x t∗= y
val→ xa

{
If(ya,T, F)

If(ya,F, If(xh t= yh, xt t∗= yt,F))
]

3.8.2 Gödel trees

In addition to the fundamental, computable constructs [T], [λx.y], [f ’ x], and
[if(x, y, z)] we introduce the quote construct [dAe] for pragmatic reasons.

The quote construct is computable but does not add to the computational
power of the Logiweb engine. If it were omitted from Logiweb, one could replace
it with a macro defined construct.

The quote construct resembles “quote” in Lisp [9] and Gödel numbers as
introduced in [3].

The reason for introducing quoting as a fundamental construct rather than
macro defining it is that a macro defined quote would expand into rather large
terms. In other words, quotes are introduced to enhance the efficiency of the
macro facility. End users will probably prefer “backquote” like macros that are
based on the quote construct rather than using quote raw.

The quote construct is proclaimed thus:
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[dxe ./ “quote”]

For a term [A], [dAe] denotes the tagged tree that represents [A]. As an example,

[dx ≈ ye]

is the tagged tree that represents the term [x ≈ y]. We have
[dx ≈ ye = (r : : i : : d : : T)I : : dxe : : dye : : T

]

except for debugging information present in each occurrence of [x] and [y].
The [r] and [i] above are the reference and identifier, respectively, of the

[∗ ≈ ∗] symbol. The reference [r] is a large cardinal (around 200 bits long)
which identifies the home page of the [∗ ≈ ∗] symbol, i.e. the page on which
the [∗ ≈ ∗] symbol is introduced. The identifier [i] identifies the [∗ ≈ ∗] symbol
among all symbols introduced on that page.

The [d] above is debugging information that indicates the location of the
particular instance of the [∗ ≈ ∗] symbol. The value of [d] has form [p1 : : p2 : :
· · · : : pn : : q : : T] which indicates that the particular instance of the [∗ ≈ ∗]
symbol occurs as the p1’s subtree of the p2’s subtree of the p3’s subtree etc.
of page [q]. Since the particular instance of the [∗ ≈ ∗] symbol occurs on the
present page we have that [q] equals the reference of the present page.

In general, [dAet] is the list of subterms of the term [A] and [dAeh] represents
the identity and location of the root symbol of the term. As an example,

[dx ≈ yer]

and
[dx ≈ yei]

are the reference and identifier, respectively, of the equality construct. As an-
other example, we have

[dbaseei = 0
]

because the identifier of the page symbol [base] is zero.

4 The macro expansion facility

This section describes the macro expansion facility of Logiweb[6]. The macro
facility allows expressions that are easy to read for humans to expand into more
machine readable formats before computer consumption.
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4.1 Logiweb identifiers

4.1.1 Representation scheme

Occasionally, we shall represent strings of characters by cardinals. To translate
a string

[c1c2 · · · cm]

of characters to a cardinal, we proceed as follows. First, we mirror the string
to get:

[cm · · · c2c1]

Then we translate each character [ci] into its Unicode representation [ui],
yielding a list of cardinals:

[um · · · u2u1]

Then we express each cardinal [ui] as a sequence of digits

[dini · · · di1di0]

in radix [128] such that [0 ≤ dij < 128] and such that

ui =




ni∑

j=0

dij128j




In addition, we require [dini 6= 0] except when [ui = 0] in which case we
require [ni = 1] instead.

Next, we add 128 do all digits except leading ones, i.e. we define
[
d′ij =

{
dij + 128 if 0 ≤ j < ni

dij if j = ni

]

This gives rise to a sequence

[ d′mnm
· · · d′m0

· · ·
d′2n2

· · · d′20
d′1n1

· · · d′10 ]

of cardinals in the range from [0] to [255]. Renumbering the sequence above
gives the sequence

[d′′p · · · d′′1d′′0 ]

which we then interpret as a sequence of digits in radix 256, so that we
represent the string

[c1c2 · · · cm]

by the cardinal

c =

[
p∑

k=0

d′′k256k

]
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4.1.2 Representation of ASCII strings

Logiweb ASCII is a character encoding that is very close to the American Stan-
dard Code for Information Interchange (ASCII). The differences are:

In Logiweb ASCII, character codes in the ranges [0. .9] and [11. .31] as well
as character code [127] are dead character codes in the sense that if they occur
in input, they should be discarded before they make their way into strings.

In Logiweb ASCII, character code [10], nothing but character code [10], and
always character code [10], represents the newline character.

Logiweb ASCII is similar to ASCII in that no characters have codes outside
[0. .127].

Logiweb ASCII has two formatting character: newline (code [10]) and space
(code [32]). All characters in the range [33. .126] are printable glyphs.

When running Logiweb under some host operating system, the convention
that character [10] is the newline character may equate or differ from the con-
vention of the host operating system. In the very few cases where strings are
exchanged between Logiweb and surrounding systems, one should translate be-
tween the newline conventions of Logiweb and the surroundings during the ex-
change.

Translation from ASCII strings to cardinals and vice versa is particularly
simple. To translate e.g. the string “abc”, do as follows. First, write the string
backwards: “cba”. Then convert each character to an eight bit byte:

[0110 0011 0110 0010 0110 0001]

Finally, interpret the result as a binary number.
Needless to say (so we say it for safety’s sake), the above representation of

ASCII strings by cardinals is quite memory efficient.

4.1.3 Constructors for binary numbers

To express binary numbers easily, we introduce the following three constructs:

[x0 val→ T +2∗ x]

[x1 val→ F +2∗ x]

[0b val→ 0]

4.1.4 Representation of Logiweb identifiers

We shall refer to a particular, short, finite list of strings as Logiweb indentifiers.
The list of identifiers, and the semantics of each identifier, is at the heart of the
Logiweb standard. At the time of writing I, the author of the present paper,
control that list.

Each Logiweb indentifier has the property that it only includes Unicode
characters from 97 to 122 (small letter a to small letter z). Now define
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[identifier(x) val→ If(xt, 0, identifier1(xi, identifier(x1)))]

[identifier1(x, y)
val→ If(x6, y, x0 +2∗ x1 +2∗ x2 +2∗ x3 +2∗ x4 +2∗ x5 +2∗

F +2∗ T +2∗ y)]

We have that e.g. [identifier(d“code”e)] is the string [“code”] translated to the
cardinal specified in Section 4.1.1:

[identifier(d“code”e) ≈ 0b1100101011001000110111101100011]·

In general, [identifier(dAe)] converts the string [A] correctly under the following
conditions:

• All non-blind characters of the string are between 64 and 126

• All blind characters of the string are between 0 and 9 or between 11 and
31.

• All characters are represented by unary operators except the end-of-text
character, which must be nulary and blind.

4.2 Associative structures

4.2.1 Associations trees

We define the set of associations as the set of pairs [k : : v] where [k] is a cardinal
and [v] is a tagged tree. For an association [k : : v] we shall refer to [k] and [v]
as the key and value of the association, respectively.

We define the set of association trees as the smallest set which contains [T],
which contains all associations, and which contains [a : : b] for all association
trees [a] and [b]. Each association tree represents a finite set of associations.

If all keys of an association tree [a] are distinct, then [a] represents the
function that maps [k] to [v] whenever [k : : v] belongs to [a] and maps [k] to [T]
whenever [k] is a cardinal which does not occur as a key in [a].

In particular, the association tree [T] represents the function that maps all
cardinals to [T].

4.2.2 Finite functions

We shall say that a function [f] is a finite function if it maps cardinals to tagged
trees and, furthermore, maps at most finitely many cardinals to tagged trees
different from [T].

One may represent finite functions by association trees.

45



4.2.3 Addresses

Each association in an association tree [a] can be accessed using a sequence of
head and tail operations. As an example, if [a] is an association tree and [ahthh]
is an association, then the association can be addressed by a head-tail-head-head
sequence.

We now represent “head” by binary zero and “tail” by binary one. As an
example, if [a] is an association tree and [ahthh] is an association then we say
that the association occurs at address [0, 1, 0, 0].

4.2.4 Arrays

A cardinal [k] may be written on form
[ ∞∑

n=0

bn2n

]

where [b0,b1, b2, . . .] are bits (i.e. “binary terms”, i.e. zero or one). We shall
refer to [b0, b1, b2, . . .] as the little endian, infinite binary representation of [k].

We shall say that an association tree [a] is an array if it satisfies the following
two conditions:

1. For every association [k : : v] in [a], the address of the association is a
prefix of the little endian, infinite binary representation of [k].

2. No substructure of [a] has form [T : : p] or [p : : T] where [p] is an associa-
tion.

The first condition makes it fast and easy to look up a key [k] in an array.
The second condition together with the first ensures that each finite function is
represented by exactly one array.

4.2.5 Array access

We shall say that a data structure is atomic if it is not a pair. [xa] is true if [x]
is atomic:

[xa val→ ¬xd ∨ xc ∨ xs]

[a[k]] looks up the value associated to the key [k] in the array [a]:

[a[k] val→ assoc1(a, k, k)]

[assoc1(a, d, i) val→ aa





d!i!T

ahc





i ≈ ah

{
d!at

d!T

dh

{
assoc1(ah, dt, i)
assoc1(at, dt, i)

]
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The above representation of arrays allows array access and update to occur
reasonably efficiently. If even greater efficiency is needed, one may implement
arrays as hash tables behind the scenes. The first edition engine (the only
Logiweb engine in existence at the time of writing) does not treat arrays specially
behind the scenes. But arrays are still defined the way they are in order to allow
improvements in the future.

As a matter of terminology, we shall refer to keys of arrays as incices. So an
array maps indices to values.

4.2.6 Racks

Formally, we shall use “rack” as a synonym for “array”. Informally, we shall use
“array” and “rack” for homogeneous and heterogeneous structures, respectively.
So an array is an association list whose values are of homogeneous format and
a rack is an association list with heterogeneous values.

As a matter of terminology, we shall refer to keys of racks as hooks. So a
rack maps hooks to values.

4.2.7 Multidimensional arrays

We shall refer to arbitrary values as zero dimensional arrays and to arrays of
[n]-dimensional arrays as [n + 1]-dimensional arrays. As an example, if [a] is a
three-dimensional array and [u], [v], and [w] are cardinals, then

[a[u][v][w]]

is the value indexed by [u], [v], and [w].

4.2.8 Array assignment

[a[i→v]] equals the array [a] except that [a[i→v]] maps the index [i] to the value
[v].

[a[i→v] =̇ ic





v

{
array-remove(i, a, 0)
array-put(i, v, a, 0)

v!a
]

[array-plus(x, y) =̇ xa





ya





T

yhc

{
y
x : : y

ya





xhc

{
x
x : : y

x : : y

]

[array-remove(i, a, l) =̇

i!l!aa





T

ahc





ah ≈ i

{
T
a

bit(l, i)
{

array-plus(array-remove(i, ah, l + 1), at)
array-plus(ah, array-remove(i, at, l + 1))

]
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[array-put(i, v, a, l) =̇

l!aa





i : : v

ahc





ah ≈ i

{
i : : v
array-add(i, v, ah, at, l)

bit(l, i)
{

array-put(i, v, ah, l + 1) : : at

ah : : array-put(i, v, at, l + 1)

]

[array-add(i, v, i′, v′, l) =̇

bit(l, i)





bit(l, i′)
{

array-add(i, v, i′, v′, l + 1) : : T
(i : : v)M : : (i′ : : v′)M

bit(l, i′)
{

(i′ : : v′)M : : (i : : v)M

T : : array-add(i, v, i′, v′, l + 1)

]

4.2.9 Multidimensional assignment

[a[i⇒v]] equals the multidimensional array [a] except that [a[i⇒v]] maps the list
[i] of indices to the value [v]. As an example, [T[1 : : 2 : : 3 : : T⇒4][1][2][3]]
equals [4].

[a[i⇒v] =̇ ia
{

a!v
a[ih→a[ih][it⇒v]] ]

4.2.10 Variables

The term [λx.x] contains the variable [x].
In Logiweb, any term may serve as a variable. Whether or not a given term

is interpreted as a variable depends on context.
A lambda construct forces its first argument to be a variable. This forces

the first occurrence of [x] in [λx.x] to be a variable.
The lambda does not force the second occurrence of [x] in [λx.x] to be a

variable. But the second occurrence is a variable anyway because of another
rule which says that any term whose root symbol has no value definition is a
variable.

As a more bizarre example,

[λ2.2]

is a valid term. The lambda forces the first occurrence of [2] to be a variable.
The second occurrence of [2] is no variable, however, since nothing forces the
second [2] to be a variable and [2] has a value definition. Renaming of the bound
variable [2] to [x] shows that [λ2.2] equals [λx.2]:

[λ2.2 = λx.2]

We now introduce the binary construct [xy], but we assign no value to it. For
that reason, any term with the [xy] construct in the root will be a variable. As
an example of use,

[λx1.λx2.x1 : : x2]
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equals

[λu.λv.u : : v]

To boost the number of available variables even further, we introduce a unary
prime operator [x′]which allows to use [x′], [y′], [z′′′], and so on as variables.

Two variables are equal if they are identical terms (disregarding debugging
information). For that reason, even if we defined [x+y] such that [2+2] equaled
[4], [x2+2] and [x4] would still be distinct variables.

4.2.11 Stacks

We shall refer to dynamic environments as stacks. A stack is an association list
from variables to values.

We cannot use [s[v]] to look up the variable [v] in the stack [s] because we
should disregard debugging information present in [v]. For that reason, we use
the following construct instead:

[lookup(v, s, d) val→ v!d!If(s, d, If(v t= shh, sht, lookup(v, st, d)))]

[lookup(v, s, d)] looks up the variable [v] in the stack [s]. If the variable is not
found, [lookup(v, s, d)] returns the default value [d] instead.

The [zip(p, a)] construct zips two lists into a list of pairs and is suited for
forming stacks:

[zip(p, a) val→ a!If(p, T, (ph : : ah)M : : zip(pt, at))]

4.3 Static semantics

4.3.1 The structure of Logiweb pages

As far as Logiweb is concerned, a Logiweb page consists of a bibliography, a
dictionary, and a body. What you read right now is a rendering of the body of
a Logiweb page.

The Logiweb bibliography of a page is a list of Logiweb references. The first
reference (reference number zero) is the reference of the page itself, and the
other references are references of other Logiweb pages.

The bibliography at the end of the present page is a BibTEX bibliography
which is part of the body of the page. The BibTEX bibliography is completely
unrelated to the Logiweb bibliography.

The Logiweb dictionary of a page is an array which maps identifiers to arities.
If the dictionary of the page with reference [r] maps the cardinal [i] to [a] then,
by definition, there exists a Logiweb symbol with reference [r] and identifier [i],
and that symbol has arity [a].

The Logiweb body of a page is one, big term.
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4.3.2 Transitive bibliographies

As mentioned, the first entry of the Logiweb bibliography of any page is the
reference of the page itself. Apart from this, the bibliographic references of
Logiweb form a non-cyclic graph.

Given a Logiweb page [p], we shall define the transitive bibliography of [p] as
the set of references of all pages reachable following bibliographic links starting
at [p]. The transitive bibliography of a page includes the reference of the page
itself.

We define the transitive, irreflexive bibliography of a Logiweb page as the
transitive bibliography with the reference of the page itself removed.

4.3.3 Loading, referencing, and verbatim copying

Logiweb is able to load Logiweb pages. Loading a Logiweb page involves a
number of activities such as locating, retrieving, unpacking, and codifying the
page. To display a page the system has to load and then render the page.

Loading a page is cascading in that loading a page requires loading of all
pages in the transitive bibliography of the page.

A page cannot be loaded unless all pages in the transitive bibliography can
be found. Hence, deleting a page from Logiweb is a serious thing since it ruins
all pages that refer, directly or indirectly, to the deleted page. Fortunately,
Logiweb allows duplication of pages so that a single Logiweb page may reside
several places in the world. The author of a Logiweb page should secure a local
copy of all pages in the transitive bibliography of the page unless the author
trusts other people very much.

Referencing, indexing, and verbatim copying are core activities of Logiweb;
if one does not allow referencing, indexing, and verbatim copying of a page, one
should not submit it to Logiweb. In other words, the author of a page silently
permits referencing, indexing, and verbatim copying by submitting it.

Authors may of course still claim copyright to a Logiweb page. That copy-
right may prevent other people from e.g. modifying the page, publishing the page
outside Logiweb, or other activities other than the core activities of Logiweb.

4.3.4 The cache of a page

Loading a page results in the construction of a cache and a rack for the page.
The cache and rack of a page represent the static semantics of the page.

The cache [c] of a page [p] is an array which maps the references in the
transitive bibliography of [p] to the rack of the associated page. Hence, [c[r]] is
the rack of the page referenced by [r]. In particular, the cache of a page contains
the rack of the page itself.

The cache [c] of a page is an almost homogeneous array. The only exception
is that [c[0]] equals the reference of the page. As a consequence, if [c] is the
cache of a page then [c[c[0]]] is the rack of the page.
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4.3.5 The value of the page construct

A page construct (the construct of a page whose id is zero) represents the page.
As an example, the pyk and tex aspects of a page construct effectively become
the name of the page expressed in pyk and TEX, respectively. The page construct
is always nulary.

Evaluation of a page construct always yields the Logiweb cache of the associ-
ated page. In this way, the evaluator has a clean way to access its environment.
Logiweb ignores value definitions of page constructs.

From the point of view of mathematical reasoning, page constructs are con-
stants whose values happen to be the cache of their associated pages.

[base] is the page construct of the present page. Hence, the value of [base]
is the cache of the present page.

According to Section 4.3.4, [base[0]] is the reference of the present page. If
we take any construct introduced on the present page, say [7], then the reference
of the root of that construct must equal [base[0]]:

[base[0] ≈ d7er]·

In section 4.5.2 we macro define [self] so that [self] macro expands to the page
construct of the page on which the construct occurs. Hence, on the present page,
[self] expands to [base]. On other pages, [self] expands to the page construct of
those other pages.

We could use [self] in place of [base] above. Logiweb does not care about
the order of definitions, and it is completely valid to use macros before they are
defined. But beware of circularities, they can lead to intractable errors.

4.3.6 The rack of a page

According to Section 4.3.4, [rack =̇ base[base[0]]]is the rack of the present page.
The rack of a page maps various, predefined hooks to various values. The

hooks of the rack are Logiweb identifiers (c.f. Section 4.1.4). At the time of
writing, the rack [a] of a page has the following hooks:

• ["vector" val→ identifier(d“vector”e)]The vector of the page, i.e. the sequence
of bytes that constitute the page when it is stored on disc or transmitted
over a network. As an example, [rack["vector"]h] is the first byte of the
vector that represents the present page. That byte happens to be the
major version number so, since the present page is encoded using Logiweb
version [1] we have [rack["vector"]h ≈ 1]·.

• ["bibliography" val→ identifier(d“bibliography”e)]The bibliography of the
page, i.e. a list of references where the first reference is the reference of
the page itself and the other references are references of other pages. The
present page is a base page in the sense that it references no other pages:
[rack["bibliography"] ≈ d7er : : T]·.
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• ["dictionary" val→ identifier(d“dictionary”e)]The dictionary of the page, i.e.
an array that maps the identifiers of the symbols introduced on the page
to their arities. As an example, the arity of [x : : y] is two:

[rack["dictionary"][dx : : yei] ≈ 2]·

We say that a symbol exists if the dictionary of the page pointed out by
the reference of the symbol maps the identifier of the symbol to a value
different from [T].

• ["body" val→ identifier(d“body”e)]The body of the page, i.e. the term that
one should typeset when viewing the page. On a base page, the root of
the body necessarily comes from the page itself: [rack["body"]r ≈ d7er]·.

• ["codex" val→ identifier(d“codex”e)]An array that contains all revelations
(i.e. proclamations, definitons, and introductions) of the page as described
in Section 4.3.7.

• ["expansion" val→ identifier(d“expansion”e)]The macro expanded version of
the body of the page. The expanded version is always a syntactically
valid term, i.e. a term in which all symbols exist and have correct arities
as specified in the dictionaries. Logiweb ensures this syntactic validity
in a roundabout way: The macro expansion facility is Turing complete
and can produce any value as an output. Macro expansion may even
loop indefinitely, in which case the author of the page should consider to
correct the page before submitting it to Logiweb. If macro expansion does
produce a value, then Logiweb checks the result for syntactical validity,
and whenever it finds an invalid symbol or a symbol whose arity does not
match the number of subtrees, Logiweb replaces the tree rooted at the
invalid symbol with the page construct of the present page.

• ["code" val→ identifier(d“code”e)]An array that contains compiled versions
of all value revelations of a page. With two exceptions, the compiled ver-
sions are tagged, curried functions: [U(rack["code"][dx : : yei] ‘ 2 ‘ 3) ≈ 2 : :
3]·. The first exceptions is lambda abstraction which, rather arbitrarily,
is represented by a zero: [rack["code"][dλx.yei] ≈ 0]·. The other exception
is quoting which is represented by a one: [rack["code"][ddxeei] ≈ 1]·.

• ["cache" val→ identifier(d“cache”e)]An array which maps all references in
the transitive, irreflexive bibliography of the page [p] to the caches of the
associated pages. The present page is a base page in the sense that it
references no other pages, so the cache that hangs on the cache hook is
empty: [rack["cache"] ≈ T]·. If the present page did reference a page
with reference [r] then [rack["cache"][r]] would be the cache of page [r]. In
that case, [base[r]] as well as [rack["cache"][r][r]] would be the rack of page
[r]. In general, the racks and caches of referenced pages can be addressed
several ways.
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• ["diagnose" val→ identifier(d“diagnose”e)]If the value that hangs on the di-
agnose hook is [T] then the page is correct. Otherwise, the value is a term
which, when typeset, is supposed to explain what is wrong with the page.
In other words, the diagnose hook is where the checking machinery hangs
its complaints. The diagnose is pruned to a term the same way as the
expansion is. The diagnose is added after checking. During checking the
value that hangs on the diagnose hook is always [T].

Constants (i.e. nulary constructs) like the ones above are computed lazily and
the result is kept. For that reason, constants are computed at most once when
a Logiweb page is loaded. Computation of e.g. [identifier(d“diagnose”e)] is
not particularly time and memory efficient but that is irrelevant when using
["diagnose"] since it is only evaluated once.

4.3.7 The codex of a page

The codex [c] of a page is a four dimensional array that hangs on the ["codex"]
hook of the rack of the page.

A page may contain revelations (i.e. proclamations, definitions, and intro-
ductions), and each revelation defines some aspect of some symbol.

If [rs] and [is] are the reference and identifier, respectively, of a symbol and
if [ra] and [ia] are the reference and identifier, respectively, of an aspect, then

[c[rs][is][ra][ia]]

is the revelation (if any) of the given aspect of the given symbol.
If the revelation is a definition or introduction, the thing stored in the codex

is the entire term that constitutes the revelation. In this case, the first argument
of the definition is the aspect (with possible parameters), the second argument
is the left hand side of the definition (with possible parameters), and the third
argument is the right hand side. The root of the term is a symbol that is
proclaimed to denote the “definition” or “introduction” concept.

If the revelation is a proclamation, the thing stored in the codex has form
[(0 : : i : : T) : : T] where [i] where the cardinal [i] identifies the proclamation as
explained in Section 4.3.12.

4.3.8 Aspects

An aspect may be predefined or user defined.
User defined aspects are introduced using a mechanism described later. The

reference and identifier of a user defined aspect always identify an existing Logi-
web symbol.

The reference of a predefined aspect equals zero and the identifier is a Logi-
web identifier. At the time of writing, the following Logiweb identifiers denote
predefined aspects:

• ["value" val→ identifier(d“value”e)]
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• ["pyk" val→ identifier(d“pyk”e)]

• ["tex" val→ identifier(d“tex”e)]

• ["texname" val→ identifier(d“texname”e)]

• ["message" val→ identifier(d“message”e)]

• ["macro" val→ identifier(d“macro”e)]

• ["definition" val→ identifier(d“definition”e)]

• ["unpack" val→ identifier(d“unpack”e)]

• ["claim"
val→ identifier(d“claim”e)]

• ["priority" val→ identifier(d“priority”e)]

As an example, if [c] is the codex of a page and if the page makes a value
definition of a symbol with reference [r] and identifier [i] then

[c[r][i][0]["value"]]

will equal that definition.

4.3.9 Domestic and foreign definitions

If a page with reference [r] has cache [c] then e.g.

[c[r]["codex"][rs][is][0]["value"]]

denotes the value aspect of the symbol with reference [rs] and identifier [is] as
defined on page [r].

We shall say that a definition is domestic if [r = rs] and foreign otherwise.
In other words, a definition is domestic if it occurs on the home page of the
symbol being defined.

Logiweb ignores foreign value definitions but store them in the codex for the
record. In general, Logiweb ignores foreign definitions of any predefined aspect.

One could decide that foreign definitions could shadow domestic ones in
certain situations. Actually, shadowing of pyk, tex, and tex name aspects has
been considered for Logiweb, but has been rejected to keep core Logiweb sim-
ple. Authors who define their own user aspects may decide if and how foreign
definitions may shadow domestic ones for their aspects.
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4.3.10 A codex accessor

[aspect(a, c)]looks up the the aspect [a] in the subcodex [c]. The subcodex is
assumed to be the result of accessing a codex be the reference and identifier of
a symbol. The subcodex is what is called a property list in Lisp [9, 11].

If [a] is a cardinal then it is interpreted as the Logiweb identifier of a prede-
fined aspect. Otherwise, [a] is interpreted as a term whose root symbol denotes
a user defined aspect.

[aspect(a, c) val→ ac

{
c[0][a]
c[ar][ai] ]

[aspect(a, t, c)]looks up the domestic definition of the root of the term [t] for
the aspect [a] in the cache [c]. If [a] is a cardinal then it is interpreted as the
Logiweb identifier of a predefined aspect. Otherwise, [a] is interpreted as a term
whose root symbol denotes a user defined aspect.

[aspect(a, t, c) val→ aspect(a, c[tr]["codex"][tr][ti])]

4.3.11 Value proclamations

Proclaiming a construct to denote “apply”, “lambda”, “true”, “if”, or “quote”
affects the value aspect of the construct. For that reason we shall refer to procla-
mations with one of these strings in the right hand side as value proclamations.

The strings that make sense in the right hand side of proclamations form
a subset of the strings that define Logiweb identifiers. The Logiweb identifiers
associated to the five value proclamations are defined thus:

• ["lambda" val→ identifier(d“lambda”e)]

• ["apply" val→ identifier(d“apply”e)]

• ["true" val→ identifier(d“true”e)]

• ["if" val→ identifier(d“if”e)]

• ["quote" val→ identifier(d“quote”e)]

4.3.12 Codification of revelations

Logiweb codifies a definition like

[xH val→ x ’ T]

simply by placing the entire definition in the codex:

[aspect("value", dxHe, base) t= d[xH val→ x ’ T]e]·
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Having that definition, one can gain access not only to the right hand side of the
definition, but also e.g. the parameter list of the left hand side. If one decides
to have parameterized aspects, then one will also have access to the parameter
list of the aspect in the codex.

Introductions are treated exactly the same way. An introduction like

[y .̇ . z
val⇒ λx.if(x, y, z)]

results in the following entry in the codex:

[aspect("value", dy .̇ . ze,base) t= d[y .̇ . z
val⇒ λx.if(x, y, z)]e]·

In contrast, a proclamation like

[λx.y ./ “lambda”]

results in an entry like

[aspect("value", dλx.ye, base) ≈ (0 : : "lambda" : : T)I : : T]·

In general, a proclamation results in an entry of form [(0 : : i : : T)I : : T] where
[i] is the Logiweb identifier that corresponds to the string in the right hand side
of the proclamation.

4.3.13 Message proclamations

A construct denotes an aspect if the construct has a “message” aspect.
Proclaiming a construct to denote “pyk”, “tex”, “texname”, “value”, “mes-

sage”, “macro”, “unpack”, “claim”, or “priority” affects the message aspect of
the construct. For that reason we shall refer to proclamations with one of these
strings in the right hand side as message proclamations.

The aspects mentioned above are said to be “predefined”. User defined
aspects are treated later.

In addition to the predefined aspects mentioned above, Logiweb recognizes
one more predefined aspect: the “definition” aspect, which is unproclaimable
and which is treated in Section 4.3.14.

As an example of use,

[aspect("message", dpyke, base) ≈ (0 : : "pyk" : : T)I : : T]·

4.3.14 Definition proclamation

A construct denotes a revelation if the construct has a “definition” aspect.
Proclaiming a construct to denote “proclaim”, “define”, “introduce”, or

“hide” affects the revelation aspect of the construct. For that reason we shall re-
fer to proclamations with one of these strings in the right hand side as definition
proclamations. The Logiweb identifiers associated to the definition proclama-
tions are defined thus:
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• ["proclaim"
val→ identifier(d“proclaim”e)]

• ["define" val→ identifier(d“define”e)]

• ["introduce" val→ identifier(d“introduce”e)]

• ["hide" val→ identifier(d“hide”e)]

Constructs proclaimed to “hide” disable all proclamations in their subtrees to
have effect as described in Section 4.5.3.

As an example of use of the definitions aspect we have

[aspect("definition", d[xH val→ x ’ T]e,base) ≈ (0 : : "define" : : T)I : : T]·

4.3.15 Priority proclamations

Proclaiming a construct to denote “pre” or “post” affects the priority aspect of
the construct. For that reason we shall refer to proclamations with one of these
strings in the right hand side as priority proclamations. The Logiweb identifiers
associated to the priority proclamations are defined thus:

• ["pre" val→ identifier(d“pre”e)]

• ["post" val→ identifier(d“post”e)]

As an example,

[aspect("priority", d
Preassociative
x; ye,base) ≈ (0 : : "pre" : : T)I : : T]·

4.3.16 The code of a page

The code of a page is a one-dimensional array that hangs on the ["code"] hook
of the rack of the page.

If [c] is the cache of a page and [r] belongs to the transitive bibliography of
the page, then

[c[r]["code"][i]]

is a tagged, Curried version of

[c[r]["codex"][r][i][0]["value"]]

As an example, if [r] and [i] are the reference and identifier, respectively, of the
[x : : y] construct, then

[c[r]["code"][i] = M(λx.λy.x : : y)]
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The first edition engine performs compilation backstage so that the code of a
page contains a compiled versions of the value aspects of the codex.

If [r] and [i] are the reference and identifier, respectively, of a symbol that is
proclaimed to denote lambda abstraction, then [c[r]["code"][i] = 0]. If [r] and [i]
are the reference and identifier, respectively, of a symbol that is proclaimed to
denote quoting, then [c[r]["code"][i] = 1].

4.4 Macro expansion

4.4.1 A self interpreter

Before we can define a macro expander we need a self interpreter. We define a
self interpreter in the following.

The result of evaluating a term is a map, but the evaluator returns a
semitagged map for efficiency reasons. To get the map itself one has to un-
tag the return value.

The self interpreter [E(t, s, c)] evaluates the term [t] for the stack [s] and the
cache [c] and returns the result as a semitagged map. [U(E(t, s, c))] is the map
itself.

The self interpreter computes the reference [tr] and identifier [ti] of the root
of the term and passes control to an auxiliary function:

[E(t, s, c) val→ E2(t, tr, ti, s, c)]

[E2(t, r, i, s, c)] evaluates the term [t] whose root symbol has reference [r] and
identifier [i] for the stack [s] and the cache [c]. If the root symbol is a page
symbol, it returns the associated cache. Otherwise, it looks up the code of the
root symbol:

[E2(t, r, i, s, c)
val→ is

{
t!s!If(r ≈ c[0], c, c[c[0]]["cache"][r])
E3(t, c[r]["code"][i], s, c) ]

[E3(t, f, s, c)] evaluates the term [t] whose root symbol has code [f] for the stack
[s] and the cache [c]. If the code equals [T] then the root symbol has no value
definition and, hence, the term [t] is treated a variable. If the code equals zero
then the root symbol denotes lambda abstraction and is treated accordingly. If
the code equals one then the root symbol denotes the quote construct and is
treated accordingly. Otherwise, the code is a tagged, Curried function to be
applied to the argument list [tt] of the term [t]:

[E3(t, f, s, c)
val→ fc





fs
{

abstract(t1, t2, s, c)
c!s!t1

f

{
c!lookup(t, s, T)
E4(f, tt, s, c)

]

[E4(f, a, s, c)] applies the function [f] to the arguments [a] evaluated for the stack
[s] and the cache [c]:
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[E4(f, a, s, c)
val→ If(a, s!c!f, E4(apply(f, E(ah, s, c)), at, s, c))]

[abstract(v, t, s, c)] abstracts the variable [v] in the term [t] for the stack [s] and
the cache [c]:

[abstract(v, t, s, c) val→ v!t!s!c!Λλx.E(t, (v : : x)M : : s, c)]

4.4.2 A macro expander

Macro definitions are based on definitions of the macro aspect of symbols. Defi-
nitions of macro aspects will be referred to as macro definitions. Other kinds of
definitions treated so far include value, pyk, TEX, and priority definitions. To
make macro definitions we must proclaim [macro] to denote the macro aspect:

[macro ./ “macro”]

The macro expander [M(t, s, c)] macro expands the term [t] for the macro state
[s] and the cache [c] and returns the result as a semitagged map. The untagged
version [U(M(t, s, c))] is the expansion itself.

As we shall see, macros typically use the macro state to define what should
happen after one macro expansion. The initial macro state defined in Section
4.4.3 just specifies that the macro expander should be reinvoked which ensures
that macro expansion proceeds until all macros are expanded. But macros may
decide not to reinvoke the macro expander. Or they may decide to reinvoke
it but with a modified macro state. Or they may decide to invoke an entirely
different macro expander.

If the term to be expanded is a page construct, the macro expander returns
the term unchanged (page constructs should not be macro expanded for reasons
explained later). Otherwise, the macro expander looks up the macro definition
of the root of the term and passes control to an auxiliary function:

[M(t, s, c) val→ s!c!If(tis, t,M2(t,aspect("macro", t, c), s, c))]

[M2(t, d, s, c)] macro expands the term [t] whose root symbol has macro defini-
tion [d] for the macro state [s] and the cache [c]. If the macro definition equals
[T] then the root symbol has no macro definition. In this case, the subterms
of the term are macro expanded. Otherwise, [M2(t, d, s, c)] evaluates the right
hand side [d3] of the definition (for completeness: [d0] is a symbol that denotes
the “definition” concept, [d1] is a term that represents the macro aspect, [d2] is
the left hand side and [d3] is the right hand side of the definition). Finally, the
evaluated right hand side is applied to the term [t], the macro state [s], and the
cache [c] so that the user defined macro [d] gets access to term, state, and cache
(at expansion time, the cache will be the cache of the page on which the term
being macro expanded resides).

[M2(t, d, s, c) val→ d

{
th : : M∗(tt, s, c)
UM(E(d3, T, c) ‘ t ‘ s ‘ c) ]
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The [M∗(a, s, c)] construct macro expands the elements of the list [a].

[M∗(a, s, c) val→ s!c!If(a, T,M(ah, s, c) : : M∗(at, s, c))]

4.4.3 The initial macro state

The initial macro state [s0] is useful for passing as the second parameter to
[M(t, s, c)]. [s0] is a pair whose head is the macro expander itself and whose tail
is left blank. The definition of [s0] reads:

[s0
val→M(λt.λs.λc.M(t, s, c)) : : T]

In the definition of [s0] note that the first M is a unary “map tag” operation
that converts the lambda abstraction into a tagged map whereas the second M
is the ternary macro expansion operation.

Advanced users may write macros that pass down a macro state different
from [s0]. Such users should pass down a macro state of form [m : : p] where [m]
is a ternary macro expander and [p] is a parameter that can contain arbitrary
data. The default macro expander [M(t, s, c)] makes no use of the parameter
and for that reason the parameter is set to [T] in [s0].

4.4.4 Pruning

In connection with macro expansion, Logiweb uses a hardwired retract on Gödel
trees which we shall refer to as pruning.

Given the cache of a page and an arbitrary data structure, the pruning
operation scans the data structure as if it were a Gödel tree. Whenever the
pruning operation encounters a branch that cannot be a Gödel tree, it replaces
the branch by the page construct of the given page.

The pruning operation first applies the retract for tagged trees to the given
data structure. Then, for each branch of the Gödel tree, it checks that the
reference and identifier are cardinals. Then it looks up the arity of the associated
symbol in the proper dictionary inside the cache of the given page. If no arity is
found, the symbol is invalid and the branch is pruned. Otherwise, the pruning
operation checks that the number of subtrees agree with the arity and descend
recursively into the subtrees.

If no arity is found for a given symbol it either means that the symbol does
not exist on Logiweb or that it exists, but not on a page transitively referenced
by the given page.

4.4.5 Potentially inherited page aspects

Macro expansion of a page is governed by the “potentially inherited macro
aspect” of the page. The potentially inherited macro aspect is an example of a
potentially inherited page aspect. Let us take “potentially inherited page aspect”
one word at a time.

Aspects of the page construct of a page are “page aspects” for that page.
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An “inherited page aspect” of a page [p] is a page aspect of the page bed [b] of
page [p]. The bed [b] of a page [p] is the first page referenced in the bibliography
of page [p]. If page [p] is a base page, i.e. if page [p] references no other pages,
then the bed of page [p] is page [p] itself. The bed [b] of a page [p] is the page
on which page [p] rests.

Note for programmers: The first entry of the bibliography of a page is the
one that comes after the zeroth entry. The zeroth entry references the page
itself. A bibliography is a list of references, and the head of the list is the zeroth
entry.

But back to “potentially inherited page aspects”. A potentially inherited
page aspect of a page [p] is taken from the page construct of [p] if that aspect
is available, and is taken from the page construct of the bed of [p] otherwise.
As an example, the potentially inherited macro aspect of page [p] is the macro
aspect of the page construct of page [p] if such an aspect is defined, and else the
macro aspect of the page construct of the bed of [p] if such an aspect is defined.

At the time of writing, Logiweb makes use of two potentially inherited page
aspects: the macro aspect described in the following, and the claim aspect
described in Section 5. At a later stage, Logiweb will also make use of a po-
tentially inherited value aspect which defines things to be computed once and
for all when pages are loaded and an unconditionally inherited unpack aspect
which may decompress and/or decrypt Logiweb vectors when loaded.

4.4.6 Installing the macro expander

We shall refer to the Gödel tree that constitutes the macro expanded version of
a page as the expansion of the page. We define the expander of a page to be
the potentially inherited macro aspect of the page.

Logiweb expands a page by applying the expander to the body and cache of
the page. If no expander is defined then Logiweb does no macro expansion and
uses the body unchanged as expansion.

Now define

[base macro→ λt.λc.M(t, s0, c)]

Because of the definition above, the expansion of the present page is the pruned
version of [M(t, s0, c)] where [t] and [c] are the body and cache, respectively, of
the page.

Another page that uses the present page as bed and defines no expander of
its own also has expansion [M(t, s0, c)] but then [t] and [c] are the body and
cache, respectively, of that other page.

Recall that the macro expander [M(t, s, c)] does not macro expand page
constructs. One reason for that is that the macro aspect of the page construct
defines an expander rather than a macro.
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4.4.7 Iterated macro expansion

The description of macro expansion above is part of the story rather than the
whole story.

As descripted in Section 2.1.1, Logiweb “loads” a page by “resolving” its
reference into a Uniform Resource Locator, then “retrieves” the page as a vector
of bytes, then “unpacks” the vector into bibliography, dictionary, and body, then
“codifies” the page into codex and expansion, and finally “verifies” the page.

Codification comprises macro expansion and “harvesting”. Harvesting is
done by scanning the expansion of a page for revelations, i.e. proclamations,
definitions, and introductions. The process of harvesting converts the expansion,
which is a Gödel tree, into a codex.

Codification proceeds thus: First, with the exception stated in Section 2.1.5,
Logiweb sets the codex of the page to be empty. Then Logiweb macro expands
the body of the page using the empty codex for the page in question plus all
the codicies of referenced pages. Then Logiweb sets the codex of the page to
the result of harvesting the expansion, and then Logiweb macro expands the
body of the page once more. Logiweb proceeds this way until the codex does
not change anymore (if ever). This is what was meant by “reading the page
over and over again” in Section 2.1.1 and 2.1.5.

4.5 Macro definitions

4.5.1 Protection

[(x)p] is a particularly important macro; it protects its argument against macro
expansion. During macro expansion, the protection construct itself disappears.
The definition of protection is not completely trivial:

([(x)p macro→ λt.λs.λc.t1])p

Note that the definition has two occurrences of the protection construct: an
outermost and an innermost.

At first reading of the page, no expander has been defined yet, the definition
construct has not yet been proclaimed, and Logiweb has not yet understood
what the protection construct is supposed to do.

After a couple of readings, Logiweb has still not understood what the protec-
tion construct is supposed to do, but has reached a level where it can understand
that the formula above defines the macro aspect of the protection construct.

At the next reading of the page, the protection construct is operational,
and for that reason, the outermost protection construct protects the innermost
protection construct from macro expansion. Without the outermost protection
construct, the innermost protection construct would disappear so that it was [x]
that was macro defined to denote protection, which leads to disaster.

It should be noted that base pages as large as the present one are not par-
ticularly easy to write. There are many things that can go wrong in intractable
ways. Authors who insist on writing their own base page are encouraged to
build them up in small steps, starting with a base page as simple as possible.
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4.5.2 Self references

We macro define [self] such that each instance of [self] expands to the page
construct of the page on which the instance occurs.

([self macro→ λt.λs.λc.(c[0] : : 0 : : td)I : : T])p

Alternatively, one could define [self] to expand into an invalid tree and let prun-
ing insert a page construct. As an example, one could replace the entire right
hand side above by [T]. But the definition above ensures that resulting page
sysmbol enherits the debugging information present in the [self] construct.

4.5.3 Avoid macro expansion and harvesting of strings

Good Logiweb pages contain loads of text. Actually, the formal mathematics
present on well written Logiweb pages only constitute a minor fraction of the
page. Since macro expansion takes time, we arrange that strings are not macro
expanded.

The pyk compiler puts a unicode start and end of text construct at the root
and leaf of strings, respectively, with the individual characters of the string in
between as a row of perls (or, rather, a column of perls; in the string itself,
the characters are like a row of perls). We can protect strings against macro
expansion by a proper definition of the macro aspect of the unicode start of text
construct:

[“x” macro→ λt.λs.λc.t]

Once Logiweb has expanded the body of a page, it does harvesting of definitions:
it scans the expansion and collects all definitions found. To avoid spending time
on harvesting inside strings, we proclaim the unicode start of text construct to
protect against harvesting:

[“x” ./ “hide”]

4.5.4 Macro definitions

([x =̈ y])p defines [x] as shorthand for [y]. Hence, ([x =̈ y])p makes ordinary
macro definitions. The definition of ([x =̈ y])p is slightly involved since ([x =̈ y])p

is defined such that it macro expands into a general macro definition.

([[x =̈ y] macro→ λt.λs.λc.M̃3(t)])p

[M̃(t, s, c)] macro expands the term [t] using the macro expander embedded in
the macro state [s] using the cache [c].

[M̃(t, s, c) val→ U(sh ‘ t ‘ s ‘ c)]

[M̃1] is a template that defines what ([x =̈ y])p expands into:
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[M̃1
val→ d[x macro→ λt.λs.λc.M̃4(t, s, c, dde)]e]

If [t] is a term of form ([x =̈ y])p then [M̃2(t)] is a stack that maps the variable
[x] to the left hand side of the macro definition and maps the variable [d] to the
entire macro definition.

[M̃2(t)
val→ (dxe : : t1)M : : (dde : : t)M : : T]

[M̃3(t)] translates a term [t] of form ([x =̈ y])p into a general macro definition.
This is done by replacing [x] and [d] in the template [M̃1] by the left hand side
of [t] and all of [t], respectively.

[M̃3(t)
val→ Q̃(t,M̃1,M̃2(t))]

[M̃4(t, s, c, d)] performs the macro expansion defined by ([x =̈ y])p. The function
above macro expands ([x =̈ y])p. The function below expands the macro defined
by ([x =̈ y])p.

[M̃4(t, s, c, d) val→ M̃(Q̃(t, d2, zip(d1t, tt)), s, c)]

[Q̃(r, t, s)] performs the substitutions defined by the stack [s] in the term [t].
Set the debugging information of all nodes taken from [t] to the debugging
information of the root of the term [r].

[Q̃(r, t, s) val→ Q̃2(rd, t, s)]

[Q̃2(r, t, s)] performs the substitutions defined by the stack [s] in the term [t].
Set the debugging information of all nodes taken from [t] to the debugging
information [r].

[Q̃2(r, t, s)
val→ Q̃3(r, t, s, lookup(t, s, T))]

[Q̃3(r, t, s, v)] performs the substitutions defined by the stack [s] in the term
[t]. Set the debugging information of all nodes taken from [t] to the debugging
information [r]. If [v] differs from [T] then [t] is supposed to occur in [s] and
[v] is supposed to be the associated value. Hence, if [v] differs from [T] then [v]
is returned. Otherwise, the root of [t] is merged properly with the debugging
information [r] and substitutions are performed in all subterms of [t].

[Q̃3(r, t, s, v)
val→ v

{
(tr : : ti : : r)M : : Q̃∗(r, tt, s)
r!t!s!v

]

[Q̃∗(r, t, s)] performs the substitutions defined by the stack [s] in the list [t]
of terms. Set the debugging information of all nodes taken from [t] to the
debugging information [r].

[Q̃∗(r, t, s) val→ t

{
r!t!s!T
Q̃2(r, th, s) : : Q̃∗(r, tt, s) ]
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4.5.5 Parentheses

[(x)] is probably the most important among all macros, at least from the point of
view of the working mathematician. Parentheses simply disappear when macro
expanded:

[(x) =̈ x]

The following construct uses \left(...\right) to render parentheses. Beware
that the construct disables line breaking.

[(x) =̈ x]5

4.6 Tagged lambda

The following macro definition allows to state tagged lambdas in a readable
way:

[Λx.y =̈ Λλx.y]6

4.6.1 Local abbreviations

The following construct allows to override macros locally:

([let x =̈ y in z
macro→ λt.λs.λc.

M̃(t3, s, c[t1r : : "codex" : : t1r : : t1i : : 0 : : "macro" : : T⇒M̃3(t)])])p

As a somewhat constructed example of use,

[let (x) =̈ x : : x in (3)]

macro expands to

[3 : : 3]

4.6.2 Other kinds of definitions

The following constructs allow to define particular aspects of a left hand side to
be the given right hand side.

The following construct is useful for value definitions.

[[x =̇ y] =̈ [(x)p val→ y]]

5[(x)
pyk
= “big parenthesis ∗ end parenthesis”]

6[Λx.y
pyk
= “tagged lambda ∗ dot ∗”]
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Use of the construct above for value definitions on which the definition of the
macro expander depends may lead to intractable errors. For that reason, the
present page is organised such that the construct above is only used from Section
5 and on and such that the macro expander only depends on definitions stated
before 5. Logiweb does not care about the order of definitions. The avoidance
of vicious circles by dividing at the start of Section 5 is just for the sake of the
author.

The following construct is suitable for value introductions, i.e. for value
definitions of constructs for which the Logiweb system in use is expected to
contain a hardcoded version. As with the value definition, it is not used before
Section 5.

[[x =́ y] =̈ [(x)p val⇒ y]]

The following constructs are convenient for defining [pyk], [tex], and [name]
definitions. The constructs protect the left hand side against macro expansion
and ensures that the right hand side is typeset as a string. The three constructs
below are used uncritically on the present page since rendering is done after
codification and, hence, cannot interfere with codification.

[[x
pyk
= y] =̈ [(x)p

pyk→ y]]

[[x tex= y] =̈ [(x)p tex→ y]]

[[x name= y] =̈ [(x)p name→ y]]

Finally, the following construct is convenient for defining priority tables.

[Priority table[x] =̈ [self
prio→ (x)p]]

4.6.3 Tuples

We shall use [〈x〉] and [x, y] to express tuples. [〈x〉] will be macro defined such
that e.g. [〈x, y, z〉] macro expands into [x : : y : : z : : T].

([〈x〉 macro→ λt.λs.λc.M̃(tuple1(t), s, c)])p

[tuple1(t)] expands the root of [〈x〉]:

[tuple1(t)
val→ t1

r= dx, ye
{ Q̃(t, dx : : (〈y〉)pe, tuple2(t1))
Q̃(t, dx : : Te, (dxe : : t1) : : T)

]

[tuple2(t)] forms the stack used when expanding [〈x, y〉]:

[tuple2(t)
val→ (dxe : : t1) : : (dye : : t2) : : T]
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4.6.4 Typography of the expansion

The author of a Logiweb page should ensure that the tex aspect of the body
looks good when typeset by TEX. Among other, the author should avoid overfull
and underfull TEX boxes in the body.

When it comes to the expansion of the page, matters are a bit different.
Firstly, the aesthetics of the expansion is less important since the expansion
does not address the audience to the same degree as the body does. Secondly,
precise control of the typography of the expansion is more intricate.

For these reasons it is convenient to typeset the expansion in a ragged right
style. To do so we first introduce a contruct [ragged right]which produces a
\raggedright command when typeset using its tex aspect.

Second, we introduce a construct which is invisible when typeset using its
tex aspect but which macro expands into the construct above:

[ragged right expansion =̈ ragged right]

Including the latter construct above near the start of a Logiweb page, the ex-
pansion of the page will be typeset ragged right without affecting the supposedly
splendid typography the body.

4.7 Programming aids

4.7.1 Newlines in definitions

Traditional mathematical formulas typically fit on a single line. Formally, a
computer program is nothing but a mathematical formula, but computer pro-
grams have a tendency to span more than one line. This is so even if one breaks
up a computer program in individual definitions of computable functions and
consider each definition at a time.

For the sake of readablity, it is often convenient to control where line breaks
occur in definitions of computable functions. To allow such control we introduce
a newline construct whose tex name aspect is “newline” but whose tex aspect
simply forces the formula following it to begin on a new line.

The newline construct is prefix and should be put in front of the formula to
begin a new line.

[newline x =̇ xM]

The newline construct is value defined such that it retracts which allows it to
occur in functions that are fit for optimization.

The newline construct can be value or macro defined. Above, it has been
value defined so that it also affects the typography of the expansion of the page.
That is convenient for debugging. In formal reasoning about a computable
function it is more convenient to have a newline construct that macro expands
to nothingness:

[macro newline x =̈ x]

67



4.7.2 The visibility operator

We now introduce a visibility operator [(x)v =̈ x]which forces its argument to be
typeset using the tex name aspect and which macro expands to nothingness like
parentheses do. The construct is useful in situations where e.g. the right hand
side of a definition contains operators whose tex aspect make them invisible.

When typeset in the tex aspect, the visibility operator does not exhibit itself,
it just affects how its argument is typeset. When typeset in the tex name aspect,
the visibility operator reads [(x)v].

The bracket [(x)v] contains two visibility operators. The outermost operator
makes the innermost visible.

The visibility operator [(x)v] is almost identical to the text operator [(x)t].
The difference is that the visibility operator macro expands into nothingness
whereas the text operator is value defined such that it is self-evaluating.

The bracket [(x)t] contains a visibility and a text operator. The visibility
operator makes the text operator visible.

4.7.3 Self-evaluation

The juxtaposition operator [x , y] has a tex name aspect that reads [x , y] and a
tex aspect that reads [xy]. The tex aspect of the juxtaposition operator allows
to put two typographic entities back-to-back. In the following we silently use
the [(x)v] operator to make juxtaposition visible.

We make juxtaposition self-evaluating :

[x , y =̇ 〈d∗ , ∗eR, x, y〉]

The definition above has the effect that e.g. [dx , ye] denotes the same term as
[dxe , dye] except for debugging information present in the terms. The root of
the latter is “clean” in the sense that its debugging information equals [T].

We also make the “text” construct self-evaluating:

[(x)t =̇ 〈d(∗)teR, x〉]

4.7.4 Open if

The open if construct is defined thus:

[if x then y else z =̈ If(x, y, z)]

The open if construct is useful when writing programs with long chains of if-
constructs.

4.7.5 The “let” construct

We define eager, retracting functional application [let1(f, y)] and the let con-
struct [let x = y in z] as follows:

[let x = y in z =̈ let1(λx.z, y)]
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[let1(f, y) =́ let2(f, yM)M]

[let2(f, y) =̇ (y!f ’ y)I]

The initial Logiweb engine translates all terms of form [let1(λx.z, y)] to an effi-
cient let-construct internally.

4.7.6 Macro defined connectives

The connectives [x ∧̈ y], [x ∨̈ y], and [x ⇒̈ y] macro expand into constructs that
only compute [y] when needed. Furthermore, the constructs return the value of
[y] whenever [y] is computed.

Such a left-to-right computing behaviour can also be achieved using lazy
constructs, but the macro defined connectives above have the benefit that, when
used with caution, they can occur in definitions that are fit for optimization.

[x ∧̈ y =̈ If(x, y, F)]

[x ∨̈ y =̈ If(x, T, y)]

[x ⇒̈ y =̈ If(x, y, T)]

4.7.7 Display construct

[display(x)]7 typesets its argument as a paragraph whose left margin equals
the indentation of a displayed equation. Space is added before and after the
paragraph and the first paragraph after a display is unindented.

[statement(x)]8 does the same except that the left margin flushes the left
margin of the document.

4.7.8 Introduction of new constructs

The following constructs allow to introduce a new construct (“introduce” in
the normal sense of the word, not in the sense of a Logiweb revelation). The
constructs allow to define the pyk aspect [p] and tex aspect [t] of a new construct
[x] and also makes two entries in the index. The first of the constructs below
adds the text [i] in front of one of the index entries.

[intro(x, i, p, t) =̈ $[x tex= t]$ ]

[intro(x, p, t) =̈ $[x tex= t]$ ]

4.7.9 Further intro constructs

The following four constructs all help introducing new constructs. Each of them
expand into pyk and tex and, optionally, tex name definitions. But they also

7[display(x)
pyk
= “display ∗ end display”]

8[statement(x)
pyk
= “statement ∗ end statement”]
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render the pyk definition as a footnote, defer the tex and tex name definitions
to an appendix, and make two entries in the index. One of the entries has
form “pyk: (pyk name) (tex rendering)”. The other entry has form “(index):
(tex rendering) (pyk name)”. If no index is given, then the latter entry has
form “(tex rendering) (pyk name)” and is placed in front of other entries in the
index. The four constructs are defined thus:

[x/intro(y, p, t) =̈ x $[y tex= t]$ ]9

[x/indexintro(y, i, p, t) =̈ x $[y tex= t]$ ]10

[x/nameintro(y, p, t, n) =̈ x $[y tex= t]$ $[y name= n]$ ]11

[x/bothintro(y, i, p, t, n) =̈ x $[y tex= t]$ $[y name= n]$ ]12

5 Claims

5.1 The claim aspect

We define the claim of a page to be the potentially inherited claim aspect of the
page (c.f. 4.4.5). Logiweb checks the correctness of a Logiweb page by applying
the claim of the page to the expansion and cache of the page. If the result is
[T] then the page is considered correct.

If the page has no potentially inherited claim aspect then the page is said
to make no claim and is considered trivially correct.

We shall refer to the result of applying the claim of a page to the expansion
and cache of the page as the correctness of the page. The correctness equals [T]
for pages that are correct, including pages that are trivially correct.

Pages are in error if their correctness differs from [T]. In that case Logiweb
prunes the correctness (c.f. Section 4.4.4) and hangs the result on the diagnose
hook (c.f. Section 4.3.6) of the page.

The proclaimation of the “claim” aspect reads:

[claim ./ “claim”]

For convenience, we define a construct for making claim definitions:

[[x claim= y] =̈ [x claim→ y]]

9[x/intro(y, p, t)
pyk
= “∗ intro ∗ pyk ∗ tex ∗ end intro”]

10[x/indexintro(y, i, p, t)
pyk
= “∗ intro ∗ index ∗ pyk ∗ tex ∗ end intro”]

11[x/nameintro(y, p, t, n)
pyk
= “∗ intro ∗ pyk ∗ tex ∗ name ∗ end intro”]

12[x/bothintro(y, i, p, t, n)
pyk
= “∗ intro ∗ index ∗ pyk ∗ tex ∗ name ∗ end intro”]
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5.2 Conjunction of claims

Logiweb merely allows a page to make one claim. But that claim can be arbi-
trarily complex. As we shall see, the claim of the present page is the conjuctions
of a “checker” and a “verifier”.

The “checker” scans the expansion of the page for tests like [F +2∗ 3 ≈ 7]·

and checks the correctness of them all. In contrast, the “verifier” scans the
codex for proofs and verifies all proofs found.

Claims may be combined into a conjunction using [x ∧c y]:

[x ∧̃ y =̇ if(x, y, x)]

[x ∧c y =̇ λt.λc.x ’ t ’ c ∧̃ y ’ t ’ c]

5.3 The checker

The checker checks the correctness of all test statements on a page:

[checker =̇ λt.λc.check(t, c)]

The construct [check(t, c)] allows to check that all claims in the term [t] evaluate
to [T].

If some claim is false then [check(t, c)] returns the value of the first false
claim found. Such a non-nil value is a Logiweb diagnose. To be useful, a
diagnose should be a Gödel tree that can be typeset and which gives a clue
what went wrong.

[check(t, c)] skips all page constructs when checking [t].

[check(t, c) =̇ If(tis, c!T, check2(t, c,aspect("claim", t, c)))]

The construct [check2(t, c, d)] allows to check that all claims in [t] evaluate to
[T] where [d] is the definition of the claim aspect of the root of [t].

[check2(t, c, d) =̇ d

{
check3(t, c,aspect("definition", t, c))
UM(E(d3,T, c) ‘ t ‘ c) ]

The construct [check3(t, c, d)] allows to check that all claims in [t] evaluate to
[T]. [check3(t, c, d)] does not descend into trees whose root has a definition
aspect [d]. For that reason, checking does not occur inside definitions, introduc-
tions, proclamations, and trees with a “hide” construct in its root. In particular,
no checking is done inside strings since strings have a “hide” construct in their
root. This saves a lot of cpu-time. Furthermore, no checking is done inside
definitions. This is convenient since otherwise one could not pyk, TEX, macro,
and priority define test constructs (c.f. Section 5.5 ff) without getting spurious
errors from the occurrences of the test constructs inside the definitions of the
test constructs themselves.

[check3(t, c, d) =̇ If(d, check∗(tt, c), t!c!T)]
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The construct [check∗(t, c)] allows to check that all claims in the list [t] of terms
evaluate to [T].

[check∗(t, c) =̇ If(t, c!T, check∗2(tt, c, check(th, c)))]

The construct [check∗2(t, c, v)] also allows to check that all claims in the list [t]
of terms evaluate to [T] except that it returns [v] if [v] is false.

[check∗2(t, c, v) =̇ If(¬v, t!c!v, check∗(t, c))]

5.4 Installing the checker

We now define

[self claim= checker ∧c verifier]

Because of the definition above, the present page claims that [check(t, c)] is
true where [t] and [c] are the expansion and cache, respectively, of the present
page (the claim above also invokes [verifier] which is defined later).

Another page that uses the present page as bed and makes no claim of its
own also claims that [check(t, c)] is true but then [t] and [c] are the expansion
and cache, respectively, of that other page.

5.5 Test for truth

The construct [t]· allows to claim that a term [t] evaluates to [T].

[[t]· claim= λt.λc.if(U(E(t1, T, c)), T, t)]

As an example, one may claim that [F +2∗ 3] equals seven:

[F +2∗ 3 ≈ 7]·

[A]· returns the Gödel tree of [A]· as the diagnose if the claim fails. The overall
claim defined in Section 5.4 returns the value of the first failing claim (if any).
Hence, if [F +2∗ 3 ≈ 7]· failed and was the first failing claim found, then the
value of the claim of the page would be the Gödel tree of [F +2∗ 3 ≈ 7]·.
Reasonable Logiweb compilers typeset the diagnose so that the failing claim is
easy to identify.

Note that macro expansion occurs before checking, so the Gödel tree of a
failing claim is the macro expanded version of the claim. The macro expansion
facility defined on the present page, however, carefully carries debugging infor-
mation around when macro expanding, so the debugging information in the root
of the expanded Gödel tree indicates the exact location of the failing claim in
the unexpanded page.

Note that [t]· does not fail; all unbound variables evaluate to [T].
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5.6 Test for falsehood

The construct

[[x]− claim= λt.λc.if(U(E(t1, T, c)), t,T)]

tests that its argument is false. As an example of use, one may claim that [2 ≈ 3]
is false:

[2 ≈ 3]−

5.7 Raw test

Like [t]·, the construct [t]◦ allows to claim that a term [t] evaluates to [T].
Contrary to [x]·, [x]◦ just returns the value of [x]. This is useful for constructs
that generate their own error messages.

[[t]◦ claim= λt.λc.U(E(t1, T, c))]

5.8 Spy construct

[x spy y
val⇒ x!y]13 evaluates [x], discards the value, evaluates [y], and returns the

value of [y]. However, behind the scene, [x spy y] also stores the value of [x] in
the Lisp variable *spy*.

[[x]· =̈ [dxe spy x]·]14 is exactly like an ordinary test except that it calls the
spy function (the spying nature is emphasized by the fact that spying and non-
spying tests are rendered identically:-). [[x]− =̈ [dxe spy x]−]15 is a spying test
for falsehood.

Spying tests are good for debugging when some test loops indefinitely. If a
test case loops indefinitely, then *spy* will typically contain the last spying test
that was executed before the infinite loop.

6 Logiweb sequent calculus

The Logiweb sequent calculus is the low level theory (or “metatheory”) that
comes with Logiweb. Users may use Logiweb sequent calculus and its associated
proof checker as they are or use them as a model for constructing their own proof
checkers.

The Logiweb sequent calculus corresponds to the assembly language of com-
puting machines. It is possible in principle to use it as it is, but it is much more
efficient to use higher level theories built on top of the calculus. When build-
ing theories on top of the calculus, the calculus ensures correctness whereas the
high level theories provide user friendliness. Programming bugs in the high level

13[x spy y
pyk
= “∗ spy ∗”]

14[[x]·
pyk
= “spying test ∗ end test”]

15[[x]−
pyk
= “false spying test ∗ end test”]
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theories cannot compromise correctness since correctness is ensured by the low
level sequent calculus. Only bugs in the implementation of the sequent calculus
and in the levels below can compromise correctness.

In contrast, Map Theory described later is the high level theory that comes
with Logiweb. Again, users may use Map Theory as it is or use it as a model for
constructing their own theories. Map Theory is a high level theory implemented
on top of the Logiweb sequent calculus.

Map Theory is a classical theory with power as classical ZFC set theory.
Contrary to Set Theory, Map Theory builds on lambda calculus. More specifi-
cially, Map Theory is the result of adding quantifiers to the Logiweb computing
engine. For that reason, Map Theory is suited both for classical mathemat-
ics and for reasoning about programs in general and programs for the Logiweb
engine in particular.

Logiweb sequent calculus is intuitionistic and has much less power than Map
Theory.

Now let [M] be the intuitionistic conjunction of all axioms, axioms schemes,
and inference rules of Map Theory and let [L] be a lemma of Map Theory.
In general, [L] will not be intuitionistically valid and, hence, [L] will not be
a lemma of Logiweb sequent calculus. But the statement that [M] infers [L],
written [M ` L], will be intuitionistically valid, and that is the lemma to be
proved from the point of view of the sequent calculus.

Hence, if the user proves a lemma [L] in Map Theory, then the lemma will
be translated into [M ` L] and the proof will be translated into a proof of that
statement in the sequent calculus.

Now let [Z] be the intuitionistic conjunction of all axioms, axiom schemes,
and inference rules of classical ZFC set theory. At the time of writing, a rather
large, formal proof of [M ` Z] exists, and that particular proof is going to be
the main test case for checkout of the Logiweb system. The lemma [M ` Z]
says that Map Theory can “simulate” ZFC set theory and that all developments
possible in ZFC set theory are also possible in Map Theory.

6.1 Statements

6.1.1 Messages

Logiweb comes with a number of predefined aspects like [pyk], [tex], [val], and
[macro]. Logiweb also has a facility for defining new aspects. New aspects are
introduced using the message aspect. The message aspect is a predefined one
and, hence, has to be proclaimed:

[msg ./ “message”]

For convenience, we define a construct for making message definitions:

[[x
msg
= y] =̈ [(x)p

msg→ y]]

Just like a construct may have e.g. a value aspect, a construct may have a
message aspect. If a construct [A] has a message aspect [B], then [A] denotes
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the aspect [B]. Hence, [B] becomes an aspect by occurring in the right hand
side of a message definition.

If two constructs [A1] and [A2] both have message aspect [B] then [A1] and
[A2] denote the same aspect. The ability to have several constructs that denote
the same aspect allows different users to use different notation for the same
aspect. This is important because of the notational freedom of mathematics.

If a construct [A] has a message aspect [B] then both [A] and [B] may have
parameters. Parameters of [A] allow to define parameterised aspects. Param-
eters of [B] have no effect since an aspect is identified by the reference and
identifier of the root of [B].

Aspects of Logiweb have a slight resemblance with messages in object-
oriented programming, and for that reason, we use “aspect” and “message”
as synonyms here. But why use “message” when “message” is just used as a
synonym for “aspect”? The answer is that “message aspect” sounds better than
“aspect aspect”.

6.1.2 The statement aspect

We shall refer to entities like axioms and inference rules as statements. To
define such entities it is convenient to have a statement aspect. To introduce a
statement aspect, we first introduce [<stmt>]to represent it.

[<stmt>] has a [pyk] definition so that it can be referred to in pyk source files
and a [tex] definition so that it can be rendered in TEX output from Logiweb,
and it evaluates to itself:

[<stmt> =̇ d<stmt>e]

Apart from that [<stmt>] is inert. Its purpose is to occur in the right hand
side of a message definition where it identifies the statement aspect.

We shall use [stmt] to denote the statement aspect:

[stmt
msg
= <stmt>]

For convenience, we define a construct for making statement definitions:

[[x stmt= y] =̈ [(x)p stmt→ y]]

6.1.3 Axioms

An axiom is a statement that somebody accepts as true without proof. As an
example, one could declare [Th = T] as an axiom. The definition [HeadNil′ =̈
Th = T]allows to use [HeadNil′] as shorthand for the given axiom.

6.1.4 Axiom schemes

An axiom scheme is a systematic collection of axioms. As an example, one
could declare [∀A: ∀B: (A : : B)h = A] as an axiom scheme. The axiom scheme
says that [(A : : B)h = A] for all terms [A] and [B]. The definition [HeadPair′ =̈
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∀A:∀B: (A : : B)h = A]allows to use [HeadPair′] as shorthand for the given
axiom scheme.

The variables [A] and [B] are metavariables. Metavariables range over terms
as opposed to ordinary variables which range over values. For more on metavari-
ables see Section 6.2.

6.1.5 Inference rules

An inference rule is a rule which states that a certain conclusion follows from
one or more premisses. An inference rule states that the conclusion is provable
if all the premisses are provable.

As an example, one could declare [∀A: ∀B:∀C:A = B ` A = C ` B = C] as
an inference rule. The inference rule says that if [A], [B], and [C] are arbitrary
terms, and if [A = B] and [A = C] are provable, then [B = C] is provable.

The definition [Transitivity′ =̈ ∀A:∀B: ∀C:A = B ` A = C ` B = C]allows
to use [Transitivity′] as shorthand for the given inference rule.

6.1.6 Contradictions

We make the convention that [⊥⊥] represents absurdity.
A Logiweb contradiction is a statement that somebody accepts as false with-

out proof. As an example, one could declare [T : : T = T] as a contradiction. The
contradiction [T : : T = T] may be expressed as the statement [T : : T = T ` ⊥⊥].

Contradictions were called “Logiweb contradictions” first time they were
mentioned above. That was done to emphasize that the word “contradiction”
is used here in a way that is not necessarily in line with the litterature.

As we shall see, contradictions have two uses. Firstly, they may be used
to refute a conjecture by proving that the conjecture implies a contradiction.
Secondly, they may be used to refute a theory as inconsistent by proving that
a contradiction is provable within the theory.

The definition [Contra′ =̈ T : : T = T ` ⊥⊥]allows to use [Contra′] as short-
hand for the given contradiction.

6.1.7 Theories

We shall refer to axioms, axiom schemes, and inference rules as rules.
A Logiweb theory is a structure that encodes a finite set of rules and con-

tradictions. As an example, one could declare the rules [HeadNil′], [HeadPair′],
and [Transitivity′] and the contradiction [Contra′] to form a theory.

The definition

[T′E
stmt= HeadNil′ ⊕ HeadPair′ ⊕ Transitivity′ ⊕ Contra′]

allows to refer to the example theory as [T′E] (“T” for “Theory”, “E” for “Ex-
ample”, [T′E] for “example theory”).

The notion of a “Logiweb theory” is close to the notion of an “axiotic theory”
in the litterature. Some branches of the litterature use the word “theory” in a
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quite different sense, namely to denote the set of all statements provable from
an axiomatic theory.

The notion of a “Logiweb theory” differs from the notion of an “axiomatic
theory” in three ways:

Firstly, the notion of a “Logiweb theory” has a precise, technical meaning
inside the Logiweb framework. The notion of an “axiomatic theory” is indepen-
dent of any framework but is more vague.

Secondly, a Logiweb theory may include Logiweb contradictions. Axiomatic
theories merely contain rules.

Finally, a Logiweb theory contains finitely many rules whereas an axiomatic
theory may contain infinitely many. This is because Logiweb theories and ax-
iomatic theories count rules differently.

Axiomatic theories count rules in a very peculiar way: (1) inference rules do
not count. (2) axioms that are axioms of first order predicate calculus do not
count. (3) axiom schemes count as infinitely many rules. A theory like ZFC set
theory [10] has the property that it is “not finitely axiomatizable”. That result
depends on the counting used in axiomatic theories. Using Logiweb counting,
ZFC has finitely many rules. All axiomatic theories can be expressed as Logiweb
theories using finitely many rules.

6.1.8 Conjectures, lemmas, and antilemmas

A Logiweb conjecture is a statement of form [T ` C] where [T ] is a theory and
[C] is a statement that is expected to follow from the theory. As an example,
one could declare [T′E ` ∀A: ∀B:A = B ` B = A] as a conjecture.

The definition [L1
stmt= T′E ` ∀A: ∀B:A = B ` B = A] allows to refer to the

given conjecture as [L1].
Later, we introduce the “Logiweb proof checker” and the notion of a “Logi-

web proof”. Once a proof of a conjecture is written, accepted by the proof
checker, and published on Logiweb, one may refer to the conjecture as a Logi-
web lemma.

Furthermore, if [T ` C ` ⊥⊥], i.e. [T ` (C ` ⊥⊥)] is a Logiweb lemma then
one may refer to the conjecture [T ` C] as a Logiweb antilemma.

6.1.9 Statement constructors

We shall refer to a term as a statement if we care about its mathematical truth.
Hence, rules, contradictions, theories, conjectures, lemmas, and antilemmas are
statements.

The constructors [x ` y], [x `̀ y], [∀x: y], [⊥⊥], and [x ⊕ y]allow to form
statements from arbitrary terms and statements:

• [A ` B] reads [A] infers [B] and states that if [A] is provable then [B] is
provable.

• [A `̀ B] reads [A] endorses [B] and states that if [A] evaluates to [T] then
[B] is provable.
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• [∀A:B] reads all [A] indeed [B] and states that [B] is provable for all terms
[A].

• [⊥⊥] reads absurdity. One may claim that a term [A] is disprovable by the
statement [A ` ⊥⊥].

• [A ⊕ B] reads [A] rule plus [B] and states that [A] and [B] are provable.

All the constructors above except endorsement have been used in examples.
According to the Unicode standard, [`̀ ] reads “forses”, but we use [A `̀ B] for
endorsement rather than enforcement.

[A `̀ B] states that the side condition [A] endorses the conclusion [B]. The
construct can be used for statements like “[B] is free for [X ] in [A] endorses
[(λX .A) ’ B = 〈A |X :=B〉].

To give a meaningful example of the use of endorsement, however, one has
to program some side condition like “is free for” first. Examples of use of
endorsement will be given later.

6.1.10 Self-evaluation

We define the statement constructors such that they are “self-evaluating”. As
an example, the definition of x ` y is such that e.g. [dAe ` dBe] and [dA ` Be] are
equal terms (equal except for debugging information present in the terms which
indicates exactly where the terms occur on the Logiweb page). The following
definitions make the constructors self-evaluating:

[x ` y =̇ 〈dx ` yeR, x, y〉]
[x `̀ y =̇ 〈dx `̀ yeR, x, y〉]
[∀x: y =̇ 〈d∀x: yeR, x, y〉]
[⊥⊥ =̇ 〈d⊥⊥eR〉]
[x ⊕ y =̇ 〈dx ⊕ yeR, x, y〉]
[xI =̇ 〈dxIeR, x〉]
[x¤ =̇ 〈dx¤eR, x〉]
[xV =̇ 〈dxVeR, x〉]
[x+ =̇ 〈dx+eR, x〉]
[x− =̇ 〈dx−eR, x〉]
[x∗ =̇ 〈dx∗eR, x〉]
[x@ y =̇ 〈dx@ yeR, x, y〉]
[x i.e. y =̇ 〈dx i.e. yeR, x, y〉]
[x; y =̇ 〈dx; yeR, x, y〉]

6.2 Metavariables

6.2.1 Definition of metavariables

As mentioned in Section 6.1.4, metavariables range over terms as opposed to
ordinary variables which range over values. In the sequent calculus presented
in Section 6.3 we need to distinguish metavariables from other variables.

78



To do so, we simply introduce the unary operator [x]and make the convention
that a term is a metavariable iff it has the [∗] construct in its root.

Having this convention in place, we introduce the metavariables [A =̈ a],
[B =̈ b], [C =̈ c], [D =̈ d], [E =̈ e], [F =̈ f], [G =̈ g], [H =̈ h], [I =̈ i], [J =̈ j],
[K =̈ k], [L =̈ l], [M =̈ m], [N =̈ n], [O =̈ o], [P =̈ p], [Q =̈ q], [R =̈ r], [S =̈ s],
[T =̈ t], [U =̈ u], [V =̈ v], [W =̈ w], [X =̈ x], [Y =̈ y], and [Z =̈ z].

6.2.2 Recognition of metavariables

[tV ]is true if [t] is a metavariable:

[tV =̇ t
r= dAe]

6.2.3 Closedness

[tC ]is true if the term [t] contains no metavariables and [tC
∗
]is true if the list [t]

of terms contains no metavariables:

[tC =̇ If(tV , F, ttC
∗
)]

[tC
∗

=̇ If(t, T, If(thC , ttC
∗
, F))]

6.2.4 The “free in” predicate

[v free in t]is true if the metavariable [v] is occurs free in the term [t]. Further-
more, [v free in∗ t]is true if the metavariable [v] is occurs free in the list [t] of
terms.

[v free in t =̇
if v

t= t then T else
if ¬t

r= d∀∗: ∗e then v free in∗ tt else
if v

t= t1 then F else v free in t2]

[v free in∗ t =̇ If(t, v!F, If(v free in th, T, v free in∗ tt))]

6.2.5 The “free for” predicate

[a free for x in b]is true if the term [a] is free for the metavariable [x] in the
term [b]. Furthermore, [a free for∗ ∗ in b]is true if the term [a] is free for the
metavariable [x] in the list [b] of terms.

[a free for x in b =̇ a!x!
if bV then T else
if ¬b

r= d∀∗: ∗e then a free for∗ x in bt else
if x

t= b1 then T else
if ¬x free in b2 then T else
if b1 free in a then F else
a free for x in b2]
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[a free for∗ x in b =̇
if b then a!x!T else
if a free for x in bh then a free for∗ x in bt else F]

6.2.6 Metavariable substitution

[〈a |x:= b〉]replaces all free occurrences of the metavariable [x] by the term [b] in
the term [a]. The operation does no renaming of bound variables, so variable
clashes will occur if [b] is not free for [x] in [a]. Furthermore, [〈∗a |x:= b〉]replaces
all free occurrences of the metavariable [x] by the term [b] in the list [a] of terms.

[〈a |x:= b〉 =̇ x!b!
if aV then If(a t= x, b, a) else
if ¬a

r= d∀∗: ∗e then ah : : 〈∗at |x:= b〉 else
if a1 t= x then a else
〈a0, a1, 〈a2 |x:= b〉〉]

[〈∗a |x:= b〉 =̇ x!b!If(a, T, 〈ah |x:= b〉 : : 〈∗at |x:= b〉)]

6.3 Sequent calculus

6.3.1 Term sets

We shall represent sets of terms as lists without repetitions. We require the lists
to be without repetitions in the sense that a term [x] is not allowed to occur
more than once and, furthermore, if two distinct terms [x] and [y] satisfy [x t= y]
then the lists are not allowed to contain them both.

The membership operation [x ∈t y]is defined thus:

[x ∈t y =̇ If(ya, x!F, If(x t= yh, T, x ∈t yt))]

The subset operation [x ⊆T y]is defined thus:

[x ⊆T y =̇ If(xa, y!T, If(xh ∈t y, xt ⊆T y,F))]

The set equality operation [x T= y]is defined thus:

[x T= y =̇ If(x ⊆T y, y ⊆T x, F)]

The empty set [∅]is defined thus:

[∅ =̇ T]

The operation [x ∪ {y}]adds the term [y] to the term set [x]:

[x ∪ {y} =̇ If(y ∈t x, x, y : : x)]

The operation [x\{y}]removes the term [y] from the term set [x]:
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[x\{y} =̇ If(xa, y!∅, If(y t= xh, xt, xh : : xt\{y}))]

The operation [x ∪ y]computes the union of the term sets [x] and [y]:

[x ∪ y =̇ If(xa, y, xt ∪ y ∪ {xh})]

6.3.2 Sequents

A Logiweb sequent is a triple [〈p, s, c〉] where [p] and [s] are term sets and [c] is
a term. In a sequent [〈p, s, c〉] we shall refer to [p], [c], and [c] as premise, side
condition, and conclusion, respectively, of the sequent.

A sequent [〈p, s, c〉] represents the statement that if all members of [p] are
provable and if all members of [s] evaluate to [T] then [c] is provable.

Sequents allow to express the same thing in many ways. As an example, the
following five sequents all state that if [A] and [B] are provable then [A ⊕ B] is
provable:

〈∅, ∅,A ` B ` A ⊕ B〉
〈∅, ∅,B ` A ` A ⊕ B〉
〈∅ ∪ {A}, ∅,B ` A ⊕ B〉
〈∅ ∪ {B}, ∅,A ` A ⊕ B〉
〈∅ ∪ {A} ∪ {B}, ∅,A ⊕ B〉

The sequent [〈∅ ∪ {B} ∪ {A}, ∅,A ⊕ B〉] is considered equal to the last of the
sequents above since the order of elements in term sets is considered unimpor-
tant.

From an operational point of view one may think of a sequent [〈p, s, c〉] as a
tool makers workshop where [c] is the anvil where lemmas are forged. [p] may be
seen as a storage room for premises, in which case part of the tool makers work is
to bring premises back and forth between anvil and storage room. Alternatively,
[p] may be seen as a backlog of proof obligations. [s] is like [p] except that it
stores side conditions.

As we shall see, the storage room [p] will be used for several different things.
As an example, when proving [A = B ` B = A] in [T′E], [p] will be used to
contain the axiomatic theory [T′E] itself, it will be used to contain the premise
[A = B], and it will be used to contain conclusions of individual lines of the
proof.

6.3.3 Sequent equality

The sequent equality operation [x s= y]is defined thus:

[x s= y =̇ If(¬x2 t= y2,F, If(x0 T= y0, x1 T= y1,F))]

6.3.4 Sequent operations

Logiweb sequent calculus comprises twelve sequent operations. We shall refer
to a term that is built up from these twelve operations as a sequent proof. We
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shall say that a term [c] is a sequent lemma if there exists a sequent proof
which evaluates to [〈∅, ∅, c〉]. In the tool makers analogy, the sequent [〈∅, ∅, c〉]
represents the situation where [c] has been forged and the backlogs of remaining
work are empty.

We shall refer to a sequent operation as sequent-nulary, sequent-unary, or
sequent-binary if it depends on zero, one, or two sequents, respectively. As an
example, a binary operation that depends on one sequent and one non-sequent
is sequent-unary. Logiweb sequent calculus comprises one sequent-nulary, ten
sequent-unary, and one sequent-binary operation. The sole sequent-binary op-
eration of Logiweb sequent calculus is the “cut” operation.

In the tool makers analogy, each sequent-unary operation corresponds to
a work process such as moving a premise from anvil to storage room. The
sequent-nulary operation is the starting point of any work process, and the
sequent-binary operation allows to use the outcome of one work process as a
tool in another process.

6.3.5 Proof initiation

The sequent-nulary operation [xI]performs the following operation:

[aI] evaluates to [〈∅, ∅, a ` a〉]

In section 6.5 we introduce a “proof evaluator” which, given a sequent proof,
computes the value of the proof. It is the proof evaluator that is going to
evaluate [aI] as shown above.

As an example of use, [(A ⊕ B) ` (A ⊕ B)] is a sequent lemma because
[(A ⊕ B)I] evaluates to [〈∅, ∅, (A ⊕ B) ` (A ⊕ B)〉]. In other words, [(A ⊕
B)I proves (A ⊕ B) ` (A ⊕ B)]◦, where the “proves” predicate will be defined
in Section 6.5.5.

The statement that

[(A ⊕ B)I] proves [(A ⊕ B) ` (A ⊕ B)]

is just an informal statement that the given sequent proof proves the given term.
In contrast, the statement that

[(A ⊕ B)I proves (A ⊕ B) ` (A ⊕ B)]◦

is a formal one that uses the formally defined [x proves y] relation defined in
Section 6.5.5. The latter statement makes Logiweb verify the claim formally.

The statement that

[(A ⊕ B)I proves (A ⊕ B) ` (A ⊕ B)]·

also forces Logiweb to verify the claim formally, but if the claim turned out to
fail, the user would merely get the information that that particular claim failed.
If [x] does not prove [y] then [x proves y] returns a term which, when typeset,
explains why not. For that reason,
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[(A ⊕ B)I proves (A ⊕ B) ` (A ⊕ B)]◦

has the benefit that if the claim fails then the generated error message will be
more precise.

6.3.6 Inference introduction

We overload [x ` y] to denote both an operation on statements and a sequent
operation. Ambiguity cannot occur since the proof evaluator will decide what
[x ` y] means on a case by case basis.

[a ` q] is sequent-unary; it takes a premise [a] and a sequent [q] and moves
the premise from storage room to anvil:

[a ` 〈p, s, c〉] evaluates to [〈p\{a}, s, a ` c〉]
Note that a premise can be moved from storage room to anvil even if there the
premise was not present in the storage room to begin with. A premise may
be seen as work to be done, and moving a premise that did not exist before
corresponds to creation of work to be done from nothing.

As an example of use, [A ` BI proves A ` B ` B]◦.

6.3.7 Endorsement and quantifier introduction

We also overload [x `̀ y] and [∀x: y]:
[a `̀ 〈p, s, c〉] evaluates to [〈p, s\{a}, a `̀ c〉]
[∀x: 〈p, s, c〉] evaluates to [〈p, s,∀x: c〉] if [x] is a metavariable and is not free
in [p] and [s]

As an example of use, [∀A: ∀B:A ` BI proves ∀A:∀B:A ` B ` B]◦.

6.3.8 Inference and endorsement elimination

The operation [x¤]eliminates an inference or endorsement:

[〈p, s, a ` c〉¤] evaluates to [〈p ∪ {a}, s, c〉]
[〈p, s, a `̀ c〉¤] evaluates to [〈p, s ∪ {a}, c〉]

As an example of use, [A ` B ` AI¤ proves A ` B ` A]◦.
We shall refer to [x¤] as the modus operation. As we shall see, the inference

rule of modus ponens will be implemented by the modus operation together with
the cut operation described later: the modus operation is used for preparation
whereas a cut is used for the actual execution.

Inferences can be eliminated by modus ponens whereas endorsements can
be eliminated by either modus probans or verification. Modus ponens says that
if [x ` y] and if we can prove [x] then we positivily have [y]. Verification says
that if [x `̀ y] and if [x] evaluates to [T] then [y] is verified. Modus probans says
that if [x `̀ y] and if we happen to know or assume that [x] evaluates to [T] then
this knowledge approves [y]. The modus operation implements half of modus
ponens or modus probans. Verification is treated in Section 6.3.10.
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6.3.9 Quantifier elimination

The operation [x@ y]eliminates a quantifer:

[〈p, s, ∀x: c〉@ a] evaluates to [〈p, s, 〈c |x:= a〉〉] if [x] is a metavariable and
[a] is free for [x] in [c]

As an example of use, [(∀A:A = A) ` (∀A:A = A)I¤ @ 0 proves (∀A:A = A) `
0 = 0]◦.

6.3.10 Verification

The operation [xV]eliminates a side condition by evaluating it and seeing that
it is true:

[〈p, s, a `̀ b〉V] evaluates to [〈p, s, b〉] if [UM(E(a, T, c) ‘ c)] evaluates to [T]
where [c] is the cache of the page on which the verification operation occurs

As an example of use, [(∀A: T (A) `̀ A) ` ((∀A: T (A) `̀ A)I¤ @(F +2∗ 2 ≈
5))V proves (∀A: T (A) `̀ A) ` F +2∗ 2 ≈ 5]◦ where

[T (x) =̈ λc.UM(E(dxe, T, c))]

In the example above, [∀A: T (A) `̀ A] is an axiom scheme that says that any
term that evaluates to [T] is provable.

6.3.11 Currying

The operations [x+]and [x−]add and remove a [⊕], respectively:

[〈p, s, a ` b ` c〉+] evaluates to [〈p, s, (a ⊕ b) ` c〉]
[〈p, s, (a ⊕ b) ` c〉−] evaluates to [〈p, s, a ` b ` c〉]

[x−] and [x+] are known as currying and decurrying, respectively.
As an example of use, [(A ` BI)+ proves (A ⊕ B) ` B]◦.
As another example, [(A ⊕ B)I− proves A ` B ` (A ⊕ B)]◦.

6.3.12 Referencing and dereferencing

The operations [x i.e. y]and [x∗]change from term to name and vice versa, re-
spectively:

[〈p, s, c〉 i.e. n] evaluates to [〈p, s, n〉] if [c] is the statement aspect of [n]

[〈p, s, n〉∗] evaluates to [〈p, s, c〉] where [c] is the statement aspect of [n]

We shall refer to [x i.e. y] and [x∗] as referencing and dereferencing, respectively.
The asterisk in [x∗] is inspired by the C programming language.

As an example of use, [T′E ` T′E
I¤∗ proves T′E ` (HeadNil′ ⊕ HeadPair′ ⊕

Transitivity′ ⊕ Contra′)]◦.
As another example, [(HeadNil′ ⊕ HeadPair′ ⊕ Transitivity′ ⊕ Contra′) `

(HeadNil′ ⊕ HeadPair′ ⊕ Transitivity′ ⊕ Contra′)I¤ i.e. T′E proves (HeadNil′ ⊕
HeadPair′ ⊕ Transitivity′ ⊕ Contra′) ` T′E]◦.
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6.3.13 The cut operation

The sequent-binary operation [x; y]is the well-known cut operation. It satisfies:

[〈p1, s1, c1〉; 〈p2, s2, c2〉] evaluates to [〈p1 ∪ (p2\{c1}), s1 ∪ s2, c2〉]

As an example of use, let [Remainder]denote all of [T′E] except [HeadNil′]:

[Remainder =̈ HeadPair′ ⊕ Transitivity′ ⊕ Contra′]

We have that

[T′E
I¤∗]

evaluates to

[〈T′E, ∅, HeadNil′ ⊕ Remainder〉]

and that

[(HeadNil′ ` Remainder ` HeadNil′I)+¤]

evaluates to

[〈HeadNil′ ⊕ Remainder, ∅, HeadNil′〉]

so

[T′E ` (T′E
I¤∗; (HeadNil′ ` Remainder ` HeadNil′I¤)+¤) proves T′E `

HeadNil′]◦.

The lemma says that [HeadNil′] is provable in [T′E]. In general, as one should
expect, all rules of a theory are provable in the theory.

6.3.14 Rule lemmas

For a rule [R] of a theory [T ] we shall refer to [T ` R] as the rule lemma of [R].
In proofs, one constantly needs rule lemmas. Hence, as soon as one has

defined a theory it is convenient to prove the rule lemma of each rule. Once
that is done one can forget about the rules and use the rule lemmas instead.

For that reason, one should not waste good names on rules; one should
reserve good names for rule lemmas.

6.4 Implementation of the twelve sequent operations

Sequent evaluators for the twelve individual sequent operations of Logiweb se-
quent calculus are defined in the following sections. See Section 6.3 for expla-
nations of what each operation does.
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6.4.1 Evaluation of the init operation

[SI(c, t) =̇ c!〈∅, ∅, t-color(t1 ` t1)〉]

6.4.2 Evaluation of the modus operation

[S¤(c, t) =̇ S¤
1 (c, t,S(c, t1))]

[S¤
1 (c, t, q) =̇ c!t!

if qE then q else
if q2 r= d∗ ` ∗e then 〈q0 ∪ {q21}, q1, q22〉 else
if q2 r= d∗ `̀ ∗e then 〈q0, q1 ∪ {q21}, q22〉 else
error(“The modus operation requires the conclusion of its argument to
be an inference or an endorsement”, t)]

6.4.3 Evaluation of the verify operation

[SE(c, t) =̇ SE
1 (c, t,S(c, t1))]

[SE
1 (c, t, q) =̇ c!t!

if qE then q else
if ¬q2 r= d∗ `̀ ∗e then error(“The verify operation requires the
conclusion of its argument to be an endorsement:”, t) else
if UM(E(q21, T, c) ‘ c) then 〈q0, q1, q22〉 else
error(“False side condition:”, t)]

6.4.4 Evaluation of the decurrying operation

[S+(c, t) =̇ S+
1 (c, t,S(c, t1))]

[S+
1 (c, t, q) =̇ c!t!

if qE then q else
if q2 r= d∗ ` ∗e ∧ q22 r= d∗ ` ∗e then
〈q0, q1, t-color((q21 ⊕ q221) ` q222)〉 else
error(“Term; conclusion not fit for decurrying:”, t; q2)]

6.4.5 Evaluation of the currying operation

[S−(c, t) =̇ S−1 (c, t,S(c, t1))]

[S−1 (c, t, q) =̇ c!t!
if qE then q else
if q2 r= d∗ ` ∗e ∧ q21 r= d∗ ⊕ ∗e then
〈q0, q1, t-color(q211 ` q212 ` q22)〉 else
error(“Term; conclusion not fit for decurrying:”, t; q2)]

6.4.6 Evaluation of the dereferencing operation

[S∗(c, t) =̇ S∗1 (c, t,S(c, t1))]
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[S∗1 (c, t, q) =̇ c!t!
if qE then q else
S∗2 (c, t, q,aspect(<stmt>, q2, c))]

[S∗2 (c, t, q, d) =̇ c!t!q!
if d then error(“Dereferencing construct that has no statement
def:”, t) else
〈q0, q1, d3〉]

6.4.7 Evaluation of quantifier elimination

[S@(c, t) =̇ S@
1 (c, t,S(c, t1))]

[S@
1 (c, t, q) =̇ c!t!

if qE then q else
if ¬q2 r= d∀∗: ∗e then error(“Quantifier elimination requires the
conclusion of its argument to be a quantifier:”, t) else
if ¬t2 free for q21 in q22 then error(“Quantifier elimination leads to
variable clash:”, t) else
〈q0, q1, 〈q22 |q21:= t2〉〉]

6.4.8 Evaluation of inference introduction

[S`(c, t) =̇ S`1 (c, t, t1,S(c, t2))]

[S`1 (c, t, p, q) =̇ c!t!p!
if qE then q else
〈q0\{p}, q1, t-color(p ` q2)〉]

6.4.9 Evaluation of endorsement introduction

[S `̀ (c, t) =̇ S `̀1 (c, t, t1,S(c, t2))]

[S `̀1 (c, t, p, q) =̇ c!t!p!
if qE then q else
〈q0, q1\{p}, t-color(p `̀ q2)〉]

6.4.10 Evaluation of the referencing operation

[S i.e.(c, t) =̇ S i.e.
1 (c, t, t2,S(c, t1))]

[S i.e.
1 (c, t, a, q) =̇ c!t!a!

If(qE, q,S i.e.
2 (c, t, a, q,aspect(<stmt>, a, c)))]

[S i.e.
2 (c, t, a, q, d) =̇ c!t!a!q!

if d then error(“Referencing construct that has no statement
def:”, t) else
if ¬d3 t= q2 then error(“Reference; conclusion do not match:”, a; q2) else
〈q0, q1, a〉]
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6.4.11 Evaluation of quantifier introduction

[S∀(c, t) =̇ S∀1 (c, t, t1,S(c, t2))]

[S∀1 (c, t, v, q) =̇ c!t!v!
if qE then q else
if ¬vV then error(“Metageneralization over non-metavariable:”, t) else
if v free in q0 then error(“Metageneralization over metavariable that
occurs free in some premise:”, t) else
if v free in q1 then error(“Metageneralization over metavariable that
occurs free in some side condition:”, t) else
〈q0, q1, t-color(∀v: q2)〉]

6.4.12 Evaluation of the cut operation

[S ;(c, t) =̇ S ;
1(c, t,S(c, t1))]

[S ;
1(c, t, p) =̇ c!t!

If(pE, p,S ;
2(c, t, p,S(c, t2)))]

[S ;
2(c, t, p, q) =̇ c!t!p!

If(qE, q, 〈p0 ∪ (q0\{p2}), p1 ∪ q1, q2〉)]

6.5 The proof evaluator

6.5.1 Coloring

[x ` y] is self-evaluating. For that reason, [dxe ` dye] and [dx ` ye] are equal
terms except for debugging information.

The debugging information of the root of [dxe ` dye] equals [T] which repre-
sents no debugging information. For that reason we shall call the root uncolored.

Proper debugging information comprises a list of cardinals where the last
cardinal in the list is the reference of the page on which the given node occurs.
Hence, proper debugging information always differs from [T]. We shall refer to
nodes whose debugging information differs from [T] as colored.

Whenever terms are generated using self-evaluating constructs, there will be
uncolored nodes near the root of the generated term. The binary [a-color(t)]
operation returns the term [t] but copies the debugging information from the
root of [a] into uncolored nodes of [t]. We shall refer to this artistic touch as
coloring.

The coloring operation merely descends into the tree until it meets nodes
with proper debugging information, so the operation will miss uncolored nodes
hidden deeply inside the tree.

The coloring operation is defined thus:

[a-color(t) =̇ td
{

(tr : : ti : : ad) : : a-color∗(tt)
a!t ]

[a-color∗(t) =̇ t

{
a!T
a-color(th) : : a-color∗(tt) ]
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6.5.2 Error message generation

The following macro expands into a construct that returns an error message.
The first argument is supposed to be a string and the value of the second is
supposed to be a term.

When used, the construct generates an error message consisting of the string
followed by a newline followed by the term, which is of course rather limited.
Whenever it is convenient to include more than one term in a message we take
the rather crude approach to combine the messages by the cut operation! The
cut operation is self-evaluating and, when typeset, puts a semicolon between its
arguments, which is close to tolerable.

The error generation macro simply quotes the string argument and leaves
the actual generation of the error message to an auxiliary function:

[error(m, t) =̈ error2(dme, t)]
The following function generates an error message from a message [m] and a
term [t].

[m] is supposed to be a unicode string with a unicode start of text in the
root. That start of text character is removed by computing [m1] to drop the
“double quotes” from the string, but a [(x)t] ensures that the unquoted string
is still typeset as a string eventually.

The text is glued together with a string that merely contains a newline
character and which is treated similarly. Furthermore, the text plus newline
character are glued together with the term [t].

The text, newline character, and term are glued together with the [x , y]. The
[(x)t] and [x , y] are invisible when typeset using their tex aspects and, hence,
do not exhibit themselves in the final error message. These two constructs are
visible in the right hand side of the definition below and in several places above
because they are made visible using [(x)v].

A [t-color(x)] copies the debugging information in the root of [t] to nodes in
the error message that are generated by [(x)t] and [x , y] and have no debugging
information of their own. The definition reads:

[error2(m, t) =̇ t-color((m1)t , (d“
”e1)t , t)]

6.5.3 Error recognition

The sequent evaluator returns a sequent or an error message. For obvious rea-
sons, we shall need the ability to tell whether a return value is the one or the
other.

Error messages are terms that can be typeset by the Logiweb system. When
recognizing error messages, we assume that they are generated by the error
message generator of the previous section or similar means that put a [x , y]
operator in the root of the message. That particular operator is harmless to
have in the root of error messages because typesetting of [x , y] results in [x]
and [y] being typeset and then concatenated. Note that [x , y] above reads
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[(x , y)v] in the source of the present page, otherwise the comma would have
been invisible as in [xy].

The predicate below is true if the argument is an error message and false if
the argument is a sequent. It is also false in many other cases as we shall benefit
from later.

[xE =̇ x
r= dx , ye]

6.5.4 Sequent evaluation

The sequent evaluation function [S(c, t)] evaluates the sequent proof [t] in the
context defined by the cache [c]. The result is a sequent or an error message. If
it is a sequent, then the proof is valid and the sequent is the conclusion of the
proof.

The sequent evaluation function recognises the twelve sequent operations of
Logiweb sequent calculus and turns against any other operations in [t].

[S(c, t) =̇ c!
if tE then t else
if t

r= d∗Ie then SI(c, t) else
if t

r= d∗¤e then S¤(c, t) else
if t

r= d∗Ve then SE(c, t) else
if t

r= d∗+e then S+(c, t) else
if t

r= d∗−e then S−(c, t) else
if t

r= d∗∗e then S∗(c, t) else
if t

r= d∗@ ∗e then S@(c, t) else
if t

r= d∗ ` ∗e then S`(c, t) else
if t

r= d∗ `̀ ∗e then S `̀ (c, t) else
if t

r= d∗ i.e. ∗e then S i.e.(c, t) else
if t

r= d∀∗: ∗e then S∀(c, t) else
if t

r= d∗; ∗e then S ;(c, t) else
error(“Unknown sequent operator:”, t)]

6.5.5 Lemma verification

The macro [p proves t] claims that [p] proves [t]:

[p proves t =̈ proof(dpe, dte, self)]
As an example, the following verifies [2 ` 2]:

[2I proves 2 ` 2]◦

Perturbing the conclusion to e.g. [2 ` 3] provokes the diagnose aspect of the page
symbol to be set to a term which, if typeset using the tex aspect, generates an
appropriate error message.

[proof(p, t, c)] equals [T] if the proof [p] proves the sequent lemma [t] in the
context defined by the cache [c]. Otherwise, [proof(p, t, c)] returns an error
message:
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[proof(p, t, c) =̇ proof2(S(c, p), t)]

[proof2(q, t)] equals [T] if [q] is a sequent which proves the sequent lemma [t].
Otherwise, [proof2(q, t)] returns an error message:

[proof2(q, t) =̇ t!
if qE then q else
if ¬q0 then error(“Proof has at least one unresolved premise.
Lemma; premise reads:”, t; q0h) else
if ¬q1 then error(“Proof has at least one unresolved side condition.
Lemma; condition reads:”, t; q1h) else
if q2 t= t then T else
error(“Lemma does not match conclusion. Lemma; conclusion
reads:”, t; q2)]

6.6 The verifier

6.6.1 Conjunction membership

The verifier allows proofs to refer to previously proved lemmas. Such previously
proved lemmas may occur on the same page as the proof or in transitively
referenced pages.

When a lemma on another page is referenced, the verifier needs to ensure
that that other page has been properly checked. The verifier does so by looking
up the diagnose aspect of the referenced page to see that the referenced page
is correct. Furthermore, the verifier looks up the claim aspect of the referenced
page to see that the claim is a conjunction that includes the verifier itself.

The above verification check for referenced pages is fast because the verifier
itself is not invoked on the page. Rather, the verifier just ensures that the
verifier was invoked successfully when the page was loaded.

Furthermore, the verification check is flexible in that the verifier only requires
referenced pages to be checked by the verifier if those other pages actually con-
tribute to proofs. This allows pages that contain proofs to reference pages that
are unrelated to proofs such as pages that define computer programs, formatting
constructs, fonts, or whatever.

The verifier is also flexible in that it allows referenced pages to be checked
by any number of other checkers alongside the verifier itself. That allows the
verifier to coexist with other proof checkers and all sorts of other checkers. As
an example, one may decide to impose strong typing on a page using some type
checker without affecting the ability to check proofs.

To implement the above verification check we need a relation [x ∈c y] which
is true iff the term [x] belongs to the conjunction [y]:

[x ∈c y =̇ y
r= dx ∧c ye

{
If(x ∈c y1,T, x ∈c y2)
x

t= y
]

Furthermore, we need a function [claims(t, c, r)] which is true if the term [t]
belongs to the potentially inherited claim of page [r] according to the cache [c]:
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[claims(t, c, r) =̇
If(claims2(t, c, r), T, claims2(t, c, c[r]["bibliography"]1))]

[claims2(t, c, r) =̇ If(¬rc, t!c!F, t ∈c c[r]["codex"][r][0][0]["claim"]3)]

6.6.2 The proof aspect

The “proves” predicate in Section 6.5.5 is useful for testing the validity of a sin-
gle, stand-alone proof which proves some lemma from scratch without reference
to any auxilliary lemmas.

For more complex proofs, we introduce a proof aspect and make the conven-
tion that whenever a construct has a proof aspect, then the construct should
also have a statement aspect and, furthermore, the proof aspect should be a
proof of the statement aspect. We make the proof aspect self-evaluating and
use [proof] to denote it:

[<proof> =̇ d<proof>e]

[proof
msg
= <proof>]

From the point of view of Logiweb, lemmas and proofs are just definitions:

[[Lemma x: y] =̈ [x stmt→ y]]

[[Proof of x: y] =̈ [x
proof→ y]]

The following construct provides a reader friendly way of stating that a state-
ment [z] is provable in a theory [x] and giving the conjecture the name [y].

[[x lemma y: z] =̈ [y stmt= x ` z]]

As an example of use,

[T′E lemma HeadNil′′: Th = T]

conjectures that [Th = T] is provable in [T′E].
The following construct provides a reader friendly way of stating that a

statement [z] is disprovable in a theory [x] and giving the anticonjecture the
name [y].

[[x antilemma y: z] =̈ [x lemma y: z ` ⊥⊥]]

As an example of use,

[T′E antilemma Contra′′: T : : T = T]

conjectures that [T : : T = T] is disprovable in [T′E].
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6.6.3 Verifier

The [verifier] checks the correctness of all proofs on a page. It is suited to appear
in a conjunction that makes up the claim of a page. The verifier ignores the
macro expanded tree [t] and merely uses the cache [c].

[verifier =̇ λt.λc.V1(c)]

[V1(c)] extracts the reference [r] of the page to be checked from the cache [c] of
the page. Then it extracts the subcodex [x] of all domestic definition of the page
and uses [V2(c, x)] to evaluate the array of proofs into an array [p] of sequents.
Then it uses [V3(c, r, p, d)] to verify the correctness of all proofs.

[V1(c) =̇
let r = c[0] in
let x = c[r]["codex"][r] in
let p = V2(c, x) in
let d = V3(c, r, p, T) in
if ¬d then d else
let i = V5(c, r, p, p) in
if ¬ic then T else
error(“Circular proof. Circle includes:”, p[i]0h)]

[V2(c, p)] evaluates all proofs in the subcodex [p] and returns the result as a one-
dimensional array of sequents (indexed by the identifier of each proof). [V2(c, p)]
is not particularly efficient since it continues to evaluate all proofs even if one
of the proofs returns an error message.

For each symbol in the subcodex, [V2(c, p)] extracts the proof definition [d]
(i.e. the right hand side of the [<proof>] aspect) of the symbol. If the proof
aspect exists (i.e. differs from [T]) then [V2(c, p)] uses the evaluator [E(d,T, c)] to
compute the value of [d], applies the result to the cache [c] in order to give access
to the cache from proof tactics inside [d], and then uses the sequent evaluator
[S(c, t)] to evaluate the proof into a sequent.

[V2(c, p) =̇ c!
if p then T else
if ¬phc then V2(c, ph) : : V2(c, pt) else ph : :
let d = aspect(<proof>, pt) in
if d then T else
let r = S(c,UM(E(d3,T, c) ‘ c ‘ p)) in
if rE then error(“Error in proof of”, d2d“
”e1r) else r]

[V3(c, r, p, d)] returns the diagnose [d] if [d] differs from [T]. Otherwise, it tra-
verses the array [p] of sequents and checks each sequent [q] for correctness.
During the check, [i] is bound to the identifier of the proof being checked and
[d] is bound to the lemma being checked.
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[V3(c, r, p, d) =̇ c!r!p!
if ¬d then d else
if p then T else
if ¬phc then V3(c, r, pt,V3(c, r, ph,T)) else
let i = ph in
let q = pt in
if q then T else
if qE then q else
if ¬q1 then error(“Unchecked sidecondition:”, q1h) else
let d = aspect(<stmt>, c[r]["codex"][r][i]) in
if d then error(“Proof of non-existent lemma:”, q2) else
if ¬q2 t= d3 then error(“Lemma/proof mismatch:”, d2; q2) else
V4(c, q0)]

[V4(c, p)] checks that the list [p] of premises consists of proved lemmas. That
is done by verifying that each member of [p] has a proof and belongs to a
correct page that lists the verifier among its claims. The page being verified is
considered correct during the check since the diagnose aspect is not yet set while
checking the page. The only thing [V4(c, p)] does not check for is circular proofs
(e.g. proofs that make use of the lemma they prove). Checking for circularity is
done elsewhere.

[V4(c, p) =̇ c!
if p then T else
let d = V4(c, pt) in
if ¬d then d else
let p = ph in
let r = pr in
let i = pi in
if ¬c[r]["diagnose"] then
error(“Reference to erroneous page”, p) else
if ¬claims(dverifiere, c, r) then
error(“Reference to unchecked lemma”, p) else
if aspect(<proof>, p, c) then
error(“Reference to unproved lemma”, p) else T]

[V7(c, r, i, q)] takes as input an array [q] that contains the conclusions of all proofs
on the present page. These conclusions are all sequents and they are indexed
by the identifiers of the symbols they belong to.

The sequents are allowed to have unresolved premises provided the premises
are proved elsewhere. Furthermore, the directed graph with sequents as nodes
and premises as edges is required to be non-cyclic. [V7(c, r, i, q)] performs a
search for cycles.

Logiweb pages and Logiweb bibliographic references form a non-cyclic graph,
so whenever a premise refers to a lemma proved on another page, that premise
cannot be part of a cycle. For that reason, [V7(c, r, i, q)] ignores premises whose
reference differs from the reference [r] of the page being checked.
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[V7(c, r, i, q)] checks all nodes and edges reachable from the node with iden-
tifier [i] for cycles. If a cycle is found, the identifier of one of the nodes in the
cycle is returned. Hence, a return value which is a cardinal indicates that a
cycle is found. Otherwise, [V7(c, r, i, q)] replaces all reachable nodes in [q] by the
cardinal [1] and returns the modified [q].

When [V7(c, r, i, q)] reaches a node that is set to [1] then it assumes that that
node has already been checked for cycles.

During the search for cycles, [V7(c, r, i, q)] temporarily sets all nodes being
considered to [0]. When [V7(c, r, i, q)] reaches a node that is set to [0] it assumes
that a cycle has been found and returns the identifier of the node.

[V7(c, r, i, q) =̇ c!r!
let v = q[i] in
if v then q else
if v ≈ 0 then i else
if v ≈ 1 then q else
let q = V6(c, r, v0, q[i→0]) in
if qc then q else q[i→1]]

[V6(c, r, p, q)] checks all indices in the list [p] if premises for circularity in the
array [q] of sequents.

[V6(c, r, p, q) =̇ c!r!p!
if qc then q else
if p then q else
let q = V6(c, r, pt, q) in
if qc then q else
if ¬r ≈ phr then q else
V7(c, r, phi, q)]

[V5(c, r, a, q)] checks all indices in the array [a] for circularity in the array [q] of
sequents.

[V5(c, r, a, q) =̇ c!r!a!
if qc then q else
if a then q else
if ¬ahc then V5(c, r, at,V5(c, r, ah, q)) else
V7(c, r, ah, q)]

6.6.4 The rule lemma tactic

In Section 6.6.2 we stated two lemmas:

[T′E lemma HeadNil′′: Th = T]

[T′E antilemma Contra′′: T : : T = T]
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Both lemmas are trivial; they are both instances of the general fact that all rules
of a theory are provable in the theory. It is rather straightforward to prove both
lemmas using suitable sequent operations but instead of writing a handmade
proof for each lemma we shall write a proof tactic which, given a theory and
a rule of the theory, generates a proof that the rule follows from the theory.
We shall refer to the tactic as the [Rule tactic], and we shall arrange that the
following become valid proofs of the above lemmas:

[Proof of HeadNil′′: Rule tactic]

[Proof of Contra′′: Rule tactic]

We define the rule tactic thus:

[Rule tactic =̇ λc.λp.rule(c, p)]

When invoked from the verifier, the tactic is applied to the cache [c] of the
current page and a pair [p] whose first component is the identifier of the lemma
to be proved and whose second component is the subcodex containing all aspects
of that lemma. The rule tactic passes control to the function below.

[rule(c, p) =̇ c!
let s = aspect(<stmt>, pt)3 in
if s then d“Rule has no statement aspect”e else
if ¬s

r= dx ` ye then error(“Rule has invalid statement aspect”, s) else
let t = aspect(<stmt>, s1, c)3 in
if t then d“Theory has no statement aspect”e else
let r = rule1(s2, t) in
if rc then error(“The theory does not assert the given rule”, s; t) else
(s1 ` Cut(s1I¤∗, r))]

The function above finds out what the rule tactic is supposed to prove and then
passes control to the function below for constructing the proofs.

[rule1(s, t) =̇
if s

t= t then T else
if ¬t

r= dx ⊕ ye then 0 else
let p = rule1(s, t1) in
if ¬pc then Cut(Head⊕(t), p) else
let p = rule1(s, t2) in
if ¬pc then Cut(Tail⊕(t), p) else 0]

The function above searches for the given rule in the given theory. When found,
it constructs a proof using the three proof constructors below.

[Cut(a, b) =̇ If(b, a, a; b)]

[Head⊕(s) =̇ (s1 ` s2 ` s1I¤)+¤]

96



[Tail⊕(s) =̇ (s1 ` s2I)+¤]

6.6.5 Stating rules

The rule tactic of the previous section allows to prove that all rules of a theory
are provable in the theory. The following macros allow to express lemma and
proof in one go:

[[x rule y: z] =̈ [x lemma y: z][Proof of y: Rule tactic]]

[[x antirule y: z] =̈ [x rule y: z ` ⊥⊥]]

Having these constructs it is easy to state that all four rules of [T′E] are provable
in [T′E]:

[T′E rule HeadNil′′:Th = T]

[T′E rule HeadPair′′: ∀A:∀B: (A : : B)h = A]

[T′E rule Transitivity′′: ∀A: ∀B: ∀C:A = B ` A = C ` B = C]

[T′E antirule Contra′′:T : : T = T]

6.6.6 Stating theories

We have now defined the theory [T′E] and stated the four rule lemmas there
are for that theory, namely one for each rule of the theory. Once the rules are
stated, the definition if [T′E] is a bit redundant since the four rules contain all
information about the theory.

We now define the theory and the four rule lemmas once more, but in a more
elegant way:

[TE rule HeadNil: Th = T]

[TE rule HeadPair:∀A:∀B: (A : : B)h = A]

[TE rule Transitivity:∀A:∀B: ∀C:A = B ` A = C ` B = C]

[TE antirule Contra:T : : T = T]

[Theory TE]

In the next section we define ([Theory x])p such that ([Theory TE])p macro
expands into a definition which defines the statement aspect of [TE] to be a
conjunction of [Th = T], [∀A: ∀B: (A : : B)h = A], [∀A: ∀B:∀C:A = B ` A = C `
B = C], and [T : : T = T ` ⊥⊥], in some, arbitrary order.

When ([Theory x])p is macro expanded, it scans the codex of the page it
occurs on for rules that belong to the theory [x], then forms a conjunction of
the rules found, and then constructs a suitable definition for [x].
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6.6.7 Rule collection

Here is the macro for collecting all rules of a theory from the codex:

([[Theory n] macro→ λt.λs.λc.theory2(t, c)])p

[theory2(t, c) =̇
let n = t1 in
let s = 〈dne : : n, dxe : : theory3(c, n)〉 in
Q̃(t, d[n stmt= x]e, s)]
[theory3(c, n) =̇ n!
let r = c[0] in
theory4(c[r]["codex"][r], n, T)]

[theory4(c, n, s) =̇ n!
if c then s else
if ¬chc then theory4(ct, n, theory4(ch, n, s)) else
if ¬aspect(<proof>, ct)3 t= dRule tactice then s else
let d = aspect(<stmt>, ct)3 in
if ¬d1 t= n then s else
Plus(d2, s)]

[Plus(a, b) =̇ If(b, a, a ⊕ b)]

6.6.8 Example lemmas

One may think of the Logiweb sequent calculus as an assembly language for ex-
pressing proofs. Proofs directly expressed in the calculus are somewhat obscure
to read and write, but before we solve that problem in Section 6.8, we state and
prove two lemmas the hard way. The first lemma proves reflexivity in the [TE]
theory:

[TE lemma Reflexivity:∀A:A = A]

[Proof of Reflexivity: dTE ` ∀A: (
HeadPairI¤∗¤ @A@A;
(TransitivityI¤∗¤ @(A : : A)h @A@A)¤¤)e]
Now that we have reflexivity available, we may use it to prove commutativity
in [TE]:

[TE lemma Commutativity:∀A: ∀B:A = B ` B = A]

[Proof of Commutativity: dTE ` ∀A:∀B:A = B ` (
ReflexivityI¤∗¤ @A;
(TransitivityI¤∗¤ @A@B@A)¤¤)e]
As can be seen on the diagnose hook of the present page, the proofs above are
correct according the the machine check made by the verifier.
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6.7 Unification

The facilities defined in Section 6.8 for expressing proofs in a human-tolerant
style makes use of unification. Section 6.7 implements unification.

6.7.1 Parameter terms

We shall refer to terms in which bound metavariables are replaced by cardinals
as parameter terms. The function [parm(t, s, n)] converts an ordinary term [t]
into a parameter term in which numbers are constructed from [n] using [b +2∗ n]
iteratively. When calling [parm(t, s, n)], [s] should be [T].

[parm(t, s, n) =̇ n!
if t

r= d∀x: ye then ∀n: parm(t2, (t1 : : n) : : s, T +2∗ n) else
let m = lookup(t, s,T) in
if ¬m then m else tR : : parm∗(tt, s, n)]

[parm∗(t, s, n) =̇ s!n!If(ta, T,parm(th, s, n) : : parm∗(tt, s, n))]

6.7.2 Substitutions

We shall refer to an array of parameter terms as a substitution. The following
function instantiates a parameter term [t] using a substitution [s]:

[inst(t, s) =̇ If(tc, inst(s[t], s), tR : : inst∗(tt, s))]

[inst∗(t, s) =̇ s!If(ta, T, inst(th, s) : : inst∗(tt, s))]

Instantiation may loop indefinitely. As an example, a substitution which maps
[A] to [A : : A] will keep expanding [A] forever. We shall say that a substitution
[s] is circular if there exists a term [t] for which [inst(t, s)] loops indefinitely.

6.7.3 Occurrence

[occur(t, u, s)] is true if the parameter [t] occurs in [inst(u, s)]. [occur(t, u, s)] may
loop indefinitely if the substitution [s] is circular.

[occur(t, u, s) =̇ s!If(uc, t ≈ u ∨̈ occur(t, s[u], s), occur∗(t, ut, s))]

[occur∗(t, u, s) =̇ t!s!If(ua, F, occur(t, uh, s) ∨̈ occur∗(t, ut, s))]

6.7.4 Unifications

We shall refer to the result of applying a substitution to a parameter term as
an instance of the term. We shall refer to a common instance of two parameter
terms as a unification of the terms. As an example, [A : : F] and [T : : B] (where
[A] and [B] denote numbers) have exactly one unification, namely [T : : F]. We
shall say that two terms are compatible if they have at least one unification and
incompatible otherwise.
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A substitution which yields the same result when applied to two terms [u]
and [v] is said to unify the terms. As an example, the substitution which maps
[A] to [T] and [B] to [F] unifies [A : : F] and [T : : B].

The unification algorithm presented in the following takes two terms as input
and returns a unifying substitution if the terms are compatible. As an example,
when applied to [A : : F] and [T : : B], the unification algorithm returns the
substitution which maps [A] to [T] and [B] to [F].

There is more than one substitution which unifies [A : : F] and [T : : B]. As
an example the substitution that maps [A] to [T], [B] to [F], and [C] to some
term [x] also unifies [A : : F] and [T : : B].

6.7.5 Unification algorithm

The original unification algorithm by Robinson takes a set of equations (i.e. a
set of pairs of parameter terms) as input and unifies all the pairs. In contrast,
[unify(t = u, s)] defined below adds the result of unifying [t] and [u] to the
substitution [s]. To unify a set of equations one should start with the empty
substitution [T] and call [unify(t = u, s)] once for each equation.

[unify(t = u, s)] extends the substitution [s] to a substitution that unifies [t]
with [u] if such a substitution exists and returns [0] otherwise. In particular,
[unify(t = u, s)] returns zero if [s] equals zero since in that case there is no
substitution to extend.

[unify(t = u, s)] calls to auxiliary functions, [unify2(t = u, s)] and [unify∗(t =
u, s)]. [unify2(t = u, s)] does the same as [unify(t = u, s)] but only covers the
special case where [t] is a parameter. [unify∗(t = u, s)] unifies two lists [t] and
[u] of parameter terms.

[unify(t = u, s)] errors out if [s ≈ 0], calls [unify2(∗ = ∗, ∗)] if [t] or [u]
happens to be a parameter, and calls [unify∗(∗ = ∗, ∗)] otherwise:

[unify(t = u, s) =̇ t!u!
if sc then s else
if tc then unify2(t = u, s) else
if uc then unify2(u = t, s) else
if t

r= u then unify∗(tt = ut, s) else 0]

[unify∗(t = u, s)] iterates [unify(t = u, s)]; it depends on the fact that [unify(t =
u, s)] equals zero if [s] equals zero so that failure to find a unification propagates.

[unify∗(t = u, s) =̇ u!If(ta, s, unify∗(tt = ut, unify(th = uh, s)))]

[unify2(t = u, s)] extends the substitution [s] with the result of unifying the
parameter [t] with the parameter term [u]. [s] is assumed to be a genuine
substituion (i.e. not zero). Furthermore, [s] is assumed to be non-circular.

[unify2(t = u, s)] first tests [t] and [u] for equality. If they are equal, they
are already unified and [s] is returned. Otherwise, if [s] already associates the
parameter [t] with a term, then [unify2(t = u, s)] unifies [u] with that term.
Otherwise, [unify2(t = u, s)] extends the substitution [s] with an association
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from [t] to [u]. If [occur(t, u, s)] is true, however, such an association would create
a circular substitution. In that case no unification exists and [unify2(t = u, s)]
returns zero:

[unify2(t = u, s) =̇
if t ≈ u then s else
let t′ = s[t] in
if ¬t′ then unify(t′ = u, s) else
if occur(t, u, s) then 0 else s[t→u]]

6.8 Proof generation

6.8.1 Proof tactics

Counted in sequent operators, proofs typically comprise a small amount of orig-
inal thought and a lot of trivial derivations. Frequently, trivial derivations can
be generated by computer programs. Such programs are typically called tactics
or proof tactics [8].

To support proof tactics, we introduce a tactic aspect for defining them and a
proof expander for evaluating them. The proof evaluator evaluates proof tactics
and generates sequent proofs, which the proof evaluator may then evaluate to
sequents.

The proof expander is itself a tactic since it generates proofs. The proof
expander is a value defined tactic like the rule lemma tactic defined previously.
But the proof expander is a particularly general tactic which brings life to tactics
that are defined using the “tactic aspect” which is introduced later.

6.8.2 Medium level proofs

The proof tactics and the proof expander defined later can translate medium
level proofs like those below to Logiweb sequent calculus proofs like those in
Section 6.6.8. Actually, the proofs below exactly translate to the proofs in
Section 6.6.8. We start out proving reflexivity:

[TE lemma Reflexivity1:∀A:A = A]

TE proof of Reflexivity1:
L01: Arbitrary À A ;
L02: HeadPair À (A : : A)h = A ;
L03: Transitivity ¤ L02 ¤ L02 À A = A 2

In the proof above, the first line declares that [A] denotes an arbitrary term.
The second line uses [HeadPair] to prove [(A : : A)h = A]. In Section 6.6.8,

that statement is proved by [HeadPairI¤∗¤ @A@A]. As we shall see, the tactic
introduced in Section 6.8.6 adds the [∗I¤∗¤] formula for referencing lemmas.
That tactic also adds the [· · ·@A@A] for instantiating the meta-quantifiers in
[HeadPair]. The tactic uses unification and [· · · À (A : : A)h = A] to decide
that both meta-quantifiers should be instantiated to an [A].
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The third line uses [Transitivity] and the meta-modus-ponens operator [∗¤∗]
to prove [A = A]. The tactic defined in Section 6.8.6 translates a meta-modus-
ponens into a modus operation followed by a cut (c.f. the expanded proof in
Section 6.6.8).

The tactic can expand modus ponens [∗ ¤ ∗] and modus probans [∗ ¤¤ ∗].
Modus ponens says that if [A] is proved and [A] infers [B] then we may conclude
[B]. Modus probans (“probans” for “approve”) says that if [A] is known to
evaluate to [T] and the side condition [A] endorses [B] then we may conclude
[B].

The tactic eliminates side conditions using modus probans when told to do
so using [∗ ¤¤ ∗] and otherwise eliminates them using the [∗V] sequent opera-
tion which actually evaluates the side condition. Modus probans is useful in
situations where a lemma assumes some side condition to hold. Assumed side-
conditions are introduced in proofs using a Side-condition operation which is
similar to the Premise used in Line 3 of the proof of [Commutativity1] stated in
a moment.

Line 3 above contains two references to Line 2. Each reference expands
into the conclusion of Line 2 at macro expansion time. Hence, Line 3 reads
[Transitivity ¤ (A : : A)h = A¤ (A : : A)h = A À A = A] when the proof tactic
is invoked.

Now let us turn to the proof of [Commutativity1]:

[TE lemma Commutativity1: ∀A: ∀B:A = B ` B = A]

TE proof of Commutativity1:
L01: Arbitrary À A ;
L02: Arbitrary À B ;
L03: Premise À A = B ;
L04: Reflexivity1 À A = A ;
L05: Transitivity ¤ L03 ¤ L04 À B = A 2

The proof above only contains one new thing: Line 3 assumes [A = B].

6.8.3 The “tactic” aspect

We now return to the actual implementation of proof tactics and the proof
expander. We make the [<tactic>] aspect self-evaluating and use [tactic] to
denote it:

[<tactic> =̇ d<tactic>e]

[tactic
msg
= <tactic>]

For convenience, we define a construct for making tactic definitions:

[[x tactic= y] =̈ [(x)p tactic→ y]]
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6.8.4 The proof expander

The proof expander [P(t, s, c)] proof expands the term [t] for the proof state [s]
and the cache [c] and returns the result as a semitagged map. The untagged
version [U(P(t, s, c))] is the expansion itself.

The proof expander [P(t, s, c)] differs from the macro expander [M(t, s, c)] in
that it has no special treatment for page symbols and in that it uses the [tactic]
aspect instead of the [macro] aspect.

When proofs are expanded, they are first macro expanded and then proof
expanded. Macro expansion is done iteratively until the codex reaches a fixed
point whereas proof expansion is done only once. Furthermore, the result of
macro expansion is kept in the codex whereas the result of proof expansion is
discarded as soon as a proof is checked. Hence, proof expansion is a momentary
burden to the computers memory whereas macro expansion is chronic.

The definition of [P(t, s, c)] is almost identical to that of [M(t, s, c)]. But it
is easier to express since we can use macros like the ‘let’ macro when defining
proof expansion. For obvious reasons, macros cannot be used when defining the
notion of macro expansion. The definition of [P(t, s, c)] reads:

[P(t, s, c) =̇ s!
let d = aspect(<tactic>, t, c) in
if d then th : : P∗(tt, s, c) else
UM(E(d3,T, c) ‘ t ‘ s ‘ c)]

[P∗(t, s, c) =̇ s!c!If(t,T,P(th, s, c) : : P∗(tt, s, c))]

6.8.5 The initial proof state

Proof states have exactly the same format as macro states.
The initial proof state [p0] is useful for passing as the second parameter to

[P(t, s, c)]. [p0] is a pair whose head is the proof expander itself and whose tail
is left blank. The definition of [p0] reads:

[p0
val→M(λt.λs.λc.P(t, s, c)) : : T]

The function [M̃(t, s, c)] defined previously macro expands the term [t] using
the macro expander embedded in the macro state [s] using the cache [c]. Since
proof states have exactly the same syntax and semantics as macro states, we
shall take the liberty to use [M̃(t, s, c)] for proof states also.

6.8.6 The conclusion tactic

The conclusion tactic [x À y] constructs a proof of [y] from the partial proof [x]
as described in Section 6.8.2.

Among other, the tactic tactic expands modus ponens [x ¤ y] and modus
probans [x ¤¤ y] which we make self-evaluating:

[x ¤ y =̇ 〈dx ¤ yeR, x, y〉]
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[x ¤¤ y =̇ 〈dx ¤¤ yeR, x, y〉]

The conclusion tactic is defined thus:

[x À y
tactic= λt.λs.λc.conclude1(t, c)]

[conclude1(t, c) =̇
let r = conclude2(t1, t2, c) in
if rc then error(“Unification failed”, t) else r]

[conclude2(a, t, c) =̇ t!
if a

r= dx ¤ ye then conclude2(a1, a-color(t ¤ a2), c) else
if a

r= dx ¤¤ ye then conclude2(a1, a-color(t ¤¤ a2), c) else
if a

r= dx@ ye then conclude2(a1, a-color(t @ a2), c) else
if aspect(<proof>, a, c) then error(“Lemma expected”, a) else
let d = aspect(<stmt>, a, c) in
conclude3(a-color(conclude4(aI¤∗¤, d32)), t,parm(d32, T, 1),T)]

[conclude3(a, t, l, s) =̇ a!t!l!s!
if l

r= dx ` ye then

t
r= dx ¤ ye

{
conclude3(a¤, t1, l2, unify(l1 = t2, s))
conclude3(a¤, t, l2, s) else

if l
r= dx `̀ ye then

t
r= dx ¤¤ ye

{
conclude3(a¤, t1, l2,unify(l1 = t2, s))
conclude3(aV, t, l2, s) else

if l
r= d∀x: ye then

t
r= dx @ ye

{
conclude3(a@ t2, t1, l2, unify(l1 = t2, s))
conclude3(a@ l1, t, l2, s) else

let s = unify(l = t, s) in
if sc then s else
inst(a, s)]

[conclude4(a, l) =̇ a!l!
if ¬l

r= d∀x: ye then a else
let v = 〈d∗eR, l1〉 in ∀v: conclude4(a @ v, l2)]

6.8.7 Proof constructors

The following macros make it easy to construct medium level proofs:

[t proof of s : p =̈ [Proof of s: λc.λx.P(dt ` pe, p0, c)]]

[Line l : a À i; p =̈ (a À i; let l =̈ i in p)]

[Last line a À i 2 =̈ (a À i)]

[Line l : Premise À i; p =̈ (i ` let l =̈ i in p)]
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[Line l : Side-condition À i; p =̈ (i `̀ let l =̈ i in p)]

[Arbitrary À i; p =̈ (∀i: p)]

[Local À a = i; p =̈ (let a =̈ i in p)]

Some of the constructs look different when used in proofs. As an example, the
“Arbitrary” construct above gets a line number when used in a proof (or, more
precisely, when typeset using the tex aspect instead of the tex name aspect).

Line numbers in proofs are generated automatically. As an example, one
may write

line ell a because tactic reflexivity indeed meta a math equal meta a end
line ...

in a pyk source text to get a numbered proof line saying [Reflexivity1 À A = A].
The line number is assigned automatically, and afterwards references to “ell a”
will refer to that line number.

A TEX definitions

A.1 The TEX language

From the point of view of Logiweb, TEX is an output format intended for the cre-
ation of beautiful Logiweb pages—and especially for Logiweb pages that contain
a lot of mathematics (c.f. the preface of the TEXbook [7]). The PDF version
of the present page is produced by the TEX system (including LATEX) and a
program named dvipdfm.

TEX is chosen for this purpose because of the high quality and great maturity
of that system. Early version of Logiweb also used MathML, but support for
that was removed for several reasons, one of which was a desire to reduce the
number of output formats to exactly one.

One application of Logiweb could be straightforward translation of pyk to
TEX. A major purpose of Logiweb, however, is to allow the Logiweb system to
understand the mathematics present on Logiweb pages. In particular, Logiweb
is able to check proofs and execute programs defined on Logiweb pages.

A.1.1 Use of newline characters

As we shall see later,

[x tex= “
\mathsf{x}”]

macro expands into

[x tex→ “
\mathsf{x}”]
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which in turn defines the tex aspect of [x] to be a string that starts with a
newline character followed by \mathsf{x}.

Internally, Logiweb consistently uses Unicode 10 for the newline character.
Whenever Logiweb runs on a host operating system that uses another charac-
ter or character sequence between lines of text, newline characters have to be
translated in the interface between Logiweb and the operating system.

The tex definition above states that whenever Logiweb renders an [x] using
the TEX system, it dumps ↓\mathsf{x} to a file and runs it through TEX (where
the down arrow represents the newline character).

As another example, the pairing construct [x : : y] introduced later has the
following tex aspect:

[x : : y
tex= “#1.

\mathrel { : \, : }#2.”]

Arguments are represented by double quotes in pyk aspects. In tex aspects,
arguments are represented by sequences of characters that start with a hash
mark and end with a period. As an example, #117. denotes the 117’th argument
of a construct. A hash mark immediately followed by a period as in “#.” denotes
a hash mark.

When sending text through TEX one has to be careful about newline charac-
ters. Firstly, one should avoid making lines that are too long for TEX or the host
operating system. Secondly, one should avoid producing two newline characters
in sequence since TEX assigns a special meaning to repeated newline characters.

To fulfill both, the present page makes the following convention for tex as-
pects: A newline character is added in front of the string whenever the string
starts with a character rather than an argument. Furthermore, a newline charac-
ter is inserted whenever a character follows an argument. Newlines are omitted,
however, if they disturb TEX in achieving the intended rendering.

A.1.2 Interpretation of the tex aspect

Looking at the pyk source of the present page reveals that the tex aspect of the
entire page looks like this:

File page.tex
...
End of file
File page.bib
...
End of file
latex page
makeindex page
bibtex page
latex page
makeindex page
latex page
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dvipdfm page

The tex aspect above is not run directly through TEX. Rather, it instructs
an interpreter to place certain text in certain files and then run latex, bibtex,
makeindex, and dvipdfm in a certain pattern.

For security reasons, the interpreter of the present system only allows exe-
cution of commands named tex, latex, bibtex, makeindex, and dvipdfm. Fur-
thermore, the interpreter only accepts file names made up from the characters
a to z, A to Z, 0 to 9, and dots.

At present, security holes in tex, latex, bibtex, makeindex, and dvipdfm may
compromise security. For this and other reasons, these programs will run in a
chroot gail in some future release of Logiweb.

A.1.3 The tex name aspect

Some constructs look different when using them and when talking about them.
As an example, consider ordinary typewriter text. When using a newline

character, the character itself is invisible but has the effect that text following
it starts on a new line. When talking about a newline character, one may call it
“the newline character”. This way, a newline character is invisible when using
it and consists of 19 characters and two spaces when talking about it.

As another example, the TEX bold face command may be called \bf when
talking about it and changes the text that follows it to bold face when using it.

To cope with this, we introduce a tex name or name aspect to supplement
the tex aspect:

[name ./ “texname”]

The tex name aspect should be such that it can be typeset in TEX math mode.
The tex name aspect defaults to the tex aspect, so if the tex and tex name
aspects of a construct are identical then one should only define the tex aspect.
(The tex aspect in turn defaults to something that is constructed from the
pyk aspect, and the pyk aspect in turn defaults to something semi-readable
constructed from the reference and identifier of the construct).

A.1.4 Uses of the tex name aspect

As an example of a construct for which the tex and tex name aspects differ,
consider the following:

[ $x$ tex= “$#1.$”]

[ $x$ name= “
\ \$#1.\$\linebreak[0]\ ”]

The “math * end math” construct allows to insert mathematics in TEX horizon-
tal mode by changing to math mode temporarily. The tex name aspect allows

107



to talk about the construct. The left hand sides of the three definitions above
are typeset using the tex name aspect.

Elaborating the example from the previous section, the pyk source of a
definition like

[[y x→ z] ./ “define”]

could read something like

math proclaim define var x of var y as var z end define as · · · end
proclaim end math

The “math * end math” construct is invisible in the definition above but cer-
tainly affects the typography; without it, TEX would produce ugly error mes-
sages rather than beautiful typography.

By the way: note that “math * end math” changes to \rm immediately after
changing to math mode. That is because Logiweb formulas contain loads of text
and because the typography of e.g. variables is under tight control of Logiweb,
so the defaults of TEX math mode are not the right ones for Logiweb.

A.1.5 Brackets

For completeness,

[bracket x end bracket tex= “$[#1.]$”]

and

[big bracket x end bracket tex= “$\left[#1.\right]$”]

are versions of “math * end math” that add brackets around the formula.
The latter adds large brackets using the large bracket facility of TEX, which

is useful occasionally but which mainly leads to undesirable results. The large
brackets in [5] adjust their height independently of their depth and allow line
breaking of their argument. The brackets of [5] are not used here, however,
because they would have an inconveniently large tex aspect.

By the way, two major Logiweb pages have been developed before Logi-
web itself was developed. The first is [5] which is a three volume textbook on
mathematics for first year computer science students used at the department
of computer science at the University of Compenhagen as a replacement for
discrete mathematics. The second is citegrue02b which contains a consistency
proof for ZFC set theory expressed in Map theory. At the time of writing, these
two are not yet published on Logiweb, but they have been drivers of the design
of Logiweb.
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A.1.6 The tex aspect of definitions

As stated in Appendix A.2, the TEX definition of [y x→ z] reads:

[[y x→ z] tex= “
[#2/tex name/tex.
\stackrel{#1.
}{\rightarrow}#3.
]”]

In the definition, “#1.” says “insert the first argument (the aspect) here”.
Likewise, “#3.” says “insert the third argument (the right hand side) here”.

The second argument (the left hand side), is more complicated. A definition
talks about the left hand side rather than just using it. For that reason, the
left hand side should be rendered using the tex name aspect instead of the tex
aspect. On the other hand, if the left hand side has parameters, then those
parameters should be rendered normally, i.e. using the tex aspect.

“#2/tex name/tex.” says “insert the second argument (the left hand side)
here using the tex name aspect for the left hand side, but revert to the tex
aspect for the parameters of the left hand side.

A.2 TEX definitions

[tex tex= “
\mathrm{tex}”]

[flush left [x] tex= “
\begin {flushleft}#1.
\end {flushleft}”]

[flush left [x] name= “
\mathbf{flush\ left\ }[ #1.
]”]

[x0 tex= “#1.
{}ˆ{0}”]

[x1 tex= “#1.
{}ˆ{1}”]

[x2 tex= “#1.
{}ˆ{2}”]

[x3 tex= “#1.
{}ˆ{3}”]

[x4 tex= “#1.
{}ˆ{4}”]
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[x5 tex= “#1.
{}ˆ{5}”]

[x6 tex= “#1.
{}ˆ{6}”]

[x7 tex= “#1.
{}ˆ{7}”]

[x8 tex= “#1.
{}ˆ{8}”]

[x9 tex= “#1.
{}ˆ{9}”]

[x + y
tex= “#1.

+ #2.”]

[x+0 y
tex= “#1.

\mathop{+ 0} #2.”]

[x+1 y
tex= “#1.

\mathop{+ 1} #2.”]

[x < y
tex= “#1.

< #2.”]

[x <′ y
tex= “#1.

<’ #2.”]

[x ≤′ y
tex= “#1.

\le’ #2.”]

[x− y
tex= “#1.

- #2.”]

[x−0 y
tex= “#1.

\mathop{- 0} #2.”]

[x−1 y
tex= “#1.

\mathop{- 1} #2.”]

[x · y tex= “#1.
\cdot #2.”]

[x ·0 y
tex= “#1.

\cdot 0 #2.”]
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[bit(x, y) tex= “
bit( #1.
, #2.
)”]

[bit1(x, y)
tex= “
bit 1( #1.
, #2.
)”]

[xr tex= “#1.
{}ˆ{r}”]

[xi tex= “#1.
{}ˆ{i}”]

[xd tex= “#1.
{}ˆ{d}”]

[xR tex= “#1.
{}ˆ{R}”]

[x r= y
tex= “#1.

\stackrel{r}{=} #2.”]

[identifier(x) tex= “
identifier( #1.
)”]

[identifier1(x, y)
tex= “

identifier {1}( #1.
, #2.
)”]

[a[i→v] tex= “#1.
[ #2.
{\rightarrow} #3.
]”]

[array-plus(x, y) tex= “
array\mbox{-}\linebreak[0]plus( #1.
, #2.
)”]

[array-remove(i, a, l) tex= “
array\mbox{-}\linebreak[0]remove( #1.
, #2.
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, #3.
)”]

[array-put(i, v, a, l) tex= “
array\mbox{-}\linebreak[0]put( #1.
, #2.
, #3.
, #4.
)”]

[array-add(i, v, i′, v′, l) tex= “
array\mbox{-}\linebreak[0]add( #1.
, #2.
, #3.
, #4.
, #5.
)”]

[a[i⇒v] tex= “#1.
[ #2.
{\Rightarrow} #3.
]”]

[x′ tex= “#1.’”]

[rack tex= “
rack”]

["vector" tex= “
\mbox {\tt \char34}\mathrm {vector}\mbox {\tt \char34}”]

["bibliography" tex= “
\mbox {\tt \char34}\mathrm {bibliography}\mbox {\tt
\char34}”]

["dictionary" tex= “
\mbox {\tt \char34}\mathrm {dictionary}\mbox {\tt \char34}”]

["body" tex= “
\mbox {\tt \char34}\mathrm {body}\mbox {\tt \char34}”]

["codex" tex= “
\mbox {\tt \char34}\mathrm {codex}\mbox {\tt \char34}”]

["expansion" tex= “
\mbox {\tt \char34}\mathrm {expansion}\mbox {\tt \char34}”]
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["code" tex= “
\mbox {\tt \char34}\mathrm {code}\mbox {\tt \char34}”]

["cache" tex= “
\mbox {\tt \char34}\mathrm {cache}\mbox {\tt \char34}”]

["diagnose" tex= “
\mbox {\tt \char34}\mathrm {diagnose}\mbox {\tt \char34}”]

["value" tex= “
\mbox {\tt \char34}\mathrm {value}\mbox {\tt \char34}”]

["pyk" tex= “
\mbox {\tt \char34}\mathrm {pyk}\mbox {\tt \char34}”]

["tex" tex= “
\mbox {\tt \char34}\mathrm {tex}\mbox {\tt \char34}”]

["texname" tex= “
\mbox {\tt \char34}\mathrm {texname}\mbox {\tt \char34}”]

["message" tex= “
\mbox {\tt \char34}\mathrm {message}\mbox {\tt \char34}”]

["macro" tex= “
\mbox {\tt \char34}\mathrm {macro}\mbox {\tt \char34}”]

["definition" tex= “
\mbox {\tt \char34}\mathrm {definition}\mbox {\tt \char34}”]

["unpack" tex= “
\mbox {\tt \char34}\mathrm {unpack}\mbox {\tt \char34}”]

["claim"
tex= “
\mbox {\tt \char34}\mathrm {claim}\mbox {\tt \char34}”]

["priority" tex= “
\mbox {\tt \char34}\mathrm {priority}\mbox {\tt \char34}”]

[aspect(a, c) tex= “
\mathbf{aspect}( #1.
, #2.
)”]

[aspect(∗, ∗, ∗) tex= “
\mathbf{aspect}( #1.
, #2.
, #3.
)”]
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["lambda" tex= “
\mbox {\tt \char34}\mathrm {lambda}\mbox {\tt \char34}”]

["apply" tex= “
\mbox {\tt \char34}\mathrm {apply}\mbox {\tt \char34}”]

["true" tex= “
\mbox {\tt \char34}\mathrm {true}\mbox {\tt \char34}”]

["if" tex= “
\mbox {\tt \char34}\mathrm {if}\mbox {\tt \char34}”]

["quote" tex= “
\mbox {\tt \char34}\mathrm {quote}\mbox {\tt \char34}”]

["proclaim"
tex= “
\mbox {\tt \char34}\mathrm {proclaim}\mbox {\tt \char34}”]

["define" tex= “
\mbox {\tt \char34}\mathrm {define}\mbox {\tt \char34}”]

["introduce" tex= “
\mbox {\tt \char34}\mathrm {introduce}\mbox {\tt \char34}”]

["hide" tex= “
\mbox {\tt \char34}\mathrm {hide}\mbox {\tt \char34}”]

["pre" tex= “
\mbox {\tt \char34}\mathrm {pre}\mbox {\tt \char34}”]

["post" tex= “
\mbox {\tt \char34}\mathrm {post}\mbox {\tt \char34}”]

[(x) tex= “
\left( #1.
\right) ”]

[Λx.y
tex= “

\Lambda #1.
. #2.”]

[let x =̈ y in z
tex= “

\mathbf{let\ } #1.
\mathrel{\ddot{=}} #2.
\mathrel{\ in\ } #3.”]

[Priority table[x] tex= “
\mathbf{Priority\ table} #1.
\mathbf{End\ table}”]
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[Priority table[x] name= “
\mathbf{Priority\ table} [ #1.
]”]

[〈∗〉 tex= “
\langle #1.
\rangle ”]

[x, y tex= “#1.
, \linebreak [0] #2.”]

[tuple1(∗) tex= “
\mathbf {tuple} 1( #1.
) ”]

[tuple2(∗) tex= “
\mathbf {tuple} 2( #1.
) ”]

[ragged right tex= “
\raggedright”]

[ragged right name= “
ragged\ right”]

[ragged right expansion tex= “”]

[ragged right expansion name= “
ragged\ right\ expansion\ ”]

[newline x
tex= “
\newline #1.”]

[newline x
name= “
newline\ #1.”]

[macro newline x
tex= “

\newline #1.”]

[macro newline x
name= “

macro\ newline\ #1.”]

[(x)v tex= “#1/tex name.”]

[(x)v name= “
( #1.
)ˆ{\bf v}”]
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[if x then y else z
tex= “

{\bf if} \ #1.
\ {\bf then} \ #2.
\ {\bf else} \ #3.”]

[let x = y in z
tex= “

\mathbf{let\ } #1.
= #2.
\mathbf{\ in\ } #3.”]

[let1(f, y)
tex= “

let 1( #1.
, #2.
)”]

[let2(f, y)
tex= “

let 2( #1.
, #2.
)”]

[x ∧̈ y
tex= “#1.

\mathrel{\ddot{\wedge}} #2.”]

[x ∨̈ y
tex= “#1.

\mathrel{\ddot{\vee}} #2.”]

[x ⇒̈ y
tex= “#1.

\mathrel{\ddot{\Rightarrow}} #2.”]

[display(x) tex= “

\addvspace{\abovedisplayskip}

\setlength{\leftskip}{\mathindent}\noindent #1.
\everypar{\setlength{\parindent}{\docparindent}}
\setlength{\parindent}{0mm}

\setlength{\leftskip}{0mm}
\addvspace{\belowdisplayskip}

”]

[display(x) name= “
display(#1.
)”]
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[statement(x) tex= “

\addvspace{\abovedisplayskip}

\setlength{\leftskip}{0mm}\noindent #1.
\everypar{\setlength{\parindent}{\docparindent}}
\setlength{\parindent}{0mm}

\setlength{\leftskip}{0mm}
\addvspace{\belowdisplayskip}

”]

[statement(x) name= “
statement(#1.
)”]

[intro(x, i, p, t) tex= “\index{#2.: #3. @#2.: $[#1/tex name/tex.]$ #3.}%
\index{pyk: #3. $[#1/tex name/tex.]$}%
\tex{
$[#1/tex name/tex.
\stackrel {\mathrm {tex}}{=} #4/tex name.
]$}$[ #1/tex name/tex.%
]$\footnote{$[#1/tex name/tex.
\stackrel {\mathrm {pyk}}{=} #3/tex name.
]$}”]

[intro(x, i, p, t) name= “
intro(#1.
, #2.
, #3.
, #4.
)”]

[intro(x, p, t) tex= “\index{\alpha #2. @\back \makebox[20mm][l]{$[#1/tex
name/tex.]$}#2.}%
\index{pyk: #2. $[#1/tex name/tex.]$}%
\tex{
$[#1/tex name/tex.
\stackrel {\mathrm {tex}}{=} #3/tex name.
]$}$[ #1/tex name/tex.%
]$\footnote{$[#1/tex name/tex.
\stackrel {\mathrm {pyk}}{=} #2/tex name.
]$}”]

[intro(x, p, t) name= “
intro(#1.
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, #2.
, #3.
)”]

[x/intro(y, p, t) tex= “#1.%
\footnote{$[#2/tex name/tex.
\stackrel {\mathrm {pyk}}{=} #3/tex name.
]$}\index{\alpha #3. @\back \makebox[20mm][l]{$[#2/tex
name/tex.]$}#3.}%
\index{pyk: #3. $[#2/tex name/tex.]$}%
\tex{
$[#2/tex name/tex.
\stackrel {\mathrm {tex}}{=} #4/tex name.
]$}”]

[x/intro(y, p, t) name= “#1.
/intro(#2.
, #3.
, #4.
)”]

[x/indexintro(y, i, p, t) tex= “#1.%
\footnote{$[#2/tex name/tex.
\stackrel {\mathrm {pyk}}{=} #4/tex name.
]$}\index{#3.: #4. @#3.: $[#2/tex name/tex.]$ #4.}%
\index{pyk: #4. $[#2/tex name/tex.]$}%
\tex{
$[#2/tex name/tex.
\stackrel {\mathrm {tex}}{=} #5/tex name.
]$}”]

[x/indexintro(y, i, p, t) name= “#1.
/indexintro(#2.
, #3.
, #4.
, #5.
)”]

[x/nameintro(y, p, t, n) tex= “#1.%
\footnote{$[#2/tex name/tex.
\stackrel {\mathrm {pyk}}{=} #3/tex name.
]$}\index{\alpha #3. @\back \makebox[20mm][l]{$[#2/tex
name/tex.]$}#3.}%
\index{pyk: #3. $[#2/tex name/tex.]$}%
\tex{
$[#2/tex name/tex.
\stackrel {\mathrm {tex}}{=} #4/tex name.
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]$}
\tex{
$[#2/tex name/tex.
\stackrel {\mathrm {name}}{=} #5/tex name.
]$}”]

[x/nameintro(y, p, t, n) name= “#1.
/nameintro(#2.
, #3.
, #4.
, #5.
)”]

[x/bothintro(y, i, p, t, n) tex= “#1.%
\footnote{$[#2/tex name/tex.
\stackrel {\mathrm {pyk}}{=} #4/tex name.
]$}\index{#3.: #4. @#3.: $[#2/tex name/tex.]$ #4.}%
\index{pyk: #4. $[#2/tex name/tex.]$}%
\tex{
$[#2/tex name/tex.
\stackrel {\mathrm {tex}}{=} #5/tex name.
]$}
\tex{
$[#2/tex name/tex.
\stackrel {\mathrm {name}}{=} #6/tex name.
]$}”]

[x/bothintro(y, i, p, t, n) name= “#1.
/bothintro(#2.
, #3.
, #4.
, #5.
, #6.
)”]

[[∗ claim= ∗] tex= “
[#1/tex name/tex.
\stackrel {claim}{=}#2.
]”]

[x ∧̃ y
tex= “#1.

\mathrel{\tilde{\wedge}} #2.”]

[x ∧c y
tex= “#1.

\wedge c #2.”]
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[check(∗, ∗) tex= “
\mathbf{check}( #1.
, #2.
)”]

[check2(∗, ∗, ∗) tex= “
\mathbf{check} 2( #1.
, #2.
, #3.
)”]

[check3(∗, ∗, ∗) tex= “
\mathbf{check} 3( #1.
, #2.
, #3.
)”]

[check∗(∗, ∗) tex= “
\mathbf{check}ˆ∗( #1.
, #2.
)”]

[check∗2(∗, ∗, ∗) tex= “
\mathbf{check}ˆ∗ 2( #1.
, #2.
, #3.
)”]

[[∗]· tex= “
\relax [ #1.
\relax ]ˆ{\cdot} ”]

[[x]− tex= “
\relax [ #1.
\relax ]ˆ{-} ”]

[[∗]◦ tex= “
\relax [ #1.
\relax ]ˆ{\circ} ”]

[x spy y
tex= “#1.

\mathrel{spy}#2.”]

[[x]· tex= “
[#1.
]ˆ{\cdot}”]
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[[x]− tex= “
[#1.
]ˆ-”]

[msg tex= “
msg”]

[[x
msg
= y] tex= “

[#1/tex name/tex.
\stackrel {msg}{=} #2.
]”]

[<stmt> tex= “
{<}stmt{>}”]

[stmt tex= “
stmt”]

[[x stmt= y] tex= “
[#1/tex name/tex.
\stackrel {stmt}{=}#2.
]”]

[HeadNil′ tex= “
HeadNil’”]

[HeadPair′ tex= “
HeadPair’”]

[Transitivity′ tex= “
Transitivity’”]

[Contra′ tex= “
Contra’”]

[T′E
tex= “

T’ {E}”]

[L1
tex= “

L {1}”]

[x ` y
tex= “#1.

\vdash #2.”]

[x `̀ y
tex= “#1.

\mathrel {\makebox [0mm][l]{$\vdash $}\, {\vdash }} #2.”]
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[∀x: y tex= “
\forall #1.
\colon #2.”]

[⊥⊥ tex= “
{\makebox [0mm][l]{$\bot $}\, {\bot }}”]

[x ⊕ y
tex= “#1.

\mathrel {\oplus} #2.”]

[x tex= “\underline{#1.}”]

[A tex= “{\cal A}”]

[B tex= “{\cal B}”]

[C tex= “{\cal C}”]

[D tex= “{\cal D}”]

[E tex= “{\cal E}”]

[F tex= “{\cal F}”]

[G tex= “{\cal G}”]

[H tex= “{\cal H}”]

[I tex= “{\cal I}”]

[J tex= “{\cal J}”]

[K tex= “{\cal K}”]

[L tex= “{\cal L}”]

[M tex= “{\cal M}”]

[N tex= “{\cal N}”]

[O tex= “{\cal O}”]

[P tex= “{\cal P}”]

[Q tex= “{\cal Q}”]

[R tex= “{\cal R}”]

[S tex= “{\cal S}”]
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[T tex= “{\cal T}”]

[U tex= “{\cal U}”]

[V tex= “{\cal V}”]

[W tex= “{\cal W}”]

[X tex= “{\cal X}”]

[Y tex= “{\cal Y}”]

[Z tex= “{\cal Z}”]

[tV tex= “#1.
{} ˆ {\cal V}”]

[tC tex= “#1.
{} ˆ {\cal C}”]

[tC
∗ tex= “#1.

{} ˆ {{\cal C} ˆ { \ast }}”]

[x free in y
tex= “#1.
\mathrel {free\ in} #2.”]

[x free in∗ y
tex= “#1.
\mathrel {free\ in}ˆ{\ast} #2.”]

[a free for x in b
tex= “#1.

\mathrel {free\ for} #2.
\mathrel {in} #3.”]

[a free for∗ x in b
tex= “#1.

\mathrel {free\ for}ˆ{\ast} #2.
\mathrel {in} #3.”]

[〈a |x:= b〉 tex= “
\langle #1.
\, {\protect\vert}#2.
{:=}\, #3.
\rangle ”]

[〈∗a |x:= b〉 tex= “
\langle ˆ { \ast } #1.
\, {\protect\vert}#2.
{:=}\, #3.
\rangle ”]
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[x ∈t y
tex= “#1.

\in t #2.”]

[x ⊆T y
tex= “#1.

\subseteq T #2.”]

[x T= y
tex= “#1.

\stackrel{T}{=} #2.”]

[∅ tex= “
\emptyset ”]

[x ∪ {y} tex= “#1.
\cup \{ #2.
\}”]

[x\{y} tex= “#1.
\backslash \{ #2.
\}”]

[x ∪ y
tex= “#1.

\cup #2.”]

[x s= y
tex= “#1.

\stackrel{s}{=} #2.”]

[xI tex= “#1.
{} ˆ { I }”]

[x¤ tex= “#1.
{} ˆ { \rhd }”]

[x@ y
tex= “#1.

\mathop {\char64} #2.”]

[xV tex= “#1.
{} ˆ { V } ”]

[T (x) tex= “
{\cal T}( #1.
)”]

[x+ tex= “#1.
{} ˆ { + } ”]

[x− tex= “#1.
{} ˆ { - } ”]
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[x i.e. y
tex= “#1.

\mathrel {i.e.} #2.”]

[x∗ tex= “#1.
{} ˆ { \ast } ”]

[x; y tex= “#1.
; #2.”]

[Remainder tex= “
Remainder”]

[SI(x, y) tex= “
{\cal S}ˆ{I}(#1.
, #2.
)”]

[S¤(x, y) tex= “
{\cal S}ˆ{\rhd}(#1.
, #2.
)”]

[S¤
1 (x, y, z) tex= “

{\cal S} {1}ˆ{\rhd}(#1.
, #2.
, #3.
)”]

[SE(x, y) tex= “
{\cal S}ˆ{E}(#1.
, #2.
)”]

[SE
1 (x, y, z) tex= “

{\cal S} {1}ˆ{E}(#1.
, #2.
, #3.
)”]

[S+(x, y) tex= “
{\cal S}ˆ{+}(#1.
, #2.
)”]

[S+
1 (x, y, z) tex= “

{\cal S} {1}ˆ{+}(#1.
, #2.
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, #3.
)”]

[S−(x, y) tex= “
{\cal S}ˆ{-}(#1.
, #2.
)”]

[S−1 (x, y, z) tex= “
{\cal S} {1}ˆ{-}(#1.
, #2.
, #3.
)”]

[S∗(x, y) tex= “
{\cal S}ˆ{\ast}(#1.
, #2.
)”]

[S∗1 (x, y, z) tex= “
{\cal S} {1}ˆ{\ast}(#1.
, #2.
, #3.
)”]

[S∗2 (c, t, q, d) tex= “
{\cal S} {2}ˆ{\ast}(#1.
, #2.
, #3.
, #4.
)”]

[S@(x, y) tex= “
{\cal S}ˆ{\char64}(#1.
, #2.
)”]

[S@
1 (c, t, q) tex= “

{\cal S} {1}ˆ{\char64}(#1.
, #2.
, #3.
)”]

[S`(x, y) tex= “
{\cal S}ˆ{\vdash}(#1.
, #2.
)”]
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[S`1 (x, y, z, u) tex= “
{\cal S} {1}ˆ{\vdash}(#1.
, #2.
, #3.
, #4.
)”]

[S `̀ (x, y) tex= “
{\cal S}ˆ{\makebox [0mm][l]{\scriptsize $\vdash $}\, {\vdash
}}(#1.
, #2.
)”]

[S `̀1 (x, y, z, u) tex= “
{\cal S} {1}ˆ{\makebox [0mm][l]{\scriptsize $\vdash $}\, {\vdash
}}(#1.
, #2.
, #3.
, #4.
)”]

[S i.e.(x, y) tex= “
{\cal S}ˆ{i.e.}(#1.
, #2.
)”]

[S i.e.
1 (x, y, z, u) tex= “

{\cal S} {1}ˆ{i.e.}(#1.
, #2.
, #3.
, #4.
)”]

[S i.e.
2 (c, t, a, q, d) tex= “

{\cal S} {2}ˆ{i.e.}(#1.
, #2.
, #3.
, #4.
, #5.
)”]

[S∀(x, y) tex= “
{\cal S}ˆ{\forall}(#1.
, #2.
)”]
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[S∀1 (c, t, v, q) tex= “
{\cal S} {1}ˆ{\forall}(#1.
, #2.
, #3.
, #4.
)”]

[S ;(x, y) tex= “
{\cal S}ˆ{; }(#1.
, #2.
)”]

[S ;
1(x, y, z)

tex= “
{\cal S} {1}ˆ{; }(#1.
, #2.
, #3.
)”]

[S ;
2(c, t, p, q) tex= “

{\cal S} {2}ˆ{; }(#1.
, #2.
, #3.
, #4.
)”]

[x-color(y) tex= “#1.
\mbox {-color}( #2.
)”]

[x-color∗(y) tex= “#1.
\mbox {-color}ˆ{\ast}( #2.
)”]

[error(m, t) tex= “
error(#1/tex name.
, #2.
)”]

[error2(m, t) tex= “
error {2}(#1/tex name.
, #2.
)”]

[xE tex= “#1.
{} ˆ { E }”]
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[S(x, y) tex= “
{\cal S}(#1.
, #2.
)”]

[p proves t
tex= “#1.
\ proves\ #2.”]

[proof(p, t, c) tex= “
proof( #1.
, #2.
, #3.
)”]

[proof2(q, t) tex= “
proof {2}( #1.
, #2.
)”]

[x ∈c y
tex= “#1.

\in c #2.”]

[claims(t, c, r) tex= “
claims( #1.
, #2.
, #3.
)”]

[claims2(t, c, r)
tex= “

claims 2( #1.
, #2.
, #3.
)”]

[<proof> tex= “
{<}proof{>}”]

[proof tex= “
proof”]

[[Lemma x: y] tex= “
[ \mathbf{Lemma\ } #1.
\colon #2.
]”]

[[Proof of x: y] tex= “
[ \mathbf{Proof\ of\ }#1/tex name/tex.
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\colon #2.
]”]

[[x lemma y: z] tex= “
[ #1.
\mathbf{\ lemma\ } #2.
\colon #3.
]”]

[HeadNil′′ tex= “
HeadNil’’”]

[[x antilemma y: z] tex= “
[ #1.
\mathbf{\ antilemma\ } #2.
\colon #3.
]”]

[Contra′′ tex= “
Contra’’”]

[V1(c)
tex= “

{\cal V} 1( #1.
)”]

[V2(c, p) tex= “
{\cal V} 2( #1.
, #2.
)”]

[V3(c, r, p, d) tex= “
{\cal V} 3( #1.
, #2.
, #3.
, #4.
)”]

[V4(c, p) tex= “
{\cal V} 4( #1.
, #2.
)”]

[V7(c, r, i, q) tex= “
{\cal V} 7( #1.
, #2.
, #3.
, #4.
)”]
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[V6(c, r, p, q) tex= “
{\cal V} 6( #1.
, #2.
, #3.
, #4.
)”]

[V5(c, r, a, q) tex= “
{\cal V} 5( #1.
, #2.
, #3.
, #4.
)”]

[Rule tactic tex= “
Rule\ tactic”]

[rule(c, p) tex= “
rule( #1.
, #2.
)”]

[rule1(s, t)
tex= “
rule 1( #1.
, #2.
)”]

[Cut(a, b) tex= “
Cut( #1.
, #2.
)”]

[Head⊕(s) tex= “
Head {\oplus} ( #1.
)”]

[Tail⊕(s) tex= “
Tail {\oplus} ( #1.
)”]

[[x rule y: z] tex= “
[ #1.
\mathbf{\ rule\ } #2.
\colon #3.
]”]
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[[x antirule y: z] tex= “
[ #1.
\mathbf{\ antirule\ } #2.
\colon #3.
]”]

[HeadPair′′ tex= “
HeadPair’’”]

[Transitivity′′ tex= “
Transitivity’’”]

[HeadNil tex= “
HeadNil”]

[HeadPair tex= “
HeadPair”]

[Transitivity tex= “
Transitivity”]

[Contra tex= “
Contra”]

[TE
tex= “

T E”]

[[Theory n] tex= “
[ \mathbf{Theory\ } #1.
]”]

[theory2(t, c)
tex= “

theory 2( #1.
, #2.
)”]

[theory3(c, n) tex= “
theory 3( #1.
, #2.
)”]

[theory4(c, n, s) tex= “
theory 4( #1.
, #2.
, #3.
)”]
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[Plus(a, b) tex= “
Plus( #1.
, #2.
)”]

[Reflexivity tex= “
Reflexivity”]

[Commutativity tex= “
Commutativity”]

[parm(t, s, n) tex= “
parm(#1.
, #2.
, #3.
)”]

[parm∗(t, s, n) tex= “
parmˆ∗(#1.
, #2.
, #3.
)”]

[inst(t, s) tex= “
inst(#1.
, #2.
)”]

[inst∗(t, s) tex= “
instˆ∗(#1.
, #2.
)”]

[occur(t, u, s) tex= “
occur(#1.
, #2.
, #3.
)”]

[occur∗(t, u, s) tex= “
occurˆ∗(#1.
, #2.
, #3.
)”]

[unify(t = u, s) tex= “
unify(#1.
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=#2.
, #3.
)”]

[unify∗(t = u, s) tex= “
unifyˆ∗(#1.
=#2.
, #3.
)”]

[unify2(t = u, s) tex= “
unify 2(#1.
=#2.
, #3.
)”]

[Reflexivity1
tex= “

Reflexivity 1”]

[Commutativity1
tex= “

Commutativity 1”]

[<tactic> tex= “
{<}tactic{>}”]

[tactic tex= “
tactic”]

[[x tactic= y] tex= “
[#1/tex name/tex.
\stackrel {tactic}{=}#2.
]”]

[P(t, s, c) tex= “
{\cal P}( #1.
, #2.
, #3.
)”]

[P∗(t, s, c) tex= “
{\cal P}ˆ∗( #1.
, #2.
, #3.
)”]

[p0
tex= “

p 0”]
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[x ¤ y
tex= “#1.

\rhd #2.”]

[x ¤¤ y
tex= “#1.

\mathrel {\makebox [0mm][l]{$\rhd $}\, {\rhd }} #2.”]

[x À y
tex= “#1.

\gg #2.”]

[conclude1(t, c)
tex= “

conclude 1 ( #1.
, #2.
)”]

[conclude2(a, t, c)
tex= “

conclude 2 ( #1.
, #2.
, #3.
)”]

[conclude3(a, t, l, s)
tex= “

conclude 3 ( #1.
, #2.
, #3.
, #4.
)”]

[conclude4(a, l)
tex= “

conclude 4 ( #1.
, #2.
)”]

[t proof of s : p
tex= “

\if\relax\csname lgwprooflinep\endcsname
\def\lgwprooflinep{x}
\newcount\lgwproofline
\fi
\begingroup
\def\insideproof{x}
\lgwproofline=0 #1.
\mathbf {\ proof\ of\ } #2.
\colon #3.
\gdef\lgwella{\relax}
\gdef\lgwellb{\relax}
\gdef\lgwellc{\relax}
\gdef\lgwelld{\relax}
\gdef\lgwelle{\relax}
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\gdef\lgwellf{\relax}
\gdef\lgwellg{\relax}
\gdef\lgwellh{\relax}
\gdef\lgwelli{\relax}
\gdef\lgwellj{\relax}
\gdef\lgwellk{\relax}
\gdef\lgwelll{\relax}
\gdef\lgwellm{\relax}
\gdef\lgwelln{\relax}
\gdef\lgwello{\relax}
\gdef\lgwellp{\relax}
\gdef\lgwellq{\relax}
\gdef\lgwellr{\relax}
\gdef\lgwells{\relax}
\gdef\lgwellt{\relax}
\gdef\lgwellu{\relax}
\gdef\lgwellv{\relax}
\gdef\lgwellw{\relax}
\gdef\lgwellx{\relax}
\gdef\lgwelly{\relax}
\gdef\lgwellz{\relax}
\gdef\lgwellbiga{\relax}
\gdef\lgwellbigb{\relax}
\gdef\lgwellbigc{\relax}
\gdef\lgwellbigd{\relax}
\gdef\lgwellbige{\relax}
\gdef\lgwellbigf{\relax}
\gdef\lgwellbigg{\relax}
\gdef\lgwellbigh{\relax}
\gdef\lgwellbigi{\relax}
\gdef\lgwellbigj{\relax}
\gdef\lgwellbigk{\relax}
\gdef\lgwellbigl{\relax}
\gdef\lgwellbigm{\relax}
\gdef\lgwellbign{\relax}
\gdef\lgwellbigo{\relax}
\gdef\lgwellbigp{\relax}
\gdef\lgwellbigq{\relax}
\gdef\lgwellbigr{\relax}
\gdef\lgwellbigs{\relax}
\gdef\lgwellbigt{\relax}
\gdef\lgwellbigu{\relax}
\gdef\lgwellbigv{\relax}
\gdef\lgwellbigw{\relax}
\gdef\lgwellbigx{\relax}
\gdef\lgwellbigy{\relax}
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\gdef\lgwellbigz{\relax}
\endgroup ”]

[t proof of s : p
name= “#1.

\mathbf{\ proof\ of\ } #2.
: #3.”]

[Line l : a À i; p tex= “
\newline \makebox [0.1\textwidth]{}%
\parbox [b]{0.4\textwidth }{\raggedright
\setlength {\parindent }{-0.1\textwidth }%
\makebox [0.1\textwidth ][l]{$#1.
$:}$#2.
{}\gg {}$}\quad
\parbox [t]{0.4\textwidth }{$#3.
$\hfill \makebox [0mm][l]{\quad ; }}#4.”]

[Line l : a À i; p name= “
Line \, #1.
: #2.
\gg #3.
; #4.”]

[Last line a À i 2
tex= “

\newline \makebox [0.1\textwidth]{}%
\parbox [b]{0.4\textwidth }{\raggedright
\setlength {\parindent }{-0.1\textwidth }%
\makebox [0.1\textwidth ][l]{$
\if \relax \csname lgwprooflinep\endcsname L ? \else
\global \advance \lgwproofline by 1
L\ifnum \lgwproofline <10 0\fi \number \lgwproofline
\fi
$:}$#1.
{}\gg {}$}\quad
\parbox [t]{0.4\textwidth }{$#2.
$\hfill \makebox [0mm][l]{\quad \makebox[0mm]{$\Box$}}}”]

[Last line a À i 2
name= “

Last\ line \, #1.
\gg #2.
\, \Box”]

[Line l : Premise À i; p tex= “
\newline \makebox [0.1\textwidth ][l]{$#1.
$:}\makebox [0.4\textwidth ][l]{$Premise{}\gg{}$}\quad
\parbox [t]{0.4\textwidth }{$#2.
$\hfill \makebox [0mm][l]{\quad ; }}#3.”]

137



[Line l : Premise À i; p name= “
Line \, #1.
: Premise \gg #2.
;#3.”]

[Line l : Side-condition À i; p tex= “
\newline \makebox [0.1\textwidth ][l]{$#1.
$:}\makebox [0.4\textwidth ][l]{%
$\mbox{Side-condition}{}\gg{}$}\quad
\parbox [t]{0.4\textwidth }{$#2.
$\hfill \makebox [0mm][l]{\quad ; }}#3.”]

[Line l : Side-condition À i; p name= “
Line \, #1.
: \mbox{Side-condition} \gg #2.
; #3.”]

[Arbitrary À i; p tex= “
\newline \makebox [0.1\textwidth ][l]{$
\if \relax \csname lgwprooflinep\endcsname L ? \else
\global \advance \lgwproofline by 1
L\ifnum \lgwproofline <10 0\fi \number \lgwproofline
\fi
$:}\makebox [0.4\textwidth ][l]{$Arbitrary{}\gg{}$}\quad
\parbox [t]{0.4\textwidth }{$#1.
$\hfill \makebox [0mm][l]{\quad ; }}#2.”]

[Arbitrary À i; p name= “
Arbitrary \gg #1.
;#2.”]

[Local À a = i; p tex= “
\newline\makebox[0.1\textwidth][l]{$
\if \relax \csname lgwprooflinep\endcsname L ? \else
\global \advance \lgwproofline by 1
L\ifnum \lgwproofline <10 0\fi \number \lgwproofline
\fi
$:}%
\makebox[0.4\textwidth][l]{$Local{}\gg{}$}%
\quad%
\parbox[t]{0.4\textwidth}{$#1.
= #2.
$\hfill\makebox[0mm][l]{\quad ; }}#3.”]

[Local À a = i; p name= “
Local \gg #1.
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= #2.
; #3.”]

[name tex= “
\mathrm{name}”]

[ $x$ tex= “$#1.$”]

[ $x$ name= “
\ \$#1.\$\linebreak[0]\ ”]

[bracket x end bracket tex= “$[#1.]$”]

[bracket x end bracket name= “
\mbox{bracket $#1.$ end bracket}”]

[big bracket x end bracket tex= “$\left[#1.\right]$”]

[big bracket x end bracket name= “
\mbox{big bracket $#1.$ end bracket}”]

[[x ./ y] tex= “
[#1/tex name/tex.
\bowtie#2.
]”]

[[y x→ z] tex= “
[#2/tex name/tex.
\stackrel{#1.
}{\rightarrow}#3.
]”]

[pyk tex= “
\mathrm{pyk}”]

[x tex= “
\mathsf{x}”]

[y tex= “
\mathsf{y}”]

[z tex= “
\mathsf{z}”]

[tex tex= “
\mathrm{tex}”]

[name tex= “
\mathrm{name}”]
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[ $x$ tex= “$#1.$”]

[ $x$ name= “
\ \$#1.\$\linebreak[0]\ ”]

[bracket x end bracket tex= “$[#1.]$”]

[bracket x end bracket name= “
\mbox{bracket $#1.$ end bracket}”]

[big bracket x end bracket tex= “$\left[#1.\right]$”]

[big bracket x end bracket name= “
\mbox{big bracket $#1.$ end bracket}”]

A.3 Further TEX definitions

This section contains tex definitions in an old style which the author has not
yet turned into the style used in Appendix A.2

[∗ tex= “
\ast ”]

[∗ ’ ∗ tex= “#1.
\mathbin {\mbox {’}}#2.”]

[∗ ‘ ∗ tex= “#1.
\mathbin {\mbox {‘}}#2.”]

[λ ∗ .∗ tex= “
\lambda #1.
.#2.”]

[Λ∗ tex= “
\Lambda #1.”]

[T tex= “
\mathsf {T}”]

[if(∗, ∗, ∗) tex= “
\mathrm {if}(#1.
, \linebreak [0]#2.
, \linebreak [0]#3.
)”]

[val tex= “
\mathrm {val}”]

[claim tex= “
\mathrm {claim}”]

[[∗ ∗⇒ ∗] tex= “
[#2/tex name/tex.
\stackrel {#1.
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}{\Rightarrow }#3.
]”]

[⊥ tex= “
\bot ”]

[f(∗) tex= “
f(#1.
)”]

[(∗)I tex= “
(#1.
){}ˆ{I} ”]

[F tex= “
\mathsf {F}”]

[0 tex= “
\underline {0}”]

[1 tex= “
\underline {1}”]

[2 tex= “
\underline {2}”]

[3 tex= “
\underline {3}”]

[4 tex= “
\underline {4}”]

[5 tex= “
\underline {5}”]

[6 tex= “
\underline {6}”]

[7 tex= “
\underline {7}”]

[8 tex= “
\underline {8}”]

[9 tex= “
\underline {9}”]

[0 tex= “
0”]

[1 tex= “
1”]

[2 tex= “
2”]

[3 tex= “
3”]

[4 tex= “
4”]
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[5 tex= “
5”]

[6 tex= “
6”]

[7 tex= “
7”]

[8 tex= “
8”]

[9 tex= “
9”]

[a tex= “
\mathsf {a}”]

[b tex= “
\mathsf {b}”]

[c tex= “
\mathsf {c}”]

[d tex= “
\mathsf {d}”]

[e tex= “
\mathsf {e}”]

[f tex= “
\mathsf {f}”]

[g tex= “
\mathsf {g}”]

[h tex= “
\mathsf {h}”]

[i tex= “
\mathsf {i}”]

[j tex= “
\mathsf {j}”]

[k tex= “
\mathsf {k}”]

[l tex= “
\mathsf {l}”]

[m tex= “
\mathsf {m}”]

[n tex= “
\mathsf {n}”]

[o tex= “
\mathsf {o}”]
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[p tex= “
\mathsf {p}”]

[q tex= “
\mathsf {q}”]

[r tex= “
\mathsf {r}”]

[s tex= “
\mathsf {s}”]

[t tex= “
\mathsf {t}”]

[u tex= “
\mathsf {u}”]

[v tex= “
\mathsf {v}”]

[w tex= “
\mathsf {w}”]

[(∗)M tex= “
(#1.
)ˆM”]

[If(∗, ∗, ∗) tex= “
\mathrm {If}(#1.
, \linebreak [0]#2.
, \linebreak [0]#3.
)”]

[array{∗} ∗ end array tex= “
\begin {array}{#1.
}#2.
\end {array}”]

[array{∗} ∗ end array name= “\mathrm {array}\{#1.
\}#2.
\mathrm {end\ array}”]

[l tex= “
l”]

[c tex= “
c”]

[r tex= “
r”]

[empty tex= “
”]

[empty name= “
\mathrm {empty}”]

[〈∗ | ∗ := ∗〉 tex= “
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\langle #1.
\, {|}#2.
{:=}\, #3.
\rangle ”]

[M(∗) tex= “
{\cal M}(#1.
)”]

[apply(∗, ∗) tex= “
\mathbf {apply}(#1.
, #2.
)”]

[apply1(∗, ∗) tex= “
\mathbf {apply} 1(#1.
, #2.
)”]

[∗H tex= “#1.
{}ˆH”]

[∗T tex= “#1.
{}ˆT”]

[∗c tex= “#1.
{}ˆc”]

[∗d tex= “#1.
{}ˆd”]

[∗U tex= “#1.
{}ˆU”]

[∗h tex= “#1.
{}ˆh”]

[∗t tex= “#1.
{}ˆt”]

[∗s tex= “#1.
{}ˆs”]

[∗B tex= “#1.
{}ˆB”]

[∗C tex= “#1.
{}ˆC”]

[∗M tex= “#1.
{}ˆM”]

[Ũ(∗) tex= “
\tilde {{\cal U}}(#1.
)”]

[U(∗) tex= “
{\cal U}(#1.
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)”]
[UM(∗) tex= “

{\cal U}ˆM(#1.
)”]

[∗ .̇ . ∗ tex= “#1.
\mathrel { \dot { . \, . } }#2.”]

[∗ .̇ . ∗ tex= “#1.
\mathrel { \underline { \dot { . \, . } } }#2.”]

[∗ : : ∗ tex= “#1.
\mathrel { \underline { : \, : } }#2.”]

[∗ +2∗ ∗ tex= “#1.
\mathrel { \underline { {+} 2 \ast } }#2.”]

[x : : y
tex= “#1.

\mathrel { : \, : }#2.”]
[∗ +2∗ ∗ tex= “#1.

\mathrel { {+} 2 \ast }#2.”]

[∗ B≈ ∗ tex= “#1.
\stackrel {B}{\approx }#2.”]

[∗ D≈ ∗ tex= “#1.
\stackrel {D}{\approx }#2.”]

[∗ C≈ ∗ tex= “#1.
\stackrel {C}{\approx }#2.”]

[∗ P≈ ∗ tex= “#1.
\stackrel {P}{\approx }#2.”]

[∗ ≈ ∗ tex= “#1.
\approx #2.”]

[∗ = ∗ tex= “#1.
=#2.”]

[∗ +→ ∗ tex= “#1.
\stackrel {+}{\rightarrow }#2.”]

[¬∗ tex= “
{\neg }#1.”]

[∗ ∧ ∗ tex= “#1.
\wedge #2.”]

[∗ ∨ ∗ tex= “#1.
\vee #2.”]

[∗ ‖ ∗ tex= “#1.
\parallel #2.”]

[∗ : ∗ tex= “#1.
:#2.”]
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[∗!∗ tex= “#1.
!#2.”]

[∗
{ ∗
∗

tex= “#1.

\left\{\protect \begin {array}{l}#2.
\\#3.
\protect \end {array}\right.”]

[∗&∗ tex= “#1.
&#2.”]

[∗&∗ name= “#1.
\& #2.”]

[∗\\∗ tex= “#1.
\\ #2.”]

[∗\\∗ name= “#1.
\backslash \backslash #2.”]

[macro tex= “
\mathrm {macro}”]

["value" tex= “
\mbox {\tt \char34}\mathrm {value}\mbox {\tt \char34}”]

["macro" tex= “
\mbox {\tt \char34}\mathrm {macro}\mbox {\tt \char34}”]

[E(∗, ∗, ∗) tex= “
{\cal E}(#1.
, #2.
, #3.
)”]

[E2(∗, ∗, ∗, ∗, ∗) tex= “
{\cal E} 2(#1.
, #2.
, #3.
, #4.
, #5.
)”]

[E3(∗, ∗, ∗, ∗) tex= “
{\cal E} 3(#1.
, #2.
, #3.
, #4.
)”]

[E4(∗, ∗, ∗, ∗) tex= “
{\cal E} 4(#1.
, #2.
, #3.
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, #4.
)”]

[lookup(∗, ∗, ∗) tex= “
\mathbf {lookup}(#1.
, #2.
, #3.
)”]

[abstract(∗, ∗, ∗, ∗) tex= “
\mathbf {abstract}(#1.
, #2.
, #3.
, #4.
)”]

[∗a tex= “#1.
{}ˆa”]

[d∗e tex= “
\lceil #1.
\rceil ”]

[∗0 tex= “#1.
0”]

[∗1 tex= “#1.
1”]

[0b tex= “
0 \mathrm {b}”]

[∗ t= ∗ tex= “#1.
\stackrel {t}{=}#2.”]

[∗ t∗= ∗ tex= “#1.
\stackrel {tˆ∗}{=}#2.”]

[∗[ ∗ ] tex= “#1.
{[}#2.
{]}”]

[M(∗, ∗, ∗) tex= “
{\cal M}(#1.
, #2.
, #3.
)”]

[M2(∗, ∗, ∗, ∗) tex= “
{\cal M} 2(#1.
, #2.
, #3.
, #4.
)”]
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[s0
tex= “

s 0”]
[M∗(∗, ∗, ∗) tex= “

{\cal M}ˆ∗(#1.
, #2.
, #3.
)”]

[zip(∗, ∗) tex= “
\mathbf {zip}(#1.
, #2.
)”]

[assoc1(∗, ∗, ∗) tex= “
\mathbf {assoc} 1(#1.
, #2.
, #3.
)”]

[∗ {∗} tex= “#1.
{#2.
}”]

[∗ {∗} name= “#1.
\ \{#2.
\}”]

[(∗)p tex= “(#1.
)ˆ{\mathbf {p}}”]

([[∗ =̈ ∗] tex→ “
[#1/tex name/tex.
\mathrel {\ddot {=}}#2.
]”])p

[[∗ =̇ ∗] tex= “
[#1/tex name/tex.
\mathrel {\dot {=}}#2.
]”]

[[∗ =́ ∗] tex= “
[#1/tex name/tex.
\mathrel {\acute {=}}#2.
]”]

[[∗ pyk
= ∗] tex= “

[#1/tex name/tex.
\stackrel {\mathrm {pyk}}{=} #2/tex name.
]”]

[[∗ tex= ∗] tex= “
[#1/tex name/tex.
\stackrel {\mathrm {tex}}{=} #2/tex name.
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]”]
[[∗ name= ∗] tex= “

[#1/tex name/tex.
\stackrel {\mathrm {name}}{=} #2/tex name.
]”]

[M̃1
tex= “

\tilde {{\cal M}} 1”]
[M̃2(∗) tex= “

\tilde {{\cal M}} 2(#1.
)”]

[M̃3(∗) tex= “
\tilde {{\cal M}} 3(#1.
)”]

[M̃4(∗, ∗, ∗, ∗) tex= “
\tilde {{\cal M}} 4(#1.
, #2.
, #3.
, #4.
)”]

[M̃(∗, ∗, ∗) tex= “
\tilde {{\cal M}}(#1.
, #2.
, #3.
)”]

[Q̃(∗, ∗, ∗) tex= “
\tilde {{\cal Q}}(#1.
, #2.
, #3.
)”]

[Q̃2(∗, ∗, ∗) tex= “
\tilde {{\cal Q}} 2(#1.
, #2.
, #3.
)”]

[Q̃3(∗, ∗, ∗, ∗) tex= “
\tilde {{\cal Q}} 3(#1.
, #2.
, #3.
, #4.
)”]

[Q̃∗(∗, ∗, ∗) tex= “
\tilde {{\cal Q}}ˆ∗(#1.
, #2.
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, #3.
)”]

[(∗) tex= “
(#1.
)”]

A.4 Line numbers

The following definitions are experimental definitions of line numbers named
“ell a”, “ell b”, etc. which expand into [L01], [L02], etc. in such a way that
proof lines are numbered in succession. The “ell dummy” operator expands
into different line numbers each time it is used and can be used for lines that
are never referenced.

[La
name= “L a”] [Lb

name= “L b”] [Lc
name= “L c”] [Ld

name= “L d”] [Le
name= “L e”]

[Lf
name= “L f”] [Lg

name= “L g”] [Lh
name= “L h”] [Li

name= “L i”] [Lj
name= “L j”]

[Lk
name= “L k”] [Ll

name= “L l”] [Lm
name= “L m”] [Ln

name= “L n”] [Lo
name= “L o”]

[Lp
name= “L p”] [Lq

name= “L q”] [Lr
name= “L r”] [Ls

name= “L s”] [Lt
name= “L t”]

[Lu
name= “L u”] [Lv

name= “L v”] [Lw
name= “L w”] [Lx

name= “L x”]
[Ly

name= “L y”] [Lz
name= “L z”] [LA

name= “L A”] [LB
name= “L B”]

[LC
name= “L C”] [LD

name= “L D”] [LE
name= “L E”] [LF

name= “L F”]
[LG

name= “L G”] [LH
name= “L H”] [LI

name= “L I”] [LJ
name= “L J”]

[LK
name= “L K”] [LL

name= “L L”] [LM
name= “L M”] [LN

name= “L N”]
[LO

name= “L O”] [LP
name= “L P”] [LQ

name= “L Q”] [LR
name= “L R”]

[LS
name= “L S”] [LT

name= “L T”] [LU
name= “L U”] [LV

name= “L V”]
[LW

name= “L W”] [LX
name= “L X”] [LY

name= “L Y”] [LZ
name= “L Z”]

[L?
name= “L ?”]

[La
tex= “

\if \relax \csname lgwprooflinep\endcsname L a \else
\if \relax \csname lgwella\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwella {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwella \fi ”]

[Lb
tex= “

\if \relax \csname lgwprooflinep\endcsname L b \else
\if \relax \csname lgwellb\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellb {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellb \fi ”]

[Lc
tex= “

\if \relax \csname lgwprooflinep\endcsname L c \else
\if \relax \csname lgwellc\endcsname
\global \advance \lgwproofline by 1
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\xdef \lgwellc {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellc \fi ”]

[Ld
tex= “

\if \relax \csname lgwprooflinep\endcsname L d \else
\if \relax \csname lgwelld\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwelld {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwelld \fi ”]

[Le
tex= “

\if \relax \csname lgwprooflinep\endcsname L e \else
\if \relax \csname lgwelle\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwelle {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwelle \fi ”]

[Lf
tex= “

\if \relax \csname lgwprooflinep\endcsname L f \else
\if \relax \csname lgwellf\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellf {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellf \fi ”]

[Lg
tex= “

\if \relax \csname lgwprooflinep\endcsname L g \else
\if \relax \csname lgwellg\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellg {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellg \fi ”]

[Lh
tex= “

\if \relax \csname lgwprooflinep\endcsname L h \else
\if \relax \csname lgwellh\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellh {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellh \fi ”]

[Li
tex= “

\if \relax \csname lgwprooflinep\endcsname L i \else
\if \relax \csname lgwelli\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwelli {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwelli \fi ”]

[Lj
tex= “

\if \relax \csname lgwprooflinep\endcsname L j \else
\if \relax \csname lgwellj\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellj {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellj \fi ”]
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[Lk
tex= “

\if \relax \csname lgwprooflinep\endcsname L k \else
\if \relax \csname lgwellk\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellk {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellk \fi ”]

[Ll
tex= “

\if \relax \csname lgwprooflinep\endcsname L l \else
\if \relax \csname lgwelll\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwelll {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwelll \fi ”]

[Lm
tex= “

\if \relax \csname lgwprooflinep\endcsname L m \else
\if \relax \csname lgwellm\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellm {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellm \fi ”]

[Ln
tex= “

\if \relax \csname lgwprooflinep\endcsname L n \else
\if \relax \csname lgwelln\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwelln {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwelln \fi ”]

[Lo
tex= “

\if \relax \csname lgwprooflinep\endcsname L o \else
\if \relax \csname lgwello\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwello {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwello \fi ”]

[Lp
tex= “

\if \relax \csname lgwprooflinep\endcsname L p \else
\if \relax \csname lgwellp\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellp {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellp \fi ”]

[Lq
tex= “

\if \relax \csname lgwprooflinep\endcsname L q \else
\if \relax \csname lgwellq\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellq {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellq \fi ”]

[Lr
tex= “

\if \relax \csname lgwprooflinep\endcsname L r \else
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\if \relax \csname lgwellr\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellr {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellr \fi ”]

[Ls
tex= “

\if \relax \csname lgwprooflinep\endcsname L s \else
\if \relax \csname lgwells\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwells {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwells \fi ”]

[Lt
tex= “

\if \relax \csname lgwprooflinep\endcsname L t \else
\if \relax \csname lgwellt\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellt {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellt \fi ”]

[Lu
tex= “

\if \relax \csname lgwprooflinep\endcsname L u \else
\if \relax \csname lgwellu\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellu {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellu \fi ”]

[Lv
tex= “

\if \relax \csname lgwprooflinep\endcsname L v \else
\if \relax \csname lgwellv\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellv {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellv \fi ”]

[Lw
tex= “

\if \relax \csname lgwprooflinep\endcsname L w \else
\if \relax \csname lgwellw\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellw {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellw \fi ”]

[Lx
tex= “

\if \relax \csname lgwprooflinep\endcsname L x \else
\if \relax \csname lgwellx\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellx {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellx \fi ”]

[Ly
tex= “

\if \relax \csname lgwprooflinep\endcsname L y \else
\if \relax \csname lgwelly\endcsname
\global \advance \lgwproofline by 1
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\xdef \lgwelly {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwelly \fi ”]

[Lz
tex= “

\if \relax \csname lgwprooflinep\endcsname L z \else
\if \relax \csname lgwellz\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellz {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellz \fi ”]

[LA
tex= “

\if \relax \csname lgwprooflinep\endcsname L A \else
\if \relax \csname lgwellbiga\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbiga {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbiga \fi ”]

[LB
tex= “

\if \relax \csname lgwprooflinep\endcsname L B \else
\if \relax \csname lgwellbigb\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigb {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigb \fi ”]

[LC
tex= “

\if \relax \csname lgwprooflinep\endcsname L C \else
\if \relax \csname lgwellbigc\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigc {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigc \fi ”]

[LD
tex= “

\if \relax \csname lgwprooflinep\endcsname L D \else
\if \relax \csname lgwellbigd\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigd {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigd \fi ”]

[LE
tex= “

\if \relax \csname lgwprooflinep\endcsname L E \else
\if \relax \csname lgwellbige\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbige {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbige \fi ”]

[LF
tex= “

\if \relax \csname lgwprooflinep\endcsname L F \else
\if \relax \csname lgwellbigf\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigf {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigf \fi ”]
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[LG
tex= “

\if \relax \csname lgwprooflinep\endcsname L G \else
\if \relax \csname lgwellbigg\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigg {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigg \fi ”]

[LH
tex= “

\if \relax \csname lgwprooflinep\endcsname L H \else
\if \relax \csname lgwellbigh\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigh {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigh \fi ”]

[LI
tex= “

\if \relax \csname lgwprooflinep\endcsname L I \else
\if \relax \csname lgwellbigi\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigi {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigi \fi ”]

[LJ
tex= “

\if \relax \csname lgwprooflinep\endcsname L J \else
\if \relax \csname lgwellbigj\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigj {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigj \fi ”]

[LK
tex= “

\if \relax \csname lgwprooflinep\endcsname L K \else
\if \relax \csname lgwellbigk\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigk {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigk \fi ”]

[LL
tex= “

\if \relax \csname lgwprooflinep\endcsname L L \else
\if \relax \csname lgwellbigl\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigl {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigl \fi ”]

[LM
tex= “

\if \relax \csname lgwprooflinep\endcsname L M \else
\if \relax \csname lgwellbigm\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigm {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigm \fi ”]

[LN
tex= “

\if \relax \csname lgwprooflinep\endcsname L N \else
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\if \relax \csname lgwellbign\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbign {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbign \fi ”]

[LO
tex= “

\if \relax \csname lgwprooflinep\endcsname L O \else
\if \relax \csname lgwellbigo\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigo {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigo \fi ”]

[LP
tex= “

\if \relax \csname lgwprooflinep\endcsname L P \else
\if \relax \csname lgwellbigp\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigp {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigp \fi ”]

[LQ
tex= “

\if \relax \csname lgwprooflinep\endcsname L Q \else
\if \relax \csname lgwellbigq\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigq {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigq \fi ”]

[LR
tex= “

\if \relax \csname lgwprooflinep\endcsname L R \else
\if \relax \csname lgwellbigr\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigr {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigr \fi ”]

[LS
tex= “

\if \relax \csname lgwprooflinep\endcsname L S \else
\if \relax \csname lgwellbigs\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigs {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigs \fi ”]

[LT
tex= “

\if \relax \csname lgwprooflinep\endcsname L T \else
\if \relax \csname lgwellbigt\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigt {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigt \fi ”]

[LU
tex= “

\if \relax \csname lgwprooflinep\endcsname L U \else
\if \relax \csname lgwellbigu\endcsname
\global \advance \lgwproofline by 1
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\xdef \lgwellbigu {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigu \fi ”]

[LV
tex= “

\if \relax \csname lgwprooflinep\endcsname L V \else
\if \relax \csname lgwellbigv\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigv {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigv \fi ”]

[LW
tex= “

\if \relax \csname lgwprooflinep\endcsname L W \else
\if \relax \csname lgwellbigw\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigw {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigw \fi ”]

[LX
tex= “

\if \relax \csname lgwprooflinep\endcsname L X \else
\if \relax \csname lgwellbigx\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigx {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigx \fi ”]

[LY
tex= “

\if \relax \csname lgwprooflinep\endcsname L Y \else
\if \relax \csname lgwellbigy\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigy {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigy \fi ”]

[LZ
tex= “

\if \relax \csname lgwprooflinep\endcsname L Z \else
\if \relax \csname lgwellbigz\endcsname
\global \advance \lgwproofline by 1
\xdef \lgwellbigz {L\ifnum \lgwproofline <10 0\fi \number \lgwproofline }
\fi \lgwellbigz \fi ”]

[L?
tex= “

\if \relax \csname lgwprooflinep\endcsname L ? \else
\global \advance \lgwproofline by 1
L\ifnum \lgwproofline <10 0\fi \number \lgwproofline
\fi ”]

A.5 Characters

A.5.1 Tex aspects of characters

[
x

tex= “
#1.”]
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[ x
tex= “ #1.”]

[!x tex= “!#1.”]
["x tex= “"#1.”]
[#x

tex= “#.#1.”]
[$x

tex= “$#1.”]
[%x

tex= “%#1.”]
[&x

tex= “&#1.”]
[’x tex= “’#1.”]
[(x tex= “(#1.”]
[)x tex= “)#1.”]
[∗x tex= “∗#1.”]
[+x

tex= “+#1.”]
[, x tex= “,#1.”]
[-x tex= “-#1.”]
[.x tex= “.#1.”]
[/x

tex= “/#1.”]
[0x

tex= “0#1.”]
[1x

tex= “1#1.”]
[2x

tex= “2#1.”]
[3x

tex= “3#1.”]
[4x

tex= “4#1.”]
[5x

tex= “5#1.”]
[6x

tex= “6#1.”]
[7x

tex= “7#1.”]
[8x

tex= “8#1.”]
[9x

tex= “9#1.”]
[:x tex= “:#1.”]
[; x tex= “; #1.”]
[<x

tex= “<#1.”]
[=x

tex= “=#1.”]
[>x

tex= “>#1.”]
[?x tex= “?#1.”]
[@x

tex= “@#1.”]
[Ax

tex= “A#1.”]
[Bx

tex= “B#1.”]
[Cx

tex= “C#1.”]
[Dx

tex= “D#1.”]
[Ex

tex= “E#1.”]
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[Fx
tex= “F#1.”]

[Gx
tex= “G#1.”]

[Hx
tex= “H#1.”]

[Ix tex= “I#1.”]
[Jx

tex= “J#1.”]
[Kx

tex= “K#1.”]
[Lx

tex= “L#1.”]
[Mx

tex= “M#1.”]
[Nx

tex= “N#1.”]
[Ox

tex= “O#1.”]
[Px

tex= “P#1.”]
[Qx

tex= “Q#1.”]
[Rx

tex= “R#1.”]
[Sx

tex= “S#1.”]
[Tx

tex= “T#1.”]
[Ux

tex= “U#1.”]
[Vx

tex= “V#1.”]
[Wx

tex= “W#1.”]
[Xx

tex= “X#1.”]
[Yx

tex= “Y#1.”]
[Zx

tex= “Z#1.”]
[[x tex= “[#1.”]
[\x tex= “\#1.”]
[]x tex= “]#1.”]
[ˆx

tex= “ˆ#1.”]
[ x

tex= “ #1.”]
[ax

tex= “a#1.”]
[bx

tex= “b#1.”]
[cx tex= “c#1.”]
[dx

tex= “d#1.”]
[ex tex= “e#1.”]
[fx tex= “f#1.”]
[gx

tex= “g#1.”]
[hx

tex= “h#1.”]
[ix tex= “i#1.”]
[jx tex= “j#1.”]
[kx

tex= “k#1.”]
[lx tex= “l#1.”]
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[mx
tex= “m#1.”]

[nx
tex= “n#1.”]

[ox
tex= “o#1.”]

[px
tex= “p#1.”]

[qx
tex= “q#1.”]

[rx tex= “r#1.”]
[sx tex= “s#1.”]
[tx tex= “t#1.”]
[ux

tex= “u#1.”]
[vx

tex= “v#1.”]
[wx

tex= “w#1.”]
[xx

tex= “x#1.”]
[yx

tex= “y#1.”]
[zx tex= “z#1.”]
[‘x tex= “‘#1.”]
[{x tex= “{#1.”]
[|x tex= “|#1.”]
[}x tex= “}#1.”]
[˜x

tex= “˜#1.”]

A.5.2 Tex name aspects of characters

[
x

name= “
\newline #1.”]

[ x
name= “

\linebreak [0]\ \hskip0em plus2.0em{}#1.”]
["x name= “

\mbox {\tt \char34}#1.”]
[#x

name= “
\#.#1.”]

[$x
name= “

\$#1.”]
[%x

name= “
\%#1.”]

[&x
name= “

\&#1.”]
[’x name= “

\mbox {’}#1.”]
[∗x name= “

{∗}#1.”]
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[+x
name= “

{+}#1.”]
[-x name= “

\mbox{-}#1.”]
[:x name= “

{:}#1.”]
[<x

name= “
{<}#1.”]

[=x
name= “

{=}#1.”]
[>x

name= “
{>}#1.”]

[\x name= “
\mbox {$\backslash $}#1.”]

[ˆx
name= “

{\char94}#1.”]
[ x

name= “
\ #1.”]

[‘x name= “
\mbox {‘}#1.”]

[{x name= “
\{#1.”]

[}x name= “
\}#1.”]

[˜x
name= “

\char126 #1.”]

B Pyk definitions

B.1 The pyk language

From the point of view of Logiweb, the pyk language is a source language. A
user may express a Logiweb page in pyk and then run the pyk source through
the pyk compiler to obtain a Logiweb page.

A good way to learn the pyk language is to locate the pyk source of the
present page and study it. The pyk source is likely to be in a file named
“base.pyk”. Plentiful comments in the pyk source explain what is going on.

The name “pyk” is constructed from the name “Volapyk” in the same way
that Rene Thom construct the word “versal” from “universal”: “pyk” is con-
structed by removing “Vola” from “Volapyk”.

Volapyk was an artificial language constructed from several other languages
by simplifying their words and their grammar. As an example, the name of the
language itself is constructed from “Vola” which is a simplification of “World”
and “pyk” which is a simplification of “speak”.
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The pyk language may be used for “spoken mathematics” and may, among
other, be entered through a microphone when editing mathematical text. The
language is partly called “pyk” because of this speach aspect, partly because it
looks like Volapyk in the other sense of that word. As an example, in a proper
setup, the pyk phrase

parenthesis var x plus var y end parenthesis square equals var x
square plus two times var x times var y plus var y square

may correspond to the formula

(x + y)2 = x2 + 2xy + y2

Originally, the pyk language was restricted to use the letters from a to z plus
spaces in order to ensure than anything could be entered through a microphone.
Upon request, however, support for other characters has been added so that one
may instead setup pyk such that the pyk phrase

( x + y ) ^ 2 = x ^ 2 + 2 x y + y ^ 2

generates the formula above or such that the pyk phrase

All A: All B: A => B => A

generates the formula

ΠA : ΠB : A ⇒ B ⇒ A

B.2 Uses of pyk

In principle, the pyk language is not part of Logiweb. The Logiweb standard
merely defines how to interpret Logiweb vectors, i.e. Logiweb pages on binary
format. The only formal link between Logiweb and pyk is the fact that Logiweb
has a predefined concept that is proclaimable under the name of “pyk”. The
pyk language and compiler are just means for producing Logiweb pages. One
could imagine other means for producing Logiweb pages that were completely
independent of pyk.

Nevertheless, authors who publish on Logiweb are encouraged to give a pyk
definition of each and every construct that is introduced on the page. In the
future, the pyk definitions may be used for entering mathematics through a
microphone or for reading mathematics e.g. for blind people.

At the time of writing, pyk definitions have a much more immediate use as
explained in the following.

At the time of writing, the pyk compiler is the only realistic means for
producing Logiweb pages. The pyk compiler takes a pyk source text as input
and produces a Logiweb page as output. The pyk compiler also has facilities for
rendering pages, for making various soundness checks, and for printing warnings
and error messages.
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A pyk source consists of a preamble and a body. The preamble defines the
bibliography and dictionary of the page. The bibliography is a list of referenced
pages and the dictionary is the list of all constructs introduced on the page.
The preamble also defines other things like the priority and associativity of
constructs and preliminary pyk definitions for all constructs.

When the pyk compiler reads the preamble, it loads all pages referenced in
the bibliography. Then it extracts all pyk definitions from all referenced pages,
merge them with the preliminary pyk definitions of the preamble, and use the
resulting grammar for parsing the body of the page.

The pyk compiler does not care whether or not the resulting grammar is
ambiguous as long as the body of the page has one and only one possible inter-
pretation.

When the pyk compiler generates the Logiweb page, all the preliminary pyk
definitions from the preamble are lost. Only pyk definitions explicitly included
in the body by the author make their way to the resulting Logiweb page.

Hence, if you publish a Logiweb page and want to make the life easy for
people who want to build on your work, you’d better include pyk definitions of
each and every construct on your page. Do not omit constructs you think are
unimportant or “internal to the page” in an information hiding sense. In the
context of proof checking there is no such thing as an unimportant construct or
an “internal construct” that one should not look at.

B.3 Autogeneration of pyk definitions

The preamble of a pyk source text lists the pyk definitions of all constructs
introduced on the page defined by the source text. When the pyk compiler
sees the keyword ’Pyk’ (or whatever the keyword has been changed to by the
-keyword option of the compiler) then it generates a list of pyk definitions, one
for each construct.

The pyk compiler separates pyk definitions with construct 17 of the bed
page. Construct 17 of the present page reads x linebreak[4] y.

B.4 Autogenerated pyk definitions

([bracket ∗ end bracket
pyk→ “bracket " end bracket”]

[big bracket ∗ end bracket
pyk→ “big bracket " end bracket”]

[ $ ∗ $
pyk→ “math " end math”]

[flush left [∗] pyk→ “flush left " end left”]

[x
pyk→ “var x”]

[y
pyk→ “var y”]

[z
pyk→ “var z”]

[[∗ ./ ∗] pyk→ “proclaim " as " end proclaim”]

[[∗ ∗→ ∗] pyk→ “define " of " as " end define”]

163



[pyk
pyk→ “pyk”]

[tex
pyk→ “tex”]

[name
pyk→ “tex name”]

[prio
pyk→ “priority”]

[∗ pyk→ “x”]

[T
pyk→ “true”]

[if(∗, ∗, ∗) pyk→ “if " then " else " end if”]

[[∗ ∗⇒ ∗] pyk→ “introduce " of " as " end introduce”]

[val
pyk→ “value”]

[claim
pyk→ “claim”]

[⊥ pyk→ “bottom”]

[f(∗) pyk→ “function f of " end function”]

[(∗)I pyk→ “identity " end identity”]

[F
pyk→ “false”]

[0
pyk→ “untagged zero”]

[1
pyk→ “untagged one”]

[2
pyk→ “untagged two”]

[3
pyk→ “untagged three”]

[4
pyk→ “untagged four”]

[5
pyk→ “untagged five”]

[6
pyk→ “untagged six”]

[7
pyk→ “untagged seven”]

[8
pyk→ “untagged eight”]

[9
pyk→ “untagged nine”]

[0
pyk→ “zero”]

[1
pyk→ “one”]

[2
pyk→ “two”]

[3
pyk→ “three”]

[4
pyk→ “four”]

[5
pyk→ “five”]

[6
pyk→ “six”]

[7
pyk→ “seven”]

[8
pyk→ “eight”]

[9
pyk→ “nine”]

[a
pyk→ “var a”]
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[b
pyk→ “var b”]

[c
pyk→ “var c”]

[d
pyk→ “var d”]

[e
pyk→ “var e”]

[f
pyk→ “var f”]

[g
pyk→ “var g”]

[h
pyk→ “var h”]

[i
pyk→ “var i”]

[j
pyk→ “var j”]

[k
pyk→ “var k”]

[l
pyk→ “var l”]

[m
pyk→ “var m”]

[n
pyk→ “var n”]

[o
pyk→ “var o”]

[p
pyk→ “var p”]

[q
pyk→ “var q”]

[r
pyk→ “var r”]

[s
pyk→ “var s”]

[t
pyk→ “var t”]

[u
pyk→ “var u”]

[v
pyk→ “var v”]

[w
pyk→ “var w”]

[(∗)M pyk→ “tagged parenthesis " end tagged”]

[If(∗, ∗, ∗) pyk→ “tagged if " then " else " end if”]

[array{∗} ∗ end array
pyk→ “array " is " end array”]

[l
pyk→ “left”]

[c
pyk→ “center”]

[r
pyk→ “right”]

[empty
pyk→ “empty”]

[〈∗ | ∗ := ∗〉 pyk→ “substitute " set " to " end substitute”]

[M(∗) pyk→ “map tag " end tag”]

[Ũ(∗) pyk→ “raw map untag " end untag”]

[U(∗) pyk→ “map untag " end untag”]

[UM(∗) pyk→ “normalizing untag " end untag”]

[apply(∗, ∗) pyk→ “apply " to " end apply”]
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[apply1(∗, ∗)
pyk→ “apply one " to " end apply”]

[identifier(∗) pyk→ “identifier " end identifier”]

[identifier1(∗, ∗) pyk→ “identifier one " plus id " end identifier”]

[array-plus(∗, ∗) pyk→ “array plus " and " end plus”]

[array-remove(∗, ∗, ∗) pyk→ “array remove " array " level " end remove”]

[array-put(∗, ∗, ∗, ∗) pyk→ “array put " value " array " level " end put”]

[array-add(∗, ∗, ∗, ∗, ∗) pyk→ “array add " value " index " value " level " end
add”]

[bit(∗, ∗) pyk→ “bit " of " end bit”]

[bit1(∗, ∗) pyk→ “bit one " of " end bit”]

[rack
pyk→ “example rack”]

["vector"
pyk→ “vector hook”]

["bibliography"
pyk→ “bibliography hook”]

["dictionary"
pyk→ “dictionary hook”]

["body"
pyk→ “body hook”]

["codex"
pyk→ “codex hook”]

["expansion"
pyk→ “expansion hook”]

["code"
pyk→ “code hook”]

["cache"
pyk→ “cache hook”]

["diagnose"
pyk→ “diagnose hook”]

["pyk"
pyk→ “pyk aspect”]

["tex"
pyk→ “tex aspect”]

["texname"
pyk→ “texname aspect”]

["value"
pyk→ “value aspect”]

["message"
pyk→ “message aspect”]

["macro"
pyk→ “macro aspect”]

["definition"
pyk→ “definition aspect”]

["unpack"
pyk→ “unpack aspect”]

["claim"
pyk→ “claim aspect”]

["priority"
pyk→ “priority aspect”]

["lambda"
pyk→ “lambda identifier”]

["apply"
pyk→ “apply identifier”]

["true"
pyk→ “true identifier”]

["if"
pyk→ “if identifier”]

["quote"
pyk→ “quote identifier”]
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["proclaim"
pyk→ “proclaim identifier”]

["define"
pyk→ “define identifier”]

["introduce"
pyk→ “introduce identifier”]

["hide"
pyk→ “hide identifier”]

["pre"
pyk→ “pre identifier”]

["post"
pyk→ “post identifier”]

[E(∗, ∗, ∗) pyk→ “eval " stack " cache " end eval”]

[E2(∗, ∗, ∗, ∗, ∗) pyk→ “eval two " ref " id " stack " cache " end eval”]

[E3(∗, ∗, ∗, ∗) pyk→ “eval three " function " stack " cache " end eval”]

[E4(∗, ∗, ∗, ∗) pyk→ “eval four " arguments " stack " cache " end eval”]

[lookup(∗, ∗, ∗) pyk→ “lookup " stack " default " end lookup”]

[abstract(∗, ∗, ∗, ∗) pyk→ “abstract " term " stack " cache " end abstract”]

[d∗e pyk→ “quote " end quote”]

[M(∗, ∗, ∗) pyk→ “expand " state " cache " end expand”]

[M2(∗, ∗, ∗, ∗) pyk→ “expand two " definition " state " cache " end expand”]

[M∗(∗, ∗, ∗) pyk→ “expand list " state " cache " end expand”]

[macro
pyk→ “macro”]

[s0
pyk→ “macro state”]

[zip(∗, ∗) pyk→ “zip " with " end zip”]

[assoc1(∗, ∗, ∗) pyk→ “assoc one " address " index " end assoc”]

[(∗)p pyk→ “protect " end protect”]

[self
pyk→ “self”]

[[∗ =̈ ∗] pyk→ “macro define " as " end define”]

[[∗ =̇ ∗] pyk→ “value define " as " end define”]

[[∗ =́ ∗] pyk→ “intro define " as " end define”]

[[∗ pyk
= ∗] pyk→ “pyk define " as " end define”]

[[∗ tex= ∗] pyk→ “tex define " as " end define”]

[[∗ name= ∗] pyk→ “tex name define " as " end define”]

[Priority table[∗] pyk→ “priority table " end table”]

[M̃1
pyk→ “macro define one”]

[M̃2(∗) pyk→ “macro define two " end define”]

[M̃3(∗) pyk→ “macro define three " end define”]

[M̃4(∗, ∗, ∗, ∗) pyk→ “macro define four " state " cache " definition " end define”]

[M̃(∗, ∗, ∗) pyk→ “state expand " state " cache " end expand”]

[Q̃(∗, ∗, ∗) pyk→ “quote expand " term " stack " end expand”]
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[Q̃2(∗, ∗, ∗) pyk→ “quote expand two " term " stack " end expand”]

[Q̃3(∗, ∗, ∗, ∗) pyk→ “quote expand three " term " stack " value " end expand”]

[Q̃∗(∗, ∗, ∗) pyk→ “quote expand star " term " stack " end expand”]

[(∗) pyk→ “parenthesis " end parenthesis”]

[(∗) pyk→ “big parenthesis " end parenthesis”]

[display(∗) pyk→ “display " end display”]

[statement(∗) pyk→ “statement " end statement”]

[[∗]· pyk→ “spying test " end test”]

[[∗]− pyk→ “false spying test " end test”]

[aspect(∗, ∗) pyk→ “aspect " subcodex " end aspect”]

[aspect(∗, ∗, ∗) pyk→ “aspect " term " cache " end aspect”]

[〈∗〉 pyk→ “tuple " end tuple”]

[tuple1(∗)
pyk→ “tuple one " end tuple”]

[tuple2(∗)
pyk→ “tuple two " end tuple”]

[let2(∗, ∗) pyk→ “let two " apply " end let”]

[let1(∗, ∗) pyk→ “let one " apply " end let”]

[[∗ claim= ∗] pyk→ “claim define " as " end define”]

[checker
pyk→ “checker”]

[check(∗, ∗) pyk→ “check " cache " end check”]

[check2(∗, ∗, ∗) pyk→ “check two " cache " def " end check”]

[check3(∗, ∗, ∗) pyk→ “check three " cache " def " end check”]

[check∗(∗, ∗) pyk→ “check list " cache " end check”]

[check∗2(∗, ∗, ∗)
pyk→ “check list two " cache " value " end check”]

[[∗]· pyk→ “test " end test”]

[[∗]− pyk→ “false test " end test”]

[[∗]◦ pyk→ “raw test " end test”]

[msg
pyk→ “message”]

[[∗ msg
= ∗] pyk→ “message define " as " end define”]

[<stmt>
pyk→ “the statement aspect”]

[stmt
pyk→ “statement”]

[[∗ stmt= ∗] pyk→ “statement define " as " end define”]

[HeadNil′
pyk→ “example axiom”]

[HeadPair′
pyk→ “example scheme”]

[Transitivity′
pyk→ “example rule”]

[⊥⊥ pyk→ “absurdity”]
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[Contra′
pyk→ “contraexample”]

[T′E
pyk→ “example theory primed”]

[L1
pyk→ “example lemma”]

[∗ pyk→ “metavar " end metavar”]

[A pyk→ “meta a”]

[B pyk→ “meta b”]

[C pyk→ “meta c”]

[D pyk→ “meta d”]

[E pyk→ “meta e”]

[F pyk→ “meta f”]

[G pyk→ “meta g”]

[H pyk→ “meta h”]

[I pyk→ “meta i”]

[J pyk→ “meta j”]

[K pyk→ “meta k”]

[L pyk→ “meta l”]

[M pyk→ “meta m”]

[N pyk→ “meta n”]

[O pyk→ “meta o”]

[P pyk→ “meta p”]

[Q pyk→ “meta q”]

[R pyk→ “meta r”]

[S pyk→ “meta s”]

[T pyk→ “meta t”]

[U pyk→ “meta u”]

[V pyk→ “meta v”]

[W pyk→ “meta w”]

[X pyk→ “meta x”]

[Y pyk→ “meta y”]

[Z pyk→ “meta z”]

[〈∗ | ∗ := ∗〉 pyk→ “sub " set " to " end sub”]

[〈∗∗ | ∗ := ∗〉 pyk→ “sub star " set " to " end sub”]

[∅ pyk→ “the empty set”]

[Remainder
pyk→ “example remainder”]

[(∗)v pyk→ “make visible " end visible”]
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[intro(∗, ∗, ∗, ∗) pyk→ “intro " index " pyk " tex " end intro”]

[intro(∗, ∗, ∗) pyk→ “intro " pyk " tex " end intro”]

[error(∗, ∗) pyk→ “error " term " end error”]

[error2(∗, ∗) pyk→ “error two " term " end error”]

[proof(∗, ∗, ∗) pyk→ “proof " term " cache " end proof”]

[proof2(∗, ∗) pyk→ “proof two " term " end proof”]

[S(∗, ∗) pyk→ “sequent eval " term " end eval”]

[SI(∗, ∗) pyk→ “seqeval init " term " end eval”]

[S¤(∗, ∗) pyk→ “seqeval modus " term " end eval”]

[S¤
1 (∗, ∗, ∗) pyk→ “seqeval modus one " term " sequent " end eval”]

[SE(∗, ∗) pyk→ “seqeval verify " term " end eval”]

[SE
1 (∗, ∗, ∗) pyk→ “seqeval verify one " term " sequent " end eval”]

[S+(∗, ∗) pyk→ “sequent eval plus " term " end eval”]

[S+
1 (∗, ∗, ∗) pyk→ “seqeval plus one " term " sequent " end eval”]

[S−(∗, ∗) pyk→ “seqeval minus " term " end eval”]

[S−1 (∗, ∗, ∗) pyk→ “seqeval minus one " term " sequent " end eval”]

[S∗(∗, ∗) pyk→ “seqeval deref " term " end eval”]

[S∗1 (∗, ∗, ∗) pyk→ “seqeval deref one " term " sequent " end eval”]

[S∗2 (∗, ∗, ∗, ∗) pyk→ “seqeval deref two " term " sequent " def " end eval”]

[S@(∗, ∗) pyk→ “seqeval at " term " end eval”]

[S@
1 (∗, ∗, ∗) pyk→ “seqeval at one " term " sequent " end eval”]

[S`(∗, ∗) pyk→ “seqeval infer " term " end eval”]

[S`1 (∗, ∗, ∗, ∗) pyk→ “seqeval infer one " term " premise " sequent " end eval”]

[S `̀ (∗, ∗) pyk→ “seqeval endorse " term " end eval”]

[S `̀1 (∗, ∗, ∗, ∗) pyk→ “seqeval endorse one " term " side " sequent " end eval”]

[S i.e.(∗, ∗) pyk→ “seqeval est " term " end eval”]

[S i.e.
1 (∗, ∗, ∗, ∗) pyk→ “seqeval est one " term " name " sequent " end eval”]

[S i.e.
2 (∗, ∗, ∗, ∗, ∗) pyk→ “seqeval est two " term " name " sequent " def " end

eval”]

[S∀(∗, ∗) pyk→ “seqeval all " term " end eval”]

[S∀1 (∗, ∗, ∗, ∗) pyk→ “seqeval all one " term " variable " sequent " end eval”]

[S ;(∗, ∗) pyk→ “seqeval cut " term " end eval”]

[S ;
1(∗, ∗, ∗)

pyk→ “seqeval cut one " term " forerunner " end eval”]

[S ;
2(∗, ∗, ∗, ∗)

pyk→ “seqeval cut two " term " forerunner " sequent " end eval”]

[T (∗) pyk→ “computably true " end true”]
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[claims(∗, ∗, ∗) pyk→ “claims " cache " ref " end claims”]

[claims2(∗, ∗, ∗) pyk→ “claims two " cache " ref " end claims”]

[<proof>
pyk→ “the proof aspect”]

[proof
pyk→ “proof”]

[[Lemma ∗: ∗] pyk→ “lemma " says " end lemma”]

[[Proof of ∗: ∗] pyk→ “proof of " reads " end proof”]

[[∗ lemma ∗: ∗] pyk→ “in theory " lemma " says " end lemma”]

[[∗ antilemma ∗: ∗] pyk→ “in theory " antilemma " says " end antilemma”]

[[∗ rule ∗: ∗] pyk→ “in theory " rule " says " end rule”]

[[∗ antirule ∗: ∗] pyk→ “in theory " antirule " says " end antirule”]

[verifier
pyk→ “verifier”]

[V1(∗) pyk→ “verify one " end verify”]

[V2(∗, ∗) pyk→ “verify two " proofs " end verify”]

[V3(∗, ∗, ∗, ∗) pyk→ “verify three " ref " sequents " diagnose " end verify”]

[V4(∗, ∗) pyk→ “verify four " premises " end verify”]

[V5(∗, ∗, ∗, ∗) pyk→ “verify five " ref " array " sequents " end verify”]

[V6(∗, ∗, ∗, ∗) pyk→ “verify six " ref " list " sequents " end verify”]

[V7(∗, ∗, ∗, ∗) pyk→ “verify seven " ref " id " sequents " end verify”]

[Cut(∗, ∗) pyk→ “cut " and " end cut”]

[Head⊕(∗) pyk→ “head " end head”]

[Tail⊕(∗) pyk→ “tail " end tail”]

[rule1(∗, ∗) pyk→ “rule one " theory " end rule”]

[rule(∗, ∗) pyk→ “rule " subcodex " end rule”]

[Rule tactic
pyk→ “rule tactic”]

[Plus(∗, ∗) pyk→ “plus " and " end plus”]

[[Theory ∗] pyk→ “theory " end theory”]

[theory2(∗, ∗) pyk→ “theory two " cache " end theory”]

[theory3(∗, ∗) pyk→ “theory three " name " end theory”]

[theory4(∗, ∗, ∗) pyk→ “theory four " name " sum " end theory”]

[HeadNil′′
pyk→ “example axiom lemma primed”]

[HeadPair′′
pyk→ “example scheme lemma primed”]

[Transitivity′′
pyk→ “example rule lemma primed”]

[Contra′′
pyk→ “contraexample lemma primed”]

[HeadNil
pyk→ “example axiom lemma”]

[HeadPair
pyk→ “example scheme lemma”]
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[Transitivity
pyk→ “example rule lemma”]

[Contra
pyk→ “contraexample lemma”]

[TE
pyk→ “example theory”]

[ragged right
pyk→ “ragged right”]

[ragged right expansion
pyk→ “ragged right expansion”]

[parm(∗, ∗, ∗) pyk→ “parameter term " stack " seed " end parameter”]

[parm∗(∗, ∗, ∗) pyk→ “parameter term star " stack " seed " end parameter”]

[inst(∗, ∗) pyk→ “instantiate " with " end instantiate”]

[inst∗(∗, ∗) pyk→ “instantiate star " with " end instantiate”]

[occur(∗, ∗, ∗) pyk→ “occur " in " substitution " end occur”]

[occur∗(∗, ∗, ∗) pyk→ “occur star " in " substitution " end occur”]

[unify(∗ = ∗, ∗) pyk→ “unify " with " substitution " end unify”]

[unify∗(∗ = ∗, ∗) pyk→ “unify star " with " substitution " end unify”]

[unify2(∗ = ∗, ∗) pyk→ “unify two " with " substitution " end unify”]

[La
pyk→ “ell a”]

[Lb
pyk→ “ell b”]

[Lc
pyk→ “ell c”]

[Ld
pyk→ “ell d”]

[Le
pyk→ “ell e”]

[Lf
pyk→ “ell f”]

[Lg
pyk→ “ell g”]

[Lh
pyk→ “ell h”]

[Li
pyk→ “ell i”]

[Lj
pyk→ “ell j”]

[Lk
pyk→ “ell k”]

[Ll
pyk→ “ell l”]

[Lm
pyk→ “ell m”]

[Ln
pyk→ “ell n”]

[Lo
pyk→ “ell o”]

[Lp
pyk→ “ell p”]

[Lq
pyk→ “ell q”]

[Lr
pyk→ “ell r”]

[Ls
pyk→ “ell s”]

[Lt
pyk→ “ell t”]

[Lu
pyk→ “ell u”]
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[Lv
pyk→ “ell v”]

[Lw
pyk→ “ell w”]

[Lx
pyk→ “ell x”]

[Ly
pyk→ “ell y”]

[Lz
pyk→ “ell z”]

[LA
pyk→ “ell big a”]

[LB
pyk→ “ell big b”]

[LC
pyk→ “ell big c”]

[LD
pyk→ “ell big d”]

[LE
pyk→ “ell big e”]

[LF
pyk→ “ell big f”]

[LG
pyk→ “ell big g”]

[LH
pyk→ “ell big h”]

[LI
pyk→ “ell big i”]

[LJ
pyk→ “ell big j”]

[LK
pyk→ “ell big k”]

[LL
pyk→ “ell big l”]

[LM
pyk→ “ell big m”]

[LN
pyk→ “ell big n”]

[LO
pyk→ “ell big o”]

[LP
pyk→ “ell big p”]

[LQ
pyk→ “ell big q”]

[LR
pyk→ “ell big r”]

[LS
pyk→ “ell big s”]

[LT
pyk→ “ell big t”]

[LU
pyk→ “ell big u”]

[LV
pyk→ “ell big v”]

[LW
pyk→ “ell big w”]

[LX
pyk→ “ell big x”]

[LY
pyk→ “ell big y”]

[LZ
pyk→ “ell big z”]

[L?
pyk→ “ell dummy”]

[Reflexivity
pyk→ “sequent reflexivity”]

[Reflexivity1
pyk→ “tactic reflexivity”]

[Commutativity
pyk→ “sequent commutativity”]
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[Commutativity1
pyk→ “tactic commutativity”]

[<tactic>
pyk→ “the tactic aspect”]

[tactic
pyk→ “tactic”]

[[∗ tactic= ∗] pyk→ “tactic define " as " end define”]

[P(∗, ∗, ∗) pyk→ “proof expand " state " cache " end expand”]

[P∗(∗, ∗, ∗) pyk→ “proof expand list " state " cache " end expand”]

[p0
pyk→ “proof state”]

[conclude1(∗, ∗) pyk→ “conclude one " cache " end conclude”]

[conclude2(∗, ∗, ∗) pyk→ “conclude two " proves " cache " end conclude”]

[conclude3(∗, ∗, ∗, ∗) pyk→ “conclude three " proves " lemma " substitution " end
conclude”]

[conclude4(∗, ∗) pyk→ “conclude four " lemma " end conclude”]

[∗ {∗} pyk→ “" sub " end sub”]

[∗/indexintro(∗, ∗, ∗, ∗) pyk→ “" intro " index " pyk " tex " end intro”]

[∗/intro(∗, ∗, ∗) pyk→ “" intro " pyk " tex " end intro”]

[∗/bothintro(∗, ∗, ∗, ∗, ∗) pyk→ “" intro " index " pyk " tex " name " end intro”]

[∗/nameintro(∗, ∗, ∗, ∗) pyk→ “" intro " pyk " tex " name " end intro”]

[∗′ pyk→ “" prime”]

[∗[ ∗ ]
pyk→ “" assoc " end assoc”]

[∗[∗→∗] pyk→ “" set " to " end set”]

[∗[∗⇒∗] pyk→ “" set multi " to " end set”]

[∗0 pyk→ “" bit nil”]

[∗1 pyk→ “" bit one”]

[0b
pyk→ “binary”]

[∗-color(∗) pyk→ “" color " end color”]

[∗-color∗(∗) pyk→ “" color star " end color”]

[∗H pyk→ “" raw head”]

[∗T pyk→ “" raw tail”]

[∗U pyk→ “" cardinal untag”]

[∗h pyk→ “" head”]

[∗t pyk→ “" tail”]

[∗s pyk→ “" is singular”]

[∗c pyk→ “" is cardinal”]

[∗d pyk→ “" is data”]

[∗a pyk→ “" is atomic”]
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[∗C pyk→ “" cardinal retract”]

[∗M pyk→ “" tagged retract”]

[∗B pyk→ “" boolean retract”]

[∗r pyk→ “" ref”]

[∗i pyk→ “" id”]

[∗d pyk→ “" debug”]

[∗R pyk→ “" root”]

[∗0 pyk→ “" zeroth”]

[∗1 pyk→ “" first”]

[∗2 pyk→ “" second”]

[∗3 pyk→ “" third”]

[∗4 pyk→ “" fourth”]

[∗5 pyk→ “" fifth”]

[∗6 pyk→ “" sixth”]

[∗7 pyk→ “" seventh”]

[∗8 pyk→ “" eighth”]

[∗9 pyk→ “" ninth”]

[∗E pyk→ “" is error”]

[∗V pyk→ “" is metavar”]

[∗C pyk→ “" is metaclosed”]

[∗C∗ pyk→ “" is metaclosed star”]

[“ ∗ ”
pyk→ “unicode start of text " end unicode text”]

[
pyk→ “unicode end of text”]

[(∗)t pyk→ “text " end text”]

[string(∗) + ∗ pyk→ “text " plus "”]

[string(∗) ++ ∗ pyk→ “text " plus indent "”]
[

∗ pyk→ “unicode newline "”]

[ ∗ pyk→ “unicode space "”]

[!∗ pyk→ “unicode exclamation mark "”]

["∗ pyk→ “unicode quotation mark "”]

[#∗ pyk→ “unicode number sign "”]

[$∗ pyk→ “unicode dollar sign "”]

[%∗ pyk→ “unicode percent "”]

[&∗ pyk→ “unicode ampersand "”]
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[’∗ pyk→ “unicode apostrophe "”]

[(∗ pyk→ “unicode left parenthesis "”]

[)∗ pyk→ “unicode right parenthesis "”]

[∗∗ pyk→ “unicode asterisk "”]

[+∗ pyk→ “unicode plus sign "”]

[, ∗ pyk→ “unicode comma "”]

[-∗ pyk→ “unicode hyphen "”]

[.∗ pyk→ “unicode period "”]

[/∗ pyk→ “unicode slash "”]

[0∗ pyk→ “unicode zero "”]

[1∗ pyk→ “unicode one "”]

[2∗ pyk→ “unicode two "”]

[3∗ pyk→ “unicode three "”]

[4∗ pyk→ “unicode four "”]

[5∗ pyk→ “unicode five "”]

[6∗ pyk→ “unicode six "”]

[7∗ pyk→ “unicode seven "”]

[8∗ pyk→ “unicode eight "”]

[9∗ pyk→ “unicode nine "”]

[:∗ pyk→ “unicode colon "”]

[; ∗ pyk→ “unicode semicolon "”]

[<∗ pyk→ “unicode less than "”]

[=∗ pyk→ “unicode equal sign "”]

[>∗ pyk→ “unicode greater than "”]

[?∗ pyk→ “unicode question mark "”]

[@∗ pyk→ “unicode commercial at "”]

[A∗ pyk→ “unicode capital a "”]

[B∗ pyk→ “unicode capital b "”]

[C∗ pyk→ “unicode capital c "”]

[D∗ pyk→ “unicode capital d "”]

[E∗ pyk→ “unicode capital e "”]

[F∗ pyk→ “unicode capital f "”]

[G∗ pyk→ “unicode capital g "”]

[H∗ pyk→ “unicode capital h "”]

[I∗ pyk→ “unicode capital i "”]
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[J∗ pyk→ “unicode capital j "”]

[K∗ pyk→ “unicode capital k "”]

[L∗ pyk→ “unicode capital l "”]

[M∗ pyk→ “unicode capital m "”]

[N∗ pyk→ “unicode capital n "”]

[O∗ pyk→ “unicode capital o "”]

[P∗ pyk→ “unicode capital p "”]

[Q∗ pyk→ “unicode capital q "”]

[R∗ pyk→ “unicode capital r "”]

[S∗ pyk→ “unicode capital s "”]

[T∗ pyk→ “unicode capital t "”]

[U∗ pyk→ “unicode capital u "”]

[V∗ pyk→ “unicode capital v "”]

[W∗ pyk→ “unicode capital w "”]

[X∗ pyk→ “unicode capital x "”]

[Y∗ pyk→ “unicode capital y "”]

[Z∗ pyk→ “unicode capital z "”]

[[∗ pyk→ “unicode left bracket "”]

[\∗ pyk→ “unicode backslash "”]

[]∗ pyk→ “unicode right bracket "”]

[ˆ∗ pyk→ “unicode circumflex "”]

[ ∗ pyk→ “unicode underscore "”]

[‘∗ pyk→ “unicode grave accent "”]

[a∗ pyk→ “unicode small a "”]

[b∗ pyk→ “unicode small b "”]

[c∗ pyk→ “unicode small c "”]

[d∗ pyk→ “unicode small d "”]

[e∗ pyk→ “unicode small e "”]

[f∗ pyk→ “unicode small f "”]

[g∗ pyk→ “unicode small g "”]

[h∗ pyk→ “unicode small h "”]

[i∗ pyk→ “unicode small i "”]

[j∗ pyk→ “unicode small j "”]

[k∗ pyk→ “unicode small k "”]

[l∗ pyk→ “unicode small l "”]
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[m∗ pyk→ “unicode small m "”]

[n∗ pyk→ “unicode small n "”]

[o∗ pyk→ “unicode small o "”]

[p∗ pyk→ “unicode small p "”]

[q∗ pyk→ “unicode small q "”]

[r∗ pyk→ “unicode small r "”]

[s∗ pyk→ “unicode small s "”]

[t∗ pyk→ “unicode small t "”]

[u∗ pyk→ “unicode small u "”]

[v∗ pyk→ “unicode small v "”]

[w∗ pyk→ “unicode small w "”]

[x∗ pyk→ “unicode small x "”]

[y∗ pyk→ “unicode small y "”]

[z∗ pyk→ “unicode small z "”]

[{∗ pyk→ “unicode left brace "”]

[|∗ pyk→ “unicode vertical line "”]

[}∗ pyk→ “unicode right brace "”]

[˜∗ pyk→ “unicode tilde "”]

[Preassociative ∗; ∗ pyk→ “preassociative " greater than "”]

[Postassociative ∗; ∗ pyk→ “postassociative " greater than "”]

[[∗], ∗ pyk→ “priority " equal "”]

[priority ∗ end
pyk→ “priority " end priority”]

[newline ∗ pyk→ “newline "”]

[macro newline ∗ pyk→ “macro newline "”]

[∗ ’ ∗ pyk→ “" apply "”]

[∗ ‘ ∗ pyk→ “" tagged apply "”]

[∗ · ∗ pyk→ “" times "”]

[∗ ·0 ∗ pyk→ “" times zero "”]

[∗+ ∗ pyk→ “" plus "”]

[∗+0 ∗ pyk→ “" plus zero "”]

[∗+1 ∗ pyk→ “" plus one "”]

[∗ − ∗ pyk→ “" minus "”]

[∗−0 ∗ pyk→ “" minus zero "”]

[∗−1 ∗ pyk→ “" minus one "”]

[∗ ∪ {∗} pyk→ “" term plus " end plus”]
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[∗ ∪ ∗ pyk→ “" term union "”]

[∗\{∗} pyk→ “" term minus " end minus”]

[∗ .̇ . ∗ pyk→ “" raw pair "”]

[∗ .̇ . ∗ pyk→ “" eager pair "”]

[∗ : : ∗ pyk→ “" tagged pair "”]

[∗ +2∗ ∗ pyk→ “" untagged double "”]

[∗ : : ∗ pyk→ “" pair "”]

[∗ +2∗ ∗ pyk→ “" double "”]

[∗, ∗ pyk→ “" comma "”]

[∗ B≈ ∗ pyk→ “" boolean equal "”]

[∗ D≈ ∗ pyk→ “" data equal "”]

[∗ C≈ ∗ pyk→ “" cardinal equal "”]

[∗ P≈ ∗ pyk→ “" peano equal "”]

[∗ ≈ ∗ pyk→ “" tagged equal "”]

[∗ = ∗ pyk→ “" math equal "”]

[∗ +→ ∗ pyk→ “" reduce to "”]

[∗ t= ∗ pyk→ “" term equal "”]

[∗ t∗= ∗ pyk→ “" term list equal "”]

[∗ r= ∗ pyk→ “" term root equal "”]

[∗ ∈t ∗ pyk→ “" term in "”]

[∗ ⊆T ∗ pyk→ “" term subset "”]

[∗ T= ∗ pyk→ “" term set equal "”]

[∗ s= ∗ pyk→ “" sequent equal "”]

[∗ free in ∗ pyk→ “" free in "”]

[∗ free in∗ ∗ pyk→ “" free in star "”]

[∗ free for ∗ in ∗ pyk→ “" free for " in "”]

[∗ free for∗ ∗ in ∗ pyk→ “" free for star " in "”]

[∗ ∈c ∗ pyk→ “" claim in "”]

[∗ < ∗ pyk→ “" less "”]

[∗ <′ ∗ pyk→ “" less zero "”]

[∗ ≤′ ∗ pyk→ “" less one "”]

[¬∗ pyk→ “not "”]

[∗ ∧ ∗ pyk→ “" and "”]

[∗ ∧̈ ∗ pyk→ “" macro and "”]

[∗ ∧̃ ∗ pyk→ “" simple and "”]
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[∗ ∧c ∗ pyk→ “" claim and "”]

[∗ ∨ ∗ pyk→ “" or "”]

[∗ ‖ ∗ pyk→ “" parallel "”]

[∗ ∨̈ ∗ pyk→ “" macro or "”]

[∗ ⇒̈ ∗ pyk→ “" macro imply "”]

[∗ : ∗ pyk→ “" guard "”]

[∗ spy ∗ pyk→ “" spy "”]

[∗!∗ pyk→ “" tagged guard "”]

[∗
{ ∗
∗

pyk→ “" select " else " end select”]

[λ ∗ .∗ pyk→ “lambda " dot "”]

[Λ ∗ .∗ pyk→ “tagged lambda " dot "”]

[Λ∗ pyk→ “tagging "”]

[if ∗ then ∗ else ∗ pyk→ “open if " then " else "”]

[let ∗ = ∗ in ∗ pyk→ “let " be " in "”]

[let ∗ =̈ ∗ in ∗ pyk→ “let " abbreviate " in "”]

[∗I pyk→ “" init”]

[∗¤ pyk→ “" modus”]

[∗V pyk→ “" verify”]

[∗+ pyk→ “" curry plus”]

[∗− pyk→ “" curry minus”]

[∗∗ pyk→ “" dereference”]

[∗@ ∗ pyk→ “" at "”]

[∗¤ ∗ pyk→ “" modus ponens "”]

[∗ ¤¤ ∗ pyk→ “" modus probans "”]

[∗ À ∗ pyk→ “" conclude "”]

[∗ ` ∗ pyk→ “" infer "”]

[∗ `̀ ∗ pyk→ “" endorse "”]

[∗ i.e. ∗ pyk→ “" id est "”]

[∀∗: ∗ pyk→ “all " indeed "”]

[∗ ⊕ ∗ pyk→ “" rule plus "”]

[∗; ∗ pyk→ “" cut "”]

[∗ proves ∗ pyk→ “" proves "”]

[∗ proof of ∗ : ∗ pyk→ “" proof of " reads "”]

[Line ∗ : ∗ À ∗; ∗ pyk→ “line " because " indeed " end line "”]

[Last line ∗ À ∗2
pyk→ “because " indeed " qed”]
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[Line ∗ : Premise À ∗; ∗ pyk→ “line " premise " end line "”]

[Line ∗ : Side-condition À ∗; ∗ pyk→ “line " side condition " end line "”]

[Arbitrary À ∗; ∗ pyk→ “arbitrary " end line "”]

[Local À ∗ = ∗; ∗ pyk→ “locally define " as " end line "”]

[∗ , ∗ pyk→ “" , "”]

[∗[ ∗ ]∗ pyk→ “" [ " ] "”]

[∗&∗ pyk→ “" tab "”]

[∗\\∗ pyk→ “" row "”]

[∗ linebreak[4] ∗ pyk→ “" linebreak "”]

[base
pyk→ “base”]

)p

C Test

[T + 0 ≈ T]·

[0 + T ≈ T]·

[T + T ≈ T]·

[0 + 0 ≈ 0]·

[0 + 1 ≈ 1]·

[0 + 2 ≈ 2]·

[0 + 3 ≈ 3]·

[1 + 0 ≈ 1]·

[1 + 1 ≈ 2]·

[1 + 2 ≈ 3]·

[1 + 3 ≈ 4]·

[2 + 0 ≈ 2]·

[2 + 1 ≈ 3]·

[2 + 2 ≈ 4]·

[2 + 3 ≈ 5]·

[3 + 0 ≈ 3]·

[3 + 1 ≈ 4]·
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[3 + 2 ≈ 5]·

[3 + 3 ≈ 6]·

[T < 0 ≈ F]·

[0 < T ≈ F]·

[T < T ≈ F]·

[0 < 0 ≈ F]·

[0 < 1 ≈ T]·

[0 < 2 ≈ T]·

[0 < 3 ≈ T]·

[1 < 0 ≈ F]·

[1 < 1 ≈ F]·

[1 < 2 ≈ T]·

[1 < 3 ≈ T]·

[2 < 0 ≈ F]·

[2 < 1 ≈ F]·

[2 < 2 ≈ F]·

[2 < 3 ≈ T]·

[3 < 0 ≈ F]·

[3 < 1 ≈ F]·

[3 < 2 ≈ F]·

[3 < 3 ≈ F]·

[T− 0 ≈ T]·

[0− T ≈ T]·

[T− T ≈ T]·

[0− 0 ≈ 0]·

[0− 1 ≈ 0]·

[0− 2 ≈ 0]·

[0− 3 ≈ 0]·
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[1− 0 ≈ 1]·

[1− 1 ≈ 0]·

[1− 2 ≈ 0]·

[1− 3 ≈ 0]·

[2− 0 ≈ 2]·

[2− 1 ≈ 1]·

[2− 2 ≈ 0]·

[2− 3 ≈ 0]·

[3− 0 ≈ 3]·

[3− 1 ≈ 2]·

[3− 2 ≈ 1]·

[3− 3 ≈ 0]·

[T · 0 ≈ T]·

[0 · T ≈ T]·

[T · T ≈ T]·

[0 · 0 ≈ 0]·

[0 · 1 ≈ 0]·

[0 · 2 ≈ 0]·

[0 · 3 ≈ 0]·

[1 · 0 ≈ 0]·

[1 · 1 ≈ 1]·

[1 · 2 ≈ 2]·

[1 · 3 ≈ 3]·

[2 · 0 ≈ 0]·

[2 · 1 ≈ 2]·

[2 · 2 ≈ 4]·

[2 · 3 ≈ 6]·

[3 · 0 ≈ 0]·
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[3 · 1 ≈ 3]·

[3 · 2 ≈ 6]·

[3 · 3 ≈ 9]·

[bit(T, 0) ≈ T]·

[bit(0, T) ≈ T]·

[bit(T, T) ≈ T]·

[bit(0, 0) ≈ T]·

[bit(0, 1) ≈ F]·

[bit(0, 2) ≈ T]·

[bit(0, 3) ≈ F]·

[bit(1, 0) ≈ T]·

[bit(1, 1) ≈ T]·

[bit(1, 2) ≈ F]·

[bit(1, 3) ≈ F]·

[bit(2, 0) ≈ T]·

[bit(2, 1) ≈ T]·

[bit(2, 2) ≈ T]·

[bit(2, 3) ≈ T]·

[bit(3, 0) ≈ T]·

[bit(3, 1) ≈ T]·

[bit(3, 2) ≈ T]·

[bit(3, 3) ≈ T]·

[identifier(d“code”e) ≈ 0b1100101011001000110111101100011]·

[T[0→1] ≈ 0 : : 1]·

[T[0→1][1→2] ≈ (0 : : 1) : : (1 : : 2)]·

[T[0→1][2→4] ≈ ((0 : : 1) : : (2 : : 4)) : : T]·

[T[1→2][3→6] ≈ T : : ((1 : : 2) : : (3 : : 6))]·

[T[0→1][2→4][0→T] ≈ T[2→4]]·
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[T[0→1][2→4][2→T] ≈ T[0→1]]·

[T[1→2][3→6][1→T] ≈ T[3→6]]·

[T[1→2][3→6][3→T] ≈ T[1→2]]·

[T[1→7][2→8][4→9][1] ≈ 7]·

[T[1→7][2→8][4→9][2] ≈ 8]·

[T[1→7][2→8][4→9][4] ≈ 9]·

[T[〈1, 2, 3〉⇒1][〈2〉⇒2][〈1, 1〉⇒3][〈1, 2, 4〉⇒4][1][2][3] ≈ 1]·

[〈2, 3, 2〉 ≈ let x = 2 in 〈x, 3, x〉]·

[0 ≈ let x = F in T .̇ . F]·

[0 ≈ let x = F in T .̇ . x]·

[T : : 0 ≈ (0 .̇ . 0 .̇ . T) .̇ . λy.y]·

[T : : T ≈ let x = λy.y in (0 .̇ . 0 .̇ . T) .̇ . x]·

[(d2e ` d3e) t= d2 ` 3e]·

[(d2e `̀ d3e) t= d2 `̀ 3e]·

[(∀d2e: d3e) t= d∀2: 3e]·

[⊥⊥ t= d⊥⊥e]·

[(d2e ⊕ d3e) t= d2 ⊕ 3e]·

[(d2eI) t= d2Ie]·

[(d2e¤) t= d2¤e]·

[(d2eV) t= d2Ve]·

[(d2e+) t= d2+e]·

[(d2e−) t= d2−e]·

[(d2e∗) t= d2∗e]·

[(d2e@d3e) t= d2 @ 3e]·

[(d2e i.e. d3e) t= d2 i.e. 3e]·

[(d2e; d3e) t= d2; 3e]·
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[dPeV ]·

[dpeV ]−

[dx : : y : : zeC ]·

[dx : : Y : : zeC ]−

[dYe free in dX : : Y : : Ze]·

[dYe free in dX : : y : : Ze]−

[dx : : Y : : ze free for dXe in d∀X : b : : X : : ce]·

[dx : : Y : : ze free for dXe in d∀Y: b : : X : : ce]−

[dx : : Y : : ze free for dYe in d∀X : b : : X : : ce]·

[dx : : Y : : ze free for dYe in d∀Y: b : : X : : ce]·

[〈dA : : (∀A:A) : : B : : Ae |dAe:= d2e〉 t= d2 : : (∀A:A) : : B : : 2e]·

[dye ∈t 〈dxe, dye, dze〉]·

[due ∈t 〈dxe, dye, dze〉]−

[〈dze, dxe〉 ⊆T 〈dxe, dye, dze〉]·

[〈dze, due〉 ⊆T 〈dxe, dye, dze〉]−

[〈dze, dye, dxe〉 T= 〈dxe, dye, dze〉]·

[〈dze, dxe〉 T= 〈dxe, dye, dze〉]−

[〈dze, dye, dxe〉 T= 〈dxe, dze〉]−

[∅ ∪ {dxe} ∪ {dye} ∪ {dze} ∪ {dye} t∗= 〈dze, dye, dxe〉]·

[〈dxe, dye, dze〉\{dye} t∗= 〈dxe, dze〉]·

[〈dxe, dye, dze〉\{due} t∗= 〈dxe, dye, dze〉]·

[〈dae, dye, dbe〉 ∪ 〈dxe, dye, dze〉 t∗= 〈dae, dbe, dxe, dye, dze〉]·

[〈〈d1e, d2e〉, 〈d3e, d4e〉, d5e〉 s= 〈〈d2e, d1e〉, 〈d4e, d3e〉, d5e〉]·

[〈〈d6e, d2e〉, 〈d3e, d4e〉, d5e〉 s= 〈〈d2e, d1e〉, 〈d4e, d3e〉, d5e〉]−

[〈〈d1e, d6e〉, 〈d3e, d4e〉, d5e〉 s= 〈〈d2e, d1e〉, 〈d4e, d3e〉, d5e〉]−

[〈〈d1e, d2e〉, 〈d6e, d4e〉, d5e〉 s= 〈〈d2e, d1e〉, 〈d4e, d3e〉, d5e〉]−
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[〈〈d1e, d2e〉, 〈d3e, d6e〉, d5e〉 s= 〈〈d2e, d1e〉, 〈d4e, d3e〉, d5e〉]−

[〈〈d1e, d2e〉, 〈d3e, d4e〉, d6e〉 s= 〈〈d2e, d1e〉, 〈d4e, d3e〉, d5e〉]−

[U(E(dF +2∗ 2 ≈ 5e,T, self))]·

[UM(E(dF +2∗ 2 ≈ 5e, T, self))]·

[UM(E(dT (F +2∗ 2 ≈ 5)e, T, self) ‘ self)]·

[S(self, dAI¤e) s= 〈〈dAe〉, ∅, dAe〉]·

[d2e-color(d3e ` d4e) t= d3 ` 4e]·

[S(self, d(A ⊕ B)Ie) s= 〈∅, ∅, d(A ⊕ B) ` (A ⊕ B)e〉]·

[S(self, dA ` BIe) s= 〈∅, ∅, dA ` B ` Be〉]·

[dcheckere ∈c dchecker ∧c verifiere]·

[dverifiere ∈c dchecker ∧c verifiere]·

[d7e ∈c dchecker ∧c verifiere]−

[claims(dverifiere, self, self[0])]·

[claims(d7e, self, self[0])]−

[inst(parm(d∀x: ∀y: x + ye, T, 4),T[4→due][8→dve]) t= d∀u: ∀v: u + ve]·

math test occur eight in parameter term quote not all var x indeed var x end
quote substitution true end occur end test end math

math false test occur nine in parameter term quote not all var x indeed var x
end quote substitution true end occur end test end math

[unify(d2e = d2e, T)]·

[unify(d2e = d3e, T) ≈ 0]·

[unify(d2 + 3e = d2 + 3e,T)]·

[unify(d2 + 3e = d2 + 4e,T) ≈ 0]·

[unify(d2e = 3,T)[3] t= d2e]·

[unify(3 = d2e,T)[3] t= d2e]·

[unify(〈dx + yeR, 1, d3e〉 = d2 + 3e, T)[1] t= d2e]·

[unify(〈dx + yeR, 1, d3e〉 = 〈dx + yeR, d2e, 2〉, T)[1] t= d2e]·

[unify(parm(dA+ 3e, 〈dAe : : 1〉, 1) = parm(d2 + Be, 〈dBe : : 2〉, 1), T)[1] t= d2e]·
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[unify(parm(dA+ 3e, 〈dAe : : 1〉, 1) = parm(d2 + Be, 〈dBe : : 2〉, 1), T)[2] t= d3e]·

[inst(parm(dA+ Be, 〈dAe : : 1, dBe : : 2〉, 1), unify(parm(dA+ 3e, 〈dAe : : 1〉, 1) =
parm(d2 + Be, 〈dBe : : 2〉, 1),T)) t= d2 + 3e]·

D Priority table

([base
prio→

Preassociative
[base], [bracket ∗ end bracket], [big bracket ∗ end bracket], [ $ ∗ $ ],
[flush left [∗]], [x], [y], [z], [[∗ ./ ∗]], [[∗ ∗→ ∗]], [pyk], [tex], [name], [prio], [∗], [T],
[if(∗, ∗, ∗)], [[∗ ∗⇒ ∗]], [val], [claim], [⊥], [f(∗)], [(∗)I], [F], [0], [1], [2], [3], [4], [5], [6],
[7], [8], [9], [0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [a], [b], [c], [d], [e], [f], [g], [h], [i], [j],
[k], [l], [m], [n], [o], [p], [q], [r], [s], [t], [u], [v], [w], [(∗)M], [If(∗, ∗, ∗)],
[array{∗} ∗ end array], [l], [c], [r], [empty], [〈∗ | ∗ := ∗〉], [M(∗)], [Ũ(∗)], [U(∗)],
[UM(∗)], [apply(∗, ∗)], [apply1(∗, ∗)], [identifier(∗)], [identifier1(∗, ∗)], [array-
plus(∗, ∗)], [array-remove(∗, ∗, ∗)], [array-put(∗, ∗, ∗, ∗)], [array-add(∗, ∗, ∗, ∗, ∗)],
[bit(∗, ∗)], [bit1(∗, ∗)], [rack], ["vector"], ["bibliography"], ["dictionary"],
["body"], ["codex"], ["expansion"], ["code"], ["cache"], ["diagnose"], ["pyk"],
["tex"], ["texname"], ["value"], ["message"], ["macro"], ["definition"],
["unpack"], ["claim"], ["priority"], ["lambda"], ["apply"], ["true"], ["if"],
["quote"], ["proclaim"], ["define"], ["introduce"], ["hide"], ["pre"], ["post"],
[E(∗, ∗, ∗)], [E2(∗, ∗, ∗, ∗, ∗)], [E3(∗, ∗, ∗, ∗)], [E4(∗, ∗, ∗, ∗)], [lookup(∗, ∗, ∗)],
[abstract(∗, ∗, ∗, ∗)], [d∗e], [M(∗, ∗, ∗)], [M2(∗, ∗, ∗, ∗)], [M∗(∗, ∗, ∗)], [macro],
[s0], [zip(∗, ∗)], [assoc1(∗, ∗, ∗)], [(∗)p], [self], [[∗ =̈ ∗]], [[∗ =̇ ∗]], [[∗ =́ ∗]],
[[∗ pyk

= ∗]], [[∗ tex= ∗]], [[∗ name= ∗]], [Priority table[∗]], [M̃1], [M̃2(∗)], [M̃3(∗)],
[M̃4(∗, ∗, ∗, ∗)], [M̃(∗, ∗, ∗)], [Q̃(∗, ∗, ∗)], [Q̃2(∗, ∗, ∗)], [Q̃3(∗, ∗, ∗, ∗)], [Q̃∗(∗, ∗, ∗)],
[(∗)], [(∗)], [display(∗)], [statement(∗)], [[∗]·], [[∗]−], [aspect(∗, ∗)],
[aspect(∗, ∗, ∗)], [〈∗〉], [tuple1(∗)], [tuple2(∗)], [let2(∗, ∗)], [let1(∗, ∗)],
[[∗ claim= ∗]], [checker], [check(∗, ∗)], [check2(∗, ∗, ∗)], [check3(∗, ∗, ∗)],
[check∗(∗, ∗)], [check∗2(∗, ∗, ∗)], [[∗]·], [[∗]−], [[∗]◦], [msg], [[∗ msg

= ∗]], [<stmt>],
[stmt], [[∗ stmt= ∗]], [HeadNil′], [HeadPair′], [Transitivity′], [⊥⊥], [Contra′], [T′E],
[L1], [∗], [A], [B], [C], [D], [E ], [F ], [G], [H], [I], [J ], [K], [L], [M], [N ], [O], [P], [Q],
[R], [S], [T ], [U ], [V], [W], [X ], [Y], [Z], [〈∗ | ∗ := ∗〉], [〈∗∗ | ∗ := ∗〉], [∅], [Remainder],
[(∗)v], [intro(∗, ∗, ∗, ∗)], [intro(∗, ∗, ∗)], [error(∗, ∗)], [error2(∗, ∗)], [proof(∗, ∗, ∗)],
[proof2(∗, ∗)], [S(∗, ∗)], [SI(∗, ∗)], [S¤(∗, ∗)], [S¤

1 (∗, ∗, ∗)], [SE(∗, ∗)], [SE
1 (∗, ∗, ∗)],

[S+(∗, ∗)], [S+
1 (∗, ∗, ∗)], [S−(∗, ∗)], [S−1 (∗, ∗, ∗)], [S∗(∗, ∗)], [S∗1 (∗, ∗, ∗)],

[S∗2 (∗, ∗, ∗, ∗)], [S@(∗, ∗)], [S@
1 (∗, ∗, ∗)], [S`(∗, ∗)], [S`1 (∗, ∗, ∗, ∗)], [S `̀ (∗, ∗)],

[S `̀1 (∗, ∗, ∗, ∗)], [S i.e.(∗, ∗)], [S i.e.
1 (∗, ∗, ∗, ∗)], [S i.e.

2 (∗, ∗, ∗, ∗, ∗)], [S∀(∗, ∗)],
[S∀1 (∗, ∗, ∗, ∗)], [S ;(∗, ∗)], [S ;

1(∗, ∗, ∗)], [S ;
2(∗, ∗, ∗, ∗)], [T (∗)], [claims(∗, ∗, ∗)],

[claims2(∗, ∗, ∗)], [<proof>], [proof], [[Lemma ∗: ∗]], [[Proof of ∗: ∗]],
[[∗ lemma ∗: ∗]], [[∗ antilemma ∗: ∗]], [[∗ rule ∗: ∗]], [[∗ antirule ∗: ∗]],
[verifier], [V1(∗)], [V2(∗, ∗)], [V3(∗, ∗, ∗, ∗)], [V4(∗, ∗)], [V5(∗, ∗, ∗, ∗)], [V6(∗, ∗, ∗, ∗)],
[V7(∗, ∗, ∗, ∗)], [Cut(∗, ∗)], [Head⊕(∗)], [Tail⊕(∗)], [rule1(∗, ∗)], [rule(∗, ∗)],
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[Rule tactic], [Plus(∗, ∗)], [[Theory ∗]], [theory2(∗, ∗)], [theory3(∗, ∗)],
[theory4(∗, ∗, ∗)], [HeadNil′′], [HeadPair′′], [Transitivity′′], [Contra′′], [HeadNil],
[HeadPair], [Transitivity], [Contra], [TE], [ragged right],
[ragged right expansion ], [parm(∗, ∗, ∗)], [parm∗(∗, ∗, ∗)], [inst(∗, ∗)],
[inst∗(∗, ∗)], [occur(∗, ∗, ∗)], [occur∗(∗, ∗, ∗)], [unify(∗ = ∗, ∗)], [unify∗(∗ = ∗, ∗)],
[unify2(∗ = ∗, ∗)], [La], [Lb], [Lc], [Ld], [Le], [Lf ], [Lg], [Lh], [Li], [Lj], [Lk], [Ll], [Lm],
[Ln], [Lo], [Lp], [Lq], [Lr], [Ls], [Lt], [Lu], [Lv], [Lw], [Lx], [Ly], [Lz], [LA], [LB], [LC],
[LD], [LE], [LF], [LG], [LH], [LI], [LJ], [LK], [LL], [LM], [LN], [LO], [LP], [LQ], [LR],
[LS], [LT], [LU], [LV], [LW], [LX], [LY], [LZ], [L?], [Reflexivity], [Reflexivity1],
[Commutativity], [Commutativity1], [<tactic>], [tactic], [[∗ tactic= ∗]], [P(∗, ∗, ∗)],
[P∗(∗, ∗, ∗)], [p0], [conclude1(∗, ∗)], [conclude2(∗, ∗, ∗)], [conclude3(∗, ∗, ∗, ∗)],
[conclude4(∗, ∗)];
Preassociative
[∗ {∗}], [∗/indexintro(∗, ∗, ∗, ∗)], [∗/intro(∗, ∗, ∗)], [∗/bothintro(∗, ∗, ∗, ∗, ∗)],
[∗/nameintro(∗, ∗, ∗, ∗)], [∗′], [∗[ ∗ ]], [∗[∗→∗]], [∗[∗⇒∗]], [∗0], [∗1], [0b], [∗-color(∗)],
[∗-color∗(∗)], [∗H], [∗T], [∗U], [∗h], [∗t], [∗s], [∗c], [∗d], [∗a], [∗C], [∗M], [∗B], [∗r], [∗i],
[∗d], [∗R], [∗0], [∗1], [∗2], [∗3], [∗4], [∗5], [∗6], [∗7], [∗8], [∗9], [∗E], [∗V ], [∗C ], [∗C∗ ];
Preassociative
[“ ∗ ”], [], [(∗)t], [string(∗) + ∗], [string(∗) ++ ∗], [
∗], [ ∗], [!∗], ["∗], [#∗], [$∗], [%∗], [&∗], [’∗], [(∗], [)∗], [∗∗], [+∗], [, ∗], [-∗], [.∗], [/∗],
[0∗], [1∗], [2∗], [3∗], [4∗], [5∗], [6∗], [7∗], [8∗], [9∗], [:∗], [; ∗], [<∗], [=∗], [>∗], [?∗],
[@∗], [A∗], [B∗], [C∗], [D∗], [E∗], [F∗], [G∗], [H∗], [I∗], [J∗], [K∗], [L∗], [M∗], [N∗],
[O∗], [P∗], [Q∗], [R∗], [S∗], [T∗], [U∗], [V∗], [W∗], [X∗], [Y∗], [Z∗], [[∗], [\∗], []∗], [ˆ∗],
[ ∗], [‘∗], [a∗], [b∗], [c∗], [d∗], [e∗], [f∗], [g∗], [h∗], [i∗], [j∗], [k∗], [l∗], [m∗], [n∗], [o∗],
[p∗], [q∗], [r∗], [s∗], [t∗], [u∗], [v∗], [w∗], [x∗], [y∗], [z∗], [{∗], [|∗], [}∗], [˜∗],
[Preassociative ∗; ∗], [Postassociative ∗; ∗], [[∗], ∗], [priority ∗ end],
[newline ∗], [macro newline ∗];
Preassociative
[∗ ’ ∗], [∗ ‘ ∗];
Preassociative
[∗ · ∗], [∗ ·0 ∗];
Preassociative
[∗+ ∗], [∗+0 ∗], [∗+1 ∗], [∗ − ∗], [∗−0 ∗], [∗−1 ∗];
Preassociative
[∗ ∪ {∗}], [∗ ∪ ∗], [∗\{∗}];
Postassociative
[∗ .̇ . ∗], [∗ .̇ . ∗], [∗ : : ∗], [∗ +2∗ ∗], [∗ : : ∗], [∗ +2∗ ∗];
Postassociative
[∗, ∗];
Preassociative
[∗ B≈ ∗], [∗ D≈ ∗], [∗ C≈ ∗], [∗ P≈ ∗], [∗ ≈ ∗], [∗ = ∗], [∗ +→ ∗], [∗ t= ∗], [∗ t∗= ∗], [∗ r= ∗],
[∗ ∈t ∗], [∗ ⊆T ∗], [∗ T= ∗], [∗ s= ∗], [∗ free in ∗], [∗ free in∗ ∗], [∗ free for ∗ in ∗],
[∗ free for∗ ∗ in ∗], [∗ ∈c ∗], [∗ < ∗], [∗ <′ ∗], [∗ ≤′ ∗];
Preassociative
[¬∗];
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Preassociative
[∗ ∧ ∗], [∗ ∧̈ ∗], [∗ ∧̃ ∗], [∗ ∧c ∗];
Preassociative
[∗ ∨ ∗], [∗ ‖ ∗], [∗ ∨̈ ∗];
Postassociative
[∗ ⇒̈ ∗];
Postassociative
[∗ : ∗], [∗ spy ∗], [∗!∗];
Preassociative

[∗
{ ∗
∗ ];

Preassociative
[λ ∗ .∗], [Λ ∗ .∗], [Λ∗], [if ∗ then ∗ else ∗], [let ∗ = ∗ in ∗], [let ∗ =̈ ∗ in ∗];
Preassociative
[∗I], [∗¤], [∗V], [∗+], [∗−], [∗∗];
Preassociative
[∗@ ∗], [∗¤ ∗], [∗ ¤¤ ∗], [∗ À ∗];
Postassociative
[∗ ` ∗], [∗ `̀ ∗], [∗ i.e. ∗];
Preassociative
[∀∗: ∗];
Postassociative
[∗ ⊕ ∗];
Postassociative
[∗; ∗];
Preassociative
[∗ proves ∗];
Preassociative
[∗ proof of ∗ : ∗], [Line ∗ : ∗ À ∗; ∗], [Last line ∗ À ∗2],
[Line ∗ : Premise À ∗; ∗], [Line ∗ : Side-condition À ∗; ∗], [Arbitrary À ∗; ∗],
[Local À ∗ = ∗; ∗];
Postassociative
[∗ , ∗], [∗[ ∗ ]∗];
Preassociative
[∗&∗];
Preassociative
[∗\\∗], [∗ linebreak[4] ∗]; ])p

E Index

[⊥⊥] absurdity, 77
[∀x: y] all x indeed y, 77
[(x)] big parenthesis * end parenthesis, 65
[[x]−] false spying test * end test, 73
[[x]−] false test t end test, 73
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[x] metavar x end metavar, 79
[[t]◦] raw test t end test, 73
[[x]·] spying test * end test, 73
[〈∗x |y:= z〉] sub star x set y to z end sub , 80
[〈x |y:= z〉] sub x set y to z end sub , 80
[Λx.y] tagged lambda * dot *, 65
[[t]·] test t end test, 72
[∅] the empty set, 80
[〈x〉] tuple x end tuple, 66
[x@ y] x at y, 84
[x ∧c y] x claim and y, 71
[x ∈c y] x claim in y, 91
[x, y] x comma y, 66
[x À y] x conclude y, 104
[x−] x curry minus, 84
[x+] x curry plus, 84
[x; y] x cut y, 85
[x∗] x dereference, 84
[x `̀ y] x endorse y, 77
[x1] x first, 32
[x ` y] x infer y, 77
[x ≤′ y] x less one y, 40
[x < y] x less y, 39
[x <′ y] x less zero y, 40
[x ∧̈ y] x macro and y, 69
[x ⇒̈ y] x macro imply y, 69
[x ∨̈ y] x macro or y, 69
[x−1 y] x minus one y, 40
[x− y] x minus y, 40
[x−0 y] x minus zero y, 40
[x¤] x modus, 83
[x ¤ y] x modus ponens y, 103
[x ¤¤ y] x modus probans y, 104
[x+1 y] x plus one y, 39
[x + y] x plus y, 39
[x+0 y] x plus zero y, 39
[x′] x prime, 49
[x ⊕ y] x rule plus y, 77
[x s= y] x sequent equal y, 81
[x[y⇒z]] x set multi y to z end set, 48
[x[y→z]] x set y to z end set, 47
[x ∧̃ y] x simple and y, 71
[x ∈t y] x term in y, 80
[x\{y}] x term minus y end minus, 80
[x ∪ {y}] x term plus y end plus, 80
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[x r= y] x term root equal y, 41
[x T= y] x term set equal y, 80
[x ⊆T y] x term subset y, 80
[x ∪ y] x term union y, 81
[x · y] x times y, 40
[x ·0 y] x times zero y, 40

absurdity, 78
absurdity [⊥⊥], 77
algorithm, unification, 100
all x indeed y [∀x: y], 77
antilemma, 77
antilemma: [x antilemma y: z] in theory x antilemma y says z end antilemma,
92
antirule: [x antirule y: z] in theory x antirule y says z end antirule, 97
apply identifier ["apply"], 55
[Arbitrary À y; z] arbitrary x end line y, 105
arbitrary x end line y [Arbitrary À x; y], 105
array, 46
[array-add(x, y, z, a, b)] array add x value y index z value a level b end add, 48
array index, 47
[array-plus(x, y)] array plus x and y end plus, 47
[array-put(x, y, z, a)] array put x value y array z level a end put, 48
[array-remove(x, y, z)] array remove x array y level z end remove, 47
aspect, 12
[aspect(a, t, c)], 55
[aspect(x, y)] aspect x subcodex y end aspect, 55
aspect, potentially inherited page, 60
aspect, pyk, 12
aspect, statement, 75
aspect, tex, 12
association, 45
association tree, 45
atomic, 46
axiom, 75
axiom scheme, 75

base page, 7, 8
basic tagged tree operations, 36
because x indeed y qed [Last line x À y 2], 104
bed, page, 61
bibliography, 8, 49
bibliography hook ["bibliography"], 51
big bracket * end bracket, 108
[bit(x, y)] bit x of y end bit, 40
[bit1(x, y)] bit one x of y end bit, 41
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body, 8, 49
body hook ["body"], 52
bothintro: [x/bothintro(y, i, p, t, n)] * intro * index * pyk * tex * name * end
intro, 70
bottom, 26
bracket * end bracket, 108

C*: [xC
∗
] x is metaclosed star, 79

C: [xC ] x is metaclosed, 79
c: [x ∈c y] x claim in y, 91
c: [x ∧c y] x claim and y, 71
cache, 8, 50
cache hook ["cache"], 52
calculus, sequent, 73
canonical, 27
cardinal, 7
cardinal number, 29
cardinal tree, 31
[check(t, c)], 71
[check2(t, c, d)], 71
[check3(t, c, d)], 71
[check∗(t, c)], 72
[check∗2(t, c, v)], 72
checker, 71
[checker] checker, 71
circular, 99
claim, 9, 70
["claim"] claim aspect, 54
claim define x as y end define [[x claim= y]], 70
claim: [[x claim= y]] claim define x as y end define, 70
[claims(t, c, r)] claims t cache c ref r end claims, 91
[claims2(t, c, r)] claims two t cache c ref r end claims, 92
code hook ["code"], 52
codex, 8, 9
codex hook ["codex"], 52
codify, 9, 55
color*: [x-color∗(y)] x color star y end color, 88
color: [x-color(y)] x color y end color, 88
colored, 88
coloring, 88
[Commutativity] sequent commutativity, 98
[Commutativity1] tactic commutativity, 102
compatible, 28, 99
computably true x end true [T (x)], 84
[conclude1(x, y)] conclude one x cache y end conclude, 104
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[conclude2(x, y, z)] conclude two x proves y cache z end conclude, 104
[conclude3(x, y, z, a)] conclude three x proves y lemma z substitution a end con-
clude, 104
[conclude4(x, y)] conclude four x lemma y end conclude, 104
conclusion, 76, 81
conclusion tactic, 103
conjecture, 77
construct, page, 51
[Contra] contraexample lemma, 97
[Contra′] contraexample, 76
[Contra′′] contraexample lemma primed, 92
contradiction, 76
correctness, 70
currying, 84
cut, 85
[Cut(x, y)] cut x and y end cut, 96

d: [xd] x debug, 41
dead character code, 44
decurrying, 84
define identifier ["define"], 57
definition aspect ["definition"], 54
definition proclamation, 56
definitition, 9
dereferencing, 84
diagnose, 8, 70, 71
diagnose hook ["diagnose"], 53
dictionary, 8, 49
dictionary hook ["dictionary"], 52
Display: [display(x)] display * end display, 69
domestic definition, 54

E: [xE] x is error, 90
eager, 28
endorse, 77
engine, parallel, 25
[error(m, t)] error x term y end error, 89
[error2(m, t)] error two x term y end error, 89
example axiom [HeadNil′], 75
example axiom lemma [HeadNil], 97
example axiom lemma primed [HeadNil′′], 92
example lemma [L1], 77
example rack [rack], 51
example rule [Transitivity′], 76
example rule lemma [Transitivity], 97
example rule lemma primed [Transitivity′′], 97
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example scheme [HeadPair′], 75
example scheme lemma [HeadPair], 97
example scheme lemma primed [HeadPair′′], 97
example theory [TE], 97
example theory primed [T′E], 76
execute, 9
exists, symbol, 52
expander, 61
expansion, 8, 9, 61
expansion hook ["expansion"], 52

false test x end test [[x]−], 73
finite function, 45
first edition engine, 34
fit for optimization, 36
flush left, 16
[flush left [x]] flush left x end left, 16
foreign definition, 54
free for*: [x free for∗ y in z] x free for star y in z , 79
free for: [x free for y in z] x free for y in z , 79
free in*: [x free in∗ y] x free in star y , 79
free in: [x free in y] x free in y , 79
function normal form, 24
function term, 24

guard, 28

harvesting, 63
[Head⊕(x)] head x end head, 96
[HeadNil′′] example axiom lemma primed, 92
[HeadNil′] example axiom, 75
[HeadNil] example axiom lemma, 97
[HeadPair′′] example scheme lemma primed, 97
[HeadPair′] example scheme, 75
[HeadPair] example scheme lemma, 97
hide identifier ["hide"], 57
hook, 47

i.e.: [x i.e. y] x id est y, 84
I: [xI] x init, 82
i: [xi] x id, 41
id, 31
idempotent, 29
identifier, 10
[identifier(x)] identifier x end identifier, 44
[identifier1(x, y)] identifier one x plus id y end identifier, 45
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identifier, Logiweb, 44
if identifier ["if"], 55
if, open, 68
if: [if x then y else z] open if x then y else z, 68
in theory x antilemma y says z end antilemma [x antilemma y: z], 92
in theory x antirule y says z end antirule [x antirule y: z], 97
in theory x lemma y says z end lemma [x lemma y: z], 92
in theory x rule y says z end rule [x rule y: z], 97
incompatible, 99
index (of array), 47
indexintro: [x/indexintro(y, i, p, t)] * intro * index * pyk * tex * end intro, 70
infer, 77
inference rule, 76
inherited page aspect, potentially, 60
initial macro state, 60
initial proof state, 103
[inst(x, y)] instantiate x with y end instantiate, 99
[inst∗(x, y)] instantiate star x with y end instantiate, 99
instance, 99
instantiate star x with y end instantiate [inst∗(x, y)], 99
instantiate x with y end instantiate [inst(x, y)], 99
intro * index * pyk * tex * end intro [intro(x, i, p, t)], 69
intro * pyk * tex * end intro [intro(x, p, t)], 69
intro: [x/intro(y, p, t)] * intro * pyk * tex * end intro, 70
intro: [intro(x, i, p, t)] intro * index * pyk * tex * end intro, 69
intro: [intro(x, p, t)] intro * pyk * tex * end intro, 69
introduce identifier ["introduce"], 57
introduction, 9

key, 45

[L1] example lemma, 77
lambda identifier ["lambda"], 55
[Last line x À y 2] because x indeed y qed, 104
lazy, 29
left, flush, 16
lemma, 77
[Lemma x: y] lemma x says y, 92
lemma, rule, 85
lemma, sequent, 82
lemma: [x lemma y: z] in theory x lemma y says z end lemma, 92
let, 68
[let x = y in z] let x by y in z, 68
[let x =̈ y in z] let x abbreviate y in z, 65
[let1(x, y)] let one x apply y end let, 69
[let2(x, y)] let two x apply y end let, 69
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liberal, 27
lifted, untagged cardinal, 29
[Line x : y À z; a] line x because y indeed z end line a, 104
line x because y indeed z end line a [Line x : y À z; a], 104
line x premise y end line z [Line x : Premise À y; z], 104
line x side condition y end line z [Line x : Side-condition À y; z], 105
Lisp property list, 55
load, 8, 50
[Local À x = y; z] locally define x as y end line z, 105
locally define x as y end line z [Local À x = y; z], 105
Logiweb identifier, 44
Logiweb sequent calculus, 73

macro aspect, 59
macro aspect ["macro"], 54
macro definition, 59
macro state, 59
macro state, initial, 60
make visible x end visible [(x)v], 68
Map Theory, 74
math * end math, 107
mathematically equal, 25
message, 74
message aspect ["message"], 54
message define x as y end define [x

msg
= y], 74

message proclamation, 56
metavar x end metavar [x], 79
metavariable, 76
metavariables, 78
modus, 83
modus ponens, 83
modus probans, 83
[msg] message, 74
msg: [x

msg
= y] message define x as y end text end define, 74

name, tex, 107
nameintro: [x/nameintro(y, p, t, n)] * intro * pyk * tex * name * end intro, 70
natural number, 7
[macro newline x] macro newline x, 67
[newline x] newline x, 67
newline character, 106
normal form, 24
normalization construct, 30

[occur(x, y, z)] occur x in y substitution z end occur, 99
[occur∗(x, y, z)] occur star x in y substitution z end occur, 99
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occur star x in y substitution z end occur [occur∗(x, y, z)], 99
occur x in y substitution z end occur [occur(x, y, z)], 99
off-stage semantics, 34
on-stage semantics, 34
open if, 68
open if x then y else z [if x then y else z], 68
operation over, 36
operation, sequent, 81
ordinal number, 29
ordinary variable, 76

p: [p0] proof state, 103
p: [P(x, y, z)] proof expand x state y cache z end expand, 103
p: [P∗(x, y, z)] proof expand list x state y cache z end expand, 103
page aspect, potentially inherited, 60
page bed, 61
page construct, 10, 51
parallel engine, 25
parameter term, 99
parameter term star x stack y seed z end parameter [parm∗(x, y, z)], 99
parameter term x stack y seed z end parameter [parm(x, y, z)], 99
[parm(x, y, z)] parameter term x stack y seed z end parameter, 99
[parm∗(x, y, z)] parameter term star x stack y seed z end parameter, 99
Peano tree, 27
perpetual, 24
[Plus(x, y)] plus x and y end plus, 98
plus, rule, 78
ponens, modus, 83
post identifier ["post"], 57
potentially inherited page aspect, 60
pre identifier ["pre"], 57
predefined concept, 23
premise, 76, 81
[Line x : Premise À y; z] line x premise y end line z, 104
priority aspect ["priority"], 54
priority proclamation, 57
[Priority table[x]] priority table x end table, 66
probans, modus, 83
proclaim identifier ["proclaim"], 57
proclamation, 9
proclamation construct, 10
[proof(x, y, z)] proof x term y cache z end proof, 90
[<proof>] the proof aspect, 92
proof [proof], 92
[proof2(x, y)] proof two x term y end proof, 91
proof aspect, 92
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proof expander, 101
[Proof of x: y] proof of x read y end proof, 92
proof state, 103
proof state, initial, 103
proof tactic, 101
proof x term y cache z end proof proof(x, y, z), 90
proof, sequent, 81
property list, Lisp, 55
proves: x proves y x proves y, 90
pruning, 60
pure lambda calculus, 23
pyk, 161
pyk aspect, 12
pyk aspect ["pyk"], 54
pyk: * intro * index * pyk * tex * end intro [x/indexintro(y, i, p, t)], 70
pyk: * intro * index * pyk * tex * name * end intro [x/bothintro(y, i, p, t, n)], 70
pyk: * intro * pyk * tex * end intro [x/intro(y, p, t)], 70
pyk: * intro * pyk * tex * name * end intro [x/nameintro(y, p, t, n)], 70
pyk: * spy * [x spy y], 73
pyk: big parenthesis * end parenthesis [(x)], 65
pyk: display * end display [display(x)], 69
pyk: false spying test * end test [[x]−], 73
pyk: spying test * end test [[x]·], 73
pyk: statement * end statement [statement(x)], 69
pyk: tagged lambda * dot * [Λx.y], 65

quote, 41
quote identifier ["quote"], 55

r: [x r= y] x term root equal y, 41
r: [xr] x ref, 41
R: [xR] x root, 41
rack, 47, 50
[rack] example rack, 51
ragged right, 16, 67
[ragged right] ragged right, 67
[ragged right expansion ] ragged right expansion, 67
raw, 27
raw test x end test [[x]◦], 73
reduction system, 24
reference, 7, 10
reference cardinal, 31
referencing, 84
[Reflexivity] sequent reflexivity, 98
[Reflexivity1] tactic reflexivity, 101
regular, 32
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[Remainder], 85
resolve, 9
retract, 30
retrieve, 9
return [⊥], 26
revelation, 9, 34
right, ragged, 16, 67
root equivalent, 24
root normal form, 24
rule, 76
[rule(x, y)] rule x subcodex y end rule, 96
[rule1(x, y)] rule one x theory y end rule, 96
rule lemma, 85
rule plus, 78
[Rule tactic] rule tactic, 96
rule, inference, 76
rule: [x rule y: z] in theory x rule y says z end rule, 97

s: [x s= y], 81
S: [S(x, y)] sequent eval x term y end eval, 90
S: [S+(x, y)] sequent eval plus x term y end eval, 86
S: [S−(x, y)] seqeval minus x term y end eval, 86
S: [S ;(x, y)] seqeval cut x term y end eval, 88
S: [S∗(x, y)] seqeval deref x term y end eval, 86
S: [S@(x, y)] seqeval at x term y end eval, 87
S: [S∀(x, y)] seqeval all x term y end eval, 88
S: [S `̀ (x, y)] seqeval endorse x term y end eval, 87
S: [S¤(x, y)] seqeval modus x term y end eval, 86
S: [S`(x, y)] seqeval infer x term y end eval, 87
S: [SE(x, y)] seqeval verify x term y end eval, 86
S: [S i.e.(x, y)] seqeval est x term y end eval, 87
S: [SI(x, y)] seqeval init x term y end eval, 86
S: [S+

1 (x, y, z)] seqeval plus one x term y sequent z end eval, 86
S: [S−1 (x, y, z)] seqeval minus one x term y sequent z end eval, 86
S: [S ;

1(x, y, z)] seqeval cut one x term y forerunner z end eval, 88
S: [S∗1 (x, y, z)] seqeval deref one x term y sequent z end eval, 87
S: [S@

1 (x, y, z)] seqeval at one x term y sequent x end eval, 87
S: [S∀1 (x, y, z, u)] seqeval all one x term y variable z sequent u end eval, 88
S: [S `̀1 (x, y, z, u)] seqeval endorse one x term y side z sequent u end eval, 87
S: [S¤

1 (x, y, z)] seqeval modus one x term y sequent z end eval, 86
S: [S`1 (x, y, z, u)] seqeval infer one x term y premise z sequent u end eval, 87
S: [SE

1 (x, y, z)] seqeval verify one x term y sequent z end eval, 86
S: [S i.e.

1 (x, y, z, u)] seqeval est one x term y name z sequent u end eval, 87
S: [S ;

2(x, y, z, u)] seqeval cut two x term y sequent u end eval, 88
S: [S∗2 (x, y, z, u)] seqeval deref two x term y sequent z def u end eval, 87
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S: [S i.e.
2 (x, y, z, u, v)] seqeval est two x term y name z sequent u def v end eval,

87
scheme, axiom, 75
self-evaluating, 68
semitagged, 33
seqeval all one x term y variable z sequent u end eval [S∀1 (x, y, z, u)], 88
seqeval all x term y end eval [S∀(x, y)], 88
seqeval at one x term y sequent z end eval [S@

1 (x, y, z)], 87
seqeval at x term y end eval [S@(x, y)], 87
seqeval cut one x term y forerunner z end eval [S ;

1(x, y, z)], 88
seqeval cut two x term y forerunner z sequent u end eval [S ;

2(x, y, z, u)], 88
seqeval cut x term y end eval [S ;(x, y)], 88
seqeval deref one x term y sequent z end eval [S∗1 (x, y, z)], 87
seqeval deref two x term y sequent z def u end eval [S∗2 (x, y, z, u)], 87
seqeval deref x term y end eval [S∗(x, y)], 86
seqeval endorse one x term y side z sequent u end eval [S`̀1 (x, y, z, u)], 87
seqeval endorse x term y end eval [S `̀ (x, y)], 87
seqeval est one x term y name z sequent u end eval [S i.e.

1 (x, y, z, u)], 87
seqeval est two x term y name z sequent u def v end eval [S i.e.

2 (x, y, z, u, v)], 87
seqeval est x term y end eval [S i.e.(x, y)], 87
seqeval infer one x term y premise z sequent u end eval [S`1 (x, y, z, u)], 87
seqeval infer x term y end eval [S`(x, y)], 87
seqeval init x term y end eval [SI(x, y)], 86
seqeval minus one x term y sequent z end eval [S−1 (x, y, z)], 86
seqeval minus x term y end eval [S−(x, y)], 86
seqeval modus one x term y sequent z end eval [S¤

1 (x, y, z)], 86
seqeval modus x term y end eval [S¤(x, y)], 86
seqeval plus one x term y sequent z end eval [S+

1 (x, y, z)], 86
seqeval verify one x term y sequent z end eval [SE

1 (x, y, z)], 86
seqeval verify x term y end eval [SE(x, y)], 86
sequent, 81
sequent calculus, 73
sequent commutativity [Commutativity], 98
sequent eval plus x term y end eval [S+(x, y)], 86
sequent eval x term y end eval [S(x, y)], 90
sequent operation, 81
sequent proof, 81
sequent reflexivity [Reflexivity], 98
side condition, 81
[Line x : Side-condition À y; z] line x side condition y end line z, 105
singular, 32
spy: [x spy y] * spy *, 73
stack, 49
statement, 75, 77
statement [stmt], 75
statement aspect, 75
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statement define x as y end define [x stmt= y], 75
Statement: [statement(x)] statement * end statement, 69
[<stmt>] the statement aspect, 75
[stmt] statement, 75
stmt: [x stmt= y], 75
strict, 28, 35
strict variable, 37
sub star x set y to z end sub [〈∗x |y:= z〉], 80
sub x set y to z end sub [〈x |y:= z〉], 80
subcodex, 55
symbol, 10
symbol exists, 52

[TE] example theory, 97
[T (x)] computably true x end true, 84
[T′E] example theory primed, 76
t: [x ∈t y], 80
T: [x T= y], 80
T: [x ⊆T y], 80
[<tactic>] the tactic aspect, 102
tactic [tactic], 102
tactic aspect, 101
tactic commutativity [Commutativity1], 102
tactic define x as y end define [x tactic= y], 102
tactic reflexivity [Reflexivity1], 101
tactic, conclusion, 103
tactic, proof, 101
tactic: [x tactic= y], 102
tag, 30
tagged cardinal, 30
tagged map, 31
tagged pair, 31
tagged Peano tree, 31
tagged tree, 31
[Tail⊕(x)] tail x end tail, 97
term, parameter, 99
test x end test [[x]·], 72
[tex] tex, 12
tex aspect, 12
tex aspect ["tex"], 54
tex name, 107
texname aspect ["texname"], 54
the empty set [∅], 80
the proof aspect [<proof>], 92
the statement aspect [<stmt>], 75
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the tactic aspect [<tactic>], 102
theory, 76
[Theory x] theory x end theory, 98
[theory2(x, y)] theory two x cache y end theory, 98
[theory3(x, y)] theory three x name y end theory, 98
[theory4(x, y, z)] theory four x name var y sum z end theory, 98
transitive bibliography, 50
[Transitivity′′] example rule lemma primed, 97
[Transitivity′] example rule, 76
[Transitivity] example rule lemma, 97
true identifier ["true"], 55
true term, 24
truth normal form, 24
[tuple1(t)], 66
[tuple2(t)], 66
tuple x end tuple [〈x〉], 66
type, 36

uncolored, 88
unification, 99
unification algorithm, 100
unify, 100
[unify(x = y, z)] unify x with y substitution z end unify, 100
[unify∗(x = y, z)] unify star x with y substitution z end unify, 100
[unify2(x = y, z)] unify two x with y substitution z end unify, 101
unify star x with y substitution z end unify [unify∗(x = y, z)], 100
unify two x with y substitution z end unify [unify2(x = y, z)], 101
unify x with y substitution z end unify [unify(x = y, z)], 100
unpack, 9
unpack aspect ["unpack"], 54

[V1(c)] verify one c end verify, 93
[V2(c, p)] verify two c proofs p end verify, 93
[V3(c, r, p, d)] verify three c ref r sequents p diagnose d end verify, 93
[V4(c, p)] verify four c premises p end verify, 94
[V5(c, r, a, q)] verify five c ref r array a sequents q end verify, 95
[V6(c, r, p, q)] verify six c ref r list p sequents q end verify, 95
[V7(c, r, i, q)] verify seven c ref r id i sequents q end verify, 95
V: [xV] x verify, 84
V: [xV ] x is metavar, 79
v: [(x)v] make visible x end visible, 68
value, 45
value aspect, 25
value aspect ["value"], 53
value proclamation, 55
variable, meta, 76
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variable, ordinary, 76
vector, 7
vector hook ["vector"], 51
verification, 83
[verifier] verifier, 93
verify, 9
verify five c ref r array a sequents q end verify [V5(c, r, a, q)] verify five c ref r
array a sequents q end verify, 95
verify four c premises p end verify [V4(c, p)], 94
verify one c end verify [V1(c)], 93
verify seven c ref r id i sequents q end verify [V7(c, r, i, q)], 95
verify six c ref r list p sequents q end verify [V6(c, r, p, q)], 95
verify three c ref r sequents p diagnose d end verify [V3(c, r, p, d)], 93
verify two c proofs p end verify [V2(c, p)], 93
visibility, 68

x at y [x @ y], 84
x claim and y [x ∧c y], 71
x claim in y [x ∈c y], 91
x color star y end color [x-color∗(y)], 88
x color y end color [x-color(y)], 88
x comma y [x, y], 66
x curry minus [x−], 84
x curry plus [x+], 84
x cut y [x; y], 85
x debug [xd], 41
x dereference [x∗], 84
x endorse y [x `̀ y], 77
x first [x1], 32
x free for star y in z [x free for∗ y in z], 79
x free for y in z [x free for y in z], 79
x free in star y [x free in∗ y], 79
x free in y [x free in y], 79
x id [xi], 41
x id est y [x i.e. y], 84
x infer y [x ` y], 77
x init [xI], 82
x is error [xE], 90
x is metaclosed [xC ], 79
x is metaclosed star [xC

∗
], 79

x is metavar [xV ], 79
x less one y [x ≤′ y], 40
x less y [x < y], 39
x less zero y [x <′ y], 40
x macro and y [x ∧̈ y], 69
x macro imply y [x ⇒̈ y], 69
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x macro or y [x ∨̈ y], 69
x minus one y [x−1 y], 40
x minus y [x− y], 40
x minus zero y [x−0 y], 40
x modus [x¤], 83
x plus one y [x +1 y], 39
x plus y [x + y], 39
x plus zero y [x+0 y], 39
x prime [x′], 49
x proves y: x proves y, 90
x ref [xr], 41
x root [xR], 41
x rule plus y [x ⊕ y], 77
x sequent equal y [x s= y], 81
x set multi y to z end set [x[y⇒z]]t, 48
x set y to z end set [x[y→z]]t, 47
x simple and y [x ∧̃ y], 71
x term in y [x ∈t y], 80
x term minus var y end minus [x\{y}], 80
x term plus var y end plus [x ∪ {y}], 80
x term root equal y [x r= y], 41
x term set equal y [x T= y], 80
x term subset y [x ⊆T y], 80
x term union y [x ∪ y], 81
x times y [x · y], 40
x times zero y [x ·0 y], 40
x verify [xV], 84

zero dimensional array, 47
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