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Abstract

The ‘Logiweb sequent calculus’ is suited for terse, human readable
formulation of axioms, inference rules, theories, lemmas, and proofs. It
supports different styles of theories like equational theories and FOL based
theories. It permits to express arbitrary side conditions in the ‘Logiweb
programming language’. As an example of use, the calculus allows to
express the deduction rule as an inference rule which makes it easy to
get started using a theory. The calculus has operations for ‘dereferencing’
and ‘referencing’ which allow to convert e.g. the name of a lemma into the
contents of the lemma and vice versa. The calculus interacts smoothly
with fully automatic tactics as well as proofs in which part of the work is
done by a human author and part is done by proof tactics.

1 Introduction

Logiweb [Gru04, Gru05, Gru06a] is a system for electronic publication of logic.
It allows authors different places in the world to define theories, state and prove
lemmas, and to publish Logiweb pages that contain the results. The present
paper is an example of a Logiweb page, and the present paper is correct in the
sense that it has been verified by Logiweb.

Core Logiweb allows users to program proof systems in the Logiweb program-
ming language and to publish the proof system. Users who use the same proof

∗Department of Computer Science, University of Copenhagen (DIKU)

1



system and the same axiomatic theory may benefit from the results of each other
in that a proof written by one author may make references across the internet
to lemmas proved by another author. Cross theory cooperation (e.g. use of ZFC
results in NBG) could be more cumbersome and cross proof system cooperation
even more so, depending on the theories and systems involved.

The present paper introduces Logiweb sequent calculus which allows users
to express arbitrary axiomatic theories on the same footing. That calculus
supports arbitrary styles of logic (e.g. FOL or equational) equally well. The
calculus is machine friendly in that proofs are easy to generate, verify, store,
and transmit and it is general so that users of Logiweb are not tempted to make
a proof system each. User friendliness in the sense that theories, lemmas, and
proofs should be easy to read and write is taken care of by Logiwebs rendering
and Turing complete macro expansion facilities combined with the support for
proof tactics in the implementation of the calculus in [Gru06a].

The present paper gives an overview. Details are in a web appendix [Gru06b].

2 Logiweb sequent calculus

Let V and T denote the syntax classes of metavariables and object terms, re-
spectively. The format S of Logiweb statements is S ::= V | T | S ` S | T `̀
S | ΠV:S | ⊥⊥ | S ⊕ S. As an example of use, consider the following:

Let A denote ΠA:A+ 0 = A.
Let R denote ΠA,B, C:A = B ` A = C ` B = C.
Let C denote 0 = 1 ` ⊥⊥.
Let T denote R ⊕ C ⊕ A.
Let L denote T ` ΠA:A = A.

The construct ΠX :A states that A is provable for all object terms X . Hence,
A above is an axiom scheme which says that A+ 0 = A for all object terms A.

The construct A ` B states that if A is provable then B is provable. A ` B
is right associative and has higher priority than ΠX :A, so R above means
ΠA: ΠB: ΠC: (A = B ` (A = C ` B = C)). Hence, R is the inference rule which
states that A = B and A = C infer B = C. The macro that expands ΠA,B, C:D
into ΠA: ΠB: ΠC:D is defined in [Gru06b].

The construct ⊥⊥ denotes absurdity, i.e. meta-falsehood (we reserve F and
⊥ to denote falsehood and infinite looping, respectively, at the object level).
Hence, C above states that 0 = 1 is an absurdity.

The construct A ⊕ B states that both A and B are provable. Hence, T above
is the axiomatic theory which comprises the axiom scheme A, the inference rule
R, and the statement that 0 = 1 is an absurdity.

The lemma L above says that A = A is provable in the theory T.
The construct A `̀ B states that if computation of A yields T then B is

provable. A must be expressed in the Logiweb programming language (c.f.
[Gru06a]). T denotes truth in the Logiweb programming language. If A `̀ B
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then we shall say that A endorses B. The endorsement operator allows to
express side conditions as we shall see later.

A Logiweb sequent is a triple 〈p, s, c〉 where c is a Logiweb statement and p
and s are finite sets of Logiweb statements. The sequent 〈{p1, . . . , pm}, {s1, . . . ,
sn}, c〉 represents p1 ` . . . ` pm ` s1 `̀ . . . `̀ sn `̀ c. The operations of Logiweb
sequent calculus are:

aI → 〈∅, ∅, a ` a〉
a ` 〈p, s, c〉 → 〈p\{a}, s, a ` c〉
a `̀ 〈p, s, c〉 → 〈p, s\{a}, a `̀ c〉
Πx: 〈p, s, c〉 → 〈p, s, Πx: c〉1
〈p, s, a ` c〉¤ → 〈p ∪ {a}, s, c〉
〈p, s, a `̀ c〉¤ → 〈p, s ∪ {a}, c〉

〈p, s, Πx: c〉@ a → 〈p, s, 〈c |x:= a〉〉2
〈p, s, a `̀ b〉V → 〈p, s, b〉3

〈p, s, a ` b ` c〉+ → 〈p, s, (a ⊕ b) ` c〉
〈p, s, (a ⊕ b) ` c〉− → 〈p, s, a ` b ` c〉

〈p, s, n〉∗ → 〈p, s, c〉4
〈p, s, c〉 i.e. n → 〈p, s, n〉4

〈p1, s1, c1〉; 〈p2, s2, c2〉 → 〈p1 ∪ (p2\{c1}), s1 ∪ s2, c2〉
Evaluation of a sequent operation gives a sequent or an exception. Exceptional
cases are omitted above. Now let A′ denote T ` ΠA:A+ 0 = A. We have

T ` (TI¤∗; (R ⊕ C ` LI)+)∗ i.e. A′ →
T ` (〈∅, ∅,T ` T〉¤∗; (R ⊕ C ` 〈∅, ∅, A ` A〉)+)∗ i.e. A′ →
T ` (〈{T}, ∅, T〉∗; 〈∅, ∅, R ⊕ C ` A ` A〉+)∗ i.e. A′ →
T ` (〈{T}, ∅, R ⊕ C ⊕ A〉; 〈∅, ∅, R ⊕ C ⊕ A ` A〉)∗ i.e. A′ →
T ` (〈{T}, ∅, R ⊕ C ⊕ A〉; 〈{R ⊕ C ⊕ A}, ∅, A〉)∗ i.e. A′ →
T ` 〈{T}, ∅,L〉∗ i.e. A′ → T ` 〈{T}, ∅, ΠA:A+ 0 = A〉 i.e. A′ →
〈∅, ∅, T ` ΠA:A+ 0 = A〉 i.e. A′ → 〈∅, ∅,A′〉

which proves A′.
The syntax of Logiweb sequent terms reads Q ::= SI | S ` Q | S `̀ Q |

ΠV:Q | Q¤ | Q@S | QV | Q+ | Q− | Q i.e. S | Q∗ | Q;Q. A sequent term q
is said to prove the statement c if q evaluates to 〈∅, ∅, c〉 ([Gru06a] allows q to
evaluate to 〈p, ∅, c〉 provided all elements of p are names of previously proved
lemmas).

3 Object theories

Logiweb sequent calculus is like assembly language: general and machine friendly,
but it needs syntactic sugar. The user friendliness of the combined system of

1if x is not free in any member of p or s
2if a is free for x in c
3if computation of a yields T in the Logiweb programming language
4if n is defined to denote c
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Logiweb, Logiweb sequent calculus, and syntactic sugar has been tested dur-
ing a course in logic in which ten students wrote Logiweb pages that proved
x + y = y + x from the raw axioms of Mendelsons system S (Peano arithmetic)
[Men87]. It was found that the students could prove commutativity, get the
proof verified, and write a report on that in less than three weeks, starting with
little experience in Logiweb, mechanical proof checking, and logic in general.
For links to the reports, consult http://yoa.dk/.

While proving x + y = y + x from the raw axioms may be a good student
exercise, it was found that the deduction theorem and parallel instantiation of
object variables was badly needed. Versions of theorems that used inference
` and meta variables were easier to use than theorems using implication ⇒
and object variables, but the axiom of induction forced implication and object
variables upon the students. Instantiation of object variables is cumbersome
because axiom A4 in [Men87] only allows to instantiate one variable at a time
whereas the students needed parallel instantiation, e.g. when swapping two ob-
ject variables. And hypothetical reasoning either required manual unfolding of
the deduction theorem or programming of a proof tactic that could cost a lot
of CPU-time for large developments.

An inference rule of deduction would eliminate these problems. If, however,
∀x , y : (x = y ⇒ y = x ) is an object statement and ΠA,B:A = B ` B = A is
a meta statement, then the deduction rule is a meta meta statement. We do
not want to introduce a meta meta level above the Logiweb sequent calculus
just to express deduction so we shall express deduction using the side condition
machinery of the sequent calculus.

3.1 Peano arithmetic

A modified version of Mendelsons system S (Peano arithmetic) [Men87] may be
formulated thus:

[Theory S] [S rule MP:ΠA,B:A ⇒ B ` A ` B]

[S rule Gen:ΠX ,A:A ` ∀X :A] [S rule Ded:ΠA,B: Ded(A,B) `̀ A ` B]

[S rule S2:ΠA,B:A = B ` A′ = B′]
[S rule S3:ΠA:¬0 = A′] [S rule S4:ΠA,B:A′ = B′ ` A = B]

[S rule S5:ΠA:A+ 0 = A] [S rule S6:ΠA,B:A+ B′ = (A+ B)′]

[S rule S7:ΠA:A · 0 = 0] [S rule S8:ΠA,B:A · (B′) = (A · B) +A]

[S rule Neg:ΠA: ΠB:¬B ⇒ ¬A ` ¬B ⇒ A ` B]

[S rule S1:ΠA,B, C:A = B ` A = C ` B = C]
[S rule S9:ΠX ,A,B, C: 〈B≡A|X :=0〉 `̀ 〈C≡A|X :=X ′〉 `̀ B ` A ⇒ C ` A]5

5〈A≡B|X :=C〉 says ‘the object term B where the object variable X is replaced by the object
term C is alpha equivalent to the object term A, c.f. [Gru06b]
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As defined in [Gru06a], [S rule S5:ΠA:A+0 = A] macro expands into a lemma
and a proof where the lemma says S ` ΠA:A+ 0 = A and the proof is a proof
of that lemma. [Theory S] macro expands into a definition which defines S as
the conjunction of ΠA:A+ 0 = A and all the other rules attributed to S. The
[Theory X ] macro is somewhat complex since it has to scan the entire page to
find all rules related to the theory being defined. The benefit of collecting rules
from the entire page is that it gives authors the freedom to introduce axioms
one by one.

The deduction rule Ded is such that e.g. ΠA,B:A = B ` B = A allows to
conclude A = B ⇒ B = A and x + y = y + x allows to conclude A+B = B+A
so Ded implements both deduction and parallel instantiation. All complexity is
hidden in the side condition which is defined in [Gru06b].

Having the deduction rule, axioms A1, A2, A4, and A5 in [Men87] become
superfluous. For proofs of those axioms based on deduction, see [Gru06b].

As an example of a development, [Gru06b] proves the following lemmas from
[Men87] in system S:

[S lemma Prop 3.2a:ΠA:A = A]

[S lemma Prop 3.2b:ΠA,B:A = B ` B = A]

[S lemma Prop 3.2c:ΠA,B, C:A = B ` B = C ` A = C]
[S lemma Prop 3.2d:ΠA,B, C:A = C ` B = C ` A = B]

[S lemma Prop 3.2e:ΠA,B, C:A = B ` A+ C = B + C]
[S lemma Prop 3.2f: ΠA:A = 0 +A]

[S lemma Prop 3.2g:ΠA,B:A′ + B = (A+ B)′]

[S lemma Prop 3.2h:ΠA,B:A+ B = B +A]

In the present paper we merely show the proof of an auxiliary lemma which
proves the induction step of Prop 3.2f:

[S lemma Prop 3.2f2: ΠA:A = 0 +A ⇒ A′ = 0 +A′]
S proof of Prop 3.2f2:
L01: Arbitrary À A ;
L02: Block À Begin ;
L03: Arbitrary À A ;
L04: Premise À A = 0 +A ;
L05: S2 ¤ L04 À A′ = (0 +A)′ ;
L06: S6 À 0 +A′ = (0 +A)′ ;
L07: Prop 3.2d ¤ L05 ¤ L06 À A′ = 0 +A′ ;
L08: Block À End ;
L09: Ded ¤ L08 À A = 0 +A ⇒ A′ = 0 +A′ 2
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As defined in [Gru06a], Arbitrary À A;B macro expands into ΠA:B. Line L05 :
S2 ¤ L04 À A′ = (0 +A)′;B macro expands into a local macro definition and
a call to a proof tactic. The local macro definition defines L05 as shorthand for
A′ = (0+A)′ and the proof tactic expands the line into S2I¤∗¤ @A@(0+A);B
using unification. For more details see [Gru06b].

4 Conclusion and further work

Logiweb sequent calculus with examples from traditional Peano arithmetic has
been presented. For further examples, click ‘Map Theory’ at http://yoa.dk/.
Map theory is an equational theory. In that theory, all definitions present on a
lemmas home page become axioms according to an ‘axiom of definition’ which
is expressible by a side condition in the Logiweb sequent calculus.

The traditional deduction theorem requires that no application of Gen is
made to variables free in the premise. The side condition of the deduction rule
above is quite different. Proving the consistency of the deduction rule is work
of the future but is expected to be straightforward since, in the standard model,
a statement holds for all natural numbers if and only if it holds for all terms.
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