
Functional Array Streams

Frederik M. Madsen
University of Copenhagen

Department of Computer Science (DIKU)
fmma@di.ku.dk

Robert Clifton-Everest
Manuel M. T. Chakravarty

Gabriele Keller
University of New South Wales,

School of Computer Science and Engineering
{robertce,chak,keller}@cse.unsw.edu.au

Abstract
Regular array languages for high performance computing based on
aggregate operations provide a convenient parallel programming
model, which enables the generation of efficient code for SIMD
architectures, such as GPUs. However, the data sets that can be
processed with current implementations are severely constrained
by the limited amount of main memory available in these architec-
tures.

In this paper, we propose an extension of the embedded array
language Accelerate with a notion of sequences, resulting in a two
level hierarchy which allows the programmer to specify a parti-
tioning strategy which facilitates automatic resource allocation. De-
pending on the available memory, the runtime system processes the
overall data set in streams of chunks appropriate to the hardware
parameters.

In this paper, we present the language design for the sequence
operations, as well as the compilation and runtime support, and
demonstrate with a set of benchmarks the feasibility of this ap-
proach.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classification—Applicative (functional) lan-
guages; Concurrent, distributed, and parallel languages

Keywords Streams; Arrays; Data parallelism; GPGPU; Haskell;
Embedded language

1. Introduction
Functional array languages facilitate high-performance computing
on several levels. The programmer can express data-parallel algo-
rithms declaratively, and the compiler can exploit valuable domain
specific information to generate code for specialised parallel hard-
ware. A standard array language separates itself from traditional
languages by offering data-parallel collection oriented constructs as
primitives such as map, fold, scan and permutation. Without these
primitives, the same logic would have to be encoded as sequen-
tial for-loops or recursive definitions, obfuscating data-dependency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
, .
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/

and access patterns. Due to the artificial data-dependencies intro-
duced by the loop counter or the recursion stack, these encodings
prevent natural parallelisation, and the compiler must resort to pro-
gram analysis to detect and exploit implicit parallelism. Such au-
tomatic parallelisation strategies are fragile, and small changes in
the code may cause them to fail, significantly degrading the perfor-
mance for reasons not obvious to the programmer.

Array languages present a complementary problem. The ex-
plicit data-parallelism exposed in an array program may vastly ex-
ceed the actual parallel capabilities of the target hardware. Data-
parallel programs often require working memory in order of the
degree of parallelism. Therefore, it is not always desirable or even
possible to execute an array program in its full parallel form. To
conserve space, we would like the compiler to make the program
“less parallel” prior to execution. However, the absence of explicit
sequential data-dependencies prevents natural sequentialisation.

If we would execute each parallel combinator in isolation,
we could simply sequentialise the combinator by partitioning the
index-space and scheduling the different parts in a tight loop. Ev-
idently, this is how CUDA schedules a kernel in blocks on a large
grid.

In practice, however, it is essential to fuse sequences of paral-
lel combinators together to form complex computations, thereby
reducing the number of array traversals and intermediate struc-
tures. As soon as such a sequence includes more than simple maps,
the combinators may not traverse the index-space in a uniform
way. Consequently, loop fusion can be very complex. Compiler-
controlled sequentialisation affects the fusion-transformation, and
complicates it further. Finding the optimal sequentialisation strat-
egy in this context is not decidable, so we would have to resort to
using heuristics, leaving the programmer at the mercy of the com-
piler again.

Therefore, we propose to give control over this step to the
programmer, who has more knowledge about the nature of the
application and size of the processed data set. We achieve this by
including a set of sequence combinators for array languages, so
sequential data-dependency over data-parallel computations can be
specified and the amount of parallelism exposed be controlled.

This paper presents these new sequence combinators, using the
language Accelerate as starting point and discusses the extensions
to the runtime system with the required streaming and scheduling
mechanism. In summary, the contributions of this paper are as
follows:

• We present a new set of sequence combinators, which, together
with the usual combinators like maps, folds and scans, can be
used to express a two-level hierarchy sequentially combining a
sequence of parallel operations over chunks of data.

• We present a runtime system extension which implements the
necessary scheduling and streaming mechanisms.

• We present an evaluation of the approach presented in the paper.

While we are currently only targeting single-GPU architectures,
the programming model we propose in this paper also allows the
programmer to expose pipeline-parallelism in a program, which we
could exploit in an implementation for multi-GPU architectures.
Although outside the scope of this paper, other data-parallel archi-
tectures, such as muti-processors and distributed systems, would
also benefit from the model presented here.

2. Accelerate
Accelerate is a domain specific functional language for high-
performance, multi-dimensional array computations, implemented
as deep embedding in Haskell. In addition to the collection oriented
operations similar to those on lists, like maps, scans, reductions, it
also offers array-oriented operations, such as stencil convolutions,
as well as forward- and backward permutations, conditionals and
loops. Indeed, apart from the type annotation (to which we will get
back shortly), many Accelerate programs – like this dot-product
example – look almost like the corresponding list operation in
Haskell:

dotp :: Acc (Vector Float)
→ Acc (Vector Float)
→ Acc (Scalar Float)

dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

In contrast to Haskell, though, Accelerate is strict and fully normal-
ising.

The language has two non-obvious restrictions: (1) Arrays must
be regular. By regular, we mean arrays cannot contain other arrays
as elements. Instead, arrays are multidimensional. Scalars, vectors,
matrices, tensors, and so on, are all regular arrays, but a vector
of arbitrary-length vectors is not. (2) Accelerate does not permit
nested data-parallelism. For example, even though one could imag-
ine using a two dimensional array as a vector of vectors, mapping
a map over each sub-vector is not allowed. These restriction en-
ables a smooth compilation to SIMD hardware. Accelerate comes
with a number of backends, among them a GPU implementation
generating CUDA [23] code, that demonstrate excellent perfor-
mance [7, 22].

The restriction to regular computations and arrays is enforced
statically via the type system, which serves to separate Accelerate-
expression into two distinct categories.

• Elt a => Exp a: Expressions which evaluate to values of type
a, where a has to be a member of type class Elt, which includes
basic types such as integers, floats, bools, as well a n-tuples of
these. Accelerate generates valid CUDA C from Exp expres-
sions.

• (Shape sh, Elt a) => Acc (Array sh a): Expressions
which evaluate to n-dimensional arrays of type with element
type a and shape sh. Accelerate generates CUDA GPU kernels
from Acc expressions.

Shapes are sequences of integer dimensions separated by :. (e.g.
Z :. 2 :. 3), and Scalar is a type synonym for a zero-dimensional
array, Vector for a one-dimensional array. The type annotation of
the dotp example therefore states that the function accepts two
floating point vectors as arguments, and returns a scalar floating
point value as result. More precisely, since Accelerate is a deep
embedding, dotp takes in accelerate expressions specifying com-
putations which produce results of these types, and returns a new
computation.

Functions like map, fold and so on are rank polymorphic. For
example, the type of zipWith is

zipWith :: (Shape sh, Elt a, Elt b, Elt c)
⇒ (Exp a → Exp b → Exp c)
→ Acc (Array sh a)
→ Acc (Array sh b)
→ Acc (Array sh c)

Several things are happening here: the type of the function passed
to zip is, by its type, restricted to sequential computations over
values of basic type. The type class constraint Shape sh essentially
restricts sh to n-tuples of integers, where n determines the rank of
the array. Both array arguments have to have the same rank, which
is also the rank of the result. The actual sizes, however, are not
tracked statically and may be different.

2.1 Fusion
It is well known that the collection oriented style of programming
which Accelerate relies on has a serious potential drawback: if
implemented naively, by executing each aggregate operation sepa-
rately, it can result in an excessive number of array traversals, inter-
mediate structures, and poor locality. For example, it would clearly
be inefficient if the code for the dotp example would first produce
an intermediate array of the pairwise products, and then, in a second
traversal, add all these sums to the final result. Therefore, Acceler-
ate aggressively employs fusion, merging the operations to more
complex computations, trying to minimise the number of traver-
sals.

Fusion cannot, in general, guarantee that its results are opti-
mal. Consider, for example, a fusible computation whose result is
consumed by two different operations. If we would fuse into both
consumers, we would avoid creating the intermediate structure, but
duplicate the work involved to compute the array element, which
can, in theory, slow down the performance considerably. In prac-
tice, most computations are fairly cheap compared to creating and
accessing an array, so fusion would result in a significant speed-
up nevertheless. Without sophisticated cost-analysis, the compiler
cannot decide which alternative results in the best performance, so
we err on the side of caution and never fuse computations whose
result is used more than once.

2.2 Handling large data sets
We have shown previously [7, 22] that the Accelerate approach of
expressing parallel computations enables the generation of highly
efficient code. The dot-product in Accelerate, for example, is only
slightly slower than CUBLAS, a hand-written implementation of
the Basic Linear Algebra Subprograms in CUDA by NVIDIA.
However, on GPU architectures, we can only achieve peak perfor-
mance if the data set we are processing in one parallel step is large
enough to utilise all processing elements, yet small enough to still
fit in the GPU memory, which is, at currently around 4GB, for the
majority of hardware, much more restricted than CPU memory.

If programmers want to develop GPU programs which process
larger set of data, they have to explicitly stage the computation into
a sequence of parallel computations on smaller data chunks, and
combine the subresults. While this is possible, it adds a significant
layer of complexity to an already difficult task, and would lead to
code whose relative performance is architecture dependent.

The other extreme option would be to try and let the compiler
shoulder all the complexity of solving this problem. However, so-
phisticated optimisations like these have the downside that they
usually cannot guarantee optimality, and behave in a way hard to
predict by the programmer. Therefore, we choose an intermediate
route: we allow the programmer to explicitly distinguish between

parallel, random access structures, and streamed ones, which allow
only for a more limited set of operations. This gives the program-
mer the opportunity to design an algorithm tailored for this model,
instead of hoping the compiler optimisations will work out.

In the following section, we describe the stream extension to
Accelerate’s program model, before we discuss its implementation
and performance.

3. Programming Model
3.1 Examples
Let us go back to our dotp example. If we know that the input
vectors most likely will not fit into memory, or we wish to ensure
it minimises its space usage, we want to tell the compiler to split
the input into chunks of appropriate size, calculate the product and
sum for each chunk, and add the subresults as they are produced.
Our stream extension makes this possible:

dotpSeq :: Acc (Vector Float)
→ Acc (Vector Float)
→ Acc (Scalar Float)

dotpSeq xs ys =
collect

$ foldSeqE (+) 0
$ zipWithSeqE (*) (toSeqE xs) (toSeqE ys)

Here, toSeqE turns a normal Vector into a sequence of Scalars,
zipWithSeqE performs element-wise multiplication of the two in-
put sequences, foldSeqE calculates the sum, and collect takes
the conclusion of the sequence computation and turns it into an Acc
expression. The rest of this section will explain these primitives in
more detail.

As Accelerate is rank-polymorphic, sequence operations can
be parametrised by shape information. By convention, we denote
specialised versions of these operations for sequences of scalars by
the suffix E, as for example toSeqE above.

It is not just sequences of scalars that are supported, however.
Our extension supports sequences of arbitrary rank. If for example
we wanted to perform a matrix vector multiplication:

mvmSeq :: Acc (Matrix Float)
→ Acc (Vector Float)
→ Acc (Vector Float)

mvmSeq mat vec
= let rows = toSeq (Z:.Split:.All) mat
in collect
$ fromSeqE
$ mapSeq (dotp vec) rows

In this case, we first split the vector up into rows with toSeq,
then apply dotp vec over every row, turn what is now a sequence
of scalars into a Vector with fromSeqE, before finally collecting
the result.

In addition to not requiring the entire matrix be made manifest,
this example also highlights how our extension enables an extra
degree of nesting, in this case, defining matrix-vector multiplica-
tion in terms of the parallel dot-product, something not previously
possible.

3.2 Streams
As we have seen in the previous examples, an Accelerate array is
a collection where are all elements are simultaneously available,
whereas a sequence value corresponds to a loop, where each itera-
tion computes an element of the sequence. Sequences are ordered
temporally, and are traversed from first to last element. Once an el-
ement has been computed, all previous elements are out of scope,

and may not be accessed again. The arrays of a sequence are re-
stricted to having the same rank, but not necessarily the same shape.
If the shapes happen to be the same, we call the sequence regular.
Using A to range over array values, and square brackets to denote
sequences,

[A1, A2, ..., An]

denotes the sequence that computes A1 first, computes A2 second
and so forth until the final array An is computed. Here, n is the
length of the sequence (possibly zero).

Sequences model the missing high-level connection between
the parallel notation of array languages and sequential notation of
traditional for-loops. The basic sequence combinators are carefully
selected such that the arrays of a sequence can be evaluated entirely
sequentially, entirely parallel, or anything in between as long as
the strategy respects the sequence order of arrays; even on SIMD
hardware. The runtime system then selects a strategy that fits the
parallel capabilities of the target hardware. The programmer may
assume full parallel execution with respect to what the hardware
can handle, while maintaining a limit on memory usage. A purely
sequential CPU would evaluate one array at a time with a minimal
amount of working memory. A GPU would evaluate perhaps the
first 100 arrays in one go, and then evaluate the next 100 arrays, and
so on. The working memory would be larger, but not as large as the
cost of manifesting the entire sequence at once. Ideally, the runtime
performance, in terms of execution time, should correspond to
a fully parallel specification, and in terms of working memory,
should be in the order of a constant factor related to the parallel
capabilities of the hardware - Unless any one array of the sequence
exceeds this amount.

Of course, not all array algorithms can be expressed as se-
quences. As sequences can only be accessed linearly, any algorithm
which relies on permuting or reducing an array in a non-linear way,
cannot be expressed as a sequence. It is the responsibility of the
programmer, not the compiler, to expose inherent sequentialism.

3.3 From arrays to sequences and back
As we discussed previously, the type constructors Exp and Acc rep-
resent nodes in the AST from which Accelerate generates CUDA
C code and CUDA GPU kernels, respectively. Sequence computa-
tions are represented by the type constructor Seq. Accelerate will
generate CUDA kernels together with a schedule for executing the
kernels over and over until completion.

While the type constructor Seq represents sequence AST nodes,
we use the Haskell list syntax to represent the actual sequence type.
That is, the type [a] represents sequences of a’s, and the type
Seq [a] represents sequence computations that produce sequences
of a’s when executed. The type Seq a, where a is not a sequence
type, represents sequence computations that produce a single result
of type a. We will see an example of such a type when we explain
foldSeqE.

Sequences are introduced in Accelerate either by slicing an
existing array, as we did in our examples, or by streaming an
ordinary Haskell list into Accelerate, which we will discuss in
detail in Section 3.4.

In our examples, we used the combinator toSeqE to convert one
dimensional array into a sequence of values of the same element
type:

toSeqE :: (Elt a)
⇒ Acc (Vector a)
→ Seq [Scalar a]

However, toSeqE is just a special case of the more general com-
binator toSeq, which operates on multi-dimensional arrays and is
parametrised with a specific slicing strategy div:

toSeq :: (Division div, Elt a)
⇒ div
→ Acc (Array (FullShape div) a)
→ Seq [Array (SliceShape div) a]

Values of types belonging to the Division type-class define
how an array is divided into sub-arrays along one or more dimen-
sions, where Split at a given position tells the compiler to divide
the elements along the corresponding dimension into a sequence,
All to leave it intact.

Divisions are generated by the following grammar.

Div 3 div ::= Z | div :. All | div :. Split

FullShape and SliceShape are type functions that, for a given
division, yield the shape of the full array and the shape of every
slice. Let us have a look at an example to see how divisions can be
used to slice a two dimensional array in different ways. Let A be
the matrix (

1 2 3
10 11 12

)
then we can either leave the matrix intact and create a sequence
containing one element (somewhat pointless), slice it column-wise,
row-wise, or element-wise:

toSeq (Z :. All :. All) A = [(1 2 3
10 11 12)]

toSeq (Z :. All :. Split) A = [(1
10) , (

2
11) , (

3
12)]

toSeq (Z :. Split :. All) A = [(1 2 3) , (10 11 12)]

toSeq (Z :. Split :. Split) A = [1, 2, 3, 10, 11, 12]

Fusion, as described in Section 2.1, is applied across sequentialisa-
tion. This means that, if matrixA is the result of a computation, we
leverage the existing fusion transformation of Accelerate to com-
bine it with any operation on Ai. In this way, we avoid the full
manifistation of A.

IfA is the result of an operation that prevents subsequent fusion,
such as a reduction or a scan, we have no choice but to materialise
the entire input array prior to slicing. This undesirable effect can
sometimes be avoided by a simple transformation that moves the
fusion-preventing operation into the sequence computation. As an
example, consider the following program that converts a matrix into
a sequence of row sums:

rowSums :: Acc (Array DIM2 Int)
→ Seq [Scalar Int]

rowSums mat =
toSeqE (fold (+) 0 mat)

Since fold prevents further fusion in Accelerate, the result of
(fold (+) 0 mat) will be a fully materialised vector, that hap-
pens to hold the entire sequence at once. If mat has a huge number
of rows, full manifestation is catastrophic. However, it is entirely
unnecessary and can be avoided in this case by first constructing a
sequence of rows, and then mapping a sum over that sequence:

rowSums' mat =
mapSeq
(fold (+) 0)
(toSeq (Z:.Split:.All) mat)

Assuming the user of this function provides an array expression
mat that does not prevent further fusion, mat will be fused row-
wise into the first operation of the sequence. Therefore, no ini-
tial manifestation is required and this definition works for arbitrary
many rows. As a subject for future work, the compiler could po-
tentially perform array-to-sequence expression transformations like
this one. For now, as a rule of thumb when working with sequences,

it is advisable to slice early and put as much of the program logic
in Seq rather then in Acc. Finally, as a specific optimization for the
GPU backend, if A is a host-side array constant, it will be trans-
ferred to the device in parts.

Sequences of arrays can be converted into flat data vectors and a
vector containing the shape of each array, or to the data vector only
if we are not interested in the shapes:

fromSeq :: (Shape ix, Elt a)
⇒ Seq [Array ix a]
→ Seq (Vector ix, Vector a)

Ordinary Accelerate array function can be lifted from working
on arrays to working on sequences using mapSeq and zipWithSeq .
These sequence combinators are parametrised by the to-be-lifted
array function, and the denotation is simply to apply the function
to each array of the input sequence(s).

mapSeq :: (Arrays a, Arrays b)
⇒ (Acc a → Acc b)
→ Seq [a]
→ Seq [b]

zipWithSeq :: (Arrays a, Arrays b, Arrays c)
⇒ (Acc a → Acc b → Acc c)
→ Seq [a]
→ Seq [b]
→ Seq [c]

The type class Arrays contains n-tuples of Array type, expressing
the fact that the arguments of both operations can be multiple
arrays.

In addition to mapping operations over sequences, we can fold
a sequence of scalars with an associative binary array operator.
Unlike with map and zipWith, foldSeqE is not implemented in
terms of a more general foldSeq. The reason why is explained in
Section 4.

foldSeqE :: Elt a
⇒ (Exp a → Exp a → Exp a)
→ Exp a
→ Seq [Scalar a]
→ Seq (Scalar a)

Note that foldSeq still returns a sequence computation, but the
result of that computation is a scalar array, not a sequence. This
allows multiple reductions to be expressed and contained in the
same sequence computation, ensuring a single traversal. For exam-
ple, here we have two reductions, one summing the elements of an
array, the other calculating the maximum. We can combine this into
a single traversal with lift.

maxSum :: Seq [Scalar Float]
→ Seq (Scalar Float, Scalar Float)

maxSum xs = lift (foldSeqE (+) 0 xs
, foldSeqE max 0 xs)

If we want to convert this back into an Acc value, we need to
use collect:

collect :: Arrays arrs
⇒ Seq arrs → Acc arrs

Note the Arrays constraint on arrs in collect. As sequences
are not members of the Arrays class this ensures that we cannot
embed a whole sequence into an array computation without first
reducing it to an array.

3.4 Lazy lists to sequences
Our language extension allows interfacing with ordinary Haskell
lists. We define two convenient operations for converting sequence
expressions to Haskell list and vice versa.

streamIn :: Arrays a ⇒ [a] → Seq [a]
streamOut :: Arrays a ⇒ Seq [a] → [a]

streamIn is a language construct that takes a constant sequence
and embeds it in Accelerate. It is the sequence-equivalent of an ar-
ray constant in ordinary Accelerate. streamOut on the other hand,
is an interpretation that runs a sequence expression and produces
a Haskell list as output. Therefore, it must be defined on a per-
backend basis, just like the ordinary Accelerate interpretation func-
tion run :: Arrays a ⇒Acc a →a. Using streamOut is the
only way to interpret a sequence expression that is not embedded
in an array expression.

Accelerate is a strict language, and has not been equipped to
deal with infinite sequences until now. Arrays are naturally finite,
and the result sequence of toSeq is no longer than the size of the
input array. However, there is nothing that prevents the program-
mer from passing an infinite list to streamIn. Being a strict lan-
guage, Accelerate will go into an infinite loop if the programmer
attempts to reduce an infinite sequence. It is however possible to
productively stream out an infinite sequence to an infinite Haskell
list. The elements will then be forced according to the evaluation
strategy, which is hidden from the programmer. For example, if the
programmer tries to print the third element of a streamed out se-
quence in Haskell, Accelerate may internally evaluate the first ten
elements.

4. Execution Model
After discussing the language extensions for sequences, we are now
looking into how we can generate efficient code from these se-
quence expressions. For a sequential CPU architecture, a sequen-
tial, element-by-element evaluation would be feasible, but would
clearly lead to unacceptable performance on our main target archi-
tecture, GPUs. Instead, we want to process just enough data to sat-
urate the GPU to achieve optimal performance. Therefore, before
code generation, we group multiple elements of the sequence to-
gether in vectors to form chunks. Each chunk can then be streamed
to the GPU and processed in parallel. The actual size of the chunk
is chosen by the runtime, as the best choice depends on the concrete
architecture the program is executed on.

We define a chunk to be a vector of arrays (or n-tuple of arrays)
written with angular brackets 〈A1, ..., Ak〉. Each array is required
to have the same rank, but not necessarily the same shape. k is
referred to as the length of the chunk, and the total size of the chunk
elements

∑
i∈{1..k} size(Ai) is referred to as the chunk size. If all

the arrays have the same shape, we say that the chunk is regular.
Note that a regular chunk is essentially just an array with rank r+1
where r is the rank of each element.

The execution model presented here implements the program-
ming model by translating sequence expressions to stream-manipulating
acyclic dataflow graphs, where the nodes consume and/or produce
chunks that flow along the edges. There are two key challenges in
this approach: Lifting and scheduling. Sequence operations must
be lifted at compile time to operate on chunks instead of just arrays.
At run time, appropriate chunk lengths must be selected as small
as possible while still keeping the backend saturated in each step,
and the sequence operations must be scheduled accordingly. We
solve these challenges for regular chunks by means of vectorisa-
tion together with an analysis phase that yields a static schedule.
We proceed to explain the vectorisation strategy of each primitive
sequence operation.

• Array slicing is trivial to vectorise. toSeq is easily extended to
produce chunks of slices, and the chunks will always be regular
with known sizes.

• For streamIn, since Accelerate cannot track shapes, there is
no guarantee that the list supplied by the programmer contains
same-shape arrays, and consequently, we consider the result-
ing sequence to be irregular in all cases. One could imagine
the addition of a streamInReg operation that takes the shape
of elements as an additional argument. The programmer then
promises that all arrays in the supplied list have this shape.
Such an operation would be beneficial for applications stream-
ing large amounts of regular data such as video processing.

• Sequence maps (and zipWith’s) are vectorised by applying a
lifting transformation on the argument array function as de-
scribed in Section 4.2. Sequence maps are the main source of
irregularity since we can map any array functions. As Acceler-
ate cannot handle irregular arrays, we analyse the mapped array
functions to detect irregularity and avoid chunking in that case.
The analysis is described in Section 4.4.

• For sequence reduction with an array function as the combin-
ing operator, we need to turn an array-fold into a chunk-fold.
Vectorizing the combining operator gives a function that com-
bines chunks. We could fold the chunks of a sequence with this
function and then use the unlifted function in the end to fold the
final chunk. However, there are a number of problems with this
approach:

The combining operator would have to be commutative
since elements are combined, not with the next element in
the sequence, but with the element in the next chunk at the
same position.

It is not always desirable to keep a chunk of accumulated
values. For example, fromSeq is a fold using array append
as the combining operator, and the accumulated value is an
array containing all the elements in the sequence seen so
far. A chunk of accumulated values would be unreasonably
large.

A better solution is to fold each chunk with the unlifted func-
tion immediately and then combine the resulting folded value
with the accumulator, again using the unlifted function. How-
ever, Accelerate does not support a general parallel array fold.
Instead, as described in the following paragraphs, we opt to pro-
vide a less general sequence fold primitive more suitable for
chunking.

The sequence fold primitive is named foldSeqFlatten and has
the type signature:

foldSeqFlatten :: (Arrays a, Shape sh, Elt b)
⇒ (Acc a → Acc (Vector sh)
→ Acc (Vector b) → Acc a)

→ Acc a
→ Seq [Array sh b]
→ Seq a

This operation works by applying the given function to each chunk
in a sequence. In each step, the function is applied to an accumu-
lated value, a vector of shapes and a vector of elements, and it pro-
duces a new accumulated value. The vector of shapes is the shapes
of the arrays in the input chunk, and the vector of elements is all
the elements of the chunk concatenated to a flat vector. Our rep-
resentation of chunks enables extracting the shape vector and ele-
ment vector of a chunk in constant time, also for irregular chunks.
This means that we can execute foldSeqFlatten on chunks of any
length without having to vectorise. The operation unfortunately ex-

poses the chunk size in the surface language as the size of the shape
vector. This is not something the programmer should rely on since
it is backend specific parameter. However, the programmer is obli-
gated to obey the following rule for the folding function:

f (f a sh1 e1) sh2 e2 = f a (sh1 ++ sh2) (e1 ++ e2)

That is, applying the folding function twice on two shape and el-
ement vectors must be the same as applying it once on the ap-
pended vectors. This severely limits how the programmer can ex-
ploit knowing the chunk size.

Scalar fold foldSeqE is then defined as a prelude function using
foldSeqFlatten and the standard fold operator of accelerate:

foldSeqE :: Elt a
⇒ (Exp a → Exp a → Exp a)
→ Exp a
→ Seq [Scalar a]
→ Seq (Scalar a)

foldSeqE f z =
foldSeqFlatten
(λ acc _ → fold f (the acc))
(unit z)

Here the is convenience function for indexing a scalar array.
Likewise, fromSeq is also currently also a prelude function.

Folding with append is not very efficient, so we plan to specialise
this operation in the near future.

fromSeq :: (Shape ix, Elt a)
⇒ Seq [Array ix a]
→ Seq (Vector ix, Vector a)

fromSeq = foldSeqFlatten f (lift (empty, empty))
where
f x sh1 a1 =
let (sh0, a0) = unlift x
in lift (sh0 ++ sh1, a0 ++ a1)

Here empty produces the empty vector and (++) is vector append.

4.1 Translation
Sequence expression are first converted to A-normal form where
producing sequences are let-bound, and the sequence arguments in
a sequence operation must be variables. For example, the sequence
dot-product example is converted into the form:

let s1 = toSeqE xs
s2 = toSeqE ys
s3 = zipWithSeqE (*) s1 s2

in foldSeqE (+) 0 s3

If a sequence expression contains more than one consumer, they
are grouped together in a n-tuple. The A-normal expression is
then traversed from top to bottom and translated into the following
continuation-passing-style executable representation:

data StreamDAG senv res where
Transduce
:: (senv → s → (a, s))
→ s
→ (s → Bool)
→ StreamDAG (senv, a) res
→ StreamDAG senv res

Consume
:: (senv → s → s)

→ s
→ StreamDAG senv s

Reify
:: (senv → [a])
→ StreamDAG senv [a]

The type variable senv refers to the surrounding sequence context
that holds the current live values in each step, and res is the final
result of the entire stream execution.

Transduce is a stream transformer with a local state s that
produces values of type a from the surrounding context senv.
Sequence maps, toSeq and streamIn translates to transducers. In
each step of the stream, the termination condition of type

(s -> Bool)

is checked. It is only toSeq and streamIn that can terminate a
sequence, and they do so once there are no more chunks to produce.
If the stream is not ready to terminate, the stepping function of type

(senv -> s -> (a, s))

will be applied to the current context and state to produce a value
of type a that is made available to the subsequent nodes. The
functional also produces a new state to be used in the next iteration.
The subsequent nodes are then stepped by recursively stepping the
argument of type

StreamDAG (senv, a) res.

Consume also carries a local state that is updated in each step.
The final state in a consumer will be the result of the sequence.
Once termination is reached, the result can be read from the value
of the consumer. foldSeqFlatten is currently the only operation
that translates to a consume. Multiple folds are combined in a single
consume node.

Reify is a special kind of consumer that produces a list of val-
ues in each step. This constructor is only used when a sequence is
streamed out. In this case, instead of a final result, the sequence pro-
duces a list of intermediate results. The function argument converts
a chunk from the surrounding sequence context into a list of arrays.
These lists are appended together to form the result of streamOut.
When an element belonging to a chunk is forced in the host lan-
guage, the whole chunk is forced along with all preceding chunks
that have not been forced already.

The stepping functions in the stream DAG are mostly obtained
by evaluating the array-typed arguments of the operations in the se-
quence using the existing backend. After vectorisation is applied,
the translation becomes straight-forward. The only new backend-
specific operation we had to define are related to slicing and stream-
ing in and out.

4.2 Vectorization
Operations applied to the elements of a sequence in the source
program have to be applied in parallel to all the elements of a
chunk when we execute the code on a GPU. This process of lifting
element-wise operations to a parallel operation on a collection, re-
ferred to as the lifting transform [4], was popularised by NESL [3].

Lifting, for a fully featured, higher-order functional language is
a complicated process and can easily introduce inefficiencies [15,
18]. However, the constrained nature of the Accelerate array lan-
guage works in our favour here, and we can get the job done with a
much simpler version of the transformation. While the user-facing
surface language may appear to be higher order, it is strictly first-
order. That is to say, the only higher order functions are primitive
operations (e.g. map, zipWith , fold) and functions cannot be let
bound.

The transformation LJfK, which lifts a (potentially already par-
allel) function f :: α→ β into vector space has type:

LJfKxs :: Vector α→ Vector β

Conceptually, it is just a parallel map. However, we cannot imple-
ment it as such, since f may already be a parallel operation, and
feeding it to a parallel map would result in nested parallelism, pre-
cisely what we want to avoid. In order to maintain flat parallelism,
the lifting transform must recurse over the term applying the trans-
formation to all subterms. Formally, this is defined as follows.

LJCKv:_ = replicate (length v)C

LJxKv:vs =

{
x x ∈ (v : vs)

replicate (length v) x x /∈ (v : vs)

LJλv. eKvs = λv. LJeKv:vs
LJe1 e2Kvs = LJe1Kvs LJe2Kvs
LJlet v = e1in e2Kvs = let v = LJe1Kvsin LJe2Kv:vs
LJPK_ = P↑

Here, the lifting transform, LJ·K·, takes a term along with a
subset of its environment, expressed as a list of variables. The
subset corresponds to the variables that have been lifted as part
of the transform. For example, given mapSeq f seq, we want to
vectorise f , but f may contain variables that were bound outside of
the sequence computation, in which case we have to replicate them
at their use sites. Similarly, constants, C, are also replicated at their
use sites.

In the case of primitive operations, P, we use a lifted version
of that operation, P↑ defined in terms of existing primitives. Fortu-
nately, the range of combinators Accelerate provides is rich enough
that lifted versions of all of them are able to be implemented, with
our chosen nested array representation.

4.2.1 Nested array representation
A consequence of this flattening transform is that it produces nested
vectors. For example lifting

g :: Vector Float→ Vector Int

is going to yield

LJgK :: Vector(Vector Float)→ Vector(Vector Int).

Indeed, with the multidimensional arrays accelerate supports, ar-
rays of type Vector (Array (Z:.Int:.Int) Float) could oc-
cur. One possible, and elsewhere very popular, flattened array rep-
resentations is this: A vector of arrays is represented as a vector
of segment descriptors (the shape of the sub-array) along with a
vector containing all the values of the sub-arrays flattened and con-
catenated. For example:[(

1 2
3 4

)
,

(
10 11 12
13 14 15

)]
([2 :. 2, 3 :. 2)] , [1, 2, 3, 4, 10, 11, 12, 13, 14])

However, this representation is unnecessarily general for our
model. As our execution model only allows chunked execution for
regular chunks, with this representation, all the segment descriptors
would be the same. Instead, we use a much simpler representation:
A regular vector of arrays of rank sh can be represented as an array
of rank sh :. Int. Of course, this affects the lifting transform. If
we only allow regular vectors then not all array functions can be
lifted. For example, this function cannot be lifted.

enumFromTo :: Int → Int → Vector Int

The reason why is its lifted form does not produce a regular
nested vector. The size of each sub-vector of the output is deter-
mined by the contents of the input vectors.

LJenumFromToK· :: Vector Int
→ Vector Int
→ Vector (Vector Int)

We classify an array function as regular if the shape of the out-
put, as well as the shape of any intermediate arrays, can be deter-
mined from the shape of the input and, assuming the function is
open, its environment. We describe in Section 4.4 how we identify
these functions and compute their parallel degree.

This regular nested array representation is also of benefit when
it comes to defining the lifted version of the built in primitives. Typ-
ically, the lifting transform relies heavily on prefix-sums (scans) to
perform these segmented operations [2]. Forgoing the segment de-
scriptors means that, for example, our lifted fold, can be imple-
mented purely in terms of regular fold. This is because it is already
rank polymorphic.

fold :: (Exp e → Exp e)
→ Exp e
→ Array (sh:.Int) e
→ Array sh e

That is to say, it folds along the inner dimension, reducing the
rank by one.

While most of Accelerate’s primitives are rank polymorphic,
there are some notable exceptions. Primarily, prefix-sums (scans)
are not rank polymorphic. However, we can use segmented scans [8]
and pass in a vector of segment descriptors that are all the same
length.

4.2.2 Implementation
Accelerate is realised as a type preserving embedded language
where closed terms are indexed by their type, and open terms are
indexed by their type and their environment. Here is a simplified
version of the core AST.

data OpenAcc aenv t where
Avar :: Idx aenv t

→ OpenAcc aenv t
Alet :: OpenAcc aenv bnd

→ OpenAcc (aenv,bnd) body
Map :: Exp aenv (a → b)

→ OpenAcc aenv (Array sh a)
→ OpenAcc aenv (Array sh b)

The Idx aenv t supplied to Avar represents a DeBruijn index
of type t into the environment aenv.

data Idx aenv t where
ZeroIdx :: Idx (aenv,t) t
SuccIdx :: Idx aenv t

→ Idx (aenv,s) t

A closed term can then be represented with the empty environ-
ment.

type Acc = OpenAcc ()

In order to represent the nested regular arrays that result from
the lifting transform, we introduce a type family, Regular, that
encodes the non- parametric representation. 1

type family Regular t where
Regular (Array sh e) = Array (sh:.Int)
Regular (a,b) = (Regular a, Regular b)
Regular (a,b,c)
= (Regular a, Regular b, Regular c)
· · ·

Of course, our lifting transform will, by necessity change a
terms environment. We can capture this change in environment by
encoding the lifting context as follows.

data Context aenv aenv' where
Base :: Context aenv aenv
Push :: Context aenv aenv'

→ Context (aenv, t) (aenv', t)
PushLifted :: Context aenv aenv'

→ Context (aenv,t) (aenv', Regular t)

Here, Push represents an unlifted variable and PushLifted one
that was lifted into regular vector space. Our actual lifting transform
then takes this form.

liftAcc :: Context aenv aenv'
→ OpenAcc aenv t
→ OpenAcc aenv' (Regular t)

This concludes the vectorisation. With this function, we can
lift any Accelerate expression, including array functions, into a
vectorised equivalent that works on regular chunks. We use this
to achieve chunked stream transducers as described previously. It
remains to show how streams are scheduled.

4.3 Scheduling
If a sequence is regular with element sizes n, a chunk of length k
will have size n ∗ k. Assuming this size corresponds to the parallel
degree required to compute the chunk (we have to be a bit more
careful here which we will return to shortly), if n is known, k can
be fixed for all chunks in a sequence, consistently saturating the
hardware. If on the other hand, a sequence is not regular, the size of
elements, and thereby the optimal value of k, varies for each chunk,
and the scheduler must re-calculate k in each step.

Right before executing a stream, we perform regularity analysis
on the corresponding sequence expression that computes the ele-
ment size n or reports that the sequence is potentially irregular. If
n is found, we set k = kopt/n where kopt is a constant that defines
the optimal chunk size for the given hardware. For SIMD back-
ends, kopt is related to the number of processors and how many
scalar elements each processor operates on in each step. We also
multiply by a constant factor to reduce scheduling overhead. If n
cannot be determined, we currently fall back to purely sequential
(static) scheduling with k = 1, which is always possible. We plan
to improve on this in the future.

As mentioned earlier, size does not always correspond to par-
allel degree. For example, summing a n-length vector in log(n)
steps will have a parallel degree of at most n in each step and a re-
sult size of 1. If we sequence-map a vector-sum over a sequence of
vectors s, regardless of s, the resulting sequence is trivially regular
with element size 1 (the size of scalars). By fixing the chunk length

1 In our implementation Regular is encoded with some slight differences,
due to the use of representation types, but that is orthogonal to the transform
we describe.

to kopt/1 = kopt, one chunk depends on kopt vectors in s. This
means that the chunk length of s would have to be at least kopt.
However, the vectors of s may be arbitrarily large, and as a result,
each step of the stream requires arbitrarily many computational re-
sources, including working memory, which is what we are trying
to avoid. The right approach here is to check that s is regular first,
and if so, use that elements size to select the chunk length. Further-
more, since we allow mapping any array function over a sequence,
the function may internally create large arrays that we have to keep
track of as well.

In principal, each producer and consumer in a stream DAG
may have its own optimal chunk length. Ideally, streams should be
processed at different rates and communicate with each other using
buffers that are either filling or draining at different points in time.
Static scheduling in a multi-rate context has been covered in the
signal processing community [17], but here, the rates are known a
priori, and the schedule is then constructed. Our problem is slightly
different. We have a trivial schedule (the purely sequential one),
but we would like to pick the rates such that each step runs with
optimal parallel degree. We take a simpler approach for now: By
fixing the chunk length globally across all stream nodes to be the
smallest of the optimal chunk lengths of each node, the schedule
becomes a single simple loop. The downside is that some nodes
may not saturate the hardware, however, the node with the smallest
optimal chunk length (the one that will run optimally), is almost
always the most costly node to execute.

4.4 Parallel degree and regularity analysis
We perform the regularity analysis by traversing the sequence ex-
pression at runtime, prior to executing the corresponding stream
DAG. At this point, we have access to the arrays in the surround-
ing context, that we may use to refine the analysis. The traversal is
essentially interpreting array functions using partial arrays as de-
fined by the following type interpretation (encoded as a GADT in
the actual implementation):

CJArray sh eK = (Maybe sh, Maybe (sh→ e))

CJ(α1, ..., αn)K = (CJα1K, ..., CJαnK)

We allow an element lookup function in the type of a partial array,
but we will only use it if it is a constant time operation, such as if
the array is already manifest. The cost interpretation of a an array
expression acc of type α in a surrounding array context aenv is a
function:

CJaenv ` acc : αK : CJaenvK→ (CJαK, Maybe Int)

Here, the result type (α, Maybe Int) is a writer monad where
the accumulator type Maybe Int represents the parallel degree
or Nothing if it cannot be determined. Two parallel degree are
combined by maximum. If even a single intermediate result has
an unknown shape, we cannot predict the parallel degree of the
expression. Array functions are distinguished syntactically from
base array expressions, and the above interpretation does not apply
to functions. Instead array functions are interpreted by extending
the surrounding context:

CJaenv ` λacc : α→ βK = CJ(aenv , α) ` acc : βK

The definition of CJ−K is:

CJcKv =(Just (shape c), Just (λx.c!x))

CJlet acc1in acc2Kv =CJacc1Kv >>= (λx.CJacc2K(v, x))
CJxKv =v(x)

CJλaccKv =λx.CJaccK(v, x)
CJacc1 acc2Kv =CJacc2Kv >>= CJacc1Kv
CJMap _ accKv =CJaccKv >>=

(λ(sh, _).
((sh, Nothing)), fmap size sh)

...

Here v ranges over partial array contexts CJaenvK, fmap is the
standard functor map over Maybe, and (>>=) (bind) is standard
bind operator for the writer monad. size computes the size of a
shape.

The cost analysis of a sequence expressions requires shape
information for the sequence in the surrounding sequence context.
For the purpose of detecting regularity, we do not need to track
additional information besides the element type of a sequence type
[α]:

CJ[α]K = CJαK
We assume that the sequence expression is in A-normal form. Note
that we are analysing the unlifted array functions before vectori-
sation. The analysis for a sequence expression seq in surrounding
sequence context senv and array context aenv has the following
signature:

CJaenv , senv ` seq : αK : CJaenvK
→ CJsenvK
→ (CJαK, Maybe Int)

It is defined as follows:
CJToSeq div accKv _
= (sl, fmap size sl)

where
((sh, _), _) = CJaccKv
sl = fmap (sliceShape div) sh

CJStreamIn xsK_ _ = Nothing

CJMapSeq f xKv w = CJfK(v, w(x))
CJZipWith f x yKv w = CJfK(v, w(x), w(y))
CJFoldSeqFlatten f acc xKv w
= CJfK(v, (sha, Nothing), shs, elts)

where
((sha, Nothing), _) = CJaccKv
(shx, _) = w(x)

shs = (Just (Z :. 1), fmap unit shx)

elts = (fmap ((Z :.) ◦ size) shx, Nothing)

Here w ranges over partial sequence context CJsenvK tracking
sequence element sizes. sliceShape computes the slice shape from
a given source shape and division strategy. The array argument
acc in both the ToSeq case and the FoldSeqFlatten case are not
evaluated in each step of the sequence. We therefore discard the
parallel degree reported by the size analysis on these - We are only
interested in the shapes.

The current definition of the FoldSeqFlatten case is admit-
tedly faulty. It performs the analysis using the shape of the initial

accumulator. If the accumulator grows, such as when folding with
vector append, the actual parallel degree may very well be much
larger than the parallel degree we report here. A correct definition
should check that the shape of the initial accumulator is equal to
the shape of the new accumulator, and only report a parallel degree
if that is the case. However, that would cause the analysis to fail
for our current definition of FromSeq. We therefore omit this check
until we have a better implementation of FromSeq or until we have
better support for dynamic scheduling.

5. Evaluation
In order to evaluate the performance of our implementation, we
give the results from two sets of benchmarks. Firstly, three smaller
benchmarks where we compare the performance of accelerate se-
quences against arrays in order to show that no performance is lost
by using sequences. Secondly, we demonstrate two larger scale ap-
plications, comparing them both with Accelerate array implemen-
tations and other CPU implementations. All benchmarks were run
on a single Tesla K20c (compute capability 3.5, 13 multiprocessors
= 2496 cores at 705.50 MHz, 5 GB RAM). The host machine has
4 8-core Xeon E5-2650 CPUs (64-bit, 2.00GHz, 64GB ram, with
hyperthreading). Our benchmark times include time to transfer the
data onto the GPU, the execution time, and the time to transfer data
back to the host, but not compilation time. The fact that Acceler-
ate is online compiled is orthogonal to what we present here, and
compiled kernels are cached to prevent unnecessary recompilation.

5.1 Dot product
This is simply the example we show in Section 3 against the ver-
sion that does not use sequences. While this example is very simple,
it helps highlight that there is no significant loss of performance
due to the overheads associated with scheduling sequence compu-
tations. At the ideal chunk-size, 224 scalar elements, performance
is essentially equal. It is worth noting that this is significantly less
than the total size of the data which is 100 million floating point
values in each input vector. It is not till 227, that the chunk size
covers all input.

In the second graph, where the chunk size is fixed at 224, we see
that normal Accelerate runs out of memory with input vectors of
700 million floating point numbers. However, with sequences we
are able to process much larger inputs with no noticeable overhead.
That is until it exceeds 3.5 billion in which case it runs out of
physical memory on the host and pages start getting swapped to
disk.

5.2 MaxSum
Here we demonstrate how, even when applying two separate reduc-
tions over a sequence, only one pass is ever made over the input.
The program is simply:

maxSumSeq :: Vector Float
→ Acc (Scalar Float, Scalar Float)

maxSumSeq xs = collect
$ lift (foldSeqE (+) 0 xs'

, foldSeqE max 0 xs')
where xs' = toSeqE xs

We compare it against a version written without sequences.

maxSumSeq :: Vector Float
→ Acc (Scalar Float, Scalar Float)

maxSumSeq xs = lift (fold (+) 0 xs, fold max 0 xs)

Here, lift converts (Seq a, Seq b) into Seq (a,b), or
(Acc a, Acc b) into Acc (a,b), depending on the context.

Even though only one pass is made over the input as a whole,
this example does not outperform normal Accelerate due to limi-
tations in Accelerate’s fusion system. Because foldSeqE applies
fold over each chunk, two traversals of each chunk is made. The
sort of horizontal fusion that would resolve this would be advanta-
geous in this instance.

Once again, we apply this function over 100 million floating
point values.

5.3 MVM
This is the matrix-vector multiplication example shown earlier.
This is not just a simple reduction, but uses a sequence map, so
requires vectorisation. Once again, we compare it to a version
written without sequences.

mvm :: Acc (Matrix Float) → Acc (Vector Float)
→ Acc (Vector Float)

mvm mat vec
= let h = fst (unindex2 (shape mat))

in fold (+) 0
$ zipWith (*) mat (replicate (lift (Z:.h:.All)) vec)

The net result in this case is that, after subsequent optimisation
passes, both examples produce almost identical code. The only
difference being index manipulation. From the graph it can be
observed that, even with very small chunk sizes, the version with
sequences runs in close to the same time as the version without.
The input is a matrix of 10000× 10000 floating point values.

5.4 MD5 hash
The MD5 message-digest algorithm [25] produces a 128-bit cryp-
tographic hash. For the purposes of establishing the ideal chunk
size we apply this algorithm to each word in a dictionary of 64
million words, attempting simple password recovery. Like MVM
above, we generate very similar code to a version written without
sequences. However, in this case, slight differences in index ma-
nipulation actually work in our favour, giving us minor improved
performance over the contender. We also compare our results to
that of Hashcat, a CPU-based password recovery tool.

To demonstrate the effectiveness of Accelerate sequences or
out-of-core algorithms, we also run this benchmark against dictio-
naries of varying size. As can be seen, if sequences are not used,
only a dictionary of up to 75 million words will fit in the GPUs
memory. If they are used, however, we can use dictionaries up to
an almost arbitrary size. Although, like the dot product example, if
the dictionary is larger than can fit in physical host memory then
there is slowdown due to paging. This occurs at around 400 million
words.

5.5 PageRank
While our current restriction on sequences being regular is not
ideally suited to graph processing, we can still implement graph
algorithms, like PageRank [24] by changing the way we represent
a graph. In this case, we represent it as a sequence of links (edges).
This is a much heavier, in terms of space, than a representation
using a sparse matrix in compressed sparse row (CSR) format,
however it is still performant. Comparing our results to that of
a CPU-based implementation written in Repa [14, 19], we see
that while it can use a more space-efficient representation, we still
outperform it in terms of overall speed.

For the benchmark, we use a dump of the Wikipedia link graph
that contains approximately 130 million links.

6. Related Work
There are a number of languages which aim at facilitating GPU
programming in the presence of data streams. For example, the
Brook[5] stream programming language is an extension of C with
support for data parallel computations. BrookGPU [6] is an imple-
mentation of a subset of Brook which targets GPUs.

Brook uses only streams to express parallelism.
Sponge[13] is a compilation framework for GPUs using the

synchronous data flow streaming language StreamIt[27].
Both Sponge and BrookGPU are based on a very different pro-

gramming model. Starting from a stream programming model, the
compiler and runtime system tries to execute the code efficiently on
a GPU architectures. We provide the programmer both with paral-
lel arrays, which support a much wider range of parallel operations,
and more restricted streams. This distinction enables the program-
mer to design algorithmic solutions for a problem better tailored
towards the actual architecture, while still providing a high level of
abstraction.

Though it does not target GPUs, the Proteus[10] language uses
an idea similar to chunking to restrict the memory requirements
of vectorisation based implementations of nested data-parallel pro-
grams.

While there are a number of domain specific languages to sup-
port GPU programming, some of them also embedded in Haskell,
[1, 9, 11, 16, 21, 26] to name some, none of them currently, to the
best of our knowledge, support streams.

A conceptual stream model for NESL has been presented in
previous work [20]. The model is motivated by the lack of a good
realizable space cost model, and it is conceptually similar to ours;
Sequences are exposed at the source level and execute in streams
of bounded chunks. The model is more general than ours in the
sense that it allows nested sequences. However, it has yet to be
implemented with a high-performance backend. Furthermore, the
work presented here features more operations on multi-dimensional
arrays.

7. Future work
The work presented in this paper is a first step towards full stream-
ing support for collection-oriented parallel languages targeting
GPUs. Our next steps will be to lift some of the current restric-
tions of the model, as well as further improving the performance
of the generated code and runtime system. In particular, we are
planning to address the following issues in the near future:

• Chunked execution of irregular sequences: This would allow us
to express more algorithms over irregular data, like graph pro-
cessing, but will require more sophisticated scheduling strate-
gies than in the regular case.

• More combinators: We currently only support a minimal set of
combinators in Accelerate, and there are a number of obvious
additions, as for example scans on non-scalar sequences which
we will add.

• Automatic sequentialisation: As mentioned in the introduction,
the whole point of exposing sequences to the programmer is
that optimal automatic sequentialisation is generally undecid-
able. That does not mean that the compiler should not attempt
it however. Guided by a size analysis, the compiler could op-
portunistically transform array expressions into equivalent se-
quence traversals in the presence of very large intermediate ar-
rays.

With respect to performance improvements:

• We do not yet attempt to transfer the data for the next chunk
while we process the current one. This overlapping of commu-

nication and computation could potentially give significant im-
provements to overall runtime [12].

• As we have already mentioned, our model lends itself very
well to multi-gpu support via pipeline-parallelism. This is our
ultimate aim, but it does carry with it challenges in regards to
fusion of sequence computations– i.e. that sequence operations
should not be always fused, but rather split up amongst devices
where possible.

Acknowledgments
The authors wish to acknowledge Trevor L. McDonell for his
invaluable assistance and advice.

References
[1] L. Bergstrom and J. Reppy. Nested data-parallelism on the GPU. In

ICFP: International Conference on Functional Programming. ACM,
2012.

[2] G. E. Blelloch. Prefix sums and their applications. Technical Report
CMU-CS-90-190, Nov. 1990.

[3] G. E. Blelloch. NESL: A nested data-parallel language. Technical
Report CMU-CS-95-170, Carnegie Mellon University, 1995.

[4] G. E. Blelloch and G. W. Sabot. Compiling collection-oriented lan-
guages onto massively parallel computers. In Frontiers of Massively
Parallel Computation, 1988. Proceedings., 2nd Symposium on the
Frontiers of, pages 575–585. IEEE, 1988.

[5] I. Buck. Brook language specification. Outubro, 2003. URL http:
//merrimac.stanford.edu/brook.

[6] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan. Brook for gpus: Stream computing on graphics
hardware. In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages
777–786, New York, NY, USA, 2004. ACM. . URL http://doi.
acm.org/10.1145/1186562.1015800.

[7] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and
V. Grover. Accelerating Haskell array codes with multicore GPUs. In
DAMP: Declarative Aspects of Multicore Programming. ACM, 2011.

[8] S. Chatterjee, G. E. Blelloch, and M. Zagha. Scan primitives for vector
computers. In Proc. of Supercomputing. IEEE Computer Society
Press, 1990.

[9] K. Claessen, M. Sheeran, and J. Svensson. Obsidian: GPU program-
ming in Haskell. In IFL: Implementation and Application of Func-
tional Languages, 2008.

[10] J. P. Daniel Palmer and S. Westfold. Work-efficient nested data-
parallelism. In Proceedings of the Fifth Symposium on the Frontiers
of Massively Parallel Processing (Frontiers 95). IEEE, 1995.

[11] C. Elliott. Programming graphics processors functionally. In Haskell
Workshop. ACM Press, 2004.

[12] J. GóMez-Luna, J. M. GonzáLez-Linares, J. I. Benavides, and N. Guil.
Performance models for asynchronous data transfers on consumer
graphics processing units. J. Parallel Distrib. Comput.

[13] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke.
Sponge: Portable stream programming on graphics engines.
SIGARCH Comput. Archit. News, 39(1):381–392, Mar. 2011.
ISSN 0163-5964. . URL http://doi.acm.org/10.1145/1961295.
1950409.

[14] G. Keller, M. M. T. Chakravarty, R. Leshchinskiy, S. L. Peyton Jones,
and B. Lippmeier. Regular, Shape-polymorphic, Parallel Arrays in
Haskell. In ICFP: International Conference on Functional Program-
ming. ACM, 2010.

[15] G. Keller, M. M. Chakravarty, R. Leshchinskiy, B. Lippmeier, and
S. Peyton Jones. Vectorisation avoidance. In ACM SIGPLAN Notices,
volume 47, pages 37–48. ACM, 2012.

[16] B. Larsen. Simple optimizations for an applicative array language
for graphics processors. In DAMP: Declarative Aspects of Multicore
Programming. ACM, 2011.

[17] E. A. Lee and D. G. Messerschmi’tt. Static scheduling of synchronous
data flow programs for digital signal processing. IEEE Transactions
on Computers, 2(36), 1987.

[18] R. Leshchinskiy, M. M. Chakravarty, and G. Keller. Higher order
flattening. In Computational Science–ICCS 2006, pages 920–928.
Springer, 2006.

[19] B. Lippmeier, M. Chakravarty, G. Keller, and S. Peyton Jones. Guiding
parallel array fusion with indexed types. In Haskell Symposium. ACM,
2012.

[20] F. M. Madsen and A. Filinski. Towards a streaming model for nested
data parallelism. In Proceedings of the 2Nd ACM SIGPLAN Workshop
on Functional High-performance Computing, FHPC ’13, pages 13–
24, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2381-9. .
URL http://doi.acm.org/10.1145/2502323.2502330.

[21] G. Mainland and G. Morrisett. Nikola: Embedding compiled GPU
functions in Haskell. In Haskell Symposium. ACM, 2010.

[22] T. L. McDonell, M. M. T. Chakravarty, G. Keller, and B. Lippmeier.
Optimising Purely Functional GPU Programs. In ICFP: International
Conference on Functional Programming, Sept. 2013.

[23] NVIDIA. CUDA C Programming Guide, 2012.
[24] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation

ranking: Bringing order to the web. 1999.
[25] R. Rivest. The md5 message-digest algorithm. 1992.
[26] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jovanovic, H. Lee,

M. Odersky, and K. Olukotun. Optimizing data structures in high-level
programs: New directions for extensible compilers based on staging.
In POPL’13. ACM, 2013.

[27] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language
for streaming applications. In Compiler Construction. Springer, 2002.

http://merrimac.stanford.edu/brook
http://merrimac.stanford.edu/brook
http://doi.acm.org/10.1145/1186562.1015800
http://doi.acm.org/10.1145/1186562.1015800
http://doi.acm.org/10.1145/1961295.1950409
http://doi.acm.org/10.1145/1961295.1950409
http://doi.acm.org/10.1145/2502323.2502330

 240

 250

 260

 270

 280

 290

 300

 310

220 221 222 223 224 225 226 227

R
un

 T
im

e
(m

s)

Chunk size (# of scalar elements)

Dot product

Accelerate(sequences)
Accelerate

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
un

 T
im

e
(s

)

Input size (millions of elements)

Dot product (large input)

Accelerate(sequences)
Accelerate

 160

 170

 180

 190

 200

 210

 220

 230

 240

 250

218 219 220 221 222 223 224 225 226 227

R
un

 T
im

e
(m

s)

Chunk size (# of scalar elements)

Matrix-Vector multiplication

Accelerate(sequences)
Accelerate

 125

 130

 135

 140

 145

 150

 155

 160

 165

 170

 175

220 221 222 223 224 225 226 227

R
un

 T
im

e
(m

s)

Chunk size (# of scalar elements)

MaxSum

Accelerate(sequences)
Accelerate

 1

 1.5

 2

 2.5

 3

 3.5

 4

217 218 219 220 221 222 223 224 225 226

R
un

 T
im

e
(s

)

Chunk size (# of scalar elements)

MD5 hash

Accelerate(sequences)
Accelerate

Hashcat

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300 350 400

R
un

 T
im

e
(s

)

Input size (millions of words)

MD5 hash (large input)

Accelerate(sequences)
Accelerate

 8

 9

 10

 11

 12

 13

 14

 15

217 218 219 220 221 222 223 224 225 226 227

R
un

 T
im

e
(s

)

Chunk size (# of scalar elements)

PageRank

Accelerate(sequences)
Accelerate

Repa

Figure 1. Benchmark results

	Introduction
	Accelerate
	Fusion
	Handling large data sets

	Programming Model
	Examples
	Streams
	From arrays to sequences and back
	Lazy lists to sequences

	Execution Model
	Translation
	Vectorization
	Nested array representation
	Implementation

	Scheduling
	Parallel degree and regularity analysis

	Evaluation
	Dot product
	MaxSum
	MVM
	MD5 hash
	PageRank

	Related Work
	Future work

