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ABSTRACT
According to the principle of polyrepresentation, retrieval
accuracy may improve through the combination of multiple
and diverse information object representations about e.g.
the context of the user, the information sought, or the re-
trieval system [9, 10]. Recently, the principle of polyrep-
resentation was mathematically expressed using subjective
logic [12], where the potential suitability of each represen-
tation for improving retrieval performance was formalised
through degrees of belief and uncertainty [15]. No experi-
mental evidence or practical application has so far validated
this model.

We extend the work of Lioma et al. (2010) [15], by pro-
viding a practical application and analysis of the model. We
show how to map the abstract notions of belief and uncer-
tainty to real-life evidence drawn from a retrieval dataset.
We also show how to estimate two different types of polyrep-
resentation assuming either (a) independence or (b) depen-
dence between the information objects that are combined.
We focus on the polyrepresentation of different types of con-
text relating to user information needs (i.e. work task, user
background knowledge, ideal answer) and show that the sub-
jective logic model can predict their optimal combination
prior and independently to the retrieval process.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
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1. INTRODUCTION
The principle of polyrepresentation [9, 10] posits that in-

formation retrieval (IR) effectiveness may improve through
the consideration of multiple and diverse representations of
information objects or processes, such as IR systems, mod-
els, or context about the documents and queries and their
mediation to the user. This consideration is usually im-
plemented experimentally as combination of diverse repre-
sentations with respect to some criterion, more commonly
retrieval effectiveness. Whereas in principle, polyrepresen-
tation aims to use different information object representa-
tions that may enhance IR performance, in practice, each
representation is often associated with different degrees of
uncertainty regarding the enhancement that it may bring.
Therefore, if one representation is weaker (less reliable or
accurate) than the others, this should be reflected in the
combination process, otherwise effectiveness will suffer. In
addition, given the potentially high-dimensional and noisy
data contained in information object representations, many
different combinations could be produced, fetching various
different retrieval results. The process of deciding which
combination of all is optimal for retrieval is an open problem,
which was recently formalised by Lioma et al. (2010) [15]
in the context of polyrepresentation using a type of prob-
abilistic logic called subjective logic [12]. This formalism
was not accompanied by experimental evidence or practical
applications.

This work can be seen as an extension of the work of
Lioma et al. (2010); we provide a practical application of
that model and show that it is experimentally validated.
We show how to map the abstract notions of belief and un-
certainty to real-life evidence drawn from a retrieval test
collection, and how to estimate two different types of com-
binations for polyrepresentation assuming either (a) inde-
pendence or (b) dependence between the information ob-
jects that are combined. We focus on the polyrepresenta-
tion of different types of context relating to user information
needs (i.e. work task, user background knowledge, ideal an-
swer) and show that the subjective logic model can predict
their optimal combination prior and independently to the re-
trieval process. This finding holds for six different standard
evaluation measures and two state of the art retrieval mod-
els. Furthermore, we look at non-commutativity in polyrep-
resentation in order to trace the bias between dependent
contextual representations, and experimentally show its im-
pact to retrieval effectiveness.

The remainder of this work is organised as follows. Section
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2 overviews related work. Section 3 summarises the model
of Lioma et al. (2010). Section 4 presents the experimental
evaluation of the model. Section 5 discusses our findings and
their limitations. Section 6 concludes this work.

2. RELATED WORK
There exist several applications of the principle of polyrep-

resentation to IR (see [8, 15] for overviews). Regarding the
application of polyrepresentation to user information needs,
that is the focus of this work, most studies use polyrep-
resentation for query expansion. Diriye et al. (2009) [6]
apply polyrepresentation for interactive query expansion,
i.e. to improve the suggestion of expansion terms to the
users during their search in order to enable better retrieval
performance. They show how providing supplementary in-
formation on expansion terms can address ambiguity and
uncertainty issues, and can improve the perceived useful-
ness of the terms. In a different (non-interactive approach),
Efron and Winget (2010) [7] use polyrepresentation to com-
bine so-called query aspects, which they collect by skim-
ming the top k documents retrieved for a given query. They
consider these skimmed documents relevant and build pseu-
dorelevance judgments without human intervention.

Our study differs from the above: we do not apply polyrep-
resentation for query expansion, but rather as a means to
combine contextual evidence about the queries. This is more
reminiscent of evidence combination or opinion fusion ap-
proaches, as explained below. The effect of capturing mul-
tiple representations of query context from a single user or
from multiple users is a topic that has long attracted in-
terest. According to Croft (2000) [3], McGill et al. (1979)
carried out a study of factors affecting retrieval by different
users when they were assigned the same information need
as a starting point. They found that there was surprisingly
little overlap between the documents retrieved by the dif-
ferent users. Saracevic and Kantor (1988) [18] also found
that when different users constructed Boolean queries based
on the same descriptions of the information need, there was
little overlap in the retrieved sets. One of the earliest per-
haps retrieval models that explicitly incorporated the notion
of multiple query representations was proposed by Turtle
and Croft (1991) [22]. Soon after this, Belkin et al. (1993)
[1] carried out a systematic study on the effects of query
combination and verified that retrieval effectiveness could
be substantially improved by query combination, but that
the effectiveness of the combination depends on the effec-
tiveness of the individual queries. Queries that provided
less evidence about relevance should optimally have lower
weights in the combination, because bad query representa-
tions could reduce effectiveness when combined with better
representations.

This is exactly the topic we address in this work, based on
the model proposed in Lioma et al. (2010). How to identify
and separate ‘good’ from ‘bad’ query representations, so that
undesirable combinations can be avoided, considering not
only the features of the query representations, but also the
way in which they are combined.

3. POLYREPRESENTATION USING
SUBJECTIVE LOGIC

This section outlines basic notions in subjective logic and
how it has been applied to polyrepresentation in Lioma et

al. (2010). A detailed introduction into subjective logic can
be found in Jøsang (2001) [12].

3.1 Subjective Logic Preliminaries
The starting point is a frame of discernment defined over

a proposition. Arguments in subjective logic are opinions
representing the belief that the proposition is true1. An
opinion is formally defined as ωA

X , where A is the opinion
owner, and x is the proposition to which the opinion ω ap-
plies. An opinion can be decomposed into ωA

x = (b, d, u, α),
where b is A’s belief that the proposition is true, d is A’s
disbelief that the proposition is true2, u is A’s uncertainty
about the proposition, and α is an a priori probability in the
absence of committed belief mass. Given a proposition for
which we have an opinion, we can estimate the probability
expectation that the proposition is true as:

E = b+ α · u (1)

If there is one opinion only about the proposition, Equa-
tion 1 is computed directly from the components of that
opinion. If however several opinions exist about a proposi-
tion, assessing the truth of the proposition consists in fusing
these opinions and estimating Equation 1 from their com-
bined components. Subjective logic describes several fusion
operators, suitable for different situations. Two of these are
outlined next: consensus, which combines independent opin-
ions without bias, and recommendation, which combines de-
pendent opinions by modelling the influence of one opinion
upon the other.

Consensus.
Let us assume two independent opinions about a propo-

sition x: ωA
x = (bAx , d

A
x , u

A
x , α

A
x ) and ωB

x = (bBx , d
B
x , u

B
x , α

B
x ).

Their consensus is ωA⊕B
x with components:

bA⊕B
x =

bAx u
B
x + bBx u

A
x

κ
, dA⊕B

x =
dAx u

B
x + dBx u

A
x

κ
(2)

uA⊕B
x =

uA
x u

B
x

κ
, κ = uA

x + uB
x − uA

x u
B
x (3)

This operation3 is commutative, associative and assumes
that not all of the combined opinions have zero uncertainty.

Recommendation.
Let us assume two opinions that are not independent of

each other, but where one influences the other. Let ωB
x =

(bBx , d
B
x , u

B
x , α

B
x ) be B’s opinion about the proposition, and

ωA
B = (bAB , d

A
B , u

A
B , α

A
B) be A’s opinion about B’s recommen-

dation (B’s influence to A). Their combination by recom-
mendation ωA⊗B

x is A’s opinion about the proposition as a
result of the recommendation from B, with components:

bA⊗B
x = bABb

B
x , dA⊗B

x = bABd
B
x (4)

uA⊗B
x = dAB + uA

B + bABu
B
x (5)

1The opinion space is a subset of the belief space used in
the Dempster-Shafer belief theory [20].
2This corresponds to doubt in Shafer (1976) [19].
3The consensus operator is similar to Dempster’s rule [5] (see
[12], Section 5.3, for a discussion on the difference between
the two).
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Table 1: Polyrepresentation and subjective logic
analogies.

POLYREPRESENTATION SUBJECTIVE LOGIC
· original query · proposition
· query context · opinion
· how well a query context · belief, disbelief & uncertainty of an
represents the original query opinion about the truth of the proposition
· combination of query · opinion fusion
context representations

This operation4 is associative but not commutative.

3.2 Subjective Logic for Polyrepresentation
The model of Lioma et al. (2010) uses subjective logic to

express the polyrepresentation of user information needs and
their context. An analogy is made between opinions (from
subjective logic) and query context representations (from
polyrepresentation). The opinions express beliefs about the
truth of a proposition. In this analogy, the proposition is
the original query, and the opinions are the query context
representations (see Table 1). The opinion of a query con-
text representation can be seen as the extent to which the
query context represents the original query. Then, the com-
bination of multiple query context representations can be
modelled as fusing opinions about a proposition.

4. PRACTICAL APPLICATION
In this paper, we implement and experimentally test the

model of Lioma et al. (2010) summarised in the previous
section. Given an IR test collection with rich query con-
text representations, we convert these representations into
subjective logic opinions and we produce their combinations
using the consensus and recommendation operations. The
strength of each combination is computed as a probability
using Equation 1, so that the higher the probability, the
closer a combination represents the original query. To eval-
uate this model, we conduct retrieval experiments using the
same query context combinations (completely independently
from the subjective logic computations). If the best per-
forming combination of query context (according to retrieval
performance) corresponds to the combination of subjective
logic opinions with the highest probability, we consider the
model validated. In this work, we focus only on pairwise
combinations of query context representations.

Section 4.1 describes the dataset and settings used in the
polyrepresentation and retrieval experiments. Section 4.2
presents the experimental findings.

4.1 Experimental Setup

4.1.1 Dataset and query context representations
We use the iSearch test collection [16], which consists

of 46GB of scientific documents from the physics domain.
iSearch comes with a set of 65 queries and their relevance
assessments, which have been created by 23 lecturers and
experienced postgraduate and graduate students from three
different university departments of physics. The queries rep-
resent real information seeking tasks. The relevance assess-
ment of each query was made by the same user who formu-

4The recommendation operator can become equivalent to
Shafer’s discounting function [19] as explained in Lioma et
al. (2009) [14], section 3.2.

lated that query, by examining a pool of documents retrieved
for that query.

Each iSearch query contains the following five representa-
tions of different aspects of the user’s information need and
context:

1. user’s verbose description of the information sought

2. background of the user’s task

3. description of the user’s current work task

4. description of the user’s ideal answer

5. query terms (keywords) that the user might use in a
search engine

In this work, we consider the keywords (representation no.
5) as the original query, and representations 1-4 as expres-
sions of query context. We choose to regard the keywords
as the representation closest to original user query for two
reasons. First, the keywords are the most similar to what
a user might submit to a search engine, e.g. they are most
often in the form of a few key terms or phrases, and are
the least verbose of the five representations. Second, earlier
results on the iSearch collection indicate [21] that the single
best performing representation among these five is the key-
words, indicating that this representation works well with
current retrieval models.

4.1.2 Retrieval settings
We use the Indri IR system5. For ranking we use two

versions of the language model: with Dirichlet (Dir) and
Jelinek-Mercer (JM) smoothing [4]. We tune their parame-
ters using the tuning range in Zhai and Lafferty (2002) [24]:

• DIR’s µ ∈ {100, 500, 800, 1000, 2000, 3000, 4000, 5000,
8000, 10000}

• JM’s λ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 0.95, 0.99}

We report the best retrieval performance separately for Mean
Average Precision (MAP), Normalised Discounted Cumu-
lated Gain (NDCG)6, and Binary Preference (BPREF) in
the top 1000 retrieved documents, and also for Precision at
10 (P@10), NDCG at 10 (NDCG@10) and Mean Reciprocal
Rank (MRR). These measures contribute different aspects
to the evaluation: Both MAP and BPREF measure the aver-
age precision of a ranked list, but BPREF differs from MAP
because it does not treat non-assessed documents as explic-
itly non-relevant (whereas MAP does) [2]. NDCG measures
the gain of a document based on its position in the result
list. The gain is accumulated from the top of the ranked list
to the bottom, with the gain of each document discounted
at lower ranks. This gain is relative to the ideal based on
a known recall base of relevance assessments [11]. P@10
and NDCG@10 focus on the early precision of the top 10
retrieved documents. MRR [23] corresponds to the multi-
plicative inverse of the rank of the first relevant document
retrieved, i.e. it focuses on the retrieval quality of the very
top of the ranked list.

5http://www.lemurproject.org/indri/
6with the following gain values: very relevant = 3, fairly
relevant = 2, marginally relevant = 1, non-relevant = 0.
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The user query (Q) and two representations (A and B) of its context. Each represen-
tation contains positive and negative evidence about the strength of the combination
A⊕B or A⊗B with respect to the query.

Query Q

A B

Figure 1: Positive evidence of A (in A⊕B).

Query Q

A B

Figure 2: Positive evidence of B (in A⊕B).

Query Q

A B

Figure 3: Negative evidence of A (in A⊕B).

Query Q

A B

Figure 4: Negative evidence of B (in A⊕B).

Query Q

A B

Figure 5: Positive evidence of A about B and also
of B about A (in A⊗B).

4.2 Experimental Findings

4.2.1 Mapping Opinions to Evidence
According to the model of Lioma et al. (2010) sum-

marised in section 3, each representation of query context
corresponds to an opinion about the original query. The
belief, disbelief and uncertainty of these opinions must be
computed from features of these query context representa-
tions (completely independently of the retrieval process).
These features are referred to as evidence, and can be ei-
ther positive or negative with respect to the original query,
depending on whether they support it or not. Subjective
logic maps this type of evidence to opinions as follows [12].
Let r denote positive evidence, and s denote negative evi-
dence. Then, the correspondence between this evidence and
the belief, disbelief, and uncertainty b, d, u is:

b =
r

r + s+ 2
d =

s

r + s+ 2
u =

2

r + s+ 2
(6)

What constitutes positive and negative evidence can be
defined in various ways. In this work, we use the terms of the
query context representations in a simple bag of words ap-
proach (regardless of their frequency, co-occurrence, gram-
matical or any other feature). We consider each query con-
text representation and the original query as sets of terms.
Then, positive evidence is the number of terms that occur in
overlaps of these sets, and negative evidence is the number of
terms that occur in complements of these sets, as described
below.

For the consensus of two query context representations A

and B (A⊕B) with respect to a user query Q, A’s positive
evidence is the number of terms occurring in A∩B and also
in A ∩ Q (Figure 1). Similarly, B’s positive evidence is the
number of terms occurring in A∩B and also in B∩Q (Figure
2). A’s negative evidence is the number of terms occurring
in the complement of A − B and A − Q (Figure 3). B’s
negative evidence is the number of terms occurring in the
complement of B −A and B −Q (Figure 4).

For the recommendation of A to B and of B to A (A⊗B),
both A’s and B’s positive evidence is the number of terms
occurring in A ∩ B (Figure 5). The negative evidence of A
and B is the same as in the consensus above.

We apply these separate pre-processing options when count-
ing terms:

(I) no-preprocessing at all

(II) lower-case, punctuation removal

(III) II + stopword removal

(IV) III + stemming

We use the SMART stopword list, as appears in the appen-
dices of Lewis et al. (2004) [13], and the Porter stemming
algorithm [17].

Any type and amount of contextual information that can
potentially be useful may be used as evidence, for instance
statistical, linguistic, algorithmic or other features of the
queries (e.g. see [14] for pragmatic query features). Addi-
tional evidence can be modelled by introducing more opin-
ions.
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Table 2: Pairwise polyrepresentation of query context representations through consensus (⊕) and recom-
mendation (⊗) operations. Consensus and recommendation reflect the strength of each combination as a
probability: the higher the probability, the more likely that the combination will benefit retrieval perfor-
mance. Recommendation is non-commutative, so A⊗B and B ⊗A denote the combination order.

POLYREPRESENTATION PROBABILITIES
(I) No Pre-Processing

Query Context Representations
Consensus Recommendation
A⊕B A⊗B B ⊗A

user background - ideal answer 0.1850 0.4126 0.4192
user background - work task 0.1965 0.3527 0.4518
information need - user background 0.1862 0.3759 0.4594
information need - ideal answer 0.2359 0.3687 0.4450
information need - work task 0.2064 0.3096 0.4764
work task - ideal answer 0.1769 0.4258 0.3859

(II) Lower-Case, No Punctuation

Query Context Representations
Consensus Recommendation
A⊕B A⊗B B ⊗A

user background - ideal answer 0.2285 0.3967 0.4153
user background - work task 0.2347 0.3319 0.4540
information need - user background 0.2426 0.3470 0.4702
information need - ideal answer 0.2939 0.3379 0.4584
information need - work task 0.2534 0.2680 0.4895
work task - ideal answer 0.2123 0.4137 0.3811

(III) Lower-Case, No Punctuation, No Stopwords

Query Context Representations
Consensus Recommendation
A⊕B A⊗B B ⊗A

user background - ideal answer 0.1972 0.4365 0.4499
user background - work task 0.1826 0.4030 0.4641
information need - user background 0.2457 0.3928 0.4787
information need - ideal answer 0.3154 0.3493 0.4734
information need - work task 0.2715 0.2991 0.4907
work task - ideal answer 0.1902 0.4436 0.4274

(IV) Lower-Case, No Punctuation, No Stopwords, Stemming

Query Context Representations
Consensus Recommendation
A⊕B A⊗B B ⊗A

user background - ideal answer 0.2278 0.4211 0.4424
user background - work task 0.2203 0.3771 0.4616
information need - user background 0.2885 0.3607 0.4837
information need - ideal answer 0.3674 0.3138 0.4868
information need - work task 0.3106 0.2615 0.5027
work task - ideal answer 0.2172 0.4307 0.4170
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Having collected this evidence from the term statistics of
the query context representations, we compute their com-
binations by consensus (using Equations 2 - 3) and recom-
mendation (using Equations 4 - 5). The output of these
equations is fused beliefs, disbeliefs, and uncertainties for
each combination, which we feed into Equation 1 to com-
pute the final strength of each combination - we refer to this
as polyrepresentation probability. In Equation 1, we set the
prior α = 0.5 assuming a binary frame of discernment (i.e.
having two states and dividing α uniformally across these).

4.2.2 Polyrepresentation Findings
Table 2 shows the probabilities of each combination of

query context representations computed as described above.
The three query context representations that give higher
polyrepresentation probabilities consistently for all prepro-
cessing options are the user’s information need, work task
and ideal answer. Among these, work task and information
need give the highest polyrepresentation probability at all
times, using the recommendation operation (in this order).
The assumption behind this combination is that (a) work
task and information need are dependent, and that (b) the
work task is a better contextual representation of the infor-
mation need than of the original query. This can be seen
in the very low probability fetched by the recommendation
information need ⊗ work task (which is the lowest probabil-
ity for all recommendation combinations). Simply speaking,
what we see here is two query context representations that
are potentially valuable to retrieval effectiveness but only if
their effect is channelled in a specific way so that their effect
is traced according to their dependence. Their dependence
in this case is that the work task context supports the in-
formation need, and the information need context supports
the query. This is in line with the cognitive interpretation
of user’s work task in interactive IR laid down in Ingwersen
(1996) [9].

Table 2 also shows that recommendation results in higher
overall polyrepresentation probabilities than consensus, i.e.
combinations that are likely to be more reliable. To assess
the predictions of the query context combinations in Table 2,
we compare them to the actual retrieval performance of each
combination, described next. No part of the retrieval process
has been informed by the polyrepresentation computation
described above, and vice versa.

4.2.3 Retrieval Findings
Table 3 shows the retrieval performance of the combina-

tions of query context representations we saw in Table 2. For
these runs, we use the text of each query context representa-
tion as query text, and the same four types of preprocessing
reported in Section 4.2.1. We do not weight separately any
of the query fields; we simply concatenate all text into one
query. Table 3 also displays the retrieval performance when
using the original query without any context, for reference
(there is no polyrepresentation of context in this run). We
see that the combination with the highest polyrepresenta-
tion probability in Table 2, information need and work task,
gives also the best retrieval performance among all combi-
nations. This is consistent for all six evaluation measures,
and for both retrieval models. Comparing these results to
the performance of the original query without context, we
see that the best polyrepresentation run improves retrieval
performance over the original query for MAP, P@10 and

NDCG@10, and is comparable to the original query for the
remaining evaluation measures. Overall, these findings indi-
cate that the polyrepresentation probabilities tend to agree
with observed retrieval performance. This agreement is also
visually displayed in Figure 6. We see that there is overall
consistency among the two, apart from the case of back-
ground - work task.

The scores shown in Table 3 are averaged over all queries,
meaning that they can be affected by outliers. Figures 7
- 30 present a detailed per-query overview of the retrieval
performance of each query (measured in MAP only for DIR)
against the belief and uncertainty of the query context repre-
sentations combined with consensus and recommendation7.
This belief and uncertainty are the ingredients used to com-
pute the polyrepresentation probabilities with Equation 1.
Hence, these figures serve to explain how the polyrepresen-
tatin probabilities can be decomposed and how their com-
ponents correlate to retrieval performance. The correlation
between MAP and the respective belief and uncertainty val-
ues is reported using Spearman’s rank correlation coefficient.
We can report similar trends for runs with JM and for the
other evaluation measures that average retrieval precision in
the top 1000 documents.

Figures 7 - 30 show that the combination of information
need and work task (which gave the highest polyrepresenta-
tion probability and also the highest retrieval performance)
does not have the highest correlation with MAP on a per
query basis, neither for belief nor for uncertainty. The high-
est correlation with respect to these is given by the combi-
nation of information need with user background. However,
the combination of information need and work task has over-
all the highest belief values among all combinations. This
shows that this combination has somewhat stronger evidence
than the others, which may not always correlate strongly
with the MAP score flunctuations for each query, but which
nevertheless is an overall better representation of the query
context.

5. DISCUSSION
The experimental findings presented above can be sum-

marised in three points.
The experiments indicate that the polyrepresentation pre-

dictions regarding the optimal combination of query con-
text representations were in agreement with observed re-
trieval performance. This validates the model of Lioma et
al. (2010) for this dataset and retrieval scenario. Further
experiments with other settings and using more than pair-
wise combinations of representations are needed to ground
the model on firmer grounds - we consider this study as a
first step in that direction.

We showed how the components of each polyrepresenta-
tion combination were induced from naive bag of words term
statistics and converted to belief, disbelief and uncertainty.
This was a straight-forward application of the mapping pro-
posed in Jøsang (2001) [12] and of features common to IR
experimentation. Further features could be used, poten-
tially challenging their mapping to binary (positive or nega-
tive) evidence, resulting in new definitions and mappings of
graded features as contextual evidence for IR.

7For the recommendation, we present one order of combina-
tion (out of the two); we can report that the other combi-
nation order follows very similar trends.
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Table 3: Retrieval performance using the language model with Dirichlet (DIR) and Jelinek-Mercer (JM)
smoothing. The best combination of query context representations is shown in bold. † marks the best overall
score per evaluation measure.

Query Context Representations
MAP NDCG BPREF

DIR JM DIR JM DIR JM
user background - ideal answer 0.0588 0.0703 0.1928 0.2217 0.2042 0.2347
user background - work task 0.0933 0.1095 0.2589 0.3062 0.2737 0.3059
information need - user background 0.1073 0.1229 0.2919 0.3341 0.2844 0.3213
information need - ideal answer 0.0945 0.1077 0.2670 0.2983 0.2508 0.2834
information need - work task 0.1175 0.1310† 0.3117 0.3563 0.2974 0.3270
work task - ideal answer 0.0849 0.0925 0.2489 0.2895 0.2480 0.2960
original query (no context) 0.1156 0.1268 0.3339 0.3572† 0.3201 0.3340†

Query Context Representations
P@10 NDCG@10 MRR

DIR JM DIR JM DIR JM
user background - ideal answer 0.1446 0.1477 0.1298 0.1314 0.3069 0.3310
user background - work task 0.2077 0.2277 0.1911 0.2061 0.3884 0.3907
information need - user background 0.2154 0.2138 0.2004 0.2075 0.4222 0.4600
information need - ideal answer 0.2185 0.2154 0.1976 0.1919 0.4394 0.4167
information need - work task 0.2523 0.2554† 0.2246 0.2352† 0.4582 0.4880
work task - ideal answer 0.2000 0.1892 0.1883 0.1805 0.4134 0.3997
original query (no context) 0.2492 0.2431 0.2287 0.2175 0.5267† 0.4958
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Figure 6: Probability of each polyrepresentation combination (x axis) vs. retrieval performance with JM (y
axis) for all query context representation combinations (the points correspond to the scores in Tables 2 & 3).
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The belief and uncertainty (y axis) of the representations used for the consensus com-
bination (this page) and the recommendation operator (next page) against MAP (x
axis) per query, and their rank correlation coefficients (Spearman’s ρ). The order of
the combination for recommendation is shown in the title of each figure.
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Figure 12: ρ = 0.049
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Figure 13: ρ = −0.009
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Figure 14: ρ = −0.198
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Figure 16: ρ = −0.146
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Figure 17: ρ = −0.065
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Figure 18: ρ = −0− 007
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Figure 24: ρ = 0.105
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Figure 25: ρ = −0.080
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Figure 26: ρ = 0.019

0 0.2 0.4 0.6 0.8

0.6

0.7

0.8

0.9

1

MAP

U
n
ce
rt
ai
n
ty

Background ⊗ Information Need

Figure 27: ρ = −0.136
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Figure 28: ρ = −0.064
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Figure 29: ρ = −0.061
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Figure 30: ρ = −0.136
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Finally, we showed how the effect of one representation
upon the other can be traced and modelled in a combina-
tion. This is an attractive feature that could be used to
model and practically adjust the user retrieval experience,
through for instance interface functionalities, such as timely
interventions or suggestions.

6. CONCLUSIONS
This work provided a practical application and analysis

of the principle of polyrepresentation formalised using sub-
jective logic, as initially proposed in Lioma et al. (2010).
We showed how to map the abstract notions of belief and
uncertainty used in that model to real-life evidence drawn
from a retrieval test collection, and how to estimate two dif-
ferent types of combinations for polyrepresentation assum-
ing either (a) independence or (b) dependence between the
information objects that are combined. Experimental evi-
dence on the polyrepresentation of different types of context
relating to user information needs (i.e. work task, user back-
ground knowledge, ideal answer) using two state of the art
retrieval models, six standand evaluation measures and 65
queries showed that the model of Lioma et al. (2010) can
predict their optimal combination prior and independently
to the retrieval process.
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