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Abstract

The ‘Logiweb sequent calculus’ is suited for terse, human readable
formulation of axioms, inference rules, theories, lemmas, and proofs. It
supports different styles of theories like equational theories and FOL
based theories. It permits to express arbitrary side conditions in the
‘Logiweb programming language’. As an example of use, the calculus
allows to express the deduction rule as an inference rule which makes it
easy to get started using a theory. The calculus has operations for
‘dereferencing’ and ‘referencing’ which allow to convert e.g. the name of
a lemma into the contents of the lemma and vice versa. The calculus
interacts smoothly with fully automatic tactics as well as proofs in which
part of the work is done by a human author and part is done by proof
tactics.

1 Introduction

Logiweb [Gru04, Gru05, Gru06a] is a system for electronic publication of logic.
It allows authors different places in the world to define theories, state and
prove lemmas, and to publish Logiweb pages that contain the results. The
present paper is an example of a Logiweb page, and the present paper is
correct in the sense that it has been verified by Logiweb.
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Core Logiweb allows users to program proof systems in the Logiweb
programming language and to publish the proof system. Users who use the
same proof system and the same axiomatic theory may benefit from the
results of each other in that a proof written by one author may make
references across the internet to lemmas proved by another author. Cross
theory cooperation (e.g. use of ZFC results in NBG) could be more
cumbersome and cross proof system cooperation even more so, depending on
the theories and systems involved.
The present paper introduces Logiweb sequent calculus which allows users to
express arbitrary axiomatic theories on the same footing. That calculus
supports arbitrary styles of logic (e.g. FOL or equational) equally well. The
calculus is machine friendly in that proofs are easy to generate, verify, store,
and transmit and it is general so that users of Logiweb are not tempted to
make a proof system each. User friendliness in the sense that theories, lemmas,
and proofs should be easy to read and write is taken care of by Logiwebs
rendering and Turing complete macro expansion facilities combined with the
support for proof tactics in the implementation of the calculus in [Gru06a].
The present paper gives an overview. Details are in a web appendix [Gru06b].

2 Logiweb sequent calculus

Let v and t denote the syntax classes of metavariables and object terms,
respectively. The format s of Logiweb statements is
s ::= v | t | s ` s | t `̀ s | ∀v: s | ⊥⊥ | s ⊕ s. As an example of use, consider the
following:

Let A denote ∀a: a + 0 = a.
Let R denote ∀a:∀b: ∀c: a = b ` a = c ` b = c.
Let C denote 0 = 1 ` ⊥⊥.
Let T denote R ⊕ C ⊕ A.
Let L denote T ` ∀a: a = a.

The construct ∀x: a states that a is provable for all object terms x. Hence, A
above is an axiom scheme which says that a + 0 = a for all object terms a.
The construct a ` b states that if a is provable then b is provable. a ` b is
right associative and has higher priority than ∀x: a, so R above means
∀a: ∀b:∀c: a = b ` a = c ` b = c. Hence, R is the inference rule which states
that a = b and a = c infer b = c. The macro that expands ∀a: ∀b:∀c: d into
∀a: ∀b:∀c: d is defined in [Gru06b].
The construct ⊥⊥ denotes absurdity, i.e. meta-falsehood (we reserve F and ⊥ to
denote falsehood and infinite looping, respectively, at the object level). Hence,
C above states that 0 = 1 is an absurdity.
The construct a ⊕ b states that both a and b are provable. Hence, T above is
the axiomatic theory which comprises the axiom scheme A, the inference rule
R, and the statement that 0 = 1 is an absurdity.
The lemma L above says that a = a is provable in the theory T.
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The construct a `̀ b states that if computation of a yields T then b is provable.
a must be expressed in the Logiweb programming language (c.f. [Gru06a]). T
denotes truth in the Logiweb programming language. If a `̀ b then we shall
say that a endorses b. The endorsement operator allows to express side
conditions as we shall see later.
A Logiweb sequent is a triple p : : s : : c : : T where c is a Logiweb statement and
p and s are finite sets of Logiweb statements. The sequent {p1, . . . , pm} : : {s1,
. . . , sn} : : c : : T represents p1 ` . . . ` pm ` s1 `̀ . . . `̀ sn `̀ c. The operations of
Logiweb sequent calculus are:

aI → ∅, ∅, a ` a : : T
a ` p : : s : : c : : T → p\{a}, s, a ` c : : T
a `̀ p : : s : : c : : T → p, s\{a}, a `̀ c : : T
∀x: p : : s : : c : : T → p : : s : : ∀x: c : : T1

p, s, a ` c : : T¤ → p ∪ {a} : : s : : c : : T
p, s, a `̀ c : : T¤ → p : : s ∪ {a} : : c : : T

p : : s : : ∀x: c : : T @ a → p : : s : : 〈c |x:= a〉 : : T2

p, s, a `̀ b : : TV → p : : s : : b : : T3

p, s, a ` b ` c : : T+ → p, s, a ⊕ b ` c : : T
p, s, a ⊕ b ` c : : T− → p, s, a ` b ` c : : T

p : : s : : n : : T∗ → p : : s : : c : : T4

p : : s : : c : : T i.e. n → p : : s : : n : : T4

p1 : : s1 : : c1 : : T; p2 : : s2 : : c2 : : T → p1 ∪ p2\{c1} : : s1 ∪ s2 : : c2 : : T

Evaluation of a sequent operation gives a sequent or an exception. Exceptional
cases are omitted above. Now let A′ denote T ` ∀a: a + 0 = a. We have

T ` TI¤∗; R ⊕ C ` LI+∗ i.e. A′ →
T ` ∅, ∅, T ` T : : T¤∗; R ⊕ C ` ∅, ∅,A ` A : : T+∗ i.e. A′ →
T ` {T} : : ∅ : : T : : T∗; ∅, ∅, R ⊕ C ` A ` A : : T+∗ i.e. A′ →
T ` {T}, ∅, R ⊕ C ⊕ A : : T; ∅, ∅, R ⊕ C ⊕ A ` A : : T∗ i.e. A′ →
T ` {T}, ∅, R ⊕ C ⊕ A : : T; {R ⊕ C ⊕ A} : : ∅ : : A : : T∗ i.e. A′ →
T ` {T} : : ∅ : : L : : T∗ i.e. A′ → T ` {T} : : ∅ : : ∀a: a + 0 = a : : T i.e. A′ →
∅, ∅,T ` ∀a: a + 0 = a : : T i.e. A′ → ∅ : : ∅ : : A′ : : T

which proves A′.
The syntax of Logiweb sequent terms reads
q ::= sI | s ` q | s `̀ q | ∀v: q | q¤ | q@ s | qV | q+ | q− | q i.e. s | q∗ | q; q. A
sequent term q is said to prove the statement c if q evaluates to ∅ : : ∅ : : c : : T
([Gru06a] allows q to evaluate to p : : ∅ : : c : : T provided all elements of p are
names of previously proved lemmas).

1if x is not free in any member of p or s
2if a is free for x in c
3if computation of a yields T in the Logiweb programming language
4if n is defined to denote c
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3 Object theories

Logiweb sequent calculus is like assembly language: general and machine
friendly, but it needs syntactic sugar. The user friendliness of the combined
system of Logiweb, Logiweb sequent calculus, and syntactic sugar has been
tested during a course in logic in which ten students wrote Logiweb pages that
proved x + y = y + x from the raw axioms of Mendelsons system S (Peano
arithmetic) [Men87]. It was found that the students could prove
commutativity, get the proof verified, and write a report on that in less than
three weeks, starting with little experience in Logiweb, mechanical proof
checking, and logic in general. For links to the reports, consult
http://yoa.dk/.
While proving x + y = y + x from the raw axioms may be a good student
exercise, it was found that the deduction theorem and parallel instantiation of
object variables was badly needed. Versions of theorems that used inference `
and meta variables were easier to use than theorems using implication ⇒ and
object variables, but the axiom of induction forced implication and object
variables upon the students. Instantiation of object variables is cumbersome
because axiom A4 in [Men87] only allows to instantiate one variable at a time
whereas the students needed parallel instantiation, e.g. when swapping two
object variables. And hypothetical reasoning either required manual unfolding
of the deduction theorem or programming of a proof tactic that could cost a
lot of CPU-time for large developments.
An inference rule of deduction would eliminate these problems. If, however,
∀objx: ∀objy: x = y ⇒ y = x is an object statement and ∀a: ∀b: a = b ` b = a is a
meta statement, then the deduction rule is a meta meta statement. We do not
want to introduce a meta meta level above the Logiweb sequent calculus just
to express deduction so we shall express deduction using the side condition
machinery of the sequent calculus.

3.1 Peano arithmetic

A modified version of Mendelsons system S (Peano arithmetic) [Men87] may
be formulated thus:

[S stmt→ ∀a: ∀b: a + b′ = a + b′ ⊕ ∀a: ∀b: a ⇒ b ` a ` b ⊕ ∀a: ∀b: a = b ` a′ = b′ ⊕ ∀a:∀b: a′ = b′ ` a = b ⊕ ∀a: ∀b:λx.Ded0(dae, dbe) `̀ a ` b ⊕ ∀a: ∀b: a · b′ = a · b + a ⊕ ∀a: a + 0 = a ⊕ ∀a:∀b:¬b ⇒ ¬a ` ¬b ⇒ a ` b ⊕ ∀a:∀b: ∀c: a = b ` a = c ` b = c ⊕ ∀x:∀a: ∀b:∀c: 〈dbe≡0dae|dxe:=d0e〉 `̀ 〈dce≡0dae|dxe:=dx′e〉 `̀ b ` a ⇒ c ` a ⊕ ∀a:¬0 = a′ ⊕ ∀x:∀a: a ` ∀objx: a ⊕ ∀a: a · 0 = 0][MP stmt→ S ` ∀a:∀b: a ⇒ b ` a ` b][MP
proof→

Rule tactic]

[Gen stmt→ S ` ∀x: ∀a: a ` ∀objx: a][Gen
proof→ Rule tactic][Ded stmt→ S ` ∀a:∀b: λx.Ded0(dae, dbe) `̀

a ` b][Ded
proof→ Rule tactic]

[S2 stmt→ S ` ∀a: ∀b: a = b ` a′ = b′][S2
proof→

Rule tactic]

[S3 stmt→ S ` ∀a:¬0 = a′][S3
proof→ Rule tactic][S4 stmt→ S ` ∀a: ∀b: a′ = b′ ` a = b][S4

proof→
Rule tactic]
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[S5 stmt→ S ` ∀a: a + 0 = a][S5
proof→ Rule tactic][S6 stmt→ S ` ∀a: ∀b: a + b′ = a + b′][S6

proof→
Rule tactic]

[S7 stmt→ S ` ∀a: a · 0 = 0][S7
proof→ Rule tactic][S8 stmt→ S ` ∀a: ∀b: a · b′ = a · b + a][S8

proof→
Rule tactic]

[Neg stmt→ S ` ∀a:∀b:¬b ⇒ ¬a ` ¬b ⇒ a ` b][Neg
proof→ Rule tactic]

[S1 stmt→ S ` ∀a:∀b: ∀c: a = b ` a = c ` b = c][S1
proof→ Rule tactic]

[S9 stmt→ S ` ∀x: ∀a:∀b: ∀c: 〈dbe≡0dae|dxe:=d0e〉 `̀ 〈dce≡0dae|dxe:=dx′e〉 `̀ b `
a ⇒ c ` a][S9

proof→ Rule tactic]5

As defined in [Gru06a], [S5 stmt→ S ` ∀a: a + 0 = a][S5
proof→ Rule tactic] macro

expands into a lemma and a proof where the lemma says S ` ∀a: a + 0 = a and
the proof is a proof of that lemma.
[S stmt→ ∀a: ∀b: a + b′ = a + b′ ⊕ ∀a: ∀b: a ⇒ b ` a ` b ⊕ ∀a: ∀b: a = b ` a′ = b′ ⊕
∀a: ∀b: a′ = b′ ` a = b ⊕ ∀a: ∀b: λx.Ded0(dae, dbe) `̀ a ` b ⊕ ∀a:∀b: a · b′ =
a · b + a ⊕ ∀a: a + 0 = a ⊕ ∀a:∀b:¬b ⇒ ¬a ` ¬b ⇒ a ` b ⊕ ∀a: ∀b: ∀c: a = b `
a = c ` b = c ⊕ ∀x: ∀a:∀b: ∀c: 〈dbe≡0dae|dxe:=d0e〉 `̀ 〈dce≡0dae|dxe:=dx′e〉 `̀
b ` a ⇒ c ` a ⊕ ∀a:¬0 = a′ ⊕ ∀x: ∀a: a ` ∀objx: a ⊕ ∀a: a · 0 = 0] macro expands
into a definition which defines S as the conjunction of ∀a: a + 0 = a and all the
other rules attributed to S. The [X stmt→ x] macro is somewhat complex since it
has to scan the entire page to find all rules related to the theory being defined.
The benefit of collecting rules from the entire page is that it gives authors the
freedom to introduce axioms one by one.
The deduction rule Ded is such that e.g. ∀a:∀b: a = b ` b = a allows to
conclude a = b ⇒ b = a and x + y = y + x allows to conclude a + b = b + a so
Ded implements both deduction and parallel instantiation. All complexity is
hidden in the side condition which is defined in [Gru06b].
Having the deduction rule, axioms A1, A2, A4, and A5 in [Men87] become
superfluous. For proofs of those axioms based on deduction, see [Gru06b].
As an example of a development, [Gru06b] proves the following lemmas from
[Men87] in system S:

[Prop 3.2a stmt→ S ` ∀a: a = a]

[Prop 3.2b stmt→ S ` ∀a: ∀b: a = b ` b = a]

[Prop 3.2c stmt→ S ` ∀a:∀b: ∀c: a = b ` b = c ` a = c]

[Prop 3.2d stmt→ S ` ∀a: ∀b: ∀c: a = c ` b = c ` a = b]

[Prop 3.2e stmt→ S ` ∀a:∀b: ∀c: a = b ` a + c = b + c]
5〈dae≡0dbe|dxe:=dce〉 says ‘the object term b where the object variable x is replaced by the

object term c is alpha equivalent to the object term a, c.f. [Gru06b]

5



[Prop 3.2f stmt→ S ` ∀a: a = 0 + a]

[Prop 3.2g stmt→ S ` ∀a: ∀b: a′ + b = a + b′]

[Prop 3.2h stmt→ S ` ∀a: ∀b: a + b = b + a]

In the present paper we merely show the proof of an auxiliary lemma which
proves the induction step of Prop 3.2f:

[Prop 3.2f2
stmt→ S ` ∀a: a = 0 + a ⇒ a′ = 0 + a′]

[Prop 3.2f2
proof→ λc.λx.P(dS ` ∀a:∀a: a = 0 + a ` S2 ¤ a = 0 + a À a′ =

0 + a′; S6 À 0 + a′ = 0 + a′; Prop 3.2d ¤ a′ = 0 + a′ ¤ 0 + a′ = 0 + a′ À a′ =
0 + a′; Ded ¤ ∀a: a = 0 + a ` a′ = 0 + a′ À a = 0 + a ⇒ a′ = 0 + a′e, p0, c)]

As defined in [Gru06a], ∀a: b macro expands into ∀a: b.
S2 ¤ L04 À a′ = 0 + a′; b macro expands into a local macro definition and a
call to a proof tactic. The local macro definition defines L05 as shorthand for
a′ = 0 + a′ and the proof tactic expands the line into S2I¤∗¤ @ a @0 + a; b
using unification. For more details see [Gru06b].

4 Conclusion and further work

Logiweb sequent calculus with examples from traditional Peano arithmetic has
been presented. For further examples, click ‘Map Theory’ at http://yoa.dk/.
Map theory is an equational theory. In that theory, all definitions present on a
lemmas home page become axioms according to an ‘axiom of definition’ which
is expressible by a side condition in the Logiweb sequent calculus.
The traditional deduction theorem requires that no application of Gen is made
to variables free in the premise. The side condition of the deduction rule above
is quite different. Proving the consistency of the deduction rule is work of the
future but is expected to be straightforward since, in the standard model, a
statement holds for all natural numbers if and only if it holds for all terms.
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