Logiweb(TM)

Logiweb codex of kvanti in pyk

Up Help

ref-2-id-99 exist {MissingArg} indeed {MissingArg}
ref-2-id-102 {MissingArg} imply {MissingArg}
ref-0-id-0 kvanti
ref-0-id-1 lemma uniqueMember
ref-0-id-2 lemma uniqueMember(Type)
ref-0-id-3 lemma sameSeries
ref-0-id-4 lemma a4
ref-0-id-5 lemma sameMember
ref-0-id-6 1rule Qclosed(Addition)
ref-0-id-7 1rule Qclosed(Multiplication)
ref-0-id-8 1rule fromCartProd(1)
ref-0-id-9 1rule fromCartProd(2)
ref-0-id-10 constantRationalSeries( {MissingArg} )
ref-0-id-11 cartProd( {MissingArg} , {MissingArg} )
ref-0-id-12 P( {MissingArg} )
ref-0-id-13 binaryUnion( {MissingArg} , {MissingArg} )
ref-0-id-14 setOfRationalSeries
ref-0-id-15 isSubset( {MissingArg} , {MissingArg} )
ref-0-id-16 (p {MissingArg} , {MissingArg} )
ref-0-id-17 (s {MissingArg} )
ref-0-id-18 cdots
ref-0-id-19 object-var
ref-0-id-20 ex-var
ref-0-id-21 ph-var
ref-0-id-22 vaerdi
ref-0-id-23 variabel
ref-0-id-24 op {MissingArg} end op
ref-0-id-25 op2 {MissingArg} comma {MissingArg} end op2
ref-0-id-26 define-equal {MissingArg} comma {MissingArg} end equal
ref-0-id-27 contains-empty {MissingArg} end empty
ref-0-id-28 Nat( {MissingArg} )
ref-0-id-29 1deduction {MissingArg} conclude {MissingArg} end 1deduction
ref-0-id-30 1deduction zero {MissingArg} conclude {MissingArg} end 1deduction
ref-0-id-31 1deduction side {MissingArg} conclude {MissingArg} condition {MissingArg} end 1deduction
ref-0-id-32 1deduction one {MissingArg} conclude {MissingArg} condition {MissingArg} end 1deduction
ref-0-id-33 1deduction two {MissingArg} conclude {MissingArg} condition {MissingArg} end 1deduction
ref-0-id-34 1deduction three {MissingArg} conclude {MissingArg} condition {MissingArg} bound {MissingArg} end 1deduction
ref-0-id-35 1deduction four {MissingArg} conclude {MissingArg} condition {MissingArg} bound {MissingArg} end 1deduction
ref-0-id-36 1deduction four star {MissingArg} conclude {MissingArg} condition {MissingArg} bound {MissingArg} end 1deduction
ref-0-id-37 1deduction five {MissingArg} condition {MissingArg} bound {MissingArg} end 1deduction
ref-0-id-38 1deduction six {MissingArg} conclude {MissingArg} exception {MissingArg} bound {MissingArg} end 1deduction
ref-0-id-39 1deduction six star {MissingArg} conclude {MissingArg} exception {MissingArg} bound {MissingArg} end 1deduction
ref-0-id-40 1deduction seven {MissingArg} end 1deduction
ref-0-id-41 1deduction eight {MissingArg} bound {MissingArg} end 1deduction
ref-0-id-42 1deduction eight star {MissingArg} bound {MissingArg} end 1deduction
ref-0-id-43 ex1
ref-0-id-44 ex2
ref-0-id-45 ex3
ref-0-id-46 ex10
ref-0-id-47 ex20
ref-0-id-48 existential var {MissingArg} end var
ref-0-id-49 {MissingArg} is existential var
ref-0-id-50 exist-sub {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub
ref-0-id-51 exist-sub0 {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub
ref-0-id-52 exist-sub1 {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub
ref-0-id-53 exist-sub* {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub
ref-0-id-54 ph1
ref-0-id-55 ph2
ref-0-id-56 ph3
ref-0-id-57 placeholder-var {MissingArg} end var
ref-0-id-58 {MissingArg} is placeholder-var
ref-0-id-59 ph-sub {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub
ref-0-id-60 ph-sub0 {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub
ref-0-id-61 ph-sub1 {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub
ref-0-id-62 ph-sub* {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub
ref-0-id-63 meta-sub {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub
ref-0-id-64 meta-sub1 {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub
ref-0-id-65 meta-sub* {MissingArg} is {MissingArg} where {MissingArg} is {MissingArg} end sub
ref-0-id-66 var big set
ref-0-id-67 object big set
ref-0-id-68 meta big set
ref-0-id-69 zermelo empty set
ref-0-id-70 system Q
ref-0-id-71 1rule mp
ref-0-id-72 1rule gen
ref-0-id-73 1rule repetition
ref-0-id-74 1rule ad absurdum
ref-0-id-75 1rule deduction
ref-0-id-76 1rule exist intro
ref-0-id-77 axiom extensionality
ref-0-id-78 axiom empty set
ref-0-id-79 axiom pair definition
ref-0-id-80 axiom union definition
ref-0-id-81 axiom power definition
ref-0-id-82 axiom separation definition
ref-0-id-83 prop lemma add double neg
ref-0-id-84 prop lemma remove double neg
ref-0-id-85 prop lemma and commutativity
ref-0-id-86 prop lemma auto imply
ref-0-id-87 prop lemma contrapositive
ref-0-id-88 prop lemma first conjunct
ref-0-id-89 prop lemma second conjunct
ref-0-id-90 prop lemma from contradiction
ref-0-id-91 prop lemma from disjuncts
ref-0-id-92 prop lemma iff commutativity
ref-0-id-93 prop lemma iff first
ref-0-id-94 prop lemma iff second
ref-0-id-95 prop lemma imply transitivity
ref-0-id-96 prop lemma join conjuncts
ref-0-id-97 prop lemma mp2
ref-0-id-98 prop lemma mp3
ref-0-id-99 prop lemma mp4
ref-0-id-100 prop lemma mp5
ref-0-id-101 prop lemma mt
ref-0-id-102 prop lemma negative mt
ref-0-id-103 prop lemma technicality
ref-0-id-104 prop lemma weakening
ref-0-id-105 prop lemma weaken or first
ref-0-id-106 prop lemma weaken or second
ref-0-id-107 lemma formula2pair
ref-0-id-108 lemma pair2formula
ref-0-id-109 lemma formula2union
ref-0-id-110 lemma union2formula
ref-0-id-111 lemma formula2separation
ref-0-id-112 lemma separation2formula
ref-0-id-113 lemma formula2power
ref-0-id-114 lemma subset in power set
ref-0-id-115 lemma power set is subset0
ref-0-id-116 lemma power set is subset
ref-0-id-117 lemma power set is subset0-switch
ref-0-id-118 lemma power set is subset-switch
ref-0-id-119 lemma set equality suff condition
ref-0-id-120 lemma set equality suff condition(t)0
ref-0-id-121 lemma set equality suff condition(t)
ref-0-id-122 lemma set equality skip quantifier
ref-0-id-123 lemma set equality nec condition
ref-0-id-124 lemma reflexivity0
ref-0-id-125 lemma reflexivity
ref-0-id-126 lemma symmetry0
ref-0-id-127 lemma symmetry
ref-0-id-128 lemma transitivity0
ref-0-id-129 lemma transitivity
ref-0-id-130 lemma er is reflexive
ref-0-id-131 lemma er is symmetric
ref-0-id-132 lemma er is transitive
ref-0-id-133 lemma empty set is subset
ref-0-id-134 lemma member not empty0
ref-0-id-135 lemma member not empty
ref-0-id-136 lemma unique empty set0
ref-0-id-137 lemma unique empty set
ref-0-id-138 lemma ==Reflexivity
ref-0-id-139 lemma ==Symmetry
ref-0-id-140 lemma ==Transitivity0
ref-0-id-141 lemma ==Transitivity
ref-0-id-142 lemma transfer ~is0
ref-0-id-143 lemma transfer ~is
ref-0-id-144 lemma pair subset0
ref-0-id-145 lemma pair subset1
ref-0-id-146 lemma pair subset
ref-0-id-147 lemma same pair
ref-0-id-148 lemma same singleton
ref-0-id-149 lemma union subset
ref-0-id-150 lemma same union
ref-0-id-151 lemma separation subset
ref-0-id-152 lemma same separation
ref-0-id-153 lemma same binary union
ref-0-id-154 lemma intersection subset
ref-0-id-155 lemma same intersection
ref-0-id-156 lemma auto member
ref-0-id-157 lemma eq-system not empty0
ref-0-id-158 lemma eq-system not empty
ref-0-id-159 lemma eq subset0
ref-0-id-160 lemma eq subset
ref-0-id-161 lemma equivalence nec condition0
ref-0-id-162 lemma equivalence nec condition
ref-0-id-163 lemma none-equivalence nec condition0
ref-0-id-164 lemma none-equivalence nec condition1
ref-0-id-165 lemma none-equivalence nec condition
ref-0-id-166 lemma equivalence class is subset
ref-0-id-167 lemma equivalence classes are disjoint
ref-0-id-168 lemma all disjoint
ref-0-id-169 lemma all disjoint-imply
ref-0-id-170 lemma bs subset union(bs/r)
ref-0-id-171 lemma union(bs/r) subset bs
ref-0-id-172 lemma union(bs/r) is bs
ref-0-id-173 theorem eq-system is partition
ref-0-id-174 var x1
ref-0-id-175 var x2
ref-0-id-176 var y1
ref-0-id-177 var y2
ref-0-id-178 var v1
ref-0-id-179 var v2
ref-0-id-180 var v3
ref-0-id-181 var v4
ref-0-id-182 var v2n
ref-0-id-183 var m1
ref-0-id-184 var m2
ref-0-id-185 var n1
ref-0-id-186 var n2
ref-0-id-187 var n3
ref-0-id-188 var ep
ref-0-id-189 var ep1
ref-0-id-190 var ep2
ref-0-id-191 var fep
ref-0-id-192 var fx
ref-0-id-193 var fy
ref-0-id-194 var fz
ref-0-id-195 var fu
ref-0-id-196 var fv
ref-0-id-197 var fw
ref-0-id-198 var rx
ref-0-id-199 var ry
ref-0-id-200 var rz
ref-0-id-201 var ru
ref-0-id-202 var sx
ref-0-id-203 var sx1
ref-0-id-204 var sy
ref-0-id-205 var sy1
ref-0-id-206 var sz
ref-0-id-207 var sz1
ref-0-id-208 var su
ref-0-id-209 var su1
ref-0-id-210 var fxs
ref-0-id-211 var fys
ref-0-id-212 var crs1
ref-0-id-213 var f1
ref-0-id-214 var f2
ref-0-id-215 var f3
ref-0-id-216 var f4
ref-0-id-217 var op1
ref-0-id-218 var op2
ref-0-id-219 var r1
ref-0-id-220 var s1
ref-0-id-221 var s2
ref-0-id-222 meta x1
ref-0-id-223 meta x2
ref-0-id-224 meta y1
ref-0-id-225 meta y2
ref-0-id-226 meta v1
ref-0-id-227 meta v2
ref-0-id-228 meta v3
ref-0-id-229 meta v4
ref-0-id-230 meta v2n
ref-0-id-231 meta m1
ref-0-id-232 meta m2
ref-0-id-233 meta n1
ref-0-id-234 meta n2
ref-0-id-235 meta n3
ref-0-id-236 meta ep
ref-0-id-237 meta ep1
ref-0-id-238 meta ep2
ref-0-id-239 meta fx
ref-0-id-240 meta fy
ref-0-id-241 meta fz
ref-0-id-242 meta fu
ref-0-id-243 meta fv
ref-0-id-244 meta fw
ref-0-id-245 meta fep
ref-0-id-246 meta rx
ref-0-id-247 meta ry
ref-0-id-248 meta rz
ref-0-id-249 meta ru
ref-0-id-250 meta sx
ref-0-id-251 meta sx1
ref-0-id-252 meta sy
ref-0-id-253 meta sy1
ref-0-id-254 meta sz
ref-0-id-255 meta sz1
ref-0-id-256 meta su
ref-0-id-257 meta su1
ref-0-id-258 meta fxs
ref-0-id-259 meta fys
ref-0-id-260 meta f1
ref-0-id-261 meta f2
ref-0-id-262 meta f3
ref-0-id-263 meta f4
ref-0-id-264 meta op1
ref-0-id-265 meta op2
ref-0-id-266 meta r1
ref-0-id-267 meta s1
ref-0-id-268 meta s2
ref-0-id-269 object ep
ref-0-id-270 object crs1
ref-0-id-271 object f1
ref-0-id-272 object f2
ref-0-id-273 object f3
ref-0-id-274 object f4
ref-0-id-275 object n1
ref-0-id-276 object n2
ref-0-id-277 object op1
ref-0-id-278 object op2
ref-0-id-279 object r1
ref-0-id-280 object s1
ref-0-id-281 object s2
ref-0-id-282 ph4
ref-0-id-283 ph5
ref-0-id-284 ph6
ref-0-id-285 NAT
ref-0-id-286 RATIONAL_SERIES
ref-0-id-287 SERIES
ref-0-id-288 setOfReals
ref-0-id-289 setOfFxs
ref-0-id-290 N
ref-0-id-291 Q
ref-0-id-292 X
ref-0-id-293 xs
ref-0-id-294 xsF
ref-0-id-295 ysF
ref-0-id-296 us
ref-0-id-297 usF
ref-0-id-298 0
ref-0-id-299 1
ref-0-id-300 (-1)
ref-0-id-301 2
ref-0-id-302 3
ref-0-id-303 1/2
ref-0-id-304 1/3
ref-0-id-305 2/3
ref-0-id-306 0f
ref-0-id-307 1f
ref-0-id-308 00
ref-0-id-309 01
ref-0-id-310 (--01)
ref-0-id-311 02
ref-0-id-312 01//02
ref-0-id-313 lemma plusAssociativity(R)
ref-0-id-314 lemma plusAssociativity(R)XX
ref-0-id-315 lemma plus0(R)
ref-0-id-316 lemma negative(R)
ref-0-id-317 lemma times1(R)
ref-0-id-318 lemma lessAddition(R)
ref-0-id-319 lemma plusCommutativity(R)
ref-0-id-320 lemma leqAntisymmetry(R)
ref-0-id-321 lemma leqTransitivity(R)
ref-0-id-322 lemma leqAddition(R)
ref-0-id-323 lemma distribution(R)
ref-0-id-324 axiom a4
ref-0-id-325 axiom induction
ref-0-id-326 axiom equality
ref-0-id-327 axiom eqLeq
ref-0-id-328 axiom eqAddition
ref-0-id-329 axiom eqMultiplication
ref-0-id-330 axiom QisClosed(reciprocal)
ref-0-id-331 lemma QisClosed(reciprocal)
ref-0-id-332 axiom QisClosed(negative)
ref-0-id-333 lemma QisClosed(negative)
ref-0-id-334 axiom leqReflexivity
ref-0-id-335 axiom leqAntisymmetry
ref-0-id-336 axiom leqTransitivity
ref-0-id-337 axiom leqTotality
ref-0-id-338 axiom leqAddition
ref-0-id-339 axiom leqMultiplication
ref-0-id-340 axiom plusAssociativity
ref-0-id-341 axiom plusCommutativity
ref-0-id-342 axiom negative
ref-0-id-343 axiom plus0
ref-0-id-344 axiom timesAssociativity
ref-0-id-345 axiom timesCommutativity
ref-0-id-346 axiom reciprocal
ref-0-id-347 axiom times1
ref-0-id-348 axiom distribution
ref-0-id-349 axiom 0not1
ref-0-id-350 lemma eqLeq(R)
ref-0-id-351 lemma timesAssociativity(R)
ref-0-id-352 lemma timesCommutativity(R)
ref-0-id-353 1rule adhoc sameR
ref-0-id-354 lemma separation2formula(1)
ref-0-id-355 lemma separation2formula(2)
ref-0-id-356 axiom cauchy
ref-0-id-357 axiom plusF
ref-0-id-358 axiom reciprocalF
ref-0-id-359 1rule from==
ref-0-id-360 1rule to==
ref-0-id-361 1rule fromInR
ref-0-id-362 lemma plusR(Sym)
ref-0-id-363 axiom reciprocalR
ref-0-id-364 1rule lessMinus1(N)
ref-0-id-365 axiom nonnegative(N)
ref-0-id-366 axiom US0
ref-0-id-367 1rule nextXS(upperBound)
ref-0-id-368 1rule nextXS(noUpperBound)
ref-0-id-369 1rule nextUS(upperBound)
ref-0-id-370 1rule nextUS(noUpperBound)
ref-0-id-371 1rule expZero
ref-0-id-372 1rule expPositive
ref-0-id-373 1rule expZero(R)
ref-0-id-374 1rule expPositive(R)
ref-0-id-375 1rule base(1/2)Sum zero
ref-0-id-376 1rule base(1/2)Sum positive
ref-0-id-377 1rule UStelescope zero
ref-0-id-378 1rule UStelescope positive
ref-0-id-379 1rule adhoc eqAddition(R)
ref-0-id-380 1rule fromLimit
ref-0-id-381 1rule toUpperBound
ref-0-id-382 1rule fromUpperBound
ref-0-id-383 axiom USisUpperBound
ref-0-id-384 axiom 0not1(R)
ref-0-id-385 1rule expUnbounded
ref-0-id-386 1rule fromLeq(Advanced)(N)
ref-0-id-387 1rule fromLeastUpperBound
ref-0-id-388 1rule toLeastUpperBound
ref-0-id-389 axiom XSisNotUpperBound
ref-0-id-390 axiom ysFGreater
ref-0-id-391 axiom ysFLess
ref-0-id-392 1rule smallInverse
ref-0-id-393 axiom natType
ref-0-id-394 axiom rationalType
ref-0-id-395 axiom seriesType
ref-0-id-396 axiom max
ref-0-id-397 axiom numerical
ref-0-id-398 axiom numericalF
ref-0-id-399 axiom memberOfSeries
ref-0-id-400 prop lemma doubly conditioned join conjuncts
ref-0-id-401 prop lemma imply negation
ref-0-id-402 prop lemma tertium non datur
ref-0-id-403 prop lemma from negated imply
ref-0-id-404 prop lemma to negated imply
ref-0-id-405 prop lemma from negated double imply
ref-0-id-406 prop lemma from negated and
ref-0-id-407 prop lemma from negated or
ref-0-id-408 prop lemma to negated or
ref-0-id-409 prop lemma from negations
ref-0-id-410 prop lemma from three disjuncts
ref-0-id-411 prop lemma from two times two disjuncts
ref-0-id-412 prop lemma negate first disjunct
ref-0-id-413 prop lemma negate second disjunct
ref-0-id-414 prop lemma expand disjuncts
ref-0-id-415 lemma set equality nec condition(1)
ref-0-id-416 lemma set equality nec condition(2)
ref-0-id-417 lemma lessLeq(R)
ref-0-id-418 lemma memberOfSeries
ref-0-id-419 lemma memberOfSeries(Type)
ref-0-id-420 {MissingArg} ^ {MissingArg}
ref-0-id-421 R( {MissingArg} )
ref-0-id-422 --R( {MissingArg} )
ref-0-id-423 1/ {MissingArg}
ref-0-id-424 eq-system of {MissingArg} modulo {MissingArg}
ref-0-id-425 intersection {MissingArg} comma {MissingArg} end intersection
ref-0-id-426 [ {MissingArg} ; {MissingArg} ]
ref-0-id-427 union {MissingArg} end union
ref-0-id-428 binary-union {MissingArg} comma {MissingArg} end union
ref-0-id-429 power {MissingArg} end power
ref-0-id-430 zermelo singleton {MissingArg} end singleton
ref-0-id-431 stateExpand( {MissingArg} , {MissingArg} , {MissingArg} )
ref-0-id-432 extractSeries( {MissingArg} )
ref-0-id-433 setOfSeries( {MissingArg} )
ref-0-id-434 --Macro( {MissingArg} )
ref-0-id-435 expandList( {MissingArg} , {MissingArg} , {MissingArg} )
ref-0-id-436 **Macro( {MissingArg} )
ref-0-id-437 ++Macro( {MissingArg} )
ref-0-id-438 <
ref-0-id-439 ||Macro( {MissingArg} )
ref-0-id-440 01//Macro( {MissingArg} )
ref-0-id-441 upperBound( {MissingArg} , {MissingArg} )
ref-0-id-442 leastUpperBound( {MissingArg} , {MissingArg} )
ref-0-id-443 base(1/2)Sum( {MissingArg} , {MissingArg} )
ref-0-id-444 UStelescope( {MissingArg} , {MissingArg} )
ref-0-id-445 ( {MissingArg} )
ref-0-id-446 |f {MissingArg} |
ref-0-id-447 |r {MissingArg} |
ref-0-id-448 limit( {MissingArg} , {MissingArg} )
ref-0-id-449 U( {MissingArg} )
ref-0-id-450 isOrderedPair( {MissingArg} , {MissingArg} , {MissingArg} )
ref-0-id-451 isRelation( {MissingArg} , {MissingArg} , {MissingArg} )
ref-0-id-452 isFunction( {MissingArg} , {MissingArg} , {MissingArg} )
ref-0-id-453 isSeries( {MissingArg} , {MissingArg} )
ref-0-id-454 isNatural( {MissingArg} )
ref-0-id-455 (o {MissingArg} , {MissingArg} )
ref-0-id-456 typeNat( {MissingArg} )
ref-0-id-457 typeNat0( {MissingArg} )
ref-0-id-458 typeRational( {MissingArg} )
ref-0-id-459 typeRational0( {MissingArg} )
ref-0-id-460 typeSeries( {MissingArg} , {MissingArg} )
ref-0-id-461 typeSeries0( {MissingArg} , {MissingArg} )
ref-0-id-462 zermelo pair {MissingArg} comma {MissingArg} end pair
ref-0-id-463 zermelo ordered pair {MissingArg} comma {MissingArg} end pair
ref-0-id-464 - {MissingArg}
ref-0-id-465 -f {MissingArg}
ref-0-id-466 -- {MissingArg}
ref-0-id-467 1f/ {MissingArg}
ref-0-id-468 01// {MissingArg}
ref-0-id-469 {MissingArg} is related to {MissingArg} under {MissingArg}
ref-0-id-470 {MissingArg} is reflexive relation in {MissingArg}
ref-0-id-471 {MissingArg} is symmetric relation in {MissingArg}
ref-0-id-472 {MissingArg} is transitive relation in {MissingArg}
ref-0-id-473 {MissingArg} is equivalence relation in {MissingArg}
ref-0-id-474 equivalence class of {MissingArg} in {MissingArg} modulo {MissingArg}
ref-0-id-475 {MissingArg} is partition of {MissingArg}
ref-0-id-476 {MissingArg} * {MissingArg}
ref-0-id-477 {MissingArg} *f {MissingArg}
ref-0-id-478 {MissingArg} ** {MissingArg}
ref-0-id-479 {MissingArg} + {MissingArg}
ref-0-id-480 {MissingArg} - {MissingArg}
ref-0-id-481 {MissingArg} +f {MissingArg}
ref-0-id-482 {MissingArg} -f {MissingArg}
ref-0-id-483 {MissingArg} ++ {MissingArg}
ref-0-id-484 R( {MissingArg} ) -- R( {MissingArg} )
ref-0-id-485 {MissingArg} in0 {MissingArg}
ref-0-id-486 | {MissingArg} |
ref-0-id-487 if( {MissingArg} , {MissingArg} , {MissingArg} )
ref-0-id-488 max( {MissingArg} , {MissingArg} )
ref-0-id-489 maxR( {MissingArg} , {MissingArg} )
ref-0-id-490 {MissingArg} = {MissingArg}
ref-0-id-491 {MissingArg} != {MissingArg}
ref-0-id-492 {MissingArg} <= {MissingArg}
ref-0-id-493 {MissingArg} < {MissingArg}
ref-0-id-494 {MissingArg}
ref-0-id-495 {MissingArg} <=f {MissingArg}
ref-0-id-496 {MissingArg} sameF {MissingArg}
ref-0-id-497 {MissingArg} == {MissingArg}
ref-0-id-498 {MissingArg} !!== {MissingArg}
ref-0-id-499 {MissingArg} << {MissingArg}
ref-0-id-500 {MissingArg} <<== {MissingArg}
ref-0-id-501 {MissingArg} zermelo is {MissingArg}
ref-0-id-502 {MissingArg} is subset of {MissingArg}
ref-0-id-503 not0 {MissingArg}
ref-0-id-504 {MissingArg} zermelo ~in {MissingArg}
ref-0-id-505 {MissingArg} zermelo ~is {MissingArg}
ref-0-id-506 {MissingArg} and0 {MissingArg}
ref-0-id-507 {MissingArg} or0 {MissingArg}
ref-0-id-508 exist0 {MissingArg} indeed {MissingArg}
ref-0-id-509 {MissingArg} iff {MissingArg}
ref-0-id-510 the set of ph in {MissingArg} such that {MissingArg} end set

The pyk compiler, version 0.grue.20060417+ by Klaus Grue,
GRD-2006-12-15.UTC:00:32:42.052453 = MJD-54084.TAI:00:33:15.052453 = LGT-4672859595052453e-6