
Niels Bjørn Bugge Grathwohl

Parsing With Regular Expressions
&
Extensions to Kleene Algebra
PhD Dissertation

Department of Computer Science, University of Copenhagen
2015

Kleene
Meets
Church

Abstract

In the first part of this thesis, we investigatemethods for regular expression parsing. The
work is divided into three parts.

The first part is a two-pass algorithm for greedy regular expressionparsing in a semi-
streaming fashion. It executes in time O(mn) for expressions of size m and input of
size n. The first pass outputs a compact log of only k bits per input symbol, where
k is the number of alternatives and Kleene stars in the expression. The second pass
processes this log to produce a compact bit-coded parse tree, not requiring the input
symbols at all. This is an improvement upon previous parsing algorithms that either
do not scale linearly in the input or require more working memory for the log and use
three passes instead of two.

The second part is an optimally streaming algorithm: bits of the bit-coded parse
tree are output as soon as it is semantically possible to guarantee what the prefix of the
final parse tree is. This can be done in time O(2m logm + mn) for expressions of
size m and input of size n. To be optimal, a PSPACE-complete preprocessing step is
required: For a fixed regular expression, the algorithm’s run-time scales linearlywith the
input length. For inherently non-streamable expressions like a⋆x + a⋆y the algorithm
degrades gracefully to a two-pass algorithm.

The third part is a determinization procedure for the optimally streaming algo-
rithm where the preprocessing step has been omitted, along with a surface language,
Kleenex, for expressing general non-deterministic finite transducers. We show how to
compile Kleenex programs into deterministic streaming string transducers (SSTs), and
demonstrate the performance of aKleenex compiler that translates the SSTs to efficient
C code. The resulting programs are essentially optimally streaming, run in worst-case
linear time in the input size, and show consistent high performance in the 1 Gbps range
on various use cases.

In the second part of this thesis, we present two extensions to Kleene algebra.
Chomsky algebra is an algebra with a structure similar to Kleene algebra, but with

a generalized µ-operator for recursion instead of the Kleene star. We show that the
axioms of idempotent semirings along with continuity of the µ-operator completely
axiomatizes the equational theory of the context-free languages.

KAT+B! is an extension to Kleene algebra with tests (KAT) with mutable state.
We describe a test algebra B! for mutable tests and give a commutative coproduct be-
tween KATs. The axioms of B! together with KAT and a set of commutativity condi-
tions are shown to completely axiomatize the equational theory of an arbitrary KAT
enriched with mutable state. The theory is EXPSPACE-complete. We give some exam-
ples of its use in showing the Böhm–Jacopini theorem and the folk theorem that all
while programs can be put into a normal form with only one while loop.

Resumé

I første del af denne afhandling undersøger vi metoder til at parsemed regulære udtryk.
Dette er yderligere opdelt i tre dele.

Den første del er en to-fase-algoritme der laver semi-strømmende grådig parsing
med regulære udtryk. Den kører i tid O(mn) for udtryk af størrelse m og inddata af
størrelse n. I den første fase bliver en kompakt log udskrevet, der kun består af k bits
per indlæst karakter, hvor k er antallet af alternativer og Kleenestjerner i udtrykket. I
den anden fase bliver denne log læst for at producere et kompakt bit-indkodet parsetræ,
hvilket ikke kræver kendskab til den oprindelige inddata. Dette er en forbedring af hid-
tidige algoritmer til grådig parsing, da de enten ikke skalerer lineært i inddatas størrelse
eller kræver mere arbejdslager til den midlertidige log-datastruktur og tre faser i stedet
for to.

Den anden del er en optimalt strømmende algoritme: dele af det bit-indkodede par-
setræ bliver udskrevet så snart det er semantisk muligt at garantere hvad præfixet af det
endelige parsetræ er. Dette kan gøres i tidO(2m logm +mn) for udtryk af størrelsem
og inddata af størrelsen. For at være optimal kræves der en PSPACE-fuldkommen præ-
beregning: For et specifikt regulært udtryk skalerer algoritmens køretid lineært i indda-
tas størrelse. Algoritmen falder trinvist tilbage på at være en to-fase-algoritme i tilfældet
af inherent ikke-strømmende udtryk såsom a⋆x + a⋆y.

Den tredje del er en determiniseringsprocedure for den optimalt strømmende algo-
ritme, hvor præberegningsskridtet er undladt, samt et overfladesprog,Kleenex, til at ud-
trykke generelle nondeterministiske endelige transducere. Vi viser hvordanKleenexpro-
grammer kompileres ned til deterministiske strømmende strengtransducere (SSTer),
og vi demonstrerer ydelsen af en Kleenexoversætter der oversætter SSTer til effektiv C-
kode. De resultererende programmer er i praksis optimalt strømmende, kører i værste
fald i lineær tid i inddatas størrelse, og holder et konsistent højt ydelsesniveau omkring
1 gigabit per sekund på forskellige eksempelprogrammer.

I anden del af denne afhandling præsenterer vi to udvidelser af Kleene algebra.
Chomsky algebra er en algebra med en struktur lig Kleene algebra, men med en ge-

nerelµ-operator til rekursion i stedet for Kleenestjernen. Vi viser, at aksiomerne for en
idempotent semiring samt kontinuitet af µ-operatoren aksiomatiserer lighedsteorien
for kontekstfrie sprog fuldstændigt.

KAT+B! er en udvidelse af Kleene algebramed test (KAT)medmuterbar tilstand.
Vi beskriver en testalgebra B! for muterbare tests og giver et kommutativt koprodukt
mellem KATer. Det bliver vist at B! og KATs aksiomer sammen med en mængde kom-
mutativitetsbetingelser fuldstændigt aksiomatiserer lighedsteorien for en arbitrærKAT
beriget med muterbar tilstand. Teorien er EXPSPACE-fuldstændig. Vi viser nogle ek-
sempler af brugen af aksiomerne ved at vise Böhm–Jacopinis sætning samt den klassiske
sætning der siger at alle while-programmer kan omskrives til en normalform der kun
har én while-løkke.

Contents

List of Figures vii

Acknowledgements ix

1 Introduction 1

2 Preliminaries 3

3 Regular Expression-Based Parsing Algorithms 7
3.1 Regular Expressions . 7
3.2 The Language Interpretation of Regular Expressions 8
3.3 Non-Deterministic Finite Automata 10

3.3.1 Simulation . 12
3.4 Deterministic Finite Automata . 14
3.5 The Type Interpretation of Regular Expressions 15

3.5.1 Handling Lists . 16
3.5.2 Value Flattening . 16
3.5.3 Structured Values are Parse Trees 17
3.5.4 Bit-Coding Structured Values 18
3.5.5 Ambiguity in Regular Expressions 20

3.6 Finite State Transducers . 22
3.7 First Algorithm (CIAA’13) . 26

3.7.1 Symmetry of Thompson FSTs 26
3.7.2 Ordered FST Simulation . 26
3.7.3 Two-Pass Regular Expression Parsing 28

3.8 Second Algorithm (ICTAC’14) . 31
3.8.1 Optimal Streaming . 35
3.8.2 Algorithm . 37

3.9 Determinization, Implementation (POPL’16) 38
3.9.1 Streaming String Transducers 41

3.10 The Kleenex Language (POPL’16) . 42
3.10.1 Kleenex Syntax . 42
3.10.2 Kleenex Semantics . 43
3.10.3 An Example . 44

3.11 Further Work . 48

4 Kleene Algebra and Extensions 51
4.1 Kleene Algebra . 51

4.1.1 Star-Continuous Kleene algebra 56

iii

iv CONTENTS

4.2 Chomsky Algebra (FICS’13 / FI) . 58
4.3 Kleene Algebra with Tests . 62

4.3.1 A Folk Theorem—while Programs 65
4.4 KAT + B! (LICS’14) . 67
4.5 Future Work . 70

I Parsing With Regular Expressions 71

5 Two-Pass Greedy Regular Expression Parsing 73
5.1 Introduction . 73
5.2 Symmetric NFA Representation of Parse Trees 74
5.3 Greedy Parsing . 78
5.4 NFA-Simulation with Ordered State Sets 79
5.5 Lean-Log Algorithm . 81
5.6 Evaluation . 83

5.6.1 Pathological Expressions . 83
5.6.2 Practical Examples . 85

5.7 Related Work . 87

6 Optimally Streaming Greedy Regular Expression Parsing 89
6.1 Introduction . 89
6.2 Preliminaries . 90
6.3 Thompson FSTs . 91
6.4 Disambiguation . 94
6.5 Optimal Streaming . 94
6.6 Coverage . 97
6.7 Algorithm . 99
6.8 Examples . 102

6.8.1 Complex Coverage . 103
6.8.2 CSV Files . 106

6.9 Related and Future Work . 106

7 Kleenex: Compiling Nondeterministic Transducers to Deterministic Streaming
Transducers 107
7.1 Introduction . 107

7.1.1 Contributions . 109
7.2 Transducers . 109
7.3 Kleenex . 112

7.3.1 Syntactic Sugar . 114
7.3.2 Custom Register Updates . 114

7.4 Simulation and Determinization . 116
7.4.1 Generalized State Set Simulation 116
7.4.2 Streaming Simulation Algorithm 118
7.4.3 A Deterministic Computation Model 118
7.4.4 Tabulation . 119

7.5 Implementation . 124
7.5.1 Transducer Pipeline . 124
7.5.2 Inlining the Action Transducer 126
7.5.3 Constant Propagation . 126

CONTENTS v

7.5.4 Symbolic Representation . 126
7.5.5 Finite Lookahead . 126

7.6 Benchmarks . 127
7.6.1 Baseline . 129
7.6.2 Rewriting . 130
7.6.3 The Effects of Action-Separation 133

7.7 Use Cases and Example Programs . 134
7.7.1 JSON logs to SQL . 134
7.7.2 Apache CLF to JSON . 134
7.7.3 ISO Date/Time Objects to JSON 134
7.7.4 The ROT13 Text Transformation 135
7.7.5 BibTeX Rewriting . 135
7.7.6 Highlighting Kleenex Code . 139
7.7.7 URL Parsing . 141
7.7.8 HTML Comments . 141

7.8 Related Work . 142
7.8.1 Regular Expression Matching 142
7.8.2 Ambiguity . 143
7.8.3 Transducers . 143

7.9 Conclusions . 144

II Extensions to Kleene Algebra 145

8 Infinitary Axiomatization of the Equational Theory of Context-Free Languages 147
8.1 Introduction . 147

8.1.1 Related Work . 148
8.1.2 Outline . 148

8.2 Chomsky Algebras . 149
8.2.1 Polynomials . 149
8.2.2 Polynomial Functions and Evaluation 149
8.2.3 Algebraic Closure and Chomsky Algebras 150
8.2.4 µ-Expressions . 151
8.2.5 Bekić’s Theorem . 151
8.2.6 µ-Continuity . 152
8.2.7 Relation to Other Axiomatizations 153

8.3 Main Result . 156
8.4 Conclusion . 160

9 KAT+B! 163
9.1 Introduction . 163
9.2 KAT and Mutable Tests . 165

9.2.1 Mutable Tests . 166
9.2.2 Mutable Tests and Binary Relations 166
9.2.3 The Commutative Coproduct 167

9.3 Completeness and Complexity . 172
9.3.1 Completeness . 172
9.3.2 Complexity . 173

9.4 Applications . 176
9.4.1 The Böhm-Jacopini Theorem 176

vi CONTENTS

9.4.2 A Folk Theorem . 178
9.5 Conclusion . 183
9.6 Acknowledgments . 183

Bibliography 185

List of Figures

5.1 Log FST construction schema. 76
5.2 Automaton and fat log example. 80
5.3 Two-pass performance comparisons. 84
5.4 Performance comparison, backtracking worst case. 85
5.5 Performance comparison, “real-life” examples of REs. 86

6.1 The FSTF(a+b)⋆b(0, 9) for the regular expression (a + b)⋆b. 93
6.2 Example withE = (aaa + aa)⋆. 104
6.3 Example withE = (aa)⋆(za + zb) + a⋆z(a+ b). 105

7.1 Kleenex odd/even program with oracle and action machine. 113
7.2 Kleenex desugaring relation. 115
7.3 Odd/even SST example. 125
7.4 Kleenex compilation paths. 125
7.5 Performance of flip_ab. 129
7.6 Performance of patho2. 130
7.7 Performance of thousand separator insertion. 131
7.8 Performance of CSV projection program. 132
7.9 Performance of IRC parsing programs. 133
7.10 Kleenex source: Issuu JSON to SQL. 135
7.11 Performance of Issuu JSON to SQL program. 136
7.12 Kleenex source: transform log files to JSON. 136
7.13 Performance of log file to JSON program. 137
7.14 Kleenex source: ISO dates to JSON. 137
7.15 Performance of ISO date to JSON program. 138
7.16 Kleenex source: ROT13 transformation. 138
7.17 Performance of ROT13 programs. 139
7.18 Kleenex source: delete BibTeX comments. 139
7.19 Kleenex source: strip XML tags. 139
7.20 Kleenex source: shift BibTeX titles. 140
7.21 Kleenex source: Kleenex highlighter. 140
7.22 Kleenex source: URL parsing. 141
7.23 Kleenex source: HTML comment rewriter. 142

9.1 Universality property of the commutative coproduct. 169
9.2 Matrix representation of the commutative coproduct. 172
9.3 A strictly deterministic automaton not equivalent to any while program. . . 177
9.4 A while program with mutable tests equivalent to Figure 9.3. 177

vii

This thesis was submitted for partial fulfillment of the PhD in Computer Science at the
University of Copenhagen on August 1st 2015. It was succesfully defended on November
4th 2015. The assessment committee consisted of

• Nate Foster, Cornell University;

• Alexandra Silva, University College London;

• Andrzej Filinsky (chairman), DIKU, University of Copenhagen.

The assessment committee kindly pointed out some minor typos and error in the orig-
inal manuscript. These have been fixed in this revised edition.

Acknowledgements

Being a PhD student is exciting for many reasons. One of them is that you get to do inter-
esting and difficult things while interacting with brilliant people from all over the world.

In the course of my PhD studies, there are some people that I have interacted with espe-
ciallymuch. All the peoplewithwhomIhave co-authored papers deserve special thanks. Of
course, my advisor Fritz Henglein, who is as sharp as he is humorous, has been a great influ-
ence. But especially my PhD-colleague Ulrik, with whom I have shared many travels, beers,
and puzzlements at white boards, has been a great influence. He is both a good friend and
researcher. The other PhD students at the APL group at DIKU, and everyone at DIKU
in general, also deserve thanks for providing an always-friendly atmosphere at the depart-
ment. Dexter Kozen, whom I visited at Cornell University in 2013, also deserves thanks for
teaching me, both informally in his office and formally in a dedicated class at DIKU, about
Kleene algebra.

Special thanks to my brother Hans for helping me with proof-reading of parts of this
document, even though he was hiking in beautiful Norwegian mountains at the time.

And, most of all, thanks to the wonderful Christine for everything.

ix

1 Introduction

This is a PhD thesis about regular expression parsing and extensions to Kleene algebra. These
two seemingly disparate subjects have things in common, as the parsing techniques that we
shall study are based on automata-theoretic methods, which can be reasoned about alge-
braically with Kleene algebra. However, the approaches to the two subjects are different.
For parsing, we have a fairly practical approach—the end goal is to produce programs that
can parse words under a regular expression as fast as possible. This is a more practical goal
than the one in which the algebraic chapters are written. The goal here is not so much to
produce programs that run, but more to study the abstract properties of classes of algebras.

Thework presented in this thesis is based onpapers that have beenpreviously published
and one paper that is under consideration for publishing. All papers are the result of work
with excellent co-authors who have been humbling to work with.

• In the first part we describe three algorithms for parsing with regular expressions and
a declarative language for specifying string transformations programs, a generaliza-
tion of the parsing problem. We developed a compiler for the language, Kleenex, that
translates Kleenex source to finite state transducers and uses our determinization al-
gorithm to build streaming string transducers, a finite-state deterministic automaton
with registers. The compiler produces efficient C code, as evidenced by the evalua-
tion part of Chapter 7. Chapters in this part are based on two published papers and
one paper under review [64–66].

• The second part of the thesis is about two extensions to Kleene algebra [63, 67].
First, we describe a variant of Kleene algebra with a generalized recursion operator,µ.
We call such algebras Chomsky algebras, and we show that the equational theory of
the context-free languages is completely axiomatized by the axioms of µ-continuous
Chomsky algebra.
Second, we present an extension toKleene algebrawith tests (KAT) that addmutable
state. This is accomplished by defining an algebra formutable tests that is also aKAT,
and combining it with a differentKATusing a commutative coproduct construction.
The commutativity in this construction intuitively reflects the fact that only the test
“setters” from the B! algebra may alter the state of variables.

There are thus two overarching routes through this document: the parsing related and
the algebra related. The chapters regarding parsing techniques constitute a fairly straight-
forwardnarrative, where each chapter describes an advanced improvement upon the former.
For the algebra chapters, this is not so. The two Kleene algebra-related systems that we
introduce and discuss are not really related, and so the two chapters are insulated from each
other. We have tried to alleviate this a bit by writing a common introduction that reviews
some basic notions about Kleene algebra relevant to both chapters. The parsing chapters
have also been equipped with an introduction that reviews some basic notions of automata

1

2 CHAPTER 1. INTRODUCTION

theory as well as some important concepts about regular expression parsing. Both of these
introduction chapters also provide an overview of the subsequent chapters.

Note that each “contribution chapter” is directly based on a corresponding paper. As
a result, some parts of the chapters can look a bit like spurious restatements of things from
previous chapters, which makes for a poor reading experience We have tried to minimize
this effect by thorough editing, but it is probably still visible.

We start out with a very short preliminary chapter that introduces some concepts that
are generally useful in the following chapters.

Overall, the structure of the thesis is the following:

Chapter 2
Preliminiaries

Chapter 3
Parsing overview

Chapter 5 [64]
Two-pass parsing

Chapter 6 [65]
Optimally streaming parsing

Chapter 7 [66]
Determinization and the

Kleenex language

Chapter 4
Kleene algebra overview

Chapter 8 [63]
Chomsky algebra

Chapter 9 [67]
KAT+B!, Kleene algebra

with mutable tests

2 Preliminaries

This chapter introduces some basic notions and definitions that will be of use in later chap-
ters.

Definition 2.1. An alphabet Σ is a finite, non-empty set of characters.

Definition 2.2. A language L over some alphabetΣ is a set of words (strings) overΣ:

L ⊆ Σ⋆.

We write w1 · w2 for the word v = x0 . . . xny0 . . . ym where w1 = x0 . . . xn and
w2 = y0 . . . ym. The word consisting of zero symbols is written ϵ. Often we omit the ·,
writingwv forw · v.

Definition 2.3. The concatenation of languagesA andB is:

A ·B = {w1 · w2 | w1 ∈ A,w2 ∈ B}.

Definition 2.4. The nth exponentiation of a languageA is:

A0 = {ϵ}
An+1 = A ·An

Definition 2.5. TheKleene asterate of a languageA is:

A⋆ =

∞∪
n=0

An.

Definition 2.6. The disjoint union, or sum, of setsA andB is:

A⊕B = {inl x | x ∈ A} ∪ {inr x | x ∈ B} .

Definition 2.7. The Cartesian product of setsA andB is:

A×B = {⟨x, y⟩ | x ∈ A, y ∈ B} .

Definition 2.8 (Prefix). A wordw is a prefix of w′ ifw′ = w · w′′ for some w′′. We write
w ⊑ w′ wheneverw is a prefix ofw′

Definition 2.9 (Longest common prefix). The longest common prefix of a set of words L,d
L, isw such that:

w =
l
L iff (∀w′ ∈ L.w ⊑ w′)∧

(∀w′ ∈ L. ∀w′′ ∈ L.w′ ⊑ w′′ =⇒ w′ ⊑ w) .

3

4 CHAPTER 2. PRELIMINARIES

The following property is useful:

Lemma 2.1. For two languages A and B,

A ⊆ B =⇒
l
B ⊑

l
A.

Proof. For any wordw ∈ Awe also havew ∈ B so the longest common prefix ofB must
also be a prefix of the longest common prefix ofA:(
∀w′ ∈ B.

l
B ⊑ w′

)
∧
(
∀w′ ∈ B. ∀w′′ ∈ B.w′ ⊑ w′′ =⇒ w′ ⊑

l
B
)
,

so in particular(
∀w′ ∈ A.

l
B ⊑ w′

)
∧
(
∀w′ ∈ A.∀w′′ ∈ A.w′ ⊑ w′′ =⇒ w′ ⊑

l
B
)
.

Since
d
A ∈ A, we have

d
B ⊑

d
A.

Definition 2.10 (Prefix-free language). A languageS is prefix-free if no prefixes of anywords
in S are in S:

v ∈ S =⇒ {v′ | v′ ⊑ v} ∩ S = ∅.

Lemma 2.2. LetX be a prefix-free language over an alphabetΣ with a lexicographical order
on its elements and a minimum element. Then, for any y ∈ Σ⋆:

(minX)y = min {xy | x ∈ X} .

Proof. The minimum element x′ ofX exists and is unique. To see

x′y = min {xy | x ∈ X} ,

it suffices to observe that no element in X has x′ as prefix, so all words in the set on the
right-hand side are either x′y or zy, for some z ̸= x′:

x′y = min ({zy | z ∈ X, z ̸= x′} ∪ {x′y}) .

By definition, for all z, x′ ≤ z in the lexicographical ordering, so also x′y ≤ zy too. The
minimum element on the right-hand side are therefore x′y.

Definition 2.11. An algebra is a pair (A,F)whereA is the carrier set andF is the signature,
a list of functions fA0 , . . . , fAk with different arities such that for each fA

x0, . . . xn ∈ A =⇒ fAi (x0, . . . , xn) ∈ A, where fAi is n-ary.

Definition 2.12 (Homomorphism). Two algebrasA andB have the same type if they have
the same signature. A homomorphism is a mapping α between two algebrasA andB with
the same type such that

α(fA(x0, . . . , xn)) = fB(α(x0), . . . , α(xn))

for each n-ary operator fA and fB inA andB.

Example 2.1. LetΣ = {a, b} and letA andB bemonoids (Definition 4.2), structureswhere:

• A = (Σ⋆, ·, ϵ)where for v, w ∈ Σ⋆, v · w ∈ Σ⋆, and ϵ · v = v · ϵ = v.

5

• B = (N,+, 0)where for i, j ∈ N, i+ j ∈ N, and 0 + i = i+ 0 = v.

Then f defined as below is a homomorphism fromA toB:

f(ϵ) = 0

f(a) = 1

f(b) = 2

f(v · w) = f(v) + f(w).

3 Regular Expression-Based Parsing
Algorithms

In this chapter we give an overview of the work contained in this thesis that relates to pars-
ing techniques for regular expressions and regular expression-like languages. Hence, the con-
tents will be restatements of the points that are outlined inmore detail in later chapters, but
put into a context that makes it easier to follow the overall structure of the work as well as
the insights that are gained in the process.

Parts of this chapter are based on contents from themanuscriptA Crash-Course in Reg-
ular Expression Parsing and Regular Expressions as Types,1 by Rasmussen, Henglein, and
Grathwohl. It is unpublished, but has been used as teaching material both in a summer
school course and in the supervision of several students at the University of Copenhagen.
Other parts are based on the papers that form the basis for later chapters, or on a poster
presented at POPL 2015 [64–66, 68].

3.1 Regular Expressions

The notion of regular expressions arose from the field of theoretical computer science, and
was first described in 1956 by StephenColeKleene [85] in hiswork on finite automata theory.
The most common interpretation of regular expressions is as patterns denoting (possibly
infinite) sets of strings. Under this interpretation, we can formulate the problem of deter-
mining whether a given string is contained in the underlying set specified by some regular
expression. This generalizes the simpler string matching problem of determining whether
a specific string occurs as a substring in a larger text. Concrete text search implementations
emerged a relatively long while after Kleene’s introduction, with one of the earliest appear-
ances being Thompson’s description of a text search algorithm based on regular expressions
from 1968 [141]. The motivation for using regular expressions for simple text search is that
they are computationally weak enough to provide strong guarantees of efficient running
time and memory use, which is not the case for more expressive formalisms such as context
free grammars [43].

Regular expressions are well-known among programmers and power-users, and have
found use in many applications such as text editing, lexical analysis in compilers and script-
ing. Popular implementations includeUNIX tools such as sed, grep and awk, text editors
such as emacs, and some programming languages even include them as first-class construc-
tions (Perl [30] being a notable example, although not the only one). What these imple-
mentations have in common is that they all implement the traditional regular expressions
of Kleene, although some choose to add extensions, yielding a much more expressive (and

1http://diku.dk/kmc/documents/AiPL-CrashCourse.pdf

7

http://diku.dk/kmc/documents/AiPL-CrashCourse.pdf

8 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

thus computationallymuchmore complex) formalism. An example is Perl which adds back-
references [73], making thematching problemNP-complete [125]! Additionally, the various
implementations have slightly different conventions for the external syntax, mostly with
regard to escaping. To avoid confusion when talking about regular expressions, we will
therefore not talk about a specific implementation, but instead use a more mathematical
notation.

Definition 3.1. We say thatE is a regular expression (RE) if either:

1. E is an atomic expression, consisting of a single letter a from some set of lettersΣ, or
one of the special symbols 0 and 1which do not occur inΣ.

2. Given REsE1 andE2,E is a compound expression of the formE1 + E2,E1E2, or
E⋆

1 .2

The set Σ, called an alphabet, is assumed to be a finite set of “letters”, which varies de-
pending on our application. For example, for text search in a document encoded using
ASCII [11],Σwill be defined as the set of printable characters in the ASCII table.

3.2 The Language Interpretation of Regular Expressions

An RE E can be interpreted as representing a set of strings, this is called the language in-
terpretation. The language of E is denoted by LJEK. LJ·K can simply be thought of as a
function sending a regular expression to its interpretation as a set of strings. Atomic expres-
sions denote either the language consisting of the single letter that makes up the expression,
the language consisting of only the empty word, denoted ϵ, or the empty language that do
not contain any words at all:

LJaK = {a} ,
LJ1K = {ϵ} ,
LJ0K = ∅.

Thus, the RE a (for some a ∈ Σ) represents a singleton set containing the one-letter string
a, and the RE 1 represents the singleton set containing just the empty string. Note that this
is not the same as the empty set, which is what the RE 0 denotes!

Compound expressions of the formE1 + E2 are defined in terms of set union:

LJE1 + E2K = LJE1K ∪ LJE2K.
The+ operator represents the merging of the languages of the expressions it combines.

Expressions of the formE1E2 denote the language:

LJE1E2K = LJE1K · LJE2K.
Thus, the interpretation ofE1E2 is the set of all words that can be formed by prepending
all words from the language ofE1 to all the words from the language ofE2.

Given an RE of the formE⋆
1 , we then define:

LJE⋆
1K = LJE1K⋆

2These compound expressions are often written E|F, EF, E* in actual software implementations, where E
and F are regular expressions.

3.2. THE LANGUAGE INTERPRETATION OF REGULAR EXPRESSIONS 9

Adding a ⋆ to an RE therefore corresponds to repetition.
For easy reference, we repeat here the full definition of the syntax and language inter-

pretation of regular expressions:

Definition 3.2 (Regular expression syntax). Regular expressions over an alphabetΣ, ExpΣ,
are described by the grammar:

E ::= 0 | 1 | a | E1 + E2 | E1E2 | E⋆
1 ,

where a ∈ Σ.

The juxtaposition and+ operator both associate to the right, so when parentheses are
omitted it is a shorthand:

EFG = E(FG) E + F +G = E + (F +G).

Kleene star ⋆ binds the tightest, follows by juxtaposition, and finally +. The expression
E⋆FG+ E′ + F ′⋆G′ is parsed as ((E⋆)(FG)) + (E′ + ((F ′⋆)G′)).

Definition 3.3 (Language interpretation of regular expressions). The language interpreta-
tionLJ·K of a regular expression is:

LJ·K : ExpΣ → 2Σ
⋆

LJ0K = ∅
LJ1K = {ϵ}
LJaK = {a}

LJE1 + E2K = LJE1K ∪ LJE2K
LJE1E2K = LJE1K · LJE2K
LJE⋆K = LJEK⋆

The type of problems one can solve with the language interpretation is matching. A
programmer can pose the question “does the string w exist in the language LJEK,” and it
can be interpreted as the mathematical queryw ∈ LJEK?
Example 3.1. The following regular expression denotes words formed by arbitrary combi-
nations of a and b:

Eab = (a + b + a)⋆.
We can verify this by unfolding the definition of the language interpretation:

LJEabK = LJ(a + b + a)⋆K
= LJa + b+ aK⋆
= (LJaK ∪ LJbK ∪ LJaK)⋆
= ({a, b})⋆

= {ϵ, a, b, aa, ab, ba, bb, aaa, . . .} .

Example 3.2. Due to the transcription between the Arabic and the Latin alphabets, there
aremany correctways to spell formerLibyandictatorMuammarGadaffi’s in English orthog-
raphy. The following RE encodes all the possible ways to write the name:

Eg = (Q + G + K)(a + u)(d + t)(h+ 1)(d+ t)(h + 1)af(i + y).

With the language interpretation we can check that Gaddafi ∈ LJEgK and Qutthafy ∈
LJEgK, whereas gardafi ̸∈ LJEgK.

10 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

3.3 Non-Deterministic Finite Automata

Regular expressions correspond to a class of abstractmachines called finite automata. These
exist in both deterministic and non-deterministic variants; here we briefly review the non-
deterministic kind.

Definition 3.4 (Non-deterministic finite automaton). A non-deterministic finite automaton
(NFA) is a five-tuple

(Q,Σ, I, F,∆)

consisting of

• a set of statesQ,

• an input alphabet Σ,

• a set of initial states I ⊆ Q,

• a set of final states F ⊆ Q,

• a transition relation∆ ⊆ Q× (Σ ∪ {ϵ})×Q.

We normally depict states as circles, the elements in the transition relation (q, a, q′) as
arrows, initial states with an incoming arrow, and final states with a double edge. We also
write q a−→ q′ and q ϵ−→ q′ if (q, a, q′) ∈ ∆ or (q, ϵ, q′) ∈ ∆, respectively. Whenever we
write q x−→ q′, x is called the label of the transition.

Example 3.3. The automaton

({1, 2, 3} , {a, b} , {1} , {2, 3} , {(1, a, 2), (1, ϵ, 3), (2, b, 2), (2, a, 3)}) :

can be depicted graphically as:

1 2 3a

b

a

ϵ

Several methods for constructing finite automata from a regular expressions [59, 106,
141] exist, but we shall discuss Thompson’s algorithm [141] here. Thompson’s algorithm
works by constructing theNFA bottom-up: Atomic expressions are converted first, and com-
pound expressions are converted by combining the automata resulting from converting sub-
expressions. The algorithm yields automata that has a specific form:

• the set of initial states is always a singleton set: I =
{
qin},

• the set of final states is always a singleton set: F =
{
qfin},

• all states either have exactly one outgoing transition inQ× Σ×Q, or either one or
two transitions inQ× {ϵ} ×Q, or no outgoing transitions at all.

For this reason, we will define a specialized version of NFAs called Thompson NFAs:

3.3. NON-DETERMINISTIC FINITE AUTOMATA 11

Definition 3.5 (Thompson NFA [141]). A Thompson NFA is a five-tuple

(Q,Σ, qin, qfin,∆)

consisting of:

• a set of statesQ,

• an input alphabet Σ,

• an initial state qin ∈ Q,

• a final state qfin ∈ Q,

• a transition relation∆ ⊆ Q× (Σ ∪ {ϵ})×Q.

A Thompson NFA is constructed according to the rules specified below.

For any regular expressionE, the conversion proceeds inductively on the syntactic struc-
ture ofE. When anNFA is constructed from an expressionE we call itNE . The base cases
for atomic expressions are simple:

• CaseE = 1:

ϵ

• CaseE = 0:

• CaseE = a:

a

For compound expressions, we use boxes to denote the automata resulting from converting
sub-expressions.

• CaseE = E1E2:

E1 E2

That is, we merge the final state of the NFA forE1 with the initial state forE2, and
let the initial state inE1 be our new initial state, and the final state inE2 be our new
final state.

• CaseE = E1 + E2:

12 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

ϵ

ϵ

ϵ

ϵ

E1

E2

• CaseE = E⋆
1 :

ϵ ϵ

ϵ ϵ

E1

Example 3.4. Constructing the Thompson NFA for the expressionEab

Eab = (a + b+ a)⋆

from before yields the automatonNEab
:

0 1 11

2

3

7

4

8

9

8

10

6

5

ϵ

ϵ

a

ϵ

ϵ

b

a

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

3.3.1 Simulation

An automaton specifies how an internal state of some “machine” that recognizes a language
should change for each input symbol in an input word in order to halt in the accepting state
for all words in the language and not for any other words. As NFAs are non-deterministic,
there may be several possibilities for state change at each input symbol. By simulating the
NFA we handle this by taking all possible transitions at the same time. In order to describe
the simulation algorithm, we first need a few definitions.

3.3. NON-DETERMINISTIC FINITE AUTOMATA 13

Definition 3.6 (Paths). A path in an NFA (Q,Σ, I, F,∆) is a non-empty list of states

q0, q1, . . . , qn

where for each 0 ≤ i < n and xi ∈ Σ ∪ {ϵ}

qi
xi−→ qi+1.

If there is a path between q0 and qn with the sequence of labels x0, x1, . . . , xn we write

q0
w
qn

wherew = x0 · x1 · . . . · xn.

Definition 3.7. The language recognized by a ThompsonNFA is the set of strings such that
a path from the initial state to the final state exists:{

w | qin w
qfin
}
.

Definition 3.8 (ϵ-closure). Given an NFA (Q,Σ, I, F,∆), the ϵ-closure of a set of states
S ∈ Q is:

Close : 2Q → 2Q

Close(S) =
{
q′′ | q′ ∈ S, q′ ϵ

q′′
}

The ϵ-closure of a set of states is the set of all states reachable by traversing only edges
labelled with ϵ.

Example 3.5. Recall the NFA from Example 3.4.

Close({0}) = {0, 1, 2, 3, 7, 8, 9, 11} ,
Close({4, 10}) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} ,

Close({3}) = {3} .

Definition 3.9. Given an NFA (Q,Σ, I, F,∆) and an input symbol a ∈ Σ, the stepping
function takes a set of states S ⊆ Q to a new set of states by following transitions labeled a:

Step : 2Q × Σ→ 2Q

Step(S, a) =
{
q′ | q ∈ S, q a−→ q′

}
Example 3.6. Continuing Example 3.5:

Step({0} , a) = ∅,
Step({0, 1, 2, 3, 7, 8, 9, 11} , a) = {4, 10} ,
Step({0, 1, 2, 3, 7, 8, 9, 11} , b) = {5} ,

Step({3, 8, 9} , a) = {4, 10} ,
Step({3, 8, 9} , b) = {5} .

14 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

The two functions Step and Close provide us with the parts required to implement
NFA simulation. Simulating anNFA is now just a question about executing these two func-
tions interchangeably on each input symbol and checking if a final state is in the resulting
state set.

Definition 3.10 (NFA simulation). Given anNFA (Q,Σ, I, F,∆) and an input wordw ∈
Σ⋆, the function Reach∗ computes the set of states reachable from S ⊆ Q by alternatively
applying Close and Step on each input symbol:

Reach∗ : 2Q × Σ⋆ → 2Q

Reach∗(S, ϵ) = Close(S)
Reach∗(S, a · w′) = Reach∗(Step(Close(S), a), w′).

With this function, deciding whether a word w is in the language of some regular ex-
pression is done simply by checking F ∩ Reach∗(I, w) ̸= ∅.

Example 3.7. Consider the NFANEab
of Example 3.4 and the input word aab:

Reach∗({0} , aab) = Reach∗(Step(Close({0}), a), ab)
= Reach∗(Step({0, 1, 2, 3, 7, 8, 9, 11} , a), ab)
= Reach∗({4, 10} , ab)
= Reach∗(Step(Close({4, 10}), a), b)
= Reach∗(Step({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} , a), b)
= Reach∗({4, 10} , b)
= Reach∗(Step(Close({4, 10}), b), ϵ)
= Reach∗(Step({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} , b), ϵ)
= Reach∗({5} , ϵ)
= Close{5}
= {1, 2, 3, 5, 6, 7, 8, 9, 11} .

As the final state 11 is indeed contained in the set, we conclude that aab ∈ LJEabK.
3.4 Deterministic Finite Automata

If a finite automaton is deterministic, we call it a deterministic finite automaton:

Definition 3.11 (Deterministic finite automaton). A deterministic finite automaton (DFA)
is a five-tupe:

(Q,Σ, qin, F, δ)

consisting of:

• a set of statesQ,

• an input alphabet Σ,

• an initial state qin ∈ Q,

• a set of final states F ⊆ Q,

• a transition function δ : Q× Σ→ Q.

3.5. THE TYPE INTERPRETATION OF REGULAR EXPRESSIONS 15

Thus, in a DFA there are no ϵ-transitions, and the transitions are encoded as a func-
tion instead of as a relation. DFAs and NFAs are equivalent: a DFA is just a special case
of an NFA, and given an NFA one can obtain an equivalent DFA by using the subset con-
struction. The subset construction works bymemoizing the algorithm fromDefinition 3.10
and recording each encountered set of states as a new state in the DFA, adding transitions
corresponding to the behavior of Step.

3.5 The Type Interpretation of Regular Expressions

The language interpretation of REs allow programmers to express queries related to lan-
guage membership, i.e., the programmer receives one bit of information. Thus, the pro-
grammer does not speak of how but of if – the syntactic structure of the regular expression
is forgotten. It turns out that many practical uses of regular expressions actually require
that some degree of structure is preserved. Consider for example the scenario where we
want to rewrite numerals from having the English digit grouping style to the Scandinavian
digit grouping style:

“1,234,567.89” → “1.234.567,89”.

Assuming given a regular expression Edigit for matching digits, we can easily formulate
expressions for these two styles:

EnumS = ((EdigitE
⋆
digit) .)

⋆(EdigitE
⋆
digit) , (EdigitE

⋆
digit)

EnumE = ((EdigitE
⋆
digit) ,)

⋆(EdigitE
⋆
digit) . (EdigitE

⋆
digit)

These two expressions reflect the structure that we are interested in; if we apply a matching
algorithmwith the above inputs and expressions, however, this information is lost. One ex-
pression will report a match on the first string and fail on the other and vice versa. If instead
the entire structure of the regular expressions was maintained, it would be easy to describe
the transformation. If one thinks of the “meaning” of each regular expression constructor,
the intuition behind this is clear:

• Concatenation expresses sequence, i.e., that something comes before something else.

• Alternation expresses a choice between the left hand side and the right hand side of
the+.

• Kleene star expresses any finite number of repetitions of something.

The primitive symbols represent just themselves, and the special expressions 0 and 1 repre-
sent failure and unit in a manner that will be specified later.

This is called the type interpretation of regular expressions [57, 75, 114]. Informally, a
type can be thought of as an entity representing the “shape” of a regular expression. One
expression has one shape, so each regular expression has exactly one type. We shall write
the types in the same way we write the regular expressions themselves; this reflects the fact
that the only changed thing is how the expressions are interpreted. Instead of denoting
languages, regular expressions under the type interpretation denote set of structured values:

Definition 3.12. The structured valuesoverΣ,ValΣ, are formedover the following grammar:

v ::= () | a | ⟨v1, v2⟩ | inl v1 | inr v1 | [v0, . . . , vn]

where a ∈ Σ.

16 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

To each regular expression we associate a set of structured values. This is called the type
interpretation:

Definition 3.13 (Type interpretation of regular expressions). The type interpretation asso-
ciates to each regular expressionE a set of structured values VJEK:

VJ·K : ExpΣ → 2ValΣ

VJ0K = ∅
VJ1K = {()}
VJaK = {a}

VJE1E2K = VJE1K× VJE2K
VJE1 + E2K = VJE1K⊕ VJE2K

VJE⋆
1K = {[v1, . . . , vn] | vi ∈ VJE1K, n ∈ N} .

The above definition is similar to Definition 3.3 except that the structure of the com-
pound expressions is reflected in the structured value. Aswe shall see, changing the interpre-
tationof regular expressions to this lets a programmer askhow a stringmatches an expression
instead of if a string matches an expression.

3.5.1 Handling Lists

At first glance it seems like we have three different ways of combining types to form new
types: +, ·, and [·]. However, a list is defined to be either an empty list, written (), or an
element combined with the remainder of the list (the head and the tail of the list). Conse-
quently, we can unfold the list type:

E⋆ = EE⋆ + 1, (3.1)

that is, either a designated end symbol of type 1 or an element v of type E along with the
rest of the list of type E⋆. This is equivalent to the way lists are defined in functional pro-
gramming languages normally, and it is therefore enough to only define sum and product
types. However, for readability reasons we will keep the “direct” notation for lists.

In Part II we will see equation 3.1 again in an algebraical setting.

Example 3.8. The typeEa = a⋆ denotes the set of lists of as. The element of VJEaK with
three repetitions can be written:

[a, a, a] = inl ⟨a, inl ⟨a, inl ⟨a, inr ()⟩⟩⟩

3.5.2 Value Flattening

Note that we do not lose anything by moving from the language interpretation to the type
interpretation. It is always possible to recover the underlying language from a set of struc-
tured values by erasing the structural information – called the flattening

3.5. THE TYPE INTERPRETATION OF REGULAR EXPRESSIONS 17

Definition 3.14. The flattening of a structured value v is denoted | · | and is defined as:

| · | : ValΣ → Σ⋆

|()| = ϵ

|a| = a
⟨v1, v2⟩	=	v1	·	v2
inl v1	=	v1		
inr v1	=	v1		

|[v0, . . . , vn]| = |v0| · . . . · |vn|.

We lift the flattening function | · | to operate on sets of structured values. It is easily
seen by induction on the structure of E that the language of E is equivalent to the set of
flattened values ofE. This is shown in Proposition 5.1:

Proposition. For any regular expression E,

LJEK = |VJEK| = {|v| | v ∈ VJEK} .
3.5.3 Structured Values are Parse Trees

One can think of the structured values as parse trees, which is also the reason for the term
“flattening.” Anything that does not take any arguments is a leaf in the tree, i.e., theprimitive
objects, and anything that takes n > 0 arguments is a node with n children.

Example 3.9. The value

[a, a, a] = inl ⟨a, inl ⟨a, inl ⟨a, inr ()⟩⟩⟩

from before can be written as the following parse tree:

inl

⟨, ⟩

a inl

⟨, ⟩

a inl

⟨, ⟩

a inr

()

One obtains the flattening of the value by concatenating all the non-() leaves to get aaa.

18 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

We will use the terms structured value, value, parse, and parse tree interchangeably.

Example 3.10. Continuing Example 3.1, consider again the regular expression

Eab = (a + b + a)⋆.

The structured values in VJEabK encode the different ways one can combine a and b in the
patternEab:

VJEabK = VJ(a + b+ a)⋆K
= {[t0, . . . , tn] | ti ∈ VJa + b + aK}
=

[t0, . . . , tn] | ti ∈

inl v0, inr inl v1, inr inr v2 |
v0 ∈ VJaK,
v1 ∈ VJbK,
v2 ∈ VJaK

=

[t0, . . . , tn] | ti ∈

inl v0, inr inl v1, inr inr v2 |
v0 ∈ {a} ,
v1 ∈ {b} ,
v2 ∈ {a}

= {[t0, . . . , tn] | ti ∈ {inl a, inr inl b, inr inr a}} .

By flattening the values we obtain the language of Example 3.1.

3.5.4 Bit-Coding Structured Values

Notice that in the structured values, some of the information is duplicated from the regular
expression itself. For example, the expression a+bhas as one of its values inl a, but the a itself
is redundant; the only new information encoded in the value is that the left alternative was
picked. Sometimes the values do not contain any new information at all. The expression
ab has as its only possible value ⟨a, b⟩, but as it is the only possibility it contains zero bits of
new information.

This observation can be used to produce a compact representation of values. As we saw
above, lists can be thought of as repeated sums andproducts, andproducts donot introduce
any choice to be encoded, so the only constructors that need to be encoded are inl · and inr ·.
Thus, for each occurrence of a+ in a regular expressionweneedonebit to encode the choice,
and for each Kleene star we need one bit for each time the inner expression is repeated, plus
one bit to signal the end of the list—corresponding to picking the right alternative 1.

Definition 3.15 (Bit-coding of values). The bit-coding of a structured value is:

⌜·⌝ : ValΣ → {0, 1}⋆

⌜()⌝ = ϵ

⌜a⌝ = ϵ

⌜⟨v1, v2⟩⌝ = ⌜v1⌝ · ⌜v2⌝
⌜inl v1⌝ = 0 · ⌜v1⌝
⌜inr v1⌝ = 1 · ⌜v1⌝

⌜[v0, . . . , vn]⌝ = 0 · ⌜v0⌝ · . . . · 0 · ⌜vn⌝ · 1.

As with the structured values, there may be bit-codes that do not make sense with re-
spect to a specific regular expression—take 001 and the expression a, for example. Bit-codes
that do make sense with a regular expressionE can be decoded to obtain the full value:

3.5. THE TYPE INTERPRETATION OF REGULAR EXPRESSIONS 19

Definition 3.16 (Type-directed decoding [75]). The type-directed decoding of a bit-code is
(where BJEK is given by Definition 3.18):

⌞·⌟E : BJEK→ VJEK
⌞bs⌟E = let (v, bs′) = DE(bs) in if bs′ = ϵ then v else ⊥

where:

D1(bs) = ((), bs)

Da(bs) = (a, bs)
DE+F (0 · bs) = let (v, b′) = DE(bs) in (inl v, b′)
DE+F (1 · bs) = let (v, b′) = DE(bs) in (inr v, b′)

DEF (bs) = let (v, b′) = DE(bs)

(w, b′′) = DF (b
′) in (⟨v, w⟩, b′′)

DE⋆(bs) = DEE⋆+1(bs).

Well-formed bit-codes with respect to a regular expression correspond towell-typed val-
ues for that expression.

Definition 3.17. The well-formed bit-codes for a regular expression E are those that corre-
spond to structured values in VJEK:

{⌜v⌝ | v ∈ VJEK} .
Alternatively, we can define the well-formed bit-codes directly, in the same manner as

we did with the values:

Definition 3.18. A regular expressionE has an associated set of bit-coded values:

BJ·K : ExpΣ → 2{0,1}⋆

BJ0K = ∅
BJ1K = {ϵ}

BJE1 + E2K = {0 · v | v ∈ BJE1K} ∪ {1 · v | v ∈ BJE2K}
BJE1E2K = {v · w | v ∈ BJE1K, w ∈ BJE2K}
BJE⋆

1K = {
v · 1 | v ∈ {0 · w | w ∈ BJE1K}⋆}

It can be shown by straight-forward induction on the structure of the regular expres-
sions that the two definitions of bit-codes are equivalent:

Proposition 3.1. Definitions 3.15 and 3.18 are equivalent:

{⌜v⌝ | v ∈ VJEK} = BJEK.
Definition 3.19. The set of bit-codes for values in VJEK that flatten to the same wordw is:

BwJEK = {⌜t⌝ | t ∈ VJEK, |t| = w} .

20 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

Using the bit-coded versions of values can be thought of as splitting the information
contained in a “full” value into the static and the dynamic part. The static part is known
from the regular expression itself, and the dynamic part is what is unique for this particular
value. A consequence of this is that the bit-codes by themselves are useless—if we do not
know which regular expression a bit-code is associated with, we cannot say anything about
it.

Example 3.11. To illustrate why both the bit-string and the RE is needed, consider the bit-
string 0001 again. Given REE1 = (b+ a)(a+ b)(b+ a)(a+ b) this bit-code decodes to
the value:

⟨inl b, ⟨inl a, ⟨inl b, inr b⟩⟩⟩,

but given the REE2 = a⋆ the value is

[a, a, a] = inl ⟨a, inl ⟨a, inl ⟨a, ()⟩⟩⟩

3.5.5 Ambiguity in Regular Expressions

In Example 3.1, the language interpretation of (a + b + c)⋆, it does not matter that there
are two possibilities for matching an a in each iteration of the Kleene star; the language
interpretation removes the structure from the expression in the translation to sets of strings.
In the type interpretation this structure is kept, so in Example 3.10 (the type interpretation
of the same expression) there is a difference between the two as in the value set. We notice
that there are multiple values that flatten to the same underlying string, for example,

|[inl a, inr inl b, inr inr a]| = |[inr inr a, inr inl b, inl a]| = aba.

This is an example of an ambiguous regular expression:

Definition 3.20. A regular expression E is ambiguous if and only if two or more values of
its values in the type interpretation flatten to the same string:

∃v, w ∈ VJEK. |v| = |w| ∧ v ̸= w.

To parse a word with a regular expressionE is to produce a value in VJEK that flattens
to that word. For ambiguous regular expressions, we must disambiguate between several
possible values. This should happen in a deterministic way, such that a programmer always
gets the same value if she parses the same string under the same regular expression. One such
disambiguation policy is called the greedy policy. Informally, using a greedy disambiguation
policy corresponds to picking the “left-most” possibility whenever more than one is possi-
ble.

Definition 3.21 (Greedy order on values [57]). The binary relation⋖ is defined inductively
on the structure of values as follows:

⟨v1, v2⟩ ⋖ ⟨v′1, v′2⟩ if v1 ⋖ v′1 ∨ (v1 = v′1 ∧ v2 ⋖ v′2)
inl v0 ⋖ inl v′0 if v0 ⋖ v′0
inr v0 ⋖ inr v′0 if v0 ⋖ v′0
inl v0 ⋖ inr v′0

[v1, . . .] ⋖ []
[v1, . . .] ⋖ [v′1, . . .] if v1 ⋖ v′1

[v1, v2, . . .] ⋖ [v1, v
′
2, . . .] if [v2, . . .]⋖ [v′2, . . .]

3.5. THE TYPE INTERPRETATION OF REGULAR EXPRESSIONS 21

Now the problem of disambiguation can be formulated in terms of picking aminimum
element in the greedy ordering⋖. Of course, the order is not total if one compares elements
from different regular expressionsE andF . However, if only elements with the same type,
i.e., from the same expression, are compared, it is strict and total (Proposition 5.3). In order
to ensure that a minimum element amongst possible values—and bit-coded values—exists,
we have to define a subset of VJEK called the non-problematic values. The reason for this is
that for some regular expressions no least element exist in the greedy ordering, and therefore
we cannot pick out the minimum element in the ordering:

Example 3.12. LetE = (1 + a)⋆. The following are all values in VJEK that flatten to aa:

t0 = [inr a, inr a],
t1 = [inl (), inr a, inr a],
t2 = [inl (), inl (), inr a, inr a],

...

so no minimum element exists because of the infinite descending chain t0 ⋗ t1 ⋗ t2 ⋗ . . .

Definition 3.22 (Non-problematic values [57]). The non-problematic values of a regular ex-
pressionE are:

VnpJ·K : ExpΣ → 2ValΣ

VnpJ0K = ∅
VnpJ1K = {()}
VnpJaK = {a}

VnpJE1E2K = VnpJE1K× VnpJE2K
VnpJE1 + E2K = VnpJE1K⊕ VnpJE2K

VnpJE⋆
1K = {[v1, . . . , vn] | vi ∈ VnpJE1K \ {w | w ∈ VnpJE1K, |w| = ϵ}} .

Note that the only difference between VJ·K and VnpJ·K is that the latter do not allow
“empty” elements in lists—elements that flatten to the empty string. This corresponds to
whatmost programmers probably expect when defining iteration-like structures: programs
should not be allowed to take an arbitrary number of unnecessary iterations between doing
the actual work. Limiting ourselves to the non-problematic values rules out the problem
from Example 3.12.

We refer to regular expressions whose type interpretation do not contain any problem-
atic values as non-problematic regular expressions:

Definition 3.23 (Non-problematic regular expression [57]). A regular expressionE is non-
problematic if it does not contain any subterms of the form

E⋆
0

where ϵ ∈ E0.

With the refined notion of values, we can now formulate the definition of parsing to
ensure that minimum elements do exist:

Definition 3.24 (Parsing). Given regular expressionE and wordw ∈ Σ⋆, to parsew under
E is to produce the value t such that:

t ∈ VnpJEK ∧ ∀t′ ∈ VnpJEK. t⋖ t′ ∨ t = t′.

22 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

On bit-codes we can formulate an ordering that is similar to the greedy order⋖:

Definition 3.25 (Lexicographical ordering). The lexicographical ordering≺between twobit
sequences d, d′ ∈ {0, 1}⋆ is the least relation satisfying:

1. ϵ ≺ d if d ̸= ϵ,

2. 0 · d ≺ 1 · d′,

3. 0 · d ≺ 0 · d′ if d ≺ d′,

4. 1 · d ≺ 1 · d′ if d ≺ d′.

The greedy order on non-problematic values correspond exactly to the lexicographical
order on the bit-coded values. This is easily seen by combining the encoding function ⌜·⌝
with the greedy order (Theorem 5.2).

Theorem. For any RE E and values v, v′ ∈ VJEK, v ⋖ v′ if and only if ⌜v⌝ ≺ ⌜v′⌝.

3.6 Finite State Transducers

Just as we can use finite automata to decide language membership for regular expressions,
we can use a slightly more involved class of automata to generate the set of bit-coded values
of a regular expression. Recall that a structured value in VJEK corresponds to a parse tree
for a certain wordw ∈ LJEK. That is, the value specifies how that word is a member of the
language ofE. The way we decided whether the word was inLJEK or not was to follow all
the paths through its corresponding NFA and checking whether one of them led to a final
state. We shall see that a structured value corresponds to one of these paths.

For a given regular expressionE there is a one-to-one correspondence between its struc-
tured values and their bit-codes, so it suffices to compute bit-code for an input string. Note
that in the Thompson construction, whenever a node has more than one outgoing transi-
tions it is always two ϵ-transitions. This happens exactlywhen there is a+ or aKleene star in
the expression. Uniquely specifying a path through the automaton requires only that each
of these choice points is resolved, so it requires a sequence of bits. This is exactly the same
bit sequence as the bit-codes, so by recording these we get exactly the bit-coded values.

Definition. A finite state transducer (FST) is a six-tuple

(Q,Σ,Γ, I, F,∆)

where

• Q is a set of states,

• Σ and Γ are the input alphabet and output alphabet, respectively,

• I ⊆ Q is the set of initial states,

• F ⊆ Q is the set of final states,

• ∆ ⊆ Q× (Σ ∪ {ϵ})× (Γ ∪ {ϵ})×Q is the transition relation.

Whenever there is a transition (q, a, b, q′) ∈ ∆ we write q
a|b−−→ q′. The pair (a, b) ∈

(Σ∪ {ϵ})× (Γ∪ {ϵ}) is called the label of the FST transition. As with the NFAs, we shall
restrict us to a certain class of FSTs that are analogous to the Thompson NFAs.

3.6. FINITE STATE TRANSDUCERS 23

Definition 3.26. AThompson FST is an FST constructed with the procedure shown below,
where:

• the output alphabet is bits: Γ = {ϵ, 0, 1},

• the set of initial states is a singleton: I =
{
qin},

• the set of final states is a singleton: F =
{
qfin},

• all states either:

– have exactly one outgoing transition labelled a|ϵ, a ∈ Σ;
– have exactly one outgoing transition labelled ϵ|ϵ;
– have exactly two outgoing transitions labelled ϵ|0 and ϵ|1, respectively, or;
– have zero outgoing transitions.

In the following, we will focus only on Thompson FSTs.
Analogous to the Thompson NFA construction, we construct Thompson FSTs. We

call a Thompson FST constructed from a regular expressionE FE :

• CaseE = 1:

ϵ|ϵ

• CaseE = 0:

• CaseE = a:

a|ϵ

• CaseE = E1E2:

E1 E2

• CaseE = E1 + E2:

ϵ|0

ϵ|1

ϵ|ϵ

ϵ|ϵ

E1

E2

24 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

• CaseE = E⋆
1 :

ϵ|ϵ ϵ|1

ϵ|0 ϵ|ϵ

E1

Example 3.13. Constructing the Thompson FST for the expressionEab corresponding the
Thompson NFA of Example 3.4 yields the FSTFEab

:

0 1 11

2

3

7

4

8

9

8

10

6

5

ϵ|0

ϵ|1

a|ϵ

ϵ|0

ϵ|1

b|ϵ

a|ϵ

ϵ|ϵ

ϵ|ϵ

ϵ|ϵ

ϵ|ϵ

ϵ|0
ϵ|ϵ

ϵ|1

A path through an FST is defined in the same way as a path through an NFA, except
that the sequence of labels is a sequence of pairs of input/output symbols in:

Definition 3.27 (Thompson FST paths). A path in a Thompson FST is a non-empty list of
states

q0, q1, . . . , qn

where for each 0 ≤ i < n and (xi, yi) ∈ (Σ ∪ {ϵ})× {ϵ, 0, 1}

qi
xi|yi−−−→ qi+1.

If there is a path from q0 to qn with the labels (x0, y0), (x1, y1), . . . , (xn, yn)we write

q0
v|w

qn

wherew = x0 · x1 · . . . · xn and v = y0 · y1 · . . . · yn.

Just as we introduced a subset of values called the non-problematic values, we introduce
a subset of paths called the non-problematic paths:

Definition 3.28 (Non-problematic paths [57]). Anon-problematic path in aThompsonFST
is a path with no ϵ-cycles:

q0, q1, . . . , qn

such that ¬∃i. qi
ϵ|v

qi.

3.6. FINITE STATE TRANSDUCERS 25

Example 3.14. Recall from Section 3.5.5 that the expressionEab is ambiguous. That is, there
exists more than one value that flatten to the same underlying string. In Example 3.13 we
can see that, for the input word aab, the following is a path between qin = 0 and qfin = 11:

0, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 7, 8, 5, 6, 1, 11

with the output labels:

ϵ · 0 · 0 · ϵ · ϵ · ϵ · ϵ · 0 · 0 · ϵ · ϵ · ϵ · ϵ · 0 · 1 · 0 · ϵ · ϵ · ϵ · 1 = 00000101.

This is another path from 0 to 11:

0, 1, 2, 7, 9, 10, 6, 1, 2, 7, 9, 10, 6, 1, 2, 7, 8, 5, 6, 1, 11

with the output labels:

ϵ · 0 · 1 · 1 · ϵ · ϵ · ϵ · 0 · 1 · 1 · ϵ · ϵ · ϵ · 0 · 1 · 0 · ϵ · ϵ · ϵ · 1 = 0110110101.

As the above example hints at, there is a correspondence between the output labels on
paths through a Thompson FSTFE and the bit-coded values in VJEK (Theorem 5.1):

Theorem (Representation). Given a Thompson FST FE for a regular expression E, for any
word w ∈ LJEK:

BwJEK = {b | qin w|b
qfin
}
.

Corollary. The set of outputs of all paths through FE is the set of bit-codes for E:

BJEK = {b | qin w|b
qfin ∧ w ∈ LJEK} .

An important property of the bit-codes is that the set of bit-codes for an expressionE
is prefix free (Definition 2.10):

Lemma 3.1 (Bit-codes are prefix free). The set of bit-codes for a regular expression E, BJEK,
is prefix free.

Proof. By induction on the structure of the Thompson FSTFE . We illustrate the case for
alternation. Assume that BJE1K and BJE2K are prefix free and construct the Thompson
FST for E = E1 + E2. Any successful path through FE must either pass through FE1

or FE2 . The output of all paths through the former is B1 = {0 · b | b ∈ BJE1K} and
of all paths through the latter isB2 = {1 · b | b ∈ BJE2K}. Hence, the outputs of paths
throughFE are inB1 ∪B2. It is clearly the case that

∀b1 ∈ B1. ∀b2 ∈ B2. b1 ̸⊑ b2,

so since we assumed by induction that it holds for the sub-FSTs, BJEK is prefix free.

26 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

3.7 First Algorithm (CIAA’13)

Analogously to the simulation algorithm for NFAs presented in Definition 3.10, we need a
way to use the FSTs with the embedded bit-code information to produce values. Because
FSTs have different outputs instead of just “success” or “failure”, simulating an FST ismore
complicated than simulating an NFA. Furthermore, because of the ambiguity in regular
expressions a simulation algorithm must ensure that the correct output is picked, i.e., the
output that corresponds to the least value as defined in Section 3.5.5. Now the reason for
using the restricted class Thompson FSTs instead of general FSTs becomes apparent: the
complete syntactic structure of the source regular expression is contained in the FST struc-
ture. This means that the lexicographically least bit-code is the one that is output on the
leftmost path, prioritizing transitions labeled ϵ|0 over those labeled ϵ|1 when a path can be
continued by following either one. However, just greedily taking the left alternative every
time results in a backtracking algorithm with a worst-case running time exponential in the
size of the input word! The crux of the NFA simulation algorithm is that it simulates all
paths simultaneously, thereby eliminating the need for backtracking. We mirror this in the
parsing algorithm, but extended to FSTs.

3.7.1 Symmetry of Thompson FSTs

Observe that Thompson FSTs are symmetric: whenever a state has two outgoing edges there
is exactly one corresponding state with two incoming edges. This can easily be verified by
inspecting the cases in construction algorithm in Section 3.6: only two cases introduce states
with two incoming edges, namely the cases forE1 +E2 andE⋆

1 , and the one-to-one corre-
spondence ismaintained in both. All remaining cases triviallymaintain the symmetry. Note
that in theKleene star case, one state has both two incoming and two outgoing edges, which
also preserves the one-to-one correspondence. This symmetry was also shown byGiammar-
resi, Ponty, and Wood by associatingDyck languages, languages of well-nested parentheses,
to “Thompson digraphs,” the graph-theoretical counterpart toThompson-styleNFAs [58].

We call states with two outgoing edges choice states, and states with two incoming edges
join states:

Definition 3.29. Given a Thompson FSTF = (Q,Σ, {ϵ, 0, 1} , qin, qfin,∆), let |q|O and
|q|I be the out- and in-degree of a state q, respectively:

• CF =
{
q | q ∈ Q, |q|O = 2

}
is the set of choice states inF ,

• JF =
{
q | q ∈ Q, |q|I = 2

}
is the set of join states inF ,

• SF = {q | q ∈ Q, ∃q′ ∈ Q. a|ϵq′} is the set of source states.

3.7.2 Ordered FST Simulation

If we maintain an order on the state set while simulating the FST, it becomes possible to
formulate that one alternative should be preferred to another. We can therefore augment
the algorithm of Definition 3.10 to maintain state lists instead of state sets. We also alter the
ϵ-closure function to only return a list of source states or the final state, as it unnecessary to
keep track of the entire ϵ-closure when a stepping function is going to discard all states with
no outgoing transitions anyway.

Using ordered variants of the ϵ-closure and the stepping function, the (reversed) lexi-
cographically least bit-code can be obtained by: 1) generating a sequence of states for each
input symbol and 2) using this list of sequences as an oracle to step backwards though the

3.7. FIRST ALGORITHM (CIAA’13) 27

FST and emitting the bit-codes on the transitions. This first sketch of the parsing algorithm
is called the fat log–algorithm, and we illustrate its operation with the example below:

Example 3.15. The expression

Eambig = (aa + a)⋆

is ambiguous. Input word aaa can be obtained by flattening either of the following values:

[inl ⟨a, a⟩, inr a] (00011),
[inr a, inl ⟨a, a⟩] (01001), or
[inr a, inr a, inr a] (0101011).

The least value in the greedy ordering is the first one. Pictured below is the Thompson
FST FEambig

along with the list of active source states and final state in each iteration of
the simulation algorithm. The state lists are ordered such that the topmost element at each
instance is the highest prioritized (i.e., leftmost) state:

0 3

7

9

4

3

7

9

3

7

9

4

3

7

9

4

3

7

9

3

7

9

4

3

7

9

ϵ a a a

0 1

2

3

7

4 5

8

6

9ϵ|ϵ ϵ|1

ϵ|0 ϵ|ϵ

ϵ|0

ϵ|1

a|ϵ a|ϵ

a|ϵ

ϵ|ϵ

ϵ|ϵ

The final state list is [4, 3, 7, 9, 3, 7, 9, 4, 3, 7, 9]. Because the final state 9 occurs three times
in the state list, we know that there are three separate paths from the initial state to the final
state, corresponding to the three different values above. It is only the greedy left-most path
through the FST we are interested in, and due to the fact that the states are ordered using
the lexicographical order on the transition labels we know that the correct accepting path
is the one that ends in the topmost final state in the list, i.e., the first 9. Hence, we follow
this path backwards through the FST (marked with) and reconstruct the bit-coded by
emitting bits on the traversed edges:

9
a|1

7
a|10

4
a|ϵ

3
ϵ|00

0

yields 11000, the (reversed) correct bit-code. The other two paths correspond to the other
two ways of parsing the input word:

9
a|1

4
a|ϵ

3
a|00

7
ϵ|10

0 (10010)

9
a|1

7
a|10

7
a|10

7
ϵ|10

0 (1101010).

28 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

3.7.3 Two-Pass Regular Expression Parsing

A lot of unnecessary information is stored in the fat log in Example 3.15:

1. the final state list contains the final states several times, representing the fact that all
possible paths through FEambig

is computed, even though we only realize the left-
most path;

2. when walking backwards through FEambig
the only time the log is consulted as an

oracle is in the join states;

3. in the join states the log is always to decide between exactly two possibilities.

These observations lead us to the following:

1. repeated states may be deleted from state lists, keeping only the leftmost states;

2. we only need to store information about the join states in the log;

3. we only need to store one bit of information per join state in the log.

Hence, instead of storing a list of states we only need to store one bit per join state per input
symbol! Now the symmetry of Thompson FSTs can be exploited: because of the one-to-
one correspondence between choice and join states, it suffices to record for each join state
which of its two incoming transitions was used. The symmetry ensures that paths follow-
ing the left-most (right-most) incoming transition to a join state also must have followed
the outgoing transition marked 0 (1) of the corresponding choice state. Consequently, we
decorate the Thompson FSTs with log labels:

Definition 3.30 (Log FST). Given a Thompson FSTFE = (Q,Σ, {ϵ, 0, 1} , qin, qfin,∆),
the log FST FL

E = (Q,Σ,
{

0, 1, 0, 1
}
, qin, qfin,∆′) is obtained by constructing an FST

in the same way as the normal Thompson FST, except for the following cases:

• CaseE = E1 + E2:

ϵ|0

ϵ|1

ϵ|0

ϵ|1

E1

E2

• CaseE = E⋆
1 :

ϵ|1 ϵ|1

ϵ|0 ϵ|0

E1

3.7. FIRST ALGORITHM (CIAA’13) 29

InGrathwohl,Henglein,Nielsen, andRasmussen [64] a log FST is called an augmented
NFA (aNFA). In the remainder of this section all definitions refer to an implicit log FST
FL.

For each input symbolwe store an object thatmaps join states to log labels. Such objects
are called log frames (Definition 5.3):

ℓ :
{

0, 1
}JFL

,

i.e., functions from join states JFL in the log FSTFL to log labels
{

0, 1
}
.

In the following we use⊙ to notate the point-wise operation that concatenates the first
components and unions the second components (Definition 5.4):

([q0, . . . , qn], ℓ0)⊙ ([q′0, . . . , q
′
m], ℓ1) = ([q0, . . . , qn, q

′
0, . . . , q

′
m], ℓ0 ∪ ℓ1).

The final two-phase parsing algorithm can be formulated similarly to the way the NFA
simulation algorithm of Section 3.3.1 is formulated: we enrich the ϵ-closure Close (Defi-
nition 5.5) and stepping function Step (Definition 5.6) to preserve the required ordering
information.

Both the closure and the stepping algorithm is described in Chapter 5. Here, we demon-
strate their workings on some examples.

Example 3.16. Applying Close on states 4 and 8 ofFL
Eambig

from Example 3.15:

Close(4, ∅) = ([4], ∅)
Close(8, ∅) = Close(6,

{
6 7→ 1

}
)

= Close(1,
{
1 7→ 0, 6 7→ 1

}
)

= Close(2, ℓ0)⊙ Close(9, ℓ0)
= (Close(3, ℓ0)⊙ Close(7, ℓ0))⊙ ([9], ℓ0)

= ([3], ℓ0)⊙ ([7], ℓ0))⊙ ([9], ℓ0)

= ([3, 7], ℓ0)⊙ ([9], ℓ0)

= ([3, 7, 9], ℓ0)

where we set ℓ0 =
{
1 7→ 0, 6 7→ 1

}
for notational convenience.

The stepping function respects the order of the state lists and combines the log frames
from each intermediate step.

Example 3.17. We illustrate Step onFL
Eambig

:

Step([3, 7, 9], a, ([], ∅))
= let (S, ℓ) = Close(4, ∅) in Step([7, 9], a, ([], ∅) · (S, ℓ))
= Step ([7, 9], a, ([4], ∅))
= let (S, ℓ) = Close(8, ∅) in Step ([9], a, ([4], ∅)⊙ (S, ℓ))

= Step
(
[9], a,

(
[4], ∅)⊙ ([3, 7, 9],

{
1 7→ 0, 6 7→ 1

}))
= Step

(
[], a,

(
[4, 3, 7, 9],

{
1 7→ 0, 6 7→ 1

}))
=
(
[4, 3, 7, 9],

{
1 7→ 0, 6 7→ 1

})

30 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

The forward pass Fwd of the algorithm is just the combination of Close and Step anal-
ogously to Reach for NFAs (Definition 5.7). The output of this pass is a list of log frames
that is read in the backward pass Bwd. Here, it is used as an oracle to walk from the final to
the initial state and reading off the output bits of the log FST (Definition 5.8).

Finally, Fwd and Bwd is combined to obtain the two-phase parsing algorithm of Grath-
wohl, Henglein, Nielsen, and Rasmussen [64]. We show Definition 5.9 early:

Definition. The complete two-phase parsing algorithm is the composition of the forward
and backward passes of Definitions 5.7 and 5.8:

TwoPhaseParser : Σ⋆ → {0, 1}⋆ ∪ {⊥}
TwoPhaseParser(w) = Bwd

(
Fwd(w), qfin) .

Note that the algorithm does not require that the input word is stored between passes;
only the log frame is needed. Furthermore, the log frames are used as a stack: first, all the
log frames are pushed onto the stack, and after the last input symbol the log frames are all
popped from the stack in the backward pass. Theworking memory requirement is therefore
k ·n bits for a log FSTwith k join states and an input word with lengthn. Given an FST of
sizem, a constant amount of work is performed at each input symbol in the forward pass
and at each log frame in the backward pass, so the worst-case running time isO(mn).

Example 3.18. Consider again the expression from Example 3.15. On the input word w =
aaa the forward pass of the lean log algorithm will produce the logLaaa:

Laaa = Fwd(aaa)
= let (S′, ℓ′) = Close(0, []) in Fwd′(aaa, S′, [ℓ′])

= let (S′, ℓ′) = ([3, 7, 9],
{
1 7→ 1

}
) in Fwd′(aaa, S′, [ℓ′])

= Fwd′(aaa, [3, 7, 9], [ℓ0])
= let (S′, ℓ′) = Step([3, 7, 9], a, ([], ∅)) in Fwd′(aa, S′, [ℓ′, ℓ0])

= Fwd′(aa, [4, 3, 7, 9], [ℓ1, ℓ0])
= let (S′, ℓ′) = Step([4, 3, 7, 9], a, ([], ∅)) in Fwd′(a, S′, [ℓ′, ℓ1, ℓ0])

= Fwd′(a, [3, 7, 9, 4], [ℓ2, ℓ1, ℓ0])
= let (S′, ℓ′) = Step([3, 7, 9, 4], a, ([], ∅)) in Fwd′(ϵ, S′, [ℓ′, ℓ2, ℓ1, ℓ0])

= Fwd′(ϵ, [4, 3, 7, 9], [ℓ3, ℓ2, ℓ1, ℓ0])

=
[{

1 7→ 0, 6 7→ 1
}
,
{
1 7→ 0, 6 7→ 0

}
,
{
1 7→ 0, 6 7→ 1

}
,
{
1 7→ 1

}]
where we have used the log frame abbreviations:

ℓ0 =
{
1 7→ 1

}
ℓ1 =

{
1 7→ 0, 6 7→ 1

}
ℓ2 =

{
1 7→ 0, 6 7→ 0

}
ℓ3 =

{
1 7→ 0, 6 7→ 1

}

3.8. SECOND ALGORITHM (ICTAC’14) 31

The backward pass withLaaa yields:

Bwd
([{

1 7→ 0, 6 7→ 1
}
,
{
1 7→ 0, 6 7→ 0

}
,
{
1 7→ 0, 6 7→ 1

}
,
{
1 7→ 1

}]
, 9
)

= Bwd
([{

1 7→ 0, 6 7→ 1
}
,
{
1 7→ 0, 6 7→ 0

}
,
{
1 7→ 0, 6 7→ 1

}
,
{
1 7→ 1

}]
, 1
)
· 1

= Bwd
([{

1 7→ 0, 6 7→ 1
}
,
{
1 7→ 0, 6 7→ 0

}
,
{
1 7→ 0, 6 7→ 1

}
,
{
1 7→ 1

}]
, 6
)
· 1

= Bwd
([{

1 7→ 0, 6 7→ 1
}
,
{
1 7→ 0, 6 7→ 0

}
,
{
1 7→ 0, 6 7→ 1

}
,
{
1 7→ 1

}]
, 8
)
· 1

= Bwd
([{

1 7→ 0, 6 7→ 0
}
,
{
1 7→ 0, 6 7→ 1

}
,
{
1 7→ 1

}]
, 7
)
· 1

= Bwd
([{

1 7→ 0, 6 7→ 0
}
,
{
1 7→ 0, 6 7→ 1

}
,
{
1 7→ 1

}]
, 2
)
· 11

= Bwd
([{

1 7→ 0, 6 7→ 0
}
,
{
1 7→ 0, 6 7→ 1

}
,
{
1 7→ 1

}]
, 1
)
· 011

= Bwd
([{

1 7→ 0, 6 7→ 0
}
,
{
1 7→ 0, 6 7→ 1

}
,
{
1 7→ 1

}]
, 6
)
· 011

= Bwd
([{

1 7→ 0, 6 7→ 0
}
,
{
1 7→ 0, 6 7→ 1

}
,
{
1 7→ 1

}]
, 5
)
· 011

= Bwd
([{

1 7→ 0, 6 7→ 1
}
,
{
1 7→ 1

}]
, 4
)
· 011

= Bwd
([{

1 7→ 1
}]
, 3
)
· 011

= Bwd
([{

1 7→ 1
}]
, 2
)
· 0011

= Bwd
([{

1 7→ 1
}]
, 1
)
· 00011

= Bwd
([{

1 7→ 1
}]
, 0
)
· 00001

= [] · 00001 = 00001.

3.8 Second Algorithm (ICTAC’14)

The algorithm presented in the preceding section uses two passes to produce the bit-coded
value: only after a log frame has been generated for every input symbol can the backward
pass start piecing together the bit-coded value to be output. For a large class of inputs this is
an undesirable behavior. Consider the expressionE = (a + b)⋆: after reading each input
symbol a or b in an input word we are guaranteed that the next element in the list is either
inl a or inr b. However, this fact is lost in the two-phase algorithm—even though there can
be no alternative at a specific input symbol, the algorithm soldiers on until the end of the
input word! The straight-forward program that parses fields in a comma separated data
file exhibits the same pattern: every time the newline symbol occurs the structure of the
current line is completely known and can therefore be output. Often, programs that use
extant regular expression libraries are written in a way that makes this pattern very explicit
by having a loop that iterates over each line and treat them separately.

It turns out that the pattern ismore general than only handling newline symbols as “cut”
operations. Consider the FST for the expression (aaa + aa)⋆:

32 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

0 1

2

3

8

4 5 6

9 10

7

11ϵ|ϵ ϵ|1

ϵ|0 ϵ|ϵ

ϵ|0

ϵ|1

a|ϵ a|ϵ a|ϵ

a|ϵ a|ϵ

ϵ|ϵ

ϵ|ϵ

In Example 3.15 the entire branching structure of all paths between the initial and final state
of the FSTFEambig

was computed. Doing the same for the above FSTon inputword aaaaa
and including all intermediate states in the tree yields:

0 1 2 3

8

11

a
4

9

a

10 7 1 2 3

8

11

5

a
6 7 1 2 3

8

11

4

9

a
4

9

5

10 7 1 2 3

8

11

a
5

10 7 1 2 3

8

116 7

1 2 3

8

11

4

9

There are two things to note about this figure:

1. The tree contains paths that do not continue until the end of input, either because
there is no outgoing transition, as in [0, 1, 11], or because the states that would have
been reached by continuing from a path are already contained in the ordered states
set, as in state 5 at the fifth a.

2. Moreover, consider the possible words that can be read from states 5 and 3: the set
of words that results in a path between 5 and 11 is LJa(aaa + aa)⋆K and the words
read on paths between 3 and 11 are in LJaaa(aaa + aa)⋆K. It is not difficult to see
thatLJaaa(aaa + aa)⋆K ⊆ LJa(aaa + aa)⋆K, so every possibleword that causes paths
from 3 to reach 11 would also cause paths from 5 to reach it. Since 5 is prioritized
higher in the state list, anypathprefixedwith [0, 1, 2, 3, 4, 5]will be prioritized above
any path prefixed with [0, 1, 2, 8, 9, 10, 7, 1, 2, 3].

These two observations mean that we may prune dead paths when:

1. a path ends in a state with no outgoing transitions for the current input symbol;

2. a path ends in a state that is covered by another, higher-prioritized, state.

The idea from the previous section about eliminating repeated states from the state list is a
special case of the second point. We will refer to the language of a state q asLq :

3.8. SECOND ALGORITHM (ICTAC’14) 33

Definition. The language of a state q ∈ Q in some FST,Lq , is the set of words:

Lq =

{
w | q

w|x
qfin
}
.

With this, we can formulate coverage (Definition 6.5) as:

Definition (Coverage). A state q is covered by a set of statesQ′ if and only if:

Lq ⊆
∪
{Lq′ | q′ ∈ Q′} .

Before we discuss the new algorithm, let us follow the construction of the tree where we
cut away dead paths as we go along:

1. First, an ordered ϵ-closure is performed. Any successful path must be prefixed with
the path [0, 1]. Hence, output bits must be prefixed with the output bits on that
path—in this case ϵ. It is not necessary to keep it in the tree, so we prune it away:

0 1 2 3

8

11

2. After the first a, the path [1, 11] is dead and can be pruned. This means that any
successful path through the FST must be prefixed by [1, 2] (after the prefix [0] from
above), so [1, 2] can also be pruned and its output bits be emitted: 0. The initial part
of the bit-code has been emitted after only one a!

0 1 2 3

8

11

a
4

9

3. After the second a, the new branch that goes from 2 to 3may be pruned, as state 3 is
covered by state 5:

L3 = LJaaa(aaa + aa)⋆K ⊆ LJa(aaa + aa)⋆K = L5

0 1 2 3

8

11

a
4

9

a

10 7 1 2 3

8

11

5

4. After the third a, the dead branch ending in 11 is pruned:

0 1 2 3

8

11

a
4

9

a

10 7 1 2 3

8

11

5

a
6 7 1 2 3

8

11

9

34 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

5. At the fourth a, the two paths that end in states 3 and 8 are pruned because they are
covered by states 9 and 4. This can be verified by inspecting the languages associated
with each state:

L3 = LJaaa(aaa+ aa)⋆K ⊆ LJa(aaa + aa)⋆K = L9

L8 = LJaa(aaa+ aa)⋆K ⊆ LJaa(aaa + aa)⋆K = L4

This leaves only three active states in the state list:

0 1 2 3

8

11

a
4

9

a

10 7 1 2 3

8

11

5

a
6 7 1 2 3

8

11

9

a
4

9

10 7 1 2 3

8

11

6. At the fifth a in the input, the branch that ends in state 11 is pruned. Because there is
only one path left in the tree between the first 2 and the pruned state 11we can safely
prune the entire path. State 3 is also pruned because L3 ⊆ L5, as noted previously.
The list of active states now contains three elements:

0 1 2 3

8

11

a
4

9

a

10 7 1 2 3

8

11

5

a
6 7 1 2 3

8

11

9

a
4

9

10 7 1 2 3

8

11

a
5

10 7 1 2 3

8

11

After pruning it becomes clear that any path that continues either of the three possi-
bilities will be prefixed by [2, 3, 4, 5, 6, 7, 1, 2], so the stem may also be pruned and
the output bits 00 emitted:

0 1 2 3

8

11

a
4

9

a

10 7 1 2 3

8

11

5

a
6 7 1 2 3

8

11

9

a
4

9

10 7 1 2 3

8

11

a
5

10 7 1 2 3

8

11

3.8. SECOND ALGORITHM (ICTAC’14) 35

As this illustrates, pruning stems and dead branches from the tree and emitting output bits
on stems lets us do streaming parsing. In the particular example, one “a” means that at least
one iteration in the Kleene star must be made, so the 0 is guaranteed to prefix any bit-codes.
Reading a second “a” does not let us conclude anything more, because the remainder of
the input word is unknown. The complete input could be “aaa”, in which case the right
alternativedoesnot consumeany “a”s, or it couldbe “aa”, inwhich case all “a”s are consumed
in the right alternative. The same is the case after three and four “a”s. However, when five
“a”s have been read, it is guaranteed that nomatter howmany symbols follow, the first three
must have been consumedby the left alternative, which accounts for the first 0 in the output
at step 6, and it must also be the case that at least one more iteration is required to consume
at least the remaining two characters. This accounts for the second 0 in the output at step
6.

3.8.1 Optimal Streaming

The algorithm sketched above implements what we shall call optimally streaming parsing.
Intuitively, an optimally streaming parsing function is a function that emits prefixes of the
final bit-code as soon as it is semantically possible or, in case the input word is not in the lan-
guage of the expression being parsed, emits a designated error token as soon as this becomes
apparent.

The idea of the “stems” in the trees above can be formalized as completions of words
(Definition 6.1)

Definition (Completions). The set of completions CE(w) of w for a regular expressionE
is the set of all words inLJEK that havew as a prefix:

CE(w) = {w′′ | w ⊑ w′′ ∧ w′′ ∈ LJEK} .
Example 3.19. LetE = (aaa + aa)⋆.

CE(ϵ) = LJEK
CE(b) = ∅
CE(a) = LJEK \ {ϵ}
CE(aa) = LJEK \ {ϵ}

CE(aaaaa) = ({aaaaa} · LJEK) ∪ {aaaaaa}
If aword has an empty set of completions underE itmeans that nowordswith that pre-

fix exists inLJEK. Prefixes of that may have non-empty completions, though. The longest
of these prefixes is called the reduction ofw (Definition 6.3):

Definition (Reduction). If CE(w) = ∅, the unique reduction wE of w under E is the
longest prefix ofw with a non-empty completion:

wE = longestw′ such thatw′ ⊑ w ∧ CE(w
′) ̸= ∅.

Example 3.20. Let E = (aaa + aa)⋆. The word w = aab is not in LJEK, so its set of
completions is empty. Its reduction is:

aabE = longestw′ such thatw′ ⊑ aab ∧ CE(w
′) ̸= ∅

= longestw′ ∈ {ϵ, a, aa}
= aa.

36 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

For any parsing function PE (·) : LJEK→ BJEK an optimally streaming version can
be constructed (Definition 6.4). If it is semantically impossible to do perform output until
the last input character has been read, the optimally streaming version of the parser will just
be the same function:

Definition (Optimal streaming). The optimally streaming function corresponding toPE (·)
is

OE(w) =

{ d
{PE (w′′) | w′′ ∈ CE(w)} ifCE(w) ̸= ∅

(
d
OE(w)) ♯ ifCE(w) = ∅.

The symbol ♯ is a failure indicator.

Example 3.21. Let E = (aaa + aa)⋆ and PE (·) be a parsing function that implements
greedy left-most parsing. The example above can be formulated in terms of the optimally
streaming parsing function. Before any input is read, no output is produced:l

PE (CE(ϵ)) =
l

PE (LJEK)
=

l
{1, 001, 011, 00001, . . .}

= ϵ.

After the first a the function outputs 0:l
PE (CE(a)) =

l
PE (LJEK \ {ϵ})

=
l
{001, 011, 00001, . . .}

= 0.

At the second a, no new output can be produced:l
PE (CE(aa)) =

l
PE (LJEK \ {ϵ})

=
l
{001, 011, 00001, . . .}

= 0.

As we saw above, this continues until the fifth a:l
PE (CE(aaaaa)) =

l
PE (({aaaaa} · LJEK) ∪ {aaaaaa})

=
l
{PE (w) | w ∈ {aaaaa} · LJEK ∪ {aaaaaa}}

=
l{

PE (w) | w ∈
{
a5, a6, a7, a8, . . .

}}
=

l
{00011, 00001, 0001011, 000001, . . .}

= 000.

Example 3.22. Continuing Example 3.21, consider the output on the word aab. Its set of
completions is empty, so the second case in Definition 6.4 is taken:(

OE(aab)
)
♯ = (OE(aa)) ♯

=
(l

PE (CE(aa))
)
♯

= 0♯.

3.8. SECOND ALGORITHM (ICTAC’14) 37

A parsing function is not necessarily streaming. For example, ifE = (aaa + aa)⋆, the
output on a is:

PE (a) = ⊥,

whereas the output on aa is

PE (aa) = 011,

but a ⊑ aa. The optimally streaming version of PE (·), however, is streaming (Theo-
rem 6.1):

Theorem. For a parsing function PE (·), OE is a streaming function:

w ⊑ w′ =⇒ OE(w) ⊑ OE(w
′).

3.8.2 Algorithm

The algorithm presented in Grathwohl, Henglein, and Rasmussen [65] implements opti-
mal streaming (Theorem 6.3). It proceeds as illustrated in the example above—inChapter 6
it is described in more detail. We only sketch the main points here.

Notions related to a path tree T (Definition 6.6) are called the following:

• root(T) is the root node of path tree T .

• path(n, c) is the path from n to c, where c is a descendant of n.

• init(T) is the path from the root to the first binary node reachable or to the unique
leaf of T if it has no binary node.

• leaves(T) is the ordered list of leaf nodes.

After each input symbol, the invariants in Definition 6.7 are established by the algo-
rithm:

Definition. Let Tw be a path tree andw a word. Define I(Tw) as the proposition that all
of the following hold:

1. The leaves(Tw) have pairwise distinct node labels; all labels are source states or the
accept state.

2. All paths from the root to a leaf readw:

∀n ∈ leaves(Tw). root(T) w|b
n.

3. For each leaf n ∈ leaves(Tw) there exists w′′ ∈ CE(w) such that the bit-coded

parse ofw′′ starts with bwhere root(Tw)
w|b

n.

4. For eachw′′ ∈ CE(w) there exists n ∈ leaves(Tw) such that the bit-coded parse of

w′′ starts with bwhere root(Tw)
w|b

n.

38 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

These invariants correspond to the observations in the beginning of this section with
the caveat that the coverage relationmust be pre-computed to guarantee optimal streaming.
Unfortunately, deciding coverage is PSPACE-hard (Proposition 6.1). Deciding whether a
state q is covered by states Q corresponds to deciding Lq ⊆

∪
{Lq′ | q′ ∈ Q}. As both

Lq and all theLq′ are regular languages, it requires us to decide language inclusion for two
regular languages, a known PSPACE-complete problem [132].

The algorithm proceeds as follows. For each input character the following steps are
performed:

1. An ϵ-closure is performed and the current path tree extended. This functions in the
same way as the ϵ-closure for the two-phase algorithm.

2. The invariants ofDefinition6.7 are reestablishedbypruningdead leaves andbranches.
This makes use of a precomputed coverage relation.

3. After pruning the tree, all bits from the root node to the first binary node is output,
that is, all bits on the path init(T), where T is the current path tree.

3.9 Determinization, Implementation (POPL’16)

Just as NFAs can be determinized toDFAs, the transducers of the previous sections can also
be determinized. However, because they outputmore than just success/fail the determiniza-
tion requires more structure. In normal determinization of automata, states are combined
into sets of states, representing the fact that each determinized state corresponds to several
non-deterministic states.

To maintain the structure that is encoded in the path trees, states in a determinized
version of the Thompson FSTs are represented as trees themselves. To illustrate the idea we
will focus on the Thompson FST for the expressionE = a⋆b+ (a + b)⋆:

0

1 2

3 4

5 6

7

8 9

10

11 12

13

14 15

16

ϵ|0

ϵ|1

ϵ|ϵ

ϵ|0

ϵ|1

a|ϵ
ϵ|ϵ

b|ϵ

ϵ|ϵ

ϵ|ϵ

ϵ|0

ϵ|1

ϵ|0

ϵ|1

a|ϵ

ϵ|ϵ

b|ϵ

ϵ|ϵ

ϵ|ϵ

ϵ|ϵ

Taking the ordered ϵ-closure from the initial state 0 is and producing a path tree yields the
following, where only choice states are kept as internal nodes. We have labeled the edges of
the tree with the output bits on the FST paths represented by the edges:

3.9. DETERMINIZATION, IMPLEMENTATION (POPL’16) 39

0

2

3

0
5

1

0
9

10

11

0
14

1

0
7

1

1

The following observations are important:

• the path tree indicates which states are active in the FST simulation and which rela-
tionship they have to each other in the ordering;

• it is not necessary to know the labels of the internal nodes, as the structure of the tree
together with the leaves and the FST determine the labels uniquely.

The contents of the path tree that we need to store therefore only requires the leaves and
the internal structure:

·

·

·

3

0

5

1

0
·

·

11

0

14

1

0
7

1

1
ϵ

For a determinization algorithm to terminate, we must ensure that only a finite number of
distinct states will be produced. If the trees are identified modulo the labels on their edges
there can only be a finite number of different trees: there is a finite number of states in the
FST, hence there can only be a finite number of treeswith different leaves and internal nodes.
Note that this is not true if the labels on the tree edges are kept: the expression (a⋆b+ a⋆c)
requires an unbounded number of different labeled trees to represent all simulation states.
Since the output bits are relevant, we split up the representation of simulation states into a
static and a dynamic part. The static part is the path tree enhancedwith a set of named regis-
ters, and the dynamic part is a valuation of those registers, i.e., a mapping between registers
and bit-codes. The static part of the path tree above is:

·

·

·

3

x00

5

x01

x0
·

·

11

x100

14

x101

x10

7

x11

x1

xϵ

40 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

with the following valuation of the registers:

xϵ 7→ ϵ x0 7→ 0 x1 7→ 1
x00 7→ 0 x01 7→ 1 x10 7→ 0
x11 7→ 1 x100 7→ 0 x101 7→ 1.

If we simulate the FST in the manner described in the previous section with the difference
that the bit-codes are maintained in registers, we quickly see a finite set of trees that are
reached. Whenever a path tree is extended by following a transition and taking the ϵ-closure
on all leaves, we collapse all paths in the tree that do not contain any choice nodes. Thatway,
the only internal nodes in the tree are choice nodes. The information stored on the edges on
a path that is collapsed is kept in separate registers. After collapsing a path, all the registers
are concatenated and added to the register for the new path.

For illustration, the path tree develops like pictured below when a b is consumed from
the FST states in the path tree above:

·

·

·

 x00

·

7

x01

x0

·

·

 x100

·

·

·

11

0
14

1

0 1

x101

x10 x11

x1

xϵ

·

·

7

x0

·

11

x10

14

x11

x1

xϵ

x0 := (x0)(x01)
x1 := (x1)(x10)(x101)0
x10 := 0
x11 := 1

The paths that die are marked with red and a . If an a is read, the path tree steps into the
same tree.

We perform one more step, now from the new path tree on an a:

·

·

 x0

·

 x10

·

·

·

11

0
4

1

0
7

1

x11

x1

xϵ

·

·

·

11

x00

4

x01

x0

7

x1

xϵ

xϵ := (xϵ)(x1)(x11)
x0, x00 := 0
x01, x1 := 1

Had we stepped the tree on a b, the result would be the same. Stepping further from this
tree always results in the same tree.

This forms the basis of our determinization algorithm: there are three distinct possibil-
ities for the path tree to be organized, so the determinized automaton will have three states.
To encode the register updates we associate a set of actions to each edge. The determinized
version of the above FST looks as follows, where the path tree represented by the new states
have been made explicit:

3.9. DETERMINIZATION, IMPLEMENTATION (POPL’16) 41

3 5

11 14

7
7

11 14 11 4

7

x0, x00, x10, x100 := 0
x01, x1, x11, x101 := 1

a/

x0 := (x0)(x00)
x1 := (x1)(x10)(x100)
x00, x100, x10 := 0
x01, x101, x11 := 1

b/

x0 := (x0)(x01)
x1 := (x1)(x10)(x101)0
x10 := 0
x11 := 1

b/
xϵ := (xϵ)(x1)(x11)
x0, x00 := 0
x1, x01 := 1

a/
xϵ := (xϵ)(x1)(x10)
x0, x00 := 0
x1, x01 := 1

a/
xϵ := (xϵ)(x0)(x00)
x0, x00 := 0
x1, x01 := 1

b/
x0, x00 := 0
x1, x01 := 1
xϵ := (xϵ)(x0)(x01)

3.9.1 Streaming String Transducers

This type of automaton is very similar to a class of automata known in the literature as
streaming string transducers (Definition 7.11):

Definition (Streaming string transducers). Adeterministic streaming string transducer (SST)
over alphabetsΣ and Γ is a structure

(Q,Σ,Γ, X, qin, F, δ1, δ2),

where

• Q is is a finite set of states;

• X is a finite set of register variables;

• qin ∈ Q is the initial state;

• F : Q→ (Γ∪X)⋆∪{∅} is a partial functionmapping each final state q ∈ dom(F)
to a word F (q) ∈ (Γ ∪X)⋆ such that for each q, each x ∈ X occurs at most once
in F (q);

• δ1 : Q× Σ→ Q is the transition function;

• δ2 : Q×Σ×X → (Γ∪X)⋆ is the register update function such that for each q ∈ Q,
a ∈ Σ and x ∈ X , there is at most one y ∈ X such that x occurs in δ2(q, a, y).

A streaming string transducer is a transducer with a set of registers that may only be
moved, not copied.

Example 3.23. The following is an SST with two registers, x0 and x1, that implements the
transduction

anbbm 7→ bnanam :

0 1

x0, x1 := ϵ

a/
x0 := (x0)b
x1 := (x1)a b/ x0 := (x0)(x1)

b/ x0 := (x0)a

where the double arrow going out from state 1 indicates the final output (in this case noth-
ing).

42 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

Note that the streaming string transducers thatwill beproducedby theprocedure sketched
above form a subset of all SSTs. Because every register comes from an edge in a path tree,
there is an ordering on registers. Due to the way path trees develop, this ordering specifies
that registers can only ever be appended to the register immediately “above,” i.e., to the reg-
ister on the parent edge. The register xϵ is special, in that it corresponds to “output” in
the streaming parsing algorithm of Section 3.8: appending bits to that register corresponds
to lengthening the trunk of the path tree, and therefore this “append” action can be imple-
mented by simply outputting the bits. An implementation strategy emerges: the Thomp-
son FSTs can be determinized to SSTs, and these SSTs can easily be compiled into executable
code. The registers of the SSTs can be implemented by variables in generated code.

3.10 The Kleenex Language (POPL’16)

TheThompsonFSTs allowus to specify regular expression parsers in a straight-forwardway.
Transducers, and SSTs, aremore general: there is no reason to limit ourselves to only storing
bit-codes in the registers, as Example 3.23 also hints at.

Instead, we wish to be able to specify arbitrary rational functions—i.e., transductions
fromone regular language to another. Furthermore, since the underlying algorithm is based
on the optimally streaming parsing algorithm presented earlier, it should be implemented
in a streaming way, allowing for high throughput on large inputs.

A canonical example that we shall come back to is that of syntax highlighting: given as
input a program text, emit the same program text but with color commands embedded.

Wedesigned the languageKleenex as a surface language for specifying transductions [66]
and implemented a compiler for it.3 Roughly, the compiler works this way:

1. it translates Kleenex programs to FSTs;

2. those FSTs are determinized into SSTs;

3. the SSTs are represented in an intermediate language capable of expressing the register
updates;

4. the intermediate language is transcribed toCand run throughaCcompiler (GCC[137]
or Clang [138]).

3.10.1 Kleenex Syntax

Below, a simplified version of the Kleenex syntax is shown. The current version of Kleenex
also supports user-specified actions, but we shall omit them here. They are implemented
and described by Søholm and Tørholm in their Master’s thesis [131].

Definition 3.31 (Kleenex syntax). AKleenex program is a list of declarations of the format

N :=t

whereN ranges over a set of identifiers, s is a an output word, and t is:

t ::= 1 | N | /E/ | ~t | "s" | t0|t1
| t0t1 | t* | t+ | t?
| t{n} | t{n,} | t{,m} | t{n,m}

3https://github.com/diku-kmc/repg

https://github.com/diku-kmc/repg

3.10. THE KLEENEX LANGUAGE (POPL’16) 43

The entry point of a Kleenex program is always the identifier named main, unless one
uses the special “pipeline pragma.” This is further discussed in Chapter 7.

3.10.2 Kleenex Semantics

In Chapter 7, we give the semantics of Kleenex programs as compositions of two FSTs. For
a Kleenex program p, we construct a Thompson-style FST that we call the oracle,FC

p , that
outputs the greedy leftmost bit-coded parse tree, implementing the function JFC

p K≤. Then
an action machine JFA

p K that transduces bits to output words is constructed. Composing
these two FSTs gives us the semantics of a Kleenex program (Definition 7.7):

Definition (Kleenex semantics). Let p be a Kleenex program and let FC
p and FA

p be the
oracle and actionmachine. The program p denotes a partial function JpK : Σ⋆ → Γ⋆∪{∅}
given by JpK = JFA

p K ◦ JFC
p K≤

The operations of the Kleenex parts can be described as the following parts:

• Regular expressions, enclosed in / /, act as primitives that copy matching input
strings to output.

• Literal strings, enclosed in " ", act as unconditional output. A literal "s" acts as the
transduction ϵ 7→ s.

• Termsprefixedwith a~T are suppressed—anyoutput thatwould otherwise have been
produced by T are discarded.

• Finally, terms can be named and combined using the operators known from normal
regular expressions—Kleene star, alternation, etc.

We specify the construction in detail in Chapter 7; here, we give some examples to establish
intuition.

Example 3.24. Let p be the program that swaps as and bs in its input:

main := (~/a/ "b" | ~/b/ "a")*

Below, the oracle and the actionmachine for p are shown. Taking the leftmost path through
the machine on the right corresponds to the composition in Definition 7.7:

Nmain1

FC
p

ϵ|0

ϵ|0

a|ϵ

ϵ|1

b|ϵ

ϵ|1

ϵ|ϵ ϵ|ϵ

Nmain1

FA
p

0|ϵ

0|ϵ

ϵ|ϵ

1|ϵ

ϵ|ϵ

1|ϵ

ϵ|b ϵ|a

Nmain1

JFA
p K ◦ JFC

p K

ϵ|ϵ

ϵ|ϵ

a|ϵ

ϵ|ϵ

b|ϵ

ϵ|ϵ

ϵ|b ϵ|a

44 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

Note that the syntax definition above does not rule out ill-formed programs. We con-
sider programs to be ill-formed if they cannot be converted into finite state transducers. For
example, this program satisfies the syntax requirements in Definition 3.31:

main := /a/ main /b/ | 1

This program should copy words in the non-regular language

{anbn | n ∈ N} ,

but this cannot be done with a finite state transducer due to the need for an unbounded
counter. Kleenex programs are therefore restricted to be inherently tail-recursive. To en-
sure a clear distinction between valid and invalid Kleenex programs, the syntax is presented
slightly differently in Chapter 7. There, a core Kleenex is defined, which is guaranteed to
always correspond to right-regular grammars enriched with output symbols, and the rest of
the constructors in the language are defined as syntactic sugar on top of this core.

3.10.3 An Example

We illustrate the pipeline of the compiler by studying an example program. Consider the
transduction that translates words over {a, b} as follows: All as are converted into bs if they
are followedby twobs, which are deleted, and the first time a sequence of anunevennumber
of 2n + 1 bs is encountered, the first 2n bs are removed and the last one kept. From that
point on, the input is just copied to the output:

(aki(bb)ni)mi · s 7→ bk0 · bk1 · . . . · s

where s is a word over {a, b}. The following are examples of input/output pairs:

aaabb 7→ bbb aaabbaa 7→ bbbaa
aaabbaab 7→ bbbaab abbabbbbbbbab 7→ bbbab

The Kleenex code below implements this transduction:

main := prim | sec
prim := (~/a/ "b")* ~/bb/ main
sec := (/a/ | /b/)*

Kleenex implements the greedy left-most strategy: the left alternativewill always be preferred
to the right. Hence, this program can be thought of as trying to execute the prim branch
but keeping the sec branch as a fall-back, in case an uneven number of bs are encountered.

The following two FSTs are the oracle and action machine, respectively:

3.10. THE KLEENEX LANGUAGE (POPL’16) 45

Nmain

Nprim

a0

b0 b1

Nsec

a1

b2
1

ϵ|0

ϵ|0

a|ϵ

ϵ|1 b|ϵ

ϵ|1

ϵ|0
ϵ|0

a|ϵ

ϵ|1

b|ϵ
ϵ|1

ϵ|ϵ

b|ϵ
ϵ|ϵ

ϵ|ϵ

Nmain

Nprim

a0

b0 b1

Nsec

a1

b2
1

0|ϵ

0|ϵ

ϵ|ϵ

1|ϵ ϵ|ϵ

1|ϵ

0|ϵ
0|ϵ

ϵ|ϵ

1|ϵ

ϵ|ϵ
1|ϵ

ϵ|b

ϵ|ϵ
ϵ|a

ϵ|b

The oracle emits the bit-coded parse tree for the input string, and the right FST converts
this bit-code to the input string.

We illustrate the process of determinizing the oracle into an SST. The path tree after
taking the ϵ-closure from the start state,Nmain is:

Nmain

Nprim

a0

x00

b0

x01

x0

Nsec

·

a1

x100

b2

x101

x10

1

x11

x1

α0

 xϵ := ϵ
x0, x00, x10, x100 := 0
x01, x1, x101, x11 := 1

Call this tree T0. If an a is read, the resulting path tree is again T0:

Nmain

Nprim

Nprim

a0 b0

x00 x01

x0

Nsec

·

Nsec

·

a1 b2

1

x100 x101

x10 x11

x1

Nmain

Nprim

a0

x00

b0

x01

x0

Nsec

·

a1

x100

b2

x101

x10

1

x11

x1

α1

x0 := (x0)(x00)
x1 := (x1)(x10)(x100)

x00, x100 := 0
x01, x101, x11 := 1

where the right tree is obtained by concatenating all non-splitting paths and turning it into
a register concatenation; this is also reflected in the register update below it.

Reading a b from T0 yields T1:

46 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

Nmain

Nprim

 x00

b1

x01

x0

Nsec

·

 x100

Nsec

·

a1 b2

1

x101

x10 x11

x1

Nmain

b1

x0

Nsec

·

a1

x100

b2

x101

x10

1

x11

x1

α2

x0 := (x0)(x01)
x1 := (x1)(x10)(x101)

x10, x100 := 0
x101, x11 := 1

FromT1 we reach a new treeT2 on an a, corresponding to the “mode change” that happens
after an odd number of bs. This results in a trunk in the path tree, which is represented by
the fact that the output buffer, xϵ is appended to. All other buffers are reset:

Nmain

 x0

Nsec

·

Nsec

·

a1 b2

1

x100 x101

x10 x11

x1

Nsec

·

a1

x00

b2

x01

x0

1

x1

α3

 xϵ := (xϵ)(x1)(x10)(x100)
x0, x00 := 0
x1, x101 = 1

The path tree transitions back into T0 from T1 on reading a b. In this this case, the nodes
that would have been reached in the right-hand side of the tree, from x1 and down, are
already reached by higher-prioritized paths, and they are therefore all removed from the
tree. This results in the output buffer being appended to This also results in output being
appended to and all other buffers being reset:

Nmain

Nmain

Nprim

a0 b0

Nsec

·

a1 b2

1

x0

Nsec

·

 x100 x101

x10 x11

x1

Nmain

Nprim

a0

x00

b0

x01

x0

Nsec

·

a1

x100

b2

x101

x10

1

x11

x1

α4

xϵ := (xϵ)(x0)

x0, x00 := 0
x10, x100 := 0
x1, x01 := 1

x11, x101 := 1

We have now shown all the states in the SST version of the bit-code FST above: tree T2
transitions back into tree T2 on both a and b. Hence, the state T2 in the SST corresponds
to the situation after an odd number of bs have been read—from that point on the input is
just copied. The SST obtained from the path trees above looks like:

3.10. THE KLEENEX LANGUAGE (POPL’16) 47

T0 T1 T2

β0 β0 β0 β1

a/α0

b/α2

a/α1

b/α2

b/α4

a/α3

a/α5

b/α6

whereα0 toα4 are the register updates described above, andα5,α6 are the register updates
resulting from stepping from T2 to T2. They have been omitted for brevity. The register
updates β0 and β1 are the final register updates, and as all SST states are accepting because
the accepting FST state 1 is in all the path trees, all SST states have an associated final update:

β0 {xϵ := (x1)(x11)

β1 {xϵ := (x1)

They ensure that at the end of the input string, the contents of the path from the root to
the final state will be emitted.

The compiler converts this SST to a program in an intermediate language, and this pro-
gram is directly translated to C code. Below, a snippet of the code produced for the oracle
SST on the example program is shown. This part corresponds to the state named T0 in the
drawing: on reading an a the machine transitions back into T0 (l1_2), and on reading a b
it transitions to state T1 (l1_1):

l1_2: if (!readnext(1, 1)) // End of input?
{

output(&buf_2);
outputarray(const_1_3,8);
goto accept1;

}
if (((avail >= 1) && ((next[0] == 'a') && 1))) // Transition #1
{

appendarray(&buf_2,const_1_1,16);
appendarray(&buf_1,const_1_0,8);
consume(1);
goto l1_2; // Stay in this state.

}
if (((avail >= 1) && ((next[0] == 'b') && 1))) // Transition #2
{

appendarray(&buf_2,const_1_2,16);
appendarray(&buf_1,const_1_3,8);
consume(1);
goto l1_1; // Go to state T_1

}
goto fail1;

Our example Kleenex program has the semantics of the composition of the oracle and
action machine, as mentioned above. However, note that the output of the oracle is prefix
free. This canbe shownexactly likeLemma 3.1. The fact that the input to the actionmachine
is a prefix free language means that all ambiguity has been resolved: it can never be the case

48 CHAPTER 3. REGULAR EXPRESSION-BASED PARSING ALGORITHMS

that, when simulating an FST with a prefix free input language, the machine is in the final
state butmust continue, as this would violate the prefix-freeness of the input language. As a
result, simulating the actionmachine is much simpler as there is never any need tomaintain
the non-determinism.

The version of Kleenex introduced here does not require that two separate FSTs be gen-
erated. Internally, the compiler can directly generate the composed FST, i.e., for our present
Kleenex program:

Nmain

Nprim

a0

b0 b1

Nsec

a1

b2
1

ϵ|ϵ

ϵ|ϵ

a|ϵ

ϵ|ϵ b|ϵ

ϵ|ϵ

ϵ|ϵ
ϵ|ϵ

a|ϵ

ϵ|ϵ

b|ϵ
ϵ|ϵ

ϵ|b

b|ϵ
ϵ|a

ϵ|b

The generated C code will look the same as the code shown above, but instead of bits in the
registers it will maintain output words.

3.11 Further Work

In this chapterwe gave an introduction andoverviewof the regular expression-basedparsing
techniques described in later chapters. There is a clear progression in insight, leading from
an initial two-pass algorithm over a theoretically optimally streaming algorithm to an ac-
tual implementation that runs on commodity hardware and is competitive in performance
when compared to other, similar tools (see Chapter 7). The organization of this chapter
is an attempt to mirror this progression, serving the reader the important intuitions and
insights that are ultimately combined in the Kleenex compiler.

There are many interesting things still to be done:

Multi-striding. Currently, input is read one character at a time and branched upon. The
compiled programs could be made to usemulti-striding techniques [112, 147] which
would likely lead to increased throughput if modern CPU’s data-parallel operations
are explored.

FST simulation. One limitation of the current implementation of the compiler is that it
forces all programs to be fully determinized. This causes the generated code size and
the compilation time for some Kleenex programs to be in the tens of thousands of
lines of C and in the order of half an hour, respectively. A classic technique when
implementing regular expressionmatching engines, however, is to start constructing
the DFA but falling back to an NFA simulation if the size of the DFA exceeds some
threshold [139]. It would be a straight-forward extension to the compiler to have a
FST/SST version of this mechanism: start building the SST but stop and just emit

3.11. FURTHER WORK 49

code to simulate the FST if the SST is too large. Another optimization from regular
expressionmatchers that could address the problem of exploding code size would be
to use memoization techniques.

Embedded computations. An interesting and potentially quite useful thing to explore is
to use the oracle/action dichotomy to embed arbitrary computation into the action
machine, e.g., by having a syntax for embedding C code in Kleenex. This is similar to
thewayRagel is used [142], butwith the important difference that the oraclemachine
ofKleenex takes care of all disambiguation. Aprogrammer therefore doesnotneed to
worry about “undoing” work performed in an ultimately failing branch; the optimal
streaming semantics makes sure that work is only performed if it is guaranteed that it
is on a path that is a prefix of any successful paths.

4 Kleene Algebra and Extensions

In this chapter we give a brief introduction to the second part of the thesis: extensions to
Kleene algebra. First some basic notions of Kleene algebra will be refreshed, and then two
extensions will be introduced.

The extensions are not related to each other, and the two chapters reserved for the ex-
tensions that are based on published papers are somewhat self-contained. This chapter will
therefore only give general introductions.

4.1 Kleene Algebra

The algebra of regular expressions is called Kleene algebra. One of the earliest authors to
study this algebra was JohnHorton Conway in a 1971 monograph that has recently been re-
published in reprint [36]. Several authors have presented axiomatizations of Kleene algebra
or variants thereof, including Salomaa [127], Grabmayer [62], and Kozen [88].

We present here Kozen’s axiomatization [88]. The structure will be presented through
a succession of algebraic structures that increase in complexity. This is inspired by the ap-
proach taken in Kozen’s course notes on Kleene algebra [91].

Definition 4.1 (Semigroup). A semigroup is a structure (S, ·)whereS is a set and · is a binary
operation that is associative, i.e., where the following holds for all x, y, z ∈ S:

x · (y · z) = (x · y) · z. (4.1)

Semigroups are objects with a minimal amount of structure. All the examples of semi-
groups we shall encounter here will also be monoids:

Definition 4.2 (Monoid). A monoid is a structure (M, ·, 1) where (M, ·) is a semigroup
and 1 is the neutral element such that the following holds for any x ∈M :

1 · x = x · 1 = x. (4.2)

The standard example of a monoid is the string monoid:

Example 4.1. LetLbe a language. The structure (L, ·, ϵ) is amonoidbecause concatenation
of words is associative and concatenating ϵ on either side of a word does not change it.

The string monoid is not commutative, however:

Definition 4.3 (Commutativemonoid). A commutative monoid is a monoid (M, ·, 1)with
a commutative operation:

x · y = y · x. (4.3)

51

52 CHAPTER 4. KLEENE ALGEBRA AND EXTENSIONS

Example 4.2. LetN be the set of natural numbers. The structure (N,+, 0) is a commu-
tative monoid because addition is both associative and commutative and adding 0 to any
natural number results in the same natural number.

For monoids whose operator symbol is · and where there will not be any confusion we
will use the established shorthand:

xy
def
= x · y.

Definition 4.4 (Semiring). A semiring is a structure (S,+, ·, 0, 1)where:

• (S,+, 0) is a commutative monoid;

• (S, ·, 1) is a monoid;

• · distributes over+ on the left and right:

x · (y + z) = x · y + x · z (4.4)
(x+ y) · z = x · z + y · z; (4.5)

• 0 is an annihilator for ·:
0 · x = x · 0 = 0. (4.6)

Definition 4.5 (Idempotent semiring). An idempotent semiring is a semiring (S,+, ·, 0, 1)
where, for all x ∈ S,

x+ x = x. (4.7)

Idempotent semirings have a partial order≤ defined as:

x ≤ y ⇐⇒ x+ y = y. (4.8)

With this, the Kleene star ⋆ can be introduced to an idempotent semiring, yielding aKleene
algebra:

Definition 4.6 (Kleene algebra). AKleene algebra is a structure (K,+, ·, ⋆, 0, 1)where

(K,+, ·, 0, 1)

is an idempotent semiring and for any a, b, x, y ∈ K the unary operation ⋆ satisfies:

1 + x · x⋆ ≤ x⋆ (4.9)
1 + x⋆ · x ≤ x⋆ (4.10)

b+ a · x ≤ x =⇒ a⋆ · b ≤ x (4.11)
b+ x · a ≤ x =⇒ b · a⋆ ≤ x. (4.12)

Proposition 4.1. In a Kleene algebra, axioms 4.11 and 4.12 are equivalent to the following
two alternative axioms [88, 122]:

a · x ≤ x ⇐⇒ a⋆ · x ≤ x (4.13)
x · a ≤ x ⇐⇒ x · a⋆ ≤ x. (4.14)

We shall use the alternative versions interchangeably with Axioms 4.11 and 4.12 when
appropriate.

4.1. KLEENE ALGEBRA 53

Proof. We show that Axioms 4.11 and 4.13 are equivalent; the other two are shown symmet-
rically.

Assume

b+ a · x ≤ x =⇒ a⋆ · b ≤ x.

This means that, in particular,

b+ a · b ≤ b =⇒ a⋆ · b ≤ b.

Because x + y ≤ z ⇐⇒ x + y + z = z this means that both x ≤ z and y ≤ z, so we
have that

b+ a · b ≤ b =⇒ a · b ≤ b =⇒ a⋆ · b ≤ b,

which proves 4.11 =⇒ 4.13.

For the other direction, assume

a · x ≤ x =⇒ a⋆ · x ≤ x.

In particular,

b+ a · x ≤ x =⇒ a · x ≤ x =⇒ a⋆ · x ≤ x,

but

b+ a · x ≤ x =⇒ b ≤ x,

so therefore

b+ a · x ≤ x =⇒ a⋆ · b ≤ b,

which proves the other way: 4.13 =⇒ 4.11.

Hence, a Kleene algebraK satisfies the following equations and implications:

x · (y · z) = (x · y) · z
1 · x = x · 1 = x

x+ y = y + x
0 + x = x
x+ x = x

x · (y + z) = x · y + x · z
(x+ y) · z = x · z + y · z

0 · x = x · 0 = 0
1 + x · x⋆ ≤ x⋆

1 + x⋆ · x ≤ x⋆

a · x ≤ x =⇒ a⋆ · x ≤ x
x · a ≤ x =⇒ x · a⋆ ≤ x.

54 CHAPTER 4. KLEENE ALGEBRA AND EXTENSIONS

Proposition 4.2 (Monotonicity [88]). In any Kleene algebra K, the operators +, ·, and ⋆

are monotone with respect to ≤. That is, for x, y, z ∈ K:

x ≤ y =⇒ x+ z ≤ y + z

x ≤ y =⇒ z + x ≤ z + y

x ≤ y =⇒ xz ≤ yz
x ≤ y =⇒ zx ≤ zy
x ≤ y =⇒ x⋆ ≤ y⋆. (4.15)

Proof. We show implication 4.15: Assume that x ≤ y. By the monotonicity of+ and · and
by the assumption we have

1 + xy⋆ ≤ 1 + yy⋆ ≤ y⋆.

By Axiom 4.11 this means that
x⋆ ≤ y⋆.

The two axioms that state that x⋆ is an upper bound on the “unfoldings” 1+ xx⋆ and
1 + x⋆xmay be strengthened to equalities:

Proposition 4.3 ([88, Proposition 2.2]). In any Kleene algebra, the following holds:

1 + x · x⋆ = x⋆ (4.16)
1 + x⋆ · x = x⋆ (4.17)

The three rules known as bisimulation, sliding, and denesting are used in many proofs
in Kleene algebra:

Proposition 4.4 ([88]). The following all hold in any Kleene algebra:

1. the bisimulation rule: ax = xb =⇒ a⋆x = xb⋆,

2. the sliding rule: (cd)⋆c = c(dc)⋆,

3. the denesting rule: (x+ y)⋆ = x⋆(yx⋆)⋆.

Proof. 1. Assume ax ≤ xb. Then also, by monotonicity

axb⋆ ≤ xbb⋆. (4.18)

Axiom 4.9 together with distributivity and monotonicity states that

x+ xbb⋆ = x(1 + bb⋆) ≤ xb⋆.

Combining this with 4.18 gives us

x+ axb⋆ ≤ xb+ xbb⋆ ≤ xb⋆,

which by Axiom 4.11 gives
a⋆x ≤ xb⋆.

The other direction is proved symmetrically, which concludes the proof.

4.1. KLEENE ALGEBRA 55

2. This is an instance of the bisimulation rule: set a = cd, b = dc, and x = c. Then
the premise of the bisimulation rule becomes (cd)c = c(dc), and an application of
the rule yields:

(cd)⋆c = c(dc)⋆.

3. We first show (x+ y)⋆ ≤ x⋆(yx⋆)⋆. The following inequalities hold:

1 ≤ x⋆(yx⋆)⋆

xx⋆(yx⋆)⋆ ≤ x⋆(yx⋆)⋆

yx⋆(yx⋆)⋆ ≤ (yx⋆)⋆ ≤ x⋆(yx⋆)⋆,

where the second and third inequalities are a consequence of the fact that xx⋆ ≤ x⋆.
We then have

1 + (x+ y)x⋆(yx⋆)⋆ ≤ 1 + ax⋆(yx⋆)⋆ + bx⋆(yx⋆)⋆ ≤ x⋆(yx⋆)⋆,

where the last equality is a consequence of the above three equalities andmonotonic-
ity. Applying axiom 4.11 now gives us:

(x+ y)⋆ ≤ x⋆(yx⋆)⋆.

Theother directionx⋆(yx⋆)⋆ ≤ (x+y)⋆ follows bymonotonicity. Sincex ≤ x+y
and y ≤ x+ y:

x⋆(yx⋆)⋆ ≤ (x+ y)⋆((x+ y)(x+ y)⋆)⋆

≤ (x+ y)⋆((x+ y)⋆)⋆

≤ ((x+ y)⋆)⋆

= (x+ y)⋆.

In the last inequality we have used the fact (x⋆)⋆ = x⋆.

Example 4.3. LetL be a language overΣ,L ⊆ Σ⋆, that is closed under union and concate-
nation. Then the structure

(L,∪, ·, ∅, {ϵ})

forms an idempotent semiring—the properties in Definition 4.5 obviously hold true for
this choice of operators and elements. Recall that the Kleene asterate (Definition 2.5) of L
is the union of exponentiatingL. Extending the structure with the Kleene asterate gives us
a Kleene algebra

(L,∪, ·, ⋆, ∅, {ϵ}).

This example illustrates the connection with regular expressions: the languages L that
satisfy these properties are exactly those languages forwhich there is some regular expression
E where

L = LJEK.
Example 4.4. A binary relationR on some setX is a set of pairs of elements fromX :

R ⊆ X ×X.

56 CHAPTER 4. KLEENE ALGEBRA AND EXTENSIONS

Let 1 def
= {(x, x) | x ∈ X} be the identity relation that relates all elements ofX to itself.

Define the composition ◦ as the binary operation that combines to relations:

R1 ◦R2
def
= {(x, z) | (x, y) ∈ R1 ∧ (y, z) ∈ R2} .

This operations serves as the concatenation operator, so an exponentiation can be defined:

R0 def
= 1

Rn+1 def
= R ◦Rn.

This causes the Kleene star to be the reflexive transitive closure of a relation:

R⋆ =
∪
n≥0

Rn.

The structure (R,∪, ◦, ⋆, ∅,1) forms a Kleene algebra.

Regular expressions are terms that can be used as syntax to denote elements in some
Kleene algebra. The mapping from expressions to elements in a Kleene algebra is called an
interpretation. The interpretation of regular expressions as regular languages from Chap-
ter 3 is the canonical interpretation:

Definition 4.7 (Canonical interpretation). The canonical interpretation of a termE over an
alphabetΣ in a Kleene algebra is:

LΣ(x) = {x} LΣ(e0 + e1) = LΣ(e0) ∪ LΣ(e1)

LΣ(0) = ∅ LΣ(e0e1) = {vw | v ∈ LΣ(e0), w ∈ LΣ(e1)}

LΣ(1) = {ϵ} LΣ(e
⋆) =

∪
n≥0

LΣ(e
n).

Note that this definition is exactly the same as theLJ·K used previously.
An important property of Kleene algebra is that it is complete with respect to equalities

of regular languages:

Theorem 4.1 ([88, Theorem 5.5]). Let E and F be two regular expressions over Σ represent-
ing the same regular languagesLΣ(E) = LΣ(F). ThenE = F is provable from the Kleene
algebra axioms.

Deciding equality of two regular languages is PSPACE-complete [132], soKleene algebra
is too:

Theorem 4.2. The equational theory of Kleene algebra is PSPACE-complete.

4.1.1 Star-Continuous Kleene algebra

Most “naturally occurring” Kleene algebras satisfy the property known as star continuity:

Definition 4.8 (Star-continuous Kleene algebra). A Kleene algebra is star-continuous if the
following holds:

xy⋆z = sup
n≥0

xynz. (4.19)

Here, sup refers the the least upper bound with respect to the idempotent semiring or-
der 4.8.

4.1. KLEENE ALGEBRA 57

Both the language and the relation examples above are star-continuous Kleene algebras,
which can easily be seen by how the ⋆ operation is defined on both of them. Any star-
continuous idempotent semiring is a Kleene algebra and therefore also a star-continuous
Kleene algebra [91]. The other way does not hold: there exists Kleene algebras that are not
star-continuous, although they are somewhat artificial.

Example 4.5. We repeat a standard example of a non–star-continuous Kleene algebra from
Kozen’s notes [91]. Write ω2 for the set of ordered pairs of natural numbers. The elements
of ω2 are ordered lexicographically, such that, for example,

(4, 6) < (5, 6) and (1, 2) < (1, 3).

Add the two special elements⊥ and⊤ to ω2 and let them be the minimum andmaximum
element of the order on ω2 ∪ {⊥,⊤}, respectively. Let the+ operation be the supremum
with respect to this order, so we have

⊥+ x = x+⊥ = x,

i.e.,⊥ serves as the “zero-element” for addition. Let · be defined as follows:

x · ⊥ = ⊥ · x = ⊥
x · ⊤ = ⊤ · x = ⊤ (x ̸= ⊥)

(a, b) · (c, d) = (a+ c, b+ d).

Hence, (0, 0) is the “one-element” for multiplication:

(0, 0) · x = x · (0, 0) = x.

If we now define the Kleene star as:

a⋆ =

{
(0, 0), if a = ⊥ or a = (0, 0)
⊤, otherwise,

we get a Kleene algebra (ω2 ∪{⊥,⊤} ,+, ·, ⋆,⊥, (0, 0)). This is easily verified; most cases
follow directly from the associativity of addition on natural numbers, the supremum oper-
ation, or by definition. We illustrate two cases for ⋆. First, the ⋆ is an upper bound on its
unfolding (Axiom 4.9):

(0, 0) + x · x⋆ =

 (0, 0) +⊥ · (0, 0) = (0, 0), x = ⊥
(0, 0) + (0, 0) · (0, 0) = (0, 0), x = (0, 0)
(0, 0) + x · ⊤ = ⊤, otherwise

 = x⋆

Second, the ⋆ is the least of such bounds (Axiom 4.13). Assume that a · x ≤ x. We have

a⋆ · x =

 (0, 0) · x = x, a = ⊥
(0, 0) · x = x, a = (0, 0)
⊤ · x = ⊤, otherwise.

In the first two cases we are done, as a⋆ · x ≤ x trivially. In the third case, it must be the
case that a = (c, d) > (0, 0), however, this means that

(c, d)⋆ · x =

 ⊤ · ⊥ = ⊥, x = ⊥
⊤ · ⊤ = ⊤, x = ⊤
⊤ · (e, f) = ⊤, otherwise x = (e, f).

58 CHAPTER 4. KLEENE ALGEBRA AND EXTENSIONS

In the first two cases, (c, d)⋆ · x ≤ x and we are done. The third case cannot happen: if
x = (e, f) then

a · x = (c, d) · (e, f) = (c+ e, d+ f) > (e, f) = x,

which contradicts the assumption that a ·x ≤ x. The other two cases for ⋆ follow symmet-
rically.

This is not a star-continuous Kleene algebra, as Axiom 4.19 is not satisfied:∑
n

(0, 1)n =
∑
n

(0, n) = sup
n

(0, n) = (1, 0) ̸= (0, 1)⋆.

4.2 Chomsky Algebra (FICS’13 / FI)

Kleene algebra is “the algebra of regular languages.” In this section we briefly outline an
extension to Kleene algebra that can be thought of as the analogue for context-free lan-
guages [77, 89]. This structure is dubbed Chomsky algebra, after the namesake of the hi-
erarchy in which the context-free languages are the next rung on the ladder from regular
languages [28, 29, 77].

The points outlined in this section are presented in greater detail in Chapter 8. Here we
will only sketch the main ideas and motivations.

To provide some intuition for the extension, recall that, because, equations in Kleene
algebra define regular languages, any language that can be specifiedwith a regular expression
can also be specified as the language generated by a right-linear grammar. For example, the
languageLΣ(E)where

E = (a+ b)⋆,

can also be specified as the language generated by the grammar

E −→ aE E −→ bE E −→ ϵ.

Any regular language can be specified as a right-linear grammar—a grammar where all non-
terminals are in the last position if they occur in a production rule [77, Theorem9.2]. If that
restriction is lifted, one can write grammars that recognize the context-free languages [77].

The algebraic restriction corresponding to the right-linearity of the grammar above is
the fact that in regular expressions—terms in a Kleene algebra—the only way to specify
recursion is with the ⋆. Since

x⋆ = 1 + xx⋆,

this is also tail-recursion. A natural thing to consider is then what happens this restriction
is lifted.

Consider the grammar

S −→ aSb S −→ ϵ.

This recognizes the context-free language {anbn | n ∈ N}. By naming elements and refer-
ring to them one can express recursion in non-tail positions. We can think of the language
as the minimal, nonempty solution to the equation

S ≥ aSb+ 1 (4.20)

where a, b, and 1 are interpreted under the canonical interpretation (extended appropri-
ately). This is an example of a system of polynomial inequalities with one inequality. An-
other system is

S ≥ [S] + SS + 1 (4.21)

4.2. CHOMSKY ALGEBRA (FICS’13 / FI) 59

that corresponds to the grammar

S −→ [S] S −→ SS S −→ ϵ

for the language of balanced brackets. Yet another example ([89, Example 19.2]) is the pair
of the grammar and polynomial inequality for the language of palindromes over {a, b}:

S −→ aSa S −→ bSb S −→ a S −→ b S −→ ϵ,

and
S ≥ aSa+ bSb+ a+ b+ 1. (4.22)

We shall formulate polynomials by taking a coproduct of two idempotent semirings:

Definition 4.9. The coproduct of two idempotent semirings

(A,+A, ·A, 0A, 1A) (B,+B , ·B, 0B , 1B)

where+A = +B , ·A = ·B , 0A = 0B , and 1A = 1B is the idempotent semiring

(A⊕B,+, ·, 0, 1)

that consists of elements from either A or B and where + = +A = +B , · = ·A = ·B ,
0 = 0A = 0B , and 1 = 1A = 1B .

Definition 4.10. LetX be a finite, non-empty set. The free idempotent semiring generated
byX is the semiring that has as primitive objects all xi ∈ X and where all the equalities of
Definition 4.5, and no other, are satisfied.

Example 4.6. LetX = {α, β, γ}. The free idempotent semiring isS = ({α, β, γ} ,+, ·, 0, 1)
where, for example,

α+ α = α α+ β = β + α α · 1 = 1 · α α · (γ + β) = α · β + α · γ,

but α · β ̸= β · α.

A polynomial over an idempotent semiringC with coefficients in a setX is an element in
C[X], whereC[X] is the coproduct ofC and the free idempotent semiring generated byX .
This definition corresponds to the understanding of polynomials from elementary school;
some scalar values (elements in C) and some variables (elements in X) blended together
with some operators.

Example 4.7. The right-hand side of the inequality 4.21 is a polynomiumover the free idem-
potent semiringB generated by {], [} and the coefficientsX = {S}: B[X].

The inequalities 4.20 and 4.22 are a polynomials over the free idempotent semiring gen-
erated by {a, b} and the same set of coefficients.

In general, a system of polynomial equations with n inequalities is a set of inequalities

x1 ≥ p1, x2 ≥ p2, . . . , xn ≥ pn

where thexi rangeover some set of namesX and thepi are polynomials in some idempotent
semiring with coefficients in thisX . If such systems always have a least solution, that is, a
set of mappings xi 7→ ci where ci ∈ C such that for any other mapping that is a soltion
xi 7→ c′i, ci ≤ c′i,C is called algebraically closed. When that is the case, we call it aChomsky
algebra:

60 CHAPTER 4. KLEENE ALGEBRA AND EXTENSIONS

Definition4.11 (Chomsky algebra). AChomsky algebra is an algebraically closed idempotent
semirings.

Just as the regular expressions are terms denoting elements in a Kleene algebra, we can
write expressions that denote elements in a Chomsky algebra. These are µ-expressions, and
have been studied before [49, 50, 104]s:

Definition 4.12. LetX be a set of variables. Theµ-expressions overX , TX , are expressions
formed are described by the grammar:

T ::= 0 | 1 | x | T1 + T2 | T1 · T2 | µx.T,

where x ∈ X .

The definition of µ-expressions is equivalent to the definition of regular expressions,
except that the Kleene star has been replaced by the binding operatorµ. With this comes all
the mechanics of scoping, substitution, α-conversion, etc. [14]. Substituting a term t′ for a
variable x in another term t is written [x/t′]t

Regular expressions can be interpreted as objects in a Kleene algebra, and an analogous
interpretation of µ-terms in a Chomsky algebra can be defined:

Definition 4.13 (Interpretation of µ-terms). An interpretation of µ-terms over a Chomsky
algebraC , σ : TX → C , is a homomorphism with respect to+ and ·:

σ(0) = 0 σ(a+ b) = σ(a) + σ(b)
σ(1) = 1 σ(a · b) = σ(a) · σ(b).

The µ-operator is interpreted as the least element a in C such that replacing the variable
that has been bound by the operator with a is less than a itself:

σ(µx.t) = the least a ∈ C such that σ[x/a](t) ≤ a.

Similar to the role exponentiation tonth power plays for Kleene star in star-continuous
Kleene algebras, we have a notation for the n-fold composition of a term µx.twith itself:

0x.t = 0 (n+ 1)x.t = t[x/nx.t].

Example 4.8. Let t = µx.axb+ 1.

0-fold: 0x.axb+ 1 = 0
1-fold: 1x.axb+ 1 = a(0x.axb+ 1)b+ 1

= a0b+ 1 = 1
3-fold: 3x.axb+ 1 = a(2x.axb+ 1)b+ 1

= a(a(1x.axb+ 1)b+ 1)b+ 1
= a(a1b+ 1)b+ 1
= aabb+ ab+ 1

4-fold: 4x.axb+ 1 = a(3x.axb+ 1)b+ 1
= aaabbb+ aabb+ ab+ 1.

4.2. CHOMSKY ALGEBRA (FICS’13 / FI) 61

Note that if the µ-expression is µx.1 + ax the (n+ 1)-fold composition is the same as the
sum of the 0th to nth power of a:

0-fold: 0x.1 + ax = 0
1-fold: 1x.1 + ax = 1 + a(0x.1 + ax)

= 1 + a0 = 1
3-fold: 3x.1 + ax = 1 + a(2x.1 + ax)

= 1 + a(1 + a(1x.1 + ax))
= 1 + a(1 + a1)
= 1 + a+ aa

4-fold: 4x.1 + ax = 1 + a(3x.1 + ax)
= 1 + a(1 + a+ aa)
= 1 + a+ aa+ aaa.

We can now generalize star-continuity to µ-continuity:

Definition 4.14. A Chomsky algebra where

a(µx.t)b = sup
n≥0

a(nx.t)b (4.23)

is a µ-continuous Chomsky algebra.

The µ-continuous Chomsky algebras are the analogue to the star-continous Kleene al-
gebras. Just as there are Kleene algebras that are not star-continuous, there are Chomsky
algebras that are not µ-continuous. We give an example in Chapter 8.

There is a canonical interpretation of µ-terms as the context-free languages which we
repeat from Chapter 8:

Definition 4.15. The canonical interpretation of µ-terms over variablesX is:

LX(x) = {x} LX(t+ u) = LX(t) ∪ LX(u)

LX(0) = ∅ LX(tu) = {xy | x ∈ LX(t), y ∈ LX(u)}

LX(1) = {ε} LX(µx.t) =
∪
n≥0

LX(nx.t).

The canonical interpretationofµ-terms are the context-free languages over the variables
in the term.

Example4.9. Inequalities 4.20, 4.21, and4.22 canbewritten as theµ-termsover setse{a, b, S}
and {], [, S}:

t0 = µS.aSb+ 1 t1 = µS.[S] + SS + 1 t3 = µS.aSa+ bSb+ a+ b+ 1.

The canonical interpretations of t0, t1, and t2 are the context-free languages generated by
the corresponding grammars above.

Themain result of [63] that will be discussed inmore detail in Chapter 8 is an analogue
to Theorem 4.1: an equation s = t holds in a µ-continuous Chomsky algebra if and only if
the canonical interpretations of s and t as context-free languages are equivalent:

s = t ⇐⇒ LX(s) = LX(t).

62 CHAPTER 4. KLEENE ALGEBRA AND EXTENSIONS

Note that this is the set of equations provable from the axioms of idempotent semirings, as
in Kleene algebras, plus the axiom of µ-continuity above (4.23). This is an infinitary axiom:
it is equivalent to the formulas

a(nx.t)b ≤ a(µx.t)b, n ≥ 0∧
n≥0

(a(nx.t)b ≤ w)

 =⇒ a(µx.t)b ≤ w,

where the validity of the latter requires one to establish infinitelymany premises. This is not
surprising in light of the fact that equality of context-free languages is undecidable [89]!

4.3 Kleene Algebra with Tests

Before presenting the second paper that forms the basis for this part of the thesis we need
some background on the extension to Kleene algebra known asKleene algebra with tests.

Definition 4.16 (Boolean algebra). A Boolean algebra is a structure

(B,+, ·, , 0, 1)

that satisfies the following:

• (B, ·, 1) and (B,+, 0) are both commutative monoids,

• (B,+, ·, 0, 1) is a idempotent semiring,

• the following additional equalities hold:

x · (x+ y) = x (4.24)
x+ (x · y) = x (4.25)
x+ (y · z) = (x+ y) · (x+ z) (4.26)

x+ 1 = 1 (4.27)
x · x = 0 (4.28)
x+ x = 1 (4.29)

Note that, because of equation 4.27, in any Boolean algebra the following inequality
holds for any x:

x ≤ 1.

Example 4.10. The power set of a setX , 2X , is a Boolean algebra:

(2x,∪,∩, , ∅, X),

where Y = 2X \ Y .

Example 4.11. Call the set with one element 1 = {∗}. The power set of 1 is 21 = 2 =
{∅, {∗}}, so this forms the Boolean algebra with the familiar truth values “false” and “true.”

Proposition4.5. AnyBoolean algebra (B,+, ·, , 0, 1) is also a Kleene algebra (B,+, ·, ⋆, 0, 1)
where the + and · operations are the same and the ⋆ is defined as

x⋆ = 1.

4.3. KLEENE ALGEBRAWITH TESTS 63

Proof. All axioms pertaining to+ and · come for free from the Boolean algebra, so only the
four axioms about ⋆ need to be checked. We demonstrate one pair. Axiom 4.9:

1 + xx⋆ = 1 + x1 = 1 + x = 1 = x⋆.

Axiom 4.13:
ax ≤ x =⇒ a⋆x ≤ x ⇐⇒ 1x ≤ x ⇐⇒ x ≤ x.

A Kleene algebra can be extended with a set of special test symbols. To reflect the differ-
ent meaning of the symbols, we shall call the original symbols of the Kleene algebra action
symbols. Intuitively, a “test” is something that has a truth value, so it should obey the laws of
Boolean algebra. Furthermore, there must be an interplay between action symbols and test
symbols to allow for desirable equations, e.g., that performing a test and then performing
either of two actions is the same as either doing a test and one action, or doing the same test
and the other action. This statement just means that the distributive law should be obeyed,
as in a normal Kleene algebra.

The fact that any Boolean algebra is a Kleene algebra allows us to overload the operators
so they can be used both in their role as Boolean algebra operators and in their role as Kleene
algebra operators. Hence, we can defined a two-sorted algebra:

Definition 4.17 (Kleene algebra with tests [93, 94]). A Kleene algebra with tests (KAT) is a
structure

(K,B,+, ·, ⋆, , 0, 1)

where

• (K,+, ·, ⋆, 0, 1) is a Kleene algebra,

• (B,+, ·, , 0, 1) is a Boolean algebra, and

• the test symbols are a subset of the action symbols: B ⊆ K .

Similar formalisms have been studied from early on [45, 82].
Expressions in KAT are normal regular expressions but extended with the test symbols

and the operator on these. KAT expressions with action symbols in Σ and test symbols
inB are referred to as ExpΣ,B

Definition 4.18. An interpretation of KAT expressions ExpΣ,B in a KATK is a homomor-
phism σ : ExpΣ,B → K:

σ(0) = 0 σ(e+ f) = σ(e) + σ(f)
σ(1) = 1 σ(e · f) = σ(e) · σ(f)
σ(b) = t ∈ B σ(b) = t ∈ B
σ(p) = x ∈ K σ(e⋆) = σ(e)⋆,

where the interpretation of the Boolean test symbols b as t are elements of the Boolean alge-
bra (B,+, ·, , 0, 1) and the interpretation of the primitive action symbol p is an element
of the Kleene algebra (K,+, ·, ⋆, 0, 1).

There is a canonical language interpretation of KAT expressions like the language inter-
pretation of regular expressions. However, the languages of KAT expressions are a gener-
alized version of the usual language, as they must accommodate the notion of tests. This
is done by inserting an atom between each action symbol in the string. Atoms reflect the
global configuration of all test symbols, and can be thought of as a valuation of all test sym-
bols b0, . . . , bn:

64 CHAPTER 4. KLEENE ALGEBRA AND EXTENSIONS

Definition 4.19 (Atoms). LetB = {b0, . . . , bn} be a set of test symbols. The atoms over
B, AtB , are strings

c0 · · · cn, ci ∈
{
bi, bi

}
that assigns a truth value to each test symbol.

We will usually refer to atoms with lower-case greek lettersα, β, etc. When a test b is set
in an atom αwe write α ≤ b.

Example 4.12. LetB = {b0, b1, b2}. The atoms AtB correspond to the cells in the Venn
diagram:

b0b1b2

b0b1b2

b0b1b2

b0b1b2

b0b1b2

b0b1b2

b0b1b2

Here, the≤ corresponds to set inclusion⊆. It is easy to see that, e.g., b0b1b2 ⊆ b0b1b2, the
atom with only b2 set.

The guarded strings are the strings with atoms before each symbol. Kaplan used K-
expressions and interpreted themas so-calledK-eventswhichhe introduced in 1969 [82]. The
K-expressions are closely similar to KAT expressions, and the K-events are what we now call
guarded strings [82, 102]:

Definition 4.20 (Guarded strings). A guarded string over an action alphabet Σ and a test
alphabetB is an element inB × (Σ×B)⋆:

α0p1α1p2α2 · · · pnαn,

where the αi are atoms overB.

Guarded strings are thus strings that where all actions are coupled with a “certificate”
that ensures the state of the tests after that action. The first atom can be thought of as the
initial configuration of the tests.

Guarded strings can also be thought of as typed strings. Therefore, some care needs to
be taken when combining strings, such that they “fit together.”

4.3. KLEENE ALGEBRAWITH TESTS 65

Definition 4.21. The fusion product of two guarded strings xα and βy, where α and β are
the last and initial atom, respectively, is the partial function defined by:

xα ⋄ βy def
=

{
xαy if α = β
undefined otherwise.

Just as with normal string concatenation, we omit the ⋄when the context allows it.
The fusion product can be lifted to operate on sets of guarded strings in the same way

as the normal concatenation, and with it the exponentiation and Kleene asterate of sets of
guarded strings are defined as usual. With these operations, the regular languagesof guarded
strings can be specified. The set of regular languages of guarded strings with action symbols
Σ and test symbolsB is called RegΣ,B .

Definition 4.22. The canonical interpretation of KAT expressions ExpΣ,B as regular lan-
guages of guarded strings is obtained by interpreting tests as the set of atoms wherein they
hold and actions as the set of guarded strings consisting of that action:

G(p)
def
= {αpβ | α, β ∈ AtB}

G(b)
def
= {α | α ∈ AtB, α ≤ β} .

They extend to the homomorphismG : ExpΣ,B → RegΣ,B :

G(0) = ∅ G(e+ f) = G(e) ∪G(f)
G(1) = AtB G(e · f) = G(e) ⋄G(f)
G(b) = AtB \G(b) G(e⋆) = G(e)⋆.

Using only the axioms of Kleene algebra, all equalities of regular languages of guarded
strings can be shown:

Theorem 4.3 ([102, Theorem 8]). Let E and F be two KAT expressions in ExpΣ,B . The
canonical interpretation of E and F as regular languages of guarded strings are the same if
and only of E = F is provable from the axioms of Kleene algebra with tests.

Even though Kleene algebra with test seems more complex than “normal” Kleene alge-
bra, it is just as difficult to decide:

Theorem4.4 ([34]). The equational theory of Kleene algebra with tests is PSPACE-complete.

4.3.1 A Folk Theorem—while Programs

A standard demonstration of Kleene algebra with tests is to prove the “folk theorem” that
every while program can be simulated by a while program with at most one while
loop [72, 93]. This program transformation can only be made if some additional state is
introduced that can encode the structure of the deleted while loops. One can use a “trick”
to copy the value of tests. The term

bc+ bc

is in effect a copy of the value in b into c.
This trick is used along with the introduction of fresh test symbols when needed to

convert any while program to the normal form with one while loop. Intuitively, when
removing while loops, the control structure needs to be stored somewhere else, and this
is the role that the additional variables serve. All while programs can be translated into

66 CHAPTER 4. KLEENE ALGEBRA AND EXTENSIONS

KAT terms representing them, and it can then be shown with the axioms of KAT [93] that
while programs can be put into the normal form.

Wewill not give the entire proof here but instead illustrate the construction on a simple
example program:

if a then while b do p

else while c do q
(4.30)

The symbols a, b, and c are tests, and p and q are actions that may stand for other while
programs. This program can be encoded as the following KAT term:

a(bp)⋆b+ a(cq)⋆c.

To prove the folk theorem for this case, wemust show that the program is equivalent to the
following program in normal form:

ae+ ae;

while eb+ ec do
if e then p else q

(4.31)

First, we add the extra variable e to the original program

ae+ ae;

if a then while b do p

else while c do q.

(4.32)

Note thatwe assume that e commuteswith the programsp and q. This is away of specifying
that neither p nor q can alter the value of e; it is entirely “fresh.” The KAT term for this
program is:

(ae+ ae)(a(bp)⋆b+ a(cq)⋆c) = aea(bp)⋆b+ aea(cq)⋆c+ aea(bp)⋆b+ aea(cq)⋆c

= aea(bp)⋆b+ aea(cq)⋆c

= ae(bp)⋆b+ ae(cq)⋆c. (4.33)

The KAT term for the normalized target program is

(ae+ ae)((eb+ ec)(ep+ eq))⋆eb+ ec,

and we can rewrite it using the axioms of KAT as follows:

= (ae+ ae)((eb+ ec)(ep+ eq))⋆(eb+ ec)

because eb+ ec = (e+ b)(e+ c) = e+ b+ e+ c = eb+ ec = eb+ ec,

= (ae+ ae)(ebep+ ebeq + ecep+ eceq)⋆(eb+ ec)

= (ae+ ae)(ebp+ ecq)⋆(eb+ ec)

= ae(ebp+ ecq)⋆eb+ ae(ebp+ ecq)⋆ec

+ ae(ebp+ ecq)⋆eb+ ae(ebp+ ecq)⋆ec,

4.4. KAT + B! (LICS’14) 67

and, since xy⋆ = y⋆x if x and y commute [93, Lemma 2.3.2],

= aee(ebp+ ecq)⋆b+ aee(ebp+ ecq)⋆c

+ aee(ebp+ ecq)⋆b+ aee(ebp+ ecq)⋆c

= ae(ebp+ ecq)⋆b+ ae(ebp+ ecq)⋆c

and, since also xy⋆ = x(xy)⋆ if x and y commute [93, Lemma 2.3.2],

= ae(eebp+ eecq)⋆b+ ae(eebp+ eecq)⋆c

= ae(ebp)⋆b+ ae(ecq)⋆c

= aee(bp)⋆b+ aee(cq)⋆c

= ae(bp)⋆b+ ae(cq)⋆c

which is exactly equation 4.33 and hence the normalized program 4.31 with onewhile loop
is equivalent to the program 4.32, which again is equivalent to the original program 4.30,
modulo the extra book keeping variables introduced.

4.4 KAT + B! (LICS’14)

Theproofs of the folk theoremrequires the introductionof auxiliary variables. Test symbols
are immutable, butmutability is needed so themutability is encodedbyusing “enough” test
symbols—as discussed in Section 4.3.1.

Herewewill present an extension toKleene algebrawith tests that introduces thenotion
of mutability into the algebra. The present section serves as a brief outline of the work,
highlighting the main ideas and concepts. Details are in Chapter 9.

Themutable objectswe are interested inmust satisfy a certain set of equalities to capture
our intuitive notion of “program variable.” This is the role of the B! algebra:

Definition 4.23 (B! algebra). A B! algebra over a set of symbols B is a KAT with action
symbols {

b!, b! | b ∈ B
}

and test symbols
{b? | b ∈ B} ,

satisfying all of the following additional equations:

b!b? = b! (4.34)
b?b! = b? (4.35)

b!b! = b! (4.36)
t!b! = b!t!, if b ̸= t (4.37)

t!b? = b?t!, if t ̸∈
{
b, b
}
. (4.38)

The b! action symbols should be thought of as mutating the contents of some variable
b: doing b! sets b to “true,” and doing b! sets it to “false.” Setting a variable multiple times
to the same value has no effect:

b! = b!b? = b!b?b! = b!b!, (4.39)

68 CHAPTER 4. KLEENE ALGEBRA AND EXTENSIONS

where the equalities follow fromAxioms 4.34, 4.35, and 4.34, respectively. Also, if a variable
contains the value “true,” it cannot contain the value “false”:

b!b? = b!b?b? = b0 = 0, (4.40)

where the first equality comes from Axiom 4.34 and the second from Axiom 4.28 of the
Boolean test algebra.

The “?” symbol is not an operator but a way of syntactically discerning between tests
and actions. As a B! algebra is a KAT, we have the atoms from Definition 9.2.1 over tests
{b0, . . . , bn}. We denote with α[b] the atom α if α ≤ b and if α ≤ b the atom α with b
replaced by b. Thus, the atom α[b] always has the property α[b] ≤ b.

The tests and actions can be extended to atoms:

α? = c0?c1? · · · cn? α! = c0!c1! · · · cn!

where α = c0c1 · · · cn and each ci ∈
{
bi, bi

}
.

Observe that each atom is an n-tuple of valuations of test symbols. Binary relations on
such elements can be represented as n-by-nmatrices. Theorem 9.1 ensures that the axioms
of B! do not degenerate, i.e., that the free B! algebra Fn with n test symbols, in which no
other equalities hold, does not collapse to a one-element algebra where everything is equiv-
alent to everything. This is done by establishing that Fn is isomorphic to a KAT on binary
relations on a 2n-sized set. There are 2n different atoms, so this property states that the free
B! algebra encodes relations on atoms, i.e., on “full valuations” of test symbols.

Themotivation behind extending KAT is to encode state and reason about it equation-
ally. The B! algebrawe use to encode state is also aKAT, and one can define the commutative
coproduct of two KATs:

Definition. The commutative coproduct of two KATs

(K,BK ,+, ·, ⋆, , 0, 1) (F,BF ,+, ·, ⋆, , 0, 1)

is the coproduct ofK andF ,K ⊕F , in the sense of Definition 4.9 extended with ⋆ and ,
and satisfying the set of additional commutativity conditions:

D = {iK(p)iF (s) = iF (s)iK(p) | p ∈ K, s ∈ F} ,

where iK and iF are the canonical injections intoK⊕F fromK andF . This is equivalent
to defining the commutative coproduct as the quotient (K ⊕ F)/D.

The commutative coproduct is universal in the sense that for any commutative coprod-
uctH , the injections fromK and F intoH are commutative (Lemma 9.1):

k(p)f(s) = f(s)k(p)

where p ∈ K , s ∈ F , and k : K → H and f : F → H are the injections into the
commutative coproduct ofK and F . Furthermore, the commutative coproduct between
KATsK and F has the property that all elements decompose into a normal form when F
is finite. It is shown in Lemma 9.2 that any element in (K⊕F)/D can be written as a sum
of terms of the form pss, where ps ∈ K and s ∈ F :

∀e ∈ (K ⊕ F)/D. e =
∑
s∈F

pss.

4.4. KAT + B! (LICS’14) 69

The reason for introducing a commutative coproduct comes from the need to com-
bine two KATs: the KAT K of the action language, and a KAT F that can describe the
mutable tests. For a finite number n of test symbols, the free B! algebra Fn is also finite.
Therefore, a consequence of Lemma 9.2 is that any term in the commutative coproduct
(K ⊕ Fn)/D is equivalent to a sum of terms where the first part represents the “action”
from the KATK and the second part represents the “state” of the mutable tests from F .
Moreover, (K ⊕ Fn)/D is isomorphic to the matrices with indices in At and elements in
K , Mat(At,K) (Theorem 9.2) which formalizes the intuition that the terms containing
mutable tests encode state changes.

Example 4.13. Let α0, α1, α2, and α3 be the atoms over the tests {b0?, b1?}. The term

α0?pα1! + α1?(p+ qr)α2! + α2?(r + q)α1! + α3rα1!

over (K ⊕ Fn)/D is by Lemma 9.2 equivalent to

pα0?α1! + (p+ qr)α1?α2! + (r + q)α2?α1! + rα3α1!.

The primitive action symbols p, q, and r do not alter the state, this can only be done by α!.
Hence, the tests α? can be moved to after the action symbol, and we get the normal form
from Lemma 9.2. By Theorem 9.2, this term corresponds to the matrix

α0 α1 α2 α3

α0 0 p 0 0
α1 0 0 p+ qr 0
α2 0 r + q 0 0
α3 0 r 0 0

wehere we represent the elements inK by the reqular expressions for brevity.

Example 4.14. Consider the term

b0?pqb0!b1! + b1?qprb0!

over tests {b0?, b1?} and some KATK . Let the atoms be:

α0 = b0b1 α1 = b0b1 α2 = b0b1 α2 = b0b1.

If we replace each test bwith the sum of atoms such that α ≤we get:

(α0? + α1?)pqα1! + (α0? + α2?)qpr(α2! + α3!) =

α0?pqα1! + α1?pqα1! + α0?qprα2! + α0?qprα3! + α2?qprα2! + α2?qprα3! =

pqα0?α1! + pqα1?α1! + qprα0?α2! + qprα0?α3! + qprα2?α2! + qprα2?α3!

in (K ⊕ Fn)/D, which corresponds to the matrix

α0 α1 α2 α3

α0 0 pq qpr qpr
α1 0 pq 0 0
α2 0 0 qpr qpr
α3 0 0 0 0

70 CHAPTER 4. KLEENE ALGEBRA AND EXTENSIONS

The set of equations that hold in (K ⊕ Fn)/D are completely axiomatized by the ax-
ioms of KAT and B! along with any additional equations fromK ,∆K :

KAT+B!+∆K ⊢ e1 = e2 ⇐⇒ (K ⊕ Fn)/D ⊨ e1 = e2,

where KAT refers to the axioms of KAT and B! refers to the axioms of B! algebra. This is
the contents of Theorem 9.3. The additional equations of the KATK are encoded in the
diagram∆K : the set of equations that hold inK . IfK is the free KAT, no such diagram
is needed, as there are no equations that hold except for those that can be proved from the
axioms of KAT. Hence, whenK is the free KAT,

KAT+B! ⊢ e1 = e2 ⇐⇒ (K ⊕ Fn)/D ⊨ e1 = e2,

which is the contents of Corollary 9.3.
Surprisingly, even though deciding equality in a B! algebra is PSPACE complete (Theo-

rem 9.4), equality in KAT+B! is EXPSPACE-complete (Theorem 9.5).
The folk theorem of Section 4.3.1 is shown in full in Chapter 9 using KAT+B!.

4.5 Future Work

In this sectionwehave outlined themain points of two extensions toKleene algebra: Chom-
sky algebra and KAT+B!. There are more interesting questions one could investigate:

• Is there an elegant way of formulating the automata-theoretic model for context-free
languages, pushdown automata, with Chomsky algebra? This would be analogous
to encode the transition relation of finite state machines with matrices over Kleene
algebra terms [88].

• Recent work investigates a probabilistic version of NetKAT [54], an extension to
Kleene algebra that originally motivated the development of KAT+B! [7, 95]. It
would be interesting to investigate a probabilistic KAT+B!.

• In the same vein, one could investigate extending existing coalgebraic decision proce-
dures for NetKAT [55] to KAT+B!.

Part I

Parsing With Regular Expressions

71

5 Two-Pass Greedy Regular Expression
Parsing

This chapter is based on the paper “Two-Pass Greedy Regular Expression Parsing” [64].

5.1 Introduction

Regular expression parsers can be built using Perl-style backtracking or general context-free
parsing techniques. What the backtracking parser produces is the greedy parse amongst po-
tentially many parses. General context-free parsing and backtracking parsing are not scal-
able since they have cubic, respectively exponential worst-case running times. REs can be
and often are grammatically ambiguous and can require arbitrary long look-ahead, making
limited look-ahead context-free parsing techniques inapplicable. Kearns [84] describes the
first linear-time algorithm for RE parsing. In a streaming context it consists of three passes:
reverse the input, perform backward NFA-simulation, and construct parse tree. Frisch and
Cardelli [57] formalize greedy parsing and use the same strategy to produce a greedy parse.
Dubé and Feeley [42] andNielsen andHenglein [114] produce parse trees in linear time for
fixed RE, the former producing internal data structures and their serialized forms, the latter
parse trees in bit-coded form; neither produces a greedy parse.

In this chapter we present the following contributions:

1. Specification and constructionof symmetric nondeterministic finite automata (NFA)
withmaximum in- and out-degree 2, whose paths from initial to final state are in one-
to-one correspondence with the parse trees of the underlying RE; in particular, the
greedy parse for a string corresponds to the lexicographically least path accepting the
string.

2. NFA simulation with ordered state sets, which gives rise to a two-pass greedy parse
algorithm using ⌈m lgm⌉ bits per input symbol and the original input string, with
m the size of the underlying RE. No input reversal is required.

3. NFA simulation optimized to require only k ≤ ⌈1/3m⌉ bits per input symbol,
where the input string need not be stored at all and the second pass is simplified. Re-
markably, this lean-log algorithm requires fewest log bits, and neither state set nor
even the input string need to be stored.

4. An empirical evaluation, which indicates that our prototype implementation of the
optimized two-pass algorithmoutperforms also in practice previousREparsing tools
and is sometimes even competitive with RE tools performing limited forms of RE
matching.

We first briefly recall key components related to the algorithm:

73

74 CHAPTER 5. TWO-PASS GREEDY REGULAR EXPRESSION PARSING

• the type interpretation of REs;

• the definition of greedy parses and their bit-coding;

• NFAs with bit-labeled transitions, called Thompson FSTs and log FSTs here, but in
the paper that forms the basis for this chapter they are called augmented Thompson
NFAs [64].

We then describe NFA simulation with ordered sets for greedy parsing and finally the opti-
mized algorithm, which only logs join state bits.

Finally, we conclude with an empirical evaluation of a straightforward prototype to
gauge the competitiveness of full greedyparsingwith regular-expressionbased tools yielding
less information for Kleene-stars.

5.2 Symmetric NFA Representation of Parse Trees

Regular expressions are finite terms of the form 0, 1, a, E1E2, E1 + E2 or E⋆
1 , where

E1, E2 are REs (Definition 3.2). For simplicity and brevity we henceforth assume non-
problematic REs that do not contain sub-REs of the form E⋆, where E is nullable (Def-
inition 3.23). All results reported here can be and have been extended to such problematic
REs in the style of Frisch and Cardelli [57]. In particular, our implementation BitC handles
problematic REs.

REs can be interpreted as types built from singleton, product, sum, and list type con-
structors [57, 74] (Definition 3.12). They denote structured values, or parse trees, in their
type interpretation VJEK. For convenience, we repeat the relevant definitions from Chap-
ter 3 here. The type interpretation (Definition 3.13) of a regular expression is:

VJ0K = ∅
VJ1K = {()}
VJaK = {a}

VJE1E2K = VJE1K× VJE2K
VJE1 + E2K = VJE1K⊕ VJE2K

VJE⋆
1K = {[v1, . . . , vn] | vi ∈ VJE1K, n ∈ N} .

The flattening (Definition 3.14) of a value is:

|()| = ϵ

|a| = a
⟨v1, v2⟩	=	v1	·	v2
inl v1	=	v1		
inr v1	=	v1		

|[v0, . . . , vn]| = |v0| · . . . · |vn|.

The interpretation as structured values preserves structural information from the RE:
Therefore :

Proposition 5.1. For any regular expression E:

LJEK = {|v| | v ∈ VJEK} .

5.2. SYMMETRIC NFA REPRESENTATION OF PARSE TREES 75

Proof. By structural induction onE. We demonstrate the case forE0 + E1.

• First we showLJE0 + E1K ⊆ {|v| | v ∈ VJE0 + E1K}. Assume

s ∈ LJE0 + E1K = LJE0K ∪ LJE1K.
Then either s ∈ LJE0K or s ∈ LJE1K. Without loss of generality, we may assume
that s ∈ LJE0K. By the induction hypothesis, we also have s ∈ {|v| | v ∈ VJE0K}.
Any v from VJE0K becomes inl v in VJE0 + E1K, and since |v| = |inl v| we must
have v ∈ {|v| | v ∈ VJE0 + E1K}.

• We then have to show {|v| | v ∈ VJE0 + E1K} ⊆ LJE0 + E1K. Let

v ∈ VJE0 + E1K.
Either v = inl v′ where v′ ∈ VJE0K, or vice versa for E1. Assume without loss
of generality v = inl v′. We then have by the induction hypothesis that v′ ∈
LJE0K, and therefore also v′ ∈ LJE0 + E1K. Since |v| = |inl v′| we also have
v ∈ LJE0 + E1K.

We recall bit-coding from Nielsen and Henglein [114], and presented in the introduc-
tion (Definition 3.15). The bit-code ⌜v⌝ of a parse tree v ∈ VJEK is a sequence of bits
uniquely identifying v within VJEK:

⌜()⌝ = ϵ

⌜a⌝ = ϵ

⌜⟨v1, v2⟩⌝ = ⌜v1⌝ · ⌜v2⌝
⌜inl v1⌝ = 0 · ⌜v1⌝
⌜inr v1⌝ = 1 · ⌜v1⌝

⌜[v0, . . . , vn]⌝ = 0 · ⌜v0⌝ · . . . · 0 · ⌜vn⌝ · 1.

That is, there exists a function ⌞·⌟E such that ⌞⌜v⌝⌟E = v. The decoding function ⌞·⌟E
is given in Definition 3.16. It returns the left component of the following auxiliary function
if all bits are consumed:

D1(bs) = ((), bs)

Da(bs) = (a, bs)
DE+F (0 · bs) = let (v, b′) = DE(bs) in (inl v, b′)
DE+F (1 · bs) = let (v, b′) = DE(bs) in (inr v, b′)

DEF (bs) = let (v, b′) = DE(bs)

(w, b′′) = DF (b
′) in (⟨v, w⟩, b′′)

DE⋆(bs) = DEE⋆+1(bs).

We write BJEK instead of VJEK whenever we want to refer to the bit-codings of E
rather than the parse trees of E (Definition 3.18). We use subscripts to discriminate parses
with a specific flattening: VsJEK = {v ∈ VJEK | |v| = s}. We extend thenotationBsJ. . .K
similarly.

Note that a bit string by itself does not carry enough information to deducewhich parse
tree it represents. Indeed this is what makes bit strings a compact representation of strings
where the underlying RE is statically known.

76 CHAPTER 5. TWO-PASS GREEDY REGULAR EXPRESSION PARSING

E FL
E(q

in, qfin)

0
qin qfin

1
qin qfin

a
qin qfina

E1E2

qin q′ qfinFL
E1

(qin, q′) FL
E2

(q′, qfin)

E1 + E2

qin

qin
1 qfin

1

qin
2 qfin

2

qfin

0

1

0

1

FL
E1

(qin
1 , qfin

1)

FL
E2

(qin
2 , qfin

2)

E⋆
0

qin q′

qin
0 qfin

0

qfin

0

1

0

1

FL
E0

(qin
0 , qfin

0)

Figure 5.1: Log FST construction schema (Definition 3.30). For simplicity, we have omit-
ted ϵ on the labels: edge labels ϵ|0, ϵ|1, ϵ|0, ϵ|1, and a|ϵ are labeled just 0, 1, 0, 1, and a,
respectively. There is a one-to-one correspondence between the output labels {0, 1} and
the log labels

{
0, 1
}
, as well as between the choice and join states. Therefore, recording the

log label on the transition into each join state indicates which outgoing transition from the
corresponding join state was taken.

The set BJEK for an RE E can be compactly represented by log FSTs, a variant of en-
hanced NFAs [114] that has in- and outdegree at most two and carries a label on each transi-
tion. In Figure 5.1, the construction presented in the introduction is recalled. Note that in
the paper that this chapter is based upon we use the term augmented NFA (aNFA) [64].

Recall that a log FST is a Thompson FST with some input alphabetΣ and the output
alphabet

{
0, 1, 0, 1

}
(Definition 3.30). For convenience, the construction is repeated from

the introduction in Figure 5.1. In this chapter we will use a shorthand for the log FST labels:

• ϵ|0 and ϵ|1 are referred to as 0 and 1,

• ϵ|0 and ϵ|1 are referred to as 0 and 1, and

• a|ϵ is referred to as a.

We call transition labels inΣ input labels; labels in {0, 1} output labels; and labels in {0, 1}
log labels.

5.2. SYMMETRIC NFA REPRESENTATION OF PARSE TREES 77

Paths are defined as in Definition 3.27, but we use the shorthand notation here. If there
is a path from p to q that is labeled xwe write

p
x
q.

The sequences read(p), write(p), and log(p) are the subsequences of input labels, output
labels, and log labels of p, respectively.

For a log FSTFL with state setQ and transition relation∆we write (Definition 3.29):

• JL
F for the join states

{
q ∈ Q | ∃q1, q2. (q1, 0, q), (q2, 1, q) ∈ ∆

}
;

• SL
F for the source states {q ∈ Q | ∃q′ ∈ Q, a ∈ Σ. (q, a, q′) ∈ ∆}; and

• CL
F for the choice states {q ∈ Q | ∃q1, q2. (q, 0, q1), (q, 1, q2) ∈ ∆}.

IfFL is a log FST, thenFL is the FSTobtainedby flipping all transitions and exchanging
the start and finishing states. That is, all transitions are reversed and all output labels have
been interchanged with their corresponding log labels.

Our algorithm for constructing a log FST from an RE is a standard Thompson-style
NFA generation algorithmmodified to accomodate output and log labels. It is described in
the introduction, but we restate it here:

Definition 5.1. We writeM = FL
E(q

in, qfin) whenM is a log FST constructed according
to the rules in Figure 5.1 with initial state qin and final state qfin.

As discussed in Section 3.7.1, log FSTs are dual under reversal; that is, flipping a log FST
produces the log FST for the reverse of the regular language of the original log FST.

Proposition 5.2. LetE be canonically constructed fromE to denote the reverse ofLJEK. Let
M = FL

E(q
in, qfin). ThenM = FL

E
(qfin, qin).

Proof. By induction on the structure of E. We illustrate the case for E = E0E1. The
log FSTM must have been constructed by combiningFL

E0
(qin, q′) andFL

E1
(q′, qfin) (Fig-

ure 5.1). Therefore, the flipped log FSTM must be constructed by combiningFL
E1

(qfin, q′)

andFL
E0

(q′, qin)which by the induction hypothesis are the log FSTs forE1 andE0, respec-
tively. AsE = E0E1 = E1 E0 we are done.

This is useful since we will be running log FSTs in both forward and backward (reverse)
directions.

Well-formed log FSTs—andThompson-style NFAs in general—are canonical represen-
tations of regular expressions in the sense that they not only represent their language inter-
pretation, but their type interpretation:

Theorem 5.1 (Representation). Given a Thompson FST M = FE(q
in, qfin), M outputs

the bit-codings of E:

BwJEK = {b | qin w|b
qfin
}
.

Proof. Left to right: by induction on the structure ofE. Right to left: by induction on the
structure ofFE .

Corollary 5.1. The set of outputs of all paths through FE is the set of bit-codes for E:

BJEK = {b | qin w|b
qfin ∧ w ∈ LJEK} .

78 CHAPTER 5. TWO-PASS GREEDY REGULAR EXPRESSION PARSING

Corollary 5.2. The log FSTM = FL
E(q

in, qfin) outputs the bit-codings of E:

BwJEK = {write(p) | qin p
qfin ∧ read(p) = w

}
.

5.3 Greedy Parsing

The greedy parse of a string s under an REE is what a backtracking parser returns that tries
the left operand of an alternative first and backtracks to try the right alternative only if the
left alternative does not yield a successful parse. The name comes from treating the Kleene
starE⋆ asEE⋆+1, which “greedily”matchesE against the input asmany times as possible.
A “lazy”matching interpretationofE⋆ corresponds to treatingE⋆ as1+EE⋆. (Inpractice,
multiple Kleene-star operators are allowed to make both interpretations available; e.g. E⋆

andE⋆⋆ in PCRE.)
Greedy parsing can be formalized by an order ⋖ on parse trees, where v1 ⋖ v2 means

that v1 is “more greedy” than v2. We recall from Definition 3.21 that the binary relation⋖
is defined inductively on the structure of values as follows [57]:

⟨v1, v2⟩ ⋖ ⟨v′1, v′2⟩ if v1 ⋖ v′1 ∨ (v1 = v′1 ∧ v2 ⋖ v′2)
inl v0 ⋖ inl v′0 if v0 ⋖ v′0
inr v0 ⋖ inr v′0 if v0 ⋖ v′0
inl v0 ⋖ inr v′0

[v1, . . .] ⋖ []
[v1, . . .] ⋖ [v′1, . . .] if v1 ⋖ v′1

[v1, v2, . . .] ⋖ [v1, v
′
2, . . .] if [v2, . . .]⋖ [v′2, . . .]

The relation ⋖ is not a total order; consider for example the incomparable elements
⟨a, inl ()⟩ and ⟨b, inr ()⟩. The parse trees of any particular RE are totally ordered, however:

Proposition 5.3. For each E, the order ⋖ is a strict total order on VJEK.
Proof. By induction on the structure of E. We illustrate the case for E = E0 + E1. Let
v, v′ ∈ VJE0 + E1K. There are four possible possibilities for v and v′. If v = inl w and
v′ = inr w′ or vice versa we are done. Consider the case when v = inl w and v′ = inl w′.
We then must have w ∈ VJE0K and w′ ∈ VJE0K, so by the induction hypothesis we can
order themw ⋖ w′ or vice versa. Hence, by the definition of the greedy ordering, we must
either have v ⋖ v′ or v′ ⋖ v. The case for v = inrw and v′ = inrw′ is symmetric.

In the following, we will show that there is a correspondence between the structural or-
der on values and the lexicographical ordering on their bit-codings (Definition 3.25). Recall
that the lexicographical ordering of two bit sequences d, d is given by:

1. ϵ ≺ d if d ̸= ϵ,

2. 0 · d ≺ 1 · d′,

3. 0 · d ≺ 0 · d′ if d ≺ d′,

4. 1 · d ≺ 1 · d′ if d ≺ d′.

Theorem 5.2. For any RE E and values v, v′ ∈ VJEK, v ⋖ v′ if and only if ⌜v⌝ ≺ ⌜v′⌝.

5.4. NFA-SIMULATIONWITH ORDERED STATE SETS 79

Proof. By induction on the structure of E. We illustrate the case for E = E0 + E1. Let
v, v′ ∈ VJE0 + E1K. There are four combinations of v, v′; we consider the case v = inlw,
v′ = inlw′: The bit-codes are

⌜inlw⌝ = 0 · ⌜w⌝ ⌜inlw′⌝ = 0 · ⌜w′⌝.

Assume w ⋖ w′: then by the induction hypothesis ⌜w⌝ ≺ ⌜w′⌝, but then we also have
⌜v⌝ = 0 · ⌜w⌝ ≺ 0 · ⌜w′⌝ = ⌜v′⌝. For the other direction, assume that ⌜w⌝ ≺ ⌜w′⌝:
then by the induction hypothesis we havew ⋖w′, so therefore v ⋖ v′. The other cases for
v, v′ follow similarly.

Recall that we have limited ourselves to non-problematic REs. We therefore have:

Corollary 5.3. For any RE E with log FST M = FL
E(q

in, qfin), and for any string s,
min⋖ VsJEK exists and is the decoding of the minimum bit-code in the lexicograpical or-
der:

min
⋖
VsJEK = ⌞min

≺

{
write(p) | qin p

qfin ∧ read(p) = s
}
⌟E .

Proof. Follows from Corollary 5.2 and Theorem 5.2.

We can now characterize greedyREparsing as follows: Given anREE and string s, find
bit sequence b such that there exists a path p from start to finishing state in the log FST for
E such that:

1. read(p) = s,

2. write(p) = b,

3. b is lexicographically least among all paths satisfying 1 and 2.

This is easily done by a backtracking algorithm that tries 0-labeled transitions before
1-labeled ones. It is atrociously slow in the worst case, however: exponential time. How to
do it faster?

5.4 NFA-Simulation with Ordered State Sets

Our first algorithm is basically anNFA-simulation. We only sketch its key idea, which is the
basis for the more efficient algorithm in the following section.

Recall from Definition 3.10 that a standard NFA-simulation consists of computing the
set Reach∗(S, s), where

Reach∗(S, ϵ) = Close(S)
Reach∗(S, a · w′) = Reach∗(Step(Close(S), a), w′).

Checking qfin ∈ Reach∗(
{
qin} , s) determines whether s is accepted or not. But how to

construct an accepting path and in particular the one corresponding to the greedy parse?
We can log the set of states reached after each symbol during theNFA-simulation. After

forwardNFA-simulation, letSi be the FST-states reached after processing the first i symbols
of input s = a1 . . . an. Given a list of logged state sets, the input string s and the final state
qfin, the nondeterministic algorithm Path∗ constructs a path from qin to qfin through the
state sets:

80 CHAPTER 5. TWO-PASS GREEDY REGULAR EXPRESSION PARSING

0 3

7

9

4

3

7

9

3

7

9

4

3

7

9

4

3

7

9

3

7

9

4

3

7

9

ϵ a a a

0 1

2

3

7

4 5

8

6

9ϵ|ϵ ϵ|1

ϵ|0 ϵ|ϵ

ϵ|0

ϵ|1

a|ϵ a|ϵ

a|ϵ

ϵ|ϵ

ϵ|ϵ

Figure 5.2: The automaton and fat log from Example 3.15. The backwards trace of the lex-
icographical least path is highlighted. Note that we have not abbreviated the labels in this
figure.

Definition 5.2 (Path recovery). Given a list of logged state sets that have been active in an
NFA-simulation on an input string s, S0, . . . , Sn, we can reconstruct a path through the
FST that reads s:

Path(Si, q) = (q′, p)where q′ ∈ Si, q
′ p

q, read(p) = ai

Path∗(S0, q) = p′ · pwhere (q′, p) = Path(S0, q), q
in p′

q′, read(p′) = ϵ

Path∗(Si, q) = p′ · pwhere (q′, p) = Path(Si, q), p
′ = Path∗(Si−1, q

′).

Calling write(Path∗(Sn, q
fin)) gives a bit-coded parse tree, though not necessarily the

lexicographically least.
We can adapt the NFA-simulation by keeping each state set Si in a particular order:

If Reach∗({qs}, a1 . . . ai) = {qi1, . . . qiji} then order the qij according to the lexico-
graphic order of the paths reaching them. Intuitively, the highest ranked state in Si is on
the greedy path if the remaining input is accepted from this state; if not, the second-highest
ranked is on the greedy path, if the remaining input is accepted; and so on. This is illustrated
in Example 3.15, which we have illustrated again in Figure 5.2.

The NFA-simulation can be refined to construct properly ordered state sequences in-
stead of sets without asymptotic slow-down. The log, however, is adversely affected by this.
We need ⌈m lgm⌉ bits per input symbol, for a total of ⌈mn lgm⌉ bits.

The key property for allowing us to list a state at most once in an order state sequence
is this:

Lemma 5.1. Let s, t1, t2, and t be states in a log FSTM , and let p1, p2, q1, q2 be paths in
M such that

• s p1
t1 and s

p2
t2,

• t1
q1
t and t2

q2
t.

where p1 is not a prefix of p2. If write(p1) ≺ write(p2) then write(p1q1) ≺ write(p2q2).

Proof. Application of the lexicographical ordering on paths.

5.5. LEAN-LOG ALGORITHM 81

5.5 Lean-Log Algorithm

After the ordered forward NFA-simulation with logging, the algorithm Path above can be
refined to always yield the greedy parsewhend traversing the log FST inbackwards direction.
Since the join states JM of a log FSTM become the choice statesCM of the reverse FSTM
weonly need to construct one “direction” bit for each join state at each input string position.
It is not necessary to record any states in the log at all, and we do not even have to store the
input string. This results in an algorithm that requires only k bits per input symbol for the
log, where k is the number of Kleene-stars and alternatives occurring in the RE. It can be
shown that k ≤ 1

3m, the size of the log FST; in practice we can observe k << m.
We shall refer to the sequence of bits that is stored per input symbol as the log frame:

Definition 5.3 (Log frame). A log frame ℓ is a map between join states and log labels:

ℓ :
{

0, 1
}JL

F

Definition 5.4. Define⊙ to be the point-wise operation on two pairs that concatenates the
first components and unions the second components:

([q0, . . . , qn], ℓ0)⊙ ([q′0, . . . , q
′
m], ℓ1) = ([q0, . . . , qn, q

′
0, . . . , q

′
m], ℓ0 ∪ ℓ1).

Our optimized algorithm is obtained by combining a group of algorithms. We first
augment the ϵ-closure to be ordered and output log frames:

Definition 5.5 (Ordered ϵ-closure). The ordered ϵ-closure of a state is:

Close : Q×
{

0, 1
}JL

F → Q⋆ ×
{

0, 1
}JL

F

Close(q, ℓ) =

Close(q0, ℓ)⊙ Close(q1, ℓ) q

ϵ|0−−→ q0, q
ϵ|1−−→ q1

Close(q′, ℓ ∪ {q′ 7→ t}) q
ϵ|t−→ q′, t ∈

{
0, 1
}
, q′ ̸∈ dom(L)

([q], ℓ) otherwise.

Next, the stepping function is extended to respect the ordering of states and combine
log frames with⊙:

Definition 5.6 (Ordered step function). The ordered stepping function is:

Step : Q⋆ × Σ× (Q⋆ ×
{

0, 1
}JL

F)→ Q⋆ ×
{

0, 1
}JL

F

Step ([], a, (S, ℓ)) = (S,L)

Step (q · qs, a, (S, ℓ)) =
{

Step(qs, a, (S, ℓ)⊙ Close(q′, ℓ)) q
a|ϵ−→ q′

Step(qs, a, (S, ℓ)) otherwise.

With these two function, the forward pass of out algorithm is described as:

Definition 5.7 (Forward pass). The forward pass algorithm is:

Fwd : Σ⋆ →
({

0, 1
}JL

F

)⋆

∪ {⊥}

Fwd(s) = let (S0, ℓ0) = Close(qin, []) in Fwd′(s, S0, [ℓ0])

82 CHAPTER 5. TWO-PASS GREEDY REGULAR EXPRESSION PARSING

where we have made use of auxiliary function Fwd′:

Fwd′ : Σ⋆ ×Q⋆ ×
({

0, 1
}JF

)⋆
→
({

0, 1
}JF

)⋆
∪ {⊥}

Fwd′([], S, L) =

{
L if qin ∈ S
⊥ otherwise

Fwd′(a · s′, S, L) =

{
Fwd′(s′, S′, ℓ · L) if (S′, ℓ) = Step(S, a, ([], ∅)), S′ ̸= []

⊥ otherwise

The function Fwd yields a list of log frames L. Finally, to produce the parse tree we
must walk backwards through the log FST and use the list of log frames as an oracle. Hence,
in this pass there is no more non-determinism, as it is resolved by the log frames:

Definition 5.8 (Backward pass). The backward pass algorithm is:

Bwd :
({

0, 1
}JL

F

)⋆

×Q→ {0, 1}⋆ ∪ {⊥}

Bwd(⊥, ·) = ⊥

Bwd(ℓ · L, q) =

[] if q = qin

Bwd(ℓ · L, q′) · b if q′
ϵ|b−−→ q, b ∈ {0, 1}

Bwd(L, q′) if q′
a|ϵ−−→ q, a ∈ Σ

Bwd(ℓ · L, q′) if q′
ϵ|ℓ(q)−−−→ q, ℓ(q) ∈

{
0, 1
}

The final parsing algorithm is obtained by combining the forward and the backward
pass:

Definition 5.9 (Two-phase parsing algorithm). The complete two-phase parsing algorithm
is the composition of the forward and backward passes of Definitions 5.7 and 5.8:

TwoPhaseParser : Σ⋆ → {0, 1}⋆ ∪ {⊥}
TwoPhaseParser(w) = Bwd

(
Fwd(w), qfin) .

The forward pass keeps the log FST and the current character inmemory. This requires
O(m) words of random access memory (RAM). It writes writing n · k bits to the log and
discards the each character of the input string after it is read. Finally, the backward pass also
requiresO(m)words ofRAMand reads from the log in reverse write order. The log is thus
a two-phase stack: In the first pass it is only pushed to, in the second pass popped from.

Both Close and Step run in time O(m) per input symbol, hence the forward pass re-
quires timeO(m · n). Likewise, the backward pass requires timeO(m · n).

Close keeps track of visited states and returns the states reached ordered lexicographi-
cally according to the paths reaching them. Hence, the following theorem can be proved:

Theorem 5.3. For any regular expression E and symbol sequence s, if Ll = Fwd(s), and
d = Bwd(Ll, q

fin), then ⌞d⌟E = min⋖ VsJEK.
Proof. The forward pass maintains the states in the lexicographical order of output strings
on the paths. Because the bit for a join state q is only set the first time q is reached, it is only

5.6. EVALUATION 83

set on the lexicographically least path from qin to q. Therefore, the oracle bits used when
tracing backwards with Bwd causes the program to take the greedy leftmost path (in the
non-flipped FST), which has the lexicographically least output bit-code. By Corollary 5.3
this is the value min⋖ VsJEK.

5.6 Evaluation

We have implemented the optimized algorithms in C and inHaskell and compared the per-
formance of the C implementation with the following existing RE tools:

RE2: Google’s RE implementation [139].

Tcl: The scripting language Tcl [119].

Perl: The scripting language Perl [30].

Grep: The UNIX tool grep [136].

Rcp: The implementation of the algorithm “DFASIM ” [114]. It is based on Dubé and
Feeley’s method [42], but altered to produce a bit-coded parse tree.

FrCa: The implementation of the algorithm“FrCa” algorithm used in [114]. It is based on
Frisch and Cardelli’s method [57].

In the subsequent plots, our implementation of the lean-log algorithm is referred to asBitC.
The tests have been performed on an Intel Xeon 2.5 GHz machine running GNU/Linux
2.6.

Note that we use the shorthandE? for the REE + 1.

5.6.1 Pathological Expressions

To get an indication of the “raw” throughput for each tool, a⋆ was run on sequences of
as (Figure 5.3(a)). (Note that the plots use log scales on both axes, so as to accommodate
the dramatically varying running times.) Perl outperforms the rest, likely due to a strategy
where it falls back on a simple scan of the input. FrCa stores each position in the input string
fromwhich a match can be made, which in this case is every position. As a result, FrCa uses
significantly more memory than the rest, causing a dramatic slowdown.

The expression (a+b)⋆a(a+b)n with the input (ab)n/2 is a worst-case forDFA-based
methods, as it results in a number of states exponential in n. Perl has been omitted from
the plots, as it was prohibitively slow. Tcl, Rcp, and Grep all perform orders of magnitude
slower than FrCa, RE2, and BitC (Figure 5.3(b)), indicating that Tcl and Grep also use a
DFA for this expression. If we fix n to 25, it becomes clear that FrCa is slower than the rest,
likely due to high memory consumption as a result of its storing all positions in the input
string (Figure 5.3(c)). The asymptotic running times of the others appear to be similar to
each other, but with greatly varying constants.

For thebacktrackingworst-case expression (a?)nan inFigure 5.4(a), BitCperforms rough-
ly like RE2.1 In contrast to Rcp and FrCa, which are both highly sensitive to the direction
of non-determinism, BitC has the same performance for both (a?)nan and an(a?)n (Fig-
ure 5.4(b)).

1The expression parser in BitC failed for the largest expressions, which is why they are not on the plot.

84 CHAPTER 5. TWO-PASS GREEDY REGULAR EXPRESSION PARSING

100 101 102 103 104 105 106 107 108

Bytes

10−3

10−2

10−1

100

101

102

103

S
ec

on
ds

BitC
RE2
Perl
Tcl
Rcp
FrCa

(a) a⋆, input an.

101 102 103 104

Bytes

10−3

10−2

10−1

100

101

102

103

104

S
ec

on
ds

BitC
RE2
Grep
Tcl
Rcp
FrCa

(b) (a + b)⋆a(a + b)n, input (ab)n/2.

101 102 103 104 105 106 107 108

Bytes

10−3

10−2

10−1

100

101

102

103

104

S
ec

on
ds

BitC
RE2
Grep
Tcl
Rcp
FrCa

(c) (a + b)⋆a(a + b)25, input (ab)n/2.

Figure 5.3: Comparisons with different REs.

5.6. EVALUATION 85

100 101 102 103 104 105

Bytes

10−3

10−2

10−1

100

101

102

103

S
ec

on
ds

BitC
RE2
Tcl
Rcp
FrCa

(a) (a?)nan, input an.

101 102 103 104

Bytes

10−3

10−2

10−1

100

101

102

103

S
ec

on
ds

BitC
RE2
Tcl
Rcp
FrCa

(b) an(a?)n, input an.

Figure 5.4: Backtracking worst-case expressions and its reverse.

5.6.2 Practical Examples

We have run the comparisons with various “real-life” examples of REs taken from [145], all
of which deal with expressions matching e-mail addresses. In Figure 5.5(b), BitC is signifi-
cantly slower than in theother examples. This can likely be ascribed toheavyuse of bounded
repetitions in this expression, as they are currently just rewritten into concatenations and al-
ternations in our implementation. Amore efficient implementation would use a dedicated
construction for repetitions, using a simple counter instead ofn states for an expression like
an.

In the other two cases, BitC’s performance is roughly like that of Grep. This is promis-
ing for BitC since Grep performs only RE matching, not full parsing. RE2 is consistently
ranked as the fastest program in our benchmarks, presumably due to its aggressive opti-
mizations and ability to dynamically choose between several strategies. Recall that RE2 per-
forms greedy leftmost subgroupmatching, not full parsing. Our present prototype of BitC
is coded in less than 1000 lines ofC. It uses only standard libraries and performs no optimiza-
tions such as NFA-minimization, DFA-construction, cached or parallel NFA-simulation,

86 CHAPTER 5. TWO-PASS GREEDY REGULAR EXPRESSION PARSING

105 106 107

Bytes

10−3

10−2

10−1

100

S
ec

on
ds

BitC
RE2
Grep
Perl
Tcl
Rcp

(a) #4

105 106 107

Bytes

10−3

10−2

10−1

100

101

S
ec

on
ds

BitC
RE2
Grep
Perl
Tcl
Rcp

(b) #7

105 106 107

Bytes

10−3

10−2

10−1

100

101

S
ec

on
ds

BitC
RE2
Grep
Perl
Tcl
Rcp

(c) #8

Figure 5.5: “Real-life” examples of REs.

5.7. RELATEDWORK 87

etc.: this is future work.

5.7 Related Work

The known RE parsing algorithms can be divided into four categories.

• The first category is Perl-style backtracking used in many tools and libraries for RE
subgroup matching [39]; it has an exponential worst case running time, but always
produces the greedy parse and enables some extensions toREs such as backreferences.

• Another category consists of context-free parsingmethods,where theRE is first trans-
lated to a context-free grammar, before a general context-free parsing algorithm such
as Earley’s [43] using cubic time is applied. An interesting CFGmethod is derivatives-
based parsing [107]. While efficient parsers exist for subsets of unambiguous context-
free languages, this restriction propagates to REs, and thus these parsers can only be
applied for subsets of unambiguous REs.

• The third category contains RE scalable parsing algorithms that do not always pro-
duce the greedy parse. This includes NFA and DFA based algorithms provided by
Dubé andFeeley [42] andNielsen andHenglein [114], where theRE is first converted
to an NFA with additional information used to parse strings or to create a DFA pre-
serving the additional information forparsing. While themethodpresentedhereuses
a Thompson-style NFA generation in order to exploit the symmetry that enables the
efficient greedy parsing, these algorithms do not necessarily require the same prop-
erties, so other techniques such as ϵ-free automata could in theory be applied. This
category also includes the algorithm by Fischer, Huch andWilke [52]; it is left out of
our tests since its Haskell-based implementation often turned out not to be compet-
itive with the other tools.

• The last category consists of the algorithms that scale well and always produce greedy
parse trees. Kearns [84] and Frisch and Cardelli [57] reverse the input; perform back-
wards NFA-simulation, building a log of NFA-states reached at each input position;
and construct the greedy parse tree in a final forward pass over the input. They re-
quire storing the input symbol plusm bits per input symbol for the log. This can
be optimized to storing bits proportional to the number of NFA-states reached at a
given input position [114], although the worst case remains the same. Our lean log
algorithmuses only two passes, does not require storing the input symbols and stores
only k < 1

3m bits per input symbol in the string.
Weobserve that themaximalmunch tokenizationproblem[126] corresponds to greedy
parsing for theRET ∗ whereT is anRE for tokens. Our algorithm solves this in time
O(mn) using two passes andO(m) random access memory, whereas Reps’ solution
solves it in timeO(mn) in one pass usingO(mn) random access memory [126].

6 Optimally Streaming Greedy Regular
Expression Parsing

This chapter is based on the paper “Optimally Streaming Greedy Regular Expression Pars-
ing” [65].

6.1 Introduction

In programming, regular expressions are often used to extract information from an input,
which requires an intensional interpretation of regular expressions as denoting parse trees,
and not just their ordinary language-theoretic interpretation as denoting strings.

This is a nontrivial changeofperspective. Weneed todealwith grammatical ambiguity—
whichparse tree to return, not just that it has one—andmemory requirements become a crit-
ical factor: Deciding whether a string belongs to the language denoted by (ab)⋆ +(a+ b)⋆
can be done in constant space, but outputting the first bit, whether the string matches the
first alternative or only the second, may require buffering the whole input string. This is
an instructive case of deliberate grammatical ambiguity to be resolved by the prefer-the-left-
alternative policy of greedy disambiguation: Try to match the left alternative; if that fails,
return a match according to the right alternative as a fallback. Straight-forward application
of automata-theoretic techniques does not help: (ab)⋆+(a+b)⋆ denotes the same language
as (a + b)⋆, which is unambiguous and corresponds to a small DFA, but is also useless: it
does not represent anymorewhen a string consists of a sequence of ab-groups. If a program-
mer writes (ab)⋆+(a+b)⋆, his/her intention is that a sequence of ab is a special token, but
arbitrary strings over a and b should still be handled. Compiling the expression to a DFA
ignores this intent.

Previousparsing algorithms [42, 57, 83, 114, 135], and theonepresented inChapter 5 [64],
require at least one full pass over the input string before outputting any output bits repre-
senting the parse tree. This is the case even for regular expressions requiring only bounded
lookahead such as one-unambiguous regular expressions [25].

In this chapter we study the problem of optimally streaming parsing. Consider

(ab)⋆ + (a + b)⋆,

which is ambiguous and in general requires unbounded input buffering, and consider the
particular input string

ab . . . ab aa babababab

An optimally streaming parsing algorithm needs to buffer the prefix ab . . . ab in some form
because the complete parse might match either of the two alternatives in the regular expres-
sion, but once encountering aa, only the right alternative is possible. At this point it outputs

89

90 CHAPTER 6. OPTIMALLY STREAMING PARSING

this information and the output representation for the buffered string as parsed by the sec-
ond alternative. After this, it outputs a bit for each input symbol read, with no internal
buffering: input symbols are discarded before reading the next symbol. Optimality means
that output bits representing the eventual parse tree must be produced earliest possible: as
soon as they are semantically determined by the input processed so far under the assumption
that the parse will succeed.

Outline. In Section 6.2 we recall some notions from Chapter 3 about regular expressions,
their type interpretation, and the bit-coding of parse trees.

The class of Thompson-stylemachines calledThompson FSTs in Chapter 3 are briefly re-
called in Section 6.3. Paths and their output labels in such FSTs naturally represent complete
parse trees, and paths to intermediate states represent partial parse trees for prefixes of an
input string. Note thatwe called thesemachines augmentedNFAs in the original paper that
this chapter is based upon [65]. This is similar to the previous chapter; we have changed the
name to Thompson FST to better normalize naming conventions between Chapters 3, 5, 6,
and 7.

The greedy disambiguation strategy is used to specify a deterministic mapping of ac-
cepted strings to paths in the FST; this is recalled in Section 6.4.

We then formally define the concept of optimal streaming parsing in Section 6.5 and
shows some useful properties. A requirement for optimal streaming is the concept of cov-
ering. This has been briefly introduced in the introduction (Section 3.8). In Section 6.6 we
discuss it in more detail and show that it is a computationally hard problem to decide.

Finally, the parsing algorithm is described in Section 6.7. It is based on the path trees
already discussed in Chapter 3, which will be treated more formally in the present chapter.
With these, an optimally streaming parsing algorithm is specified, and its asymptotic run-
time complexity analyzed.

Finally, in Section 6.8, we continue the thread from Section 3.8 and demonstrate the
algorithm by illustrative examples alluding to its expressive power and practical utility.

6.2 Preliminaries

In the following section, we recall the definitions of regular expressions and their interpre-
tation as types from Chapter 3. The regular expressions over Σ are given by the grammar
(Definition 3.2):

E ::= 0 | 1 | a | E1 + E2 | E1E2 | E⋆
1 ,

where a ∈ Σ. Concatenation (juxtaposition) and alternation (+) associates to the right;
parenthesesmay be inserted to override associativity. Kleene star (⋆) binds tightest, followed
by concatenation and alternation.

The standard interpretation of a regular expression E is as a denotation of a regular
languageLJEK ⊆ Σ⋆ (Definition 3.3):

LJ0K = ∅
LJ1K = {ϵ}
LJaK = {a}

LJE1 + E2K = LJE1K ∪ LJE2K
LJE1E2K = LJE1K · LJE2K
LJE⋆K = LJEK⋆,

6.3. THOMPSON FSTS 91

In the remainder of this chapter we shall restrict ourselves to regular expressionsE such that
LJEK ̸= ∅.

For regular expression parsing, we are interested in the interpretation of regular expres-
sions as types, denoting sets of structured values, or parse trees. The values over Σ are ele-
ments formed over the grammar (Definition 3.12):

v ::= () | a | ⟨v1, v2⟩ | inl v1 | inr v1 | [v0, . . . , vn],

where a ∈ Σ. The regular expressions interpreted as types denote sets of these values (Defi-
nition 3.13):

VJ0K = ∅
VJ1K = {()}
VJaK = {a}

VJE1E2K = VJE1K× VJE2K
VJE1 + E2K = VJE1K⊕ VJE2K

VJE⋆
1K = {[v1, . . . , vn] | vi ∈ VJE1K, n ∈ N} .

Recall that |v| is the the flattening of a value v, defined as the word obtained by doing an
in-order traversal of v and writing down all the symbols in the order they are visited (Defi-
nition 3.14). WewriteVwJEK for the restricted set {v ∈ VJEK | |v| = w}. Regular expres-
sion parsing is a generalization of the acceptance problem of determining whether a word
w belongs to the language of some REE, where additionally we produce a parse tree from
VwJEK. We say that an expressoinE is ambiguous iff there exists aw such that |VwJEK| > 1
(Definition 3.20).

Any value can be serialized into a sequence of bits. The bit-code of a value v is written
⌜v⌝ (Definition 3.15):

⌜()⌝ = ϵ

⌜a⌝ = ϵ

⌜⟨v1, v2⟩⌝ = ⌜v1⌝ · ⌜v2⌝
⌜inl v1⌝ = 0 · ⌜v1⌝
⌜inr v1⌝ = 1 · ⌜v1⌝

⌜[v0, . . . , vn]⌝ = 0 · ⌜v0⌝ · . . . · 0 · ⌜vn⌝ · 1.

The set {⌜v⌝ | v ∈ VJEK} is written BJEK (Definition 3.18), and the set of bit-codes that
flatten to a string s is written BsJEK.

Note that for a fixed regular expression E, bit-coding is an isomorphism when seen
as a function ⌜·⌝E : VJEK → BJEK. Its inverse is the decoding ⌞·⌟E : BJEK → VJEK
(Definition 3.16).

6.3 Thompson FSTs

In this sectionwe recall the definitionofThompson FSTs fromSection 3.6. Our construction
is similar to that of Thompson [141], but augmented with extra annotations on some of
the non-deterministic ϵ-transitions. The resulting automata can are a non-deterministic
transducers which for each accepted input string in the language of the underlying regular

92 CHAPTER 6. OPTIMALLY STREAMING PARSING

expression outputs the bit-codes for the corresponding parse trees. Thus, a Thompson FST
is a six-tuple

(Q,Σ,Γ,
{
qin} ,{qfin} ,∆)

where the output alphabet is fixed to Γ = {ϵ, 0, 1} and Σ is the input alphabet (Defini-
tion 3.26). Note that in the paper on which this chapter is based, the augmented NFAs did
not have a formal distinction between input and output alphabets; this was instead accom-
plished by adjoining the special symbols 0 and 1 to the input alphabet of the Thompson
NFA. The end result is equivalent, but we find it cleaner to separate the alphabets, mak-
ing the notation more aligned with standard literature on automata and transducers. A
ThompsonFSTmust havebeen constructedby the extendedThompson construction from
Section 3.6. We recall it in “cheat-sheet form” here:

E FE(q
in, qfin)

0
qin qfin

1
qin qfin

a
qin qfina

E1E2

qin q′ qfinFE1
(qin, q′) FE2

(q′, qfin)

E1 + E2

qin

qin
1 qfin

1

qin
2 qfin

2

qfin

0

1

ϵ

ϵ

FE1
(qin

1 , qfin
1)

FE2
(qin

2 , qfin
2)

E⋆
0

qin q′

qin
0 qfin

0

qfin

0

1

ϵ

ϵ

FE0
(qin

0 , qfin
0)

Here, the notation FE(q
in, qfin) refers to the Thompson FST constructed for the regular

expressionE with inital and final states qin and qfin. Note that, like in Chapter 5, we use the
shorthands:

• 0 and 1 for the FST label pairs ϵ|0 and ϵ|1, respectively,

• a for the FST label a|ϵ,

• ϵ for the FST label ϵ|ϵ.

Figure 6.1 shows a small example of the construction.
A path an a Thompson FST with states Q and transition relation ∆ is a non-empty

sequence of states
q0, q1, . . . , qn

6.3. THOMPSON FSTS 93

0 1

2

3 4

5 6

7

8 9ϵ 1 b

0 ϵ

0

a

1

b

ϵ

ϵ

Figure 6.1: The FSTF(a+b)⋆b(0, 9) for the regular expression (a + b)⋆b.

such that each state in the sequence has a transition in∆ to the next (Definition 3.27). We
call a path between q0 and qn α and write

q0
α
qn

when such a path exists.
Each path α is associated with a (possibly empty) sequence of input/output label pairs

(Definition 3.27). As in Chapter 5, we use the following notation:

• read(α) is the sequence of input labels for a path α,

• write(α) is the sequence of output labels for a path α.

With this notation, the fact that an FST accepts a wordw can be formulated as

qin α
qfin ∧ read(α) = w,

i.e., that there is a path from initial to final state whose input labels form the wordw.
Recall that there is a one-to-one correspondence between bit-codes and accepting paths

(Theorem 5.1). We restate this with the syntactic shorthands used in this chapter:

Theorem. For a regular expressionE with Thompson FSTFE , we have for eachw ∈ LJEK:
BwJEK = {b | qin w|b

qfin
}

=
{

write(α) | qin α
qfin, read(α) = w

}
.

Determinization. Given a state setQ, define its closure as the set

close(Q) =
{
q′ | q ∈ Q ∧ ∃α.read(α) = ϵ ∧ q α

q′
}
.

For any Thompson FSTF = (Q,Σ, {ϵ, 0, 1} ,
{
qin} ,{qfin} ,∆), let

D(F) = (DStateF , IF , FF ,∆F)

94 CHAPTER 6. OPTIMALLY STREAMING PARSING

be the deterministic automatonobtainedby applying the standard subset sumconstruction:
Here, IF = close(

{
qin}) is the initial state, and DStateF ⊆ 2Q is the set of states, defined

to be the smallest set containing IF and closed under the transition function

∆F (Q, a) = close({q′ | (q, a, q′) ∈ ∆, q ∈ Q}).

The set of final states FF is the set
{
Q ∈ DStateM | qfin ∈ Q

}
.

6.4 Disambiguation

A regular expression parsing algorithm has to produce a parse tree for an input word when-
ever the word is in the language for the underlying RE. In the case of ambiguous REs, the
algorithmhas to choose one of several candidates. We do notwant the choice to be arbitrary,
but rather a parse tree which is uniquely identified by a disambiguation policy. As there is a
one-to-one correspondence betweenwords in the language of anREE and accepting paths
in FE , a disambiguation policy can be seen as a deterministic choice between paths that
recognize the same words.

We will focus on greedy disambiguation, which corresponds to choosing the first result
that would have been found by a backtracking regular expression parsing algorithm such as
the one found in the Perl programming language [30]. The greedy strategy has successfully
been implemented in previous work [57, 64], and was also the subject of Chapter 5. It is
simpler to define and implement than other strategies such as POSIX [56, 80]whose known
parsing algorithms are technically more complicated [116, 134, 135].

Greedy disambiguation can be seen as picking the accepting path with the lexicograph-
ically least bitcode (Chapter 5). A well-known problem with backtracking parsing is non-
termination in the case of regular expressions with nullable subexpressions under Kleene
star, which means that the lexicographically least path is not always well-defined (see Exam-
ple 3.12). This problem can easily be solvedbynot problematic paths, as in [57]. Problematic
paths are paths that contain non-productive loops, i.e., a subpath

qn
α′

qn

such that read(α′) = ϵ (Definition 3.28). In practice, when implementingNFA simulation
algorithms, such paths are discarded by maintaining a set of previously visited states. This
is sometimes referred to as “black hole detection.”

6.5 Optimal Streaming

In this section we specify what it means to be an optimally streaming implementation of a
function from sequences to sequences.

Recall from Definition 2.8 that when a wordw is a prefix of another wordw′ it means
that there exists aw′′ such thatww′′ = w′. Wheneverw is a prefix ofw′ we write:

w ⊑ w′.

Note that⊑ is a partial order with greatest lower bounds for nonempty sets L. This is the
longest common prefix

d
L (Definition 2.9), and it is the wordw that is a prefix of all words

inL such that, for any other wordw′ that is also a prefix of all words inL,w′ ⊑ w.

Definition 6.1 (Completions). The set of completions CE(w) ofw for a regular expression
E is the set of all words inLJEK that havew as a prefix:

CE(w) = {w′′ | w ⊑ w′′ ∧ w′′ ∈ LJEK} .

6.5. OPTIMAL STREAMING 95

Note thatCE(w)may be empty.

Lemma 6.1. For words w,w′:

w ⊑ w′ =⇒ CE(w) ⊇ CE(w
′).

Proof. By expanding Definition 6.1:

CE(w) = {v | w ⊑ v ∧ v ∈ LJEK}
⊇ {v | w ⊑ w′ ⊑ v ∧ v ∈ LJEK} = CE(w

′).

Definition 6.2 (Extension). ForCE(w) ̸= ∅, the unique extension ŵE ofw underE is the
longest extension ofwwith a suffix such that all successful extensions ofw to an element of
LJEK are also extensions of ŵ:

ŵE =
l
CE(w).

Wordw is extended underE ifw = ŵ; otherwise it is unextended.

Extension is a closure operation: ̂̂w = ŵ; in particular, extensions are extended.

Example 6.1. LetE = a(ab + ac + ad). Then,

ϵ̂E = aa,
âE = aa,

âabE = aab.

Definition 6.3 (Reduction). IfCE(w) = ∅, the unique reductionwE ofw underE is the
longest prefix ofw with a non-empty completion:

wE = longestw′ such thatw′ ⊑ w ∧ CE(w
′) ̸= ∅.

Given parse function PE (·) : LJEK→ BJEK for complete input strings, we can now
define what it means for an implementation of it to be optimally streaming:

Definition 6.4 (Optimal streaming). The optimally streaming function corresponding to
PE (·) is

OE(w) =

{ d
{PE (w′′) | w′′ ∈ CE(w)} ifCE(w) ̸= ∅

(
d
OE(w)) ♯ ifCE(w) = ∅.

The first condition expresses that after seeing prefix w the function must output all
bits that are a common prefix of all bit-coded parse trees of words in LJEK that w can be
extended to. That is, the partial parse tree for the longest possible word that is guaranteed
to prefix the input word in case of a successful parse. The second condition expresses that
as soon as it is clear that a prefix has no extension to an element of LJEK, an indicator ♯ of
failure must be emitted, with no further output after that. The bits in the bit-code for the
prefix string up until it became clear that a successful path to the final state is impossible
will be output, followed by the failure indicator. In this senseOE is optimally streaming: it
produces output bits at the semantically earliest possible time during input processing.

The function OE is always a streaming variant of its corresponding parsing function
PE (·):

96 CHAPTER 6. OPTIMALLY STREAMING PARSING

Theorem 6.1. For a parsing function PE (·), OE is a streaming function:

w ⊑ w′ =⇒ OE(w) ⊑ OE(w
′).

Proof. There are four cases to consider.

• CE(w) ̸= ∅ and CE(w
′) ̸= ∅: By Lemma 6.1, CE(w

′) ⊆ CE(w), so we must
have:

PE (CE(w
′)) ⊆ PE (CE(w))

and therefore, by Lemma 2.1:

OE(w) =
l

PE (CE(w)) ⊑
l

PE (CE(w
′)) = OE(w

′).

• CE(w) ̸= ∅ andCE(w
′) = ∅: Let v be the unique reduction ofw′: v = w′. Then

w ⊑ v ⊑ w′ andCE(v) ̸= ∅, so by the above case we have

OE(w) ⊑ OE(v)♯ =
(l

PE (CE(v))
)
♯

=
(l(l

PE (CE(v))
))

♯

=
(l

OE(v)
)
♯ = OE(w

′).

• CE(w) = ∅ and CE(w
′) ̸= ∅: If CE(w) = ∅ then it must also be the case that

CE(w
′) = ∅, sincew ⊑ w′. Consequently, this case cannot happen.

• CE(w) = ∅ andCE(w
′) = ∅: Let v and v′ be the reductions ofw andw′: v = w,

v′ = w′. Then v ⊑ w ⊑ v′ ⊑ w′ and we get OE(w) ⊑ OE(w
′) by combining

the above cases.

The definition ofOE has the, at first glance, surprising consequence thatOE may out-
put bits for parts of the input it has not even read yet.

Lemma 6.2. The completions of a wordw under regular expressionE equals the completions
of the extended w:

CE(w) = CE(ŵ).

Proof. Follows from the fact that ŵ is the longest common prefix of CE(w), so it must
admit the same completions asw.

Theorem 6.2. For a regular expressionE, the optimally streaming output on words w equals
the optimally streaming output on their completions:

OE(w) = OE(ŵ).

Proof. There are two cases: CE(w) ̸= ∅ and CE(w) = ∅. In the latter case ŵ is not
defined, so nothing needs to be shown. For the first case, we have, by Lemma 6.2:

OE(w) =
l
{PE (w′′) | w′′ ∈ CE(w)}

=
l
{PE (w′′) | w′′ ∈ CE(ŵ)}

= OE(ŵ).

Example 6.2. Let E = (a + a)(a + a). We have OE(ϵ) = 00; that is, OE outputs 00
off the bat, before reading any input symbols, in anticipation of aa being the only possible
successful extension. Assume the input is ab. After reading a,OE does not output anything,
and after reading b it outputs ♯ to indicate a failed parse, the total output being 00♯.

6.6. COVERAGE 97

6.6 Coverage

Our algorithm is based on simulating Thompson FSTs in lock-step, maintaining a set of
partial paths reading the prefixw of the input that has been consumed so far. In order to be
optimally streaming, we have to identify partial pathswhich are guaranteed not be a prefixes
of a greedy parse for a word inCE(w).

In this section, we define a coverage relation which our parsing algorithm relies on in
order to detect the aforementioned situation. In the following, fix a regular expression E
and its Thompson FSTFE = (QE ,ΣE , {ϵ, 0, 1} ,

{
qin
E

}
,
{
qfin
E

}
,∆E).

Definition 6.5 (Coverage). Let p ∈ QE be a state andQ ⊆ QE a state set. We say thatQ
covers p, writtenQ ⋟ p, if and only if{

read(α) | q α
qfin, q ∈ Q

}
⊇
{

read(β) | p β
qfin
}

(6.1)

Coverage can be seen as a slight generalization of language inclusion. That is, ifQ ⋟ p,
then everyword suffix read by a path from p to the final state can also be read by a path from
one of the states inQ to the final state.

LetFE refer to the automaton obtained by reversing the direction of all transitions and
swapping the initial and final states. It can easily be verified that if (6.1) holds for someQ
and p, then the following property also holds in the reverse automatonFE :{

read(α) | qin α
q, q ∈ Q

}
⊇
{

read(β) | qin α
p
}

(6.2)

If we considerD(FE), the deterministic automaton generated fromFE , then we see that
(6.2) is satisfied if and only if:

∀S ∈ DStateFE
. p ∈ S =⇒ Q ∩ S ̸= ∅. (6.3)

This is true since a DFA state S is reachable by reading a word w in D(FE) if and only
if every q ∈ S is reachable by reading w in FE , by the subset construction. Since a DFA
accepts the same language as the underlying Thompson FST, this implies that condition
(6.2) holds if and only ifQ has a non-empty intersection with all DFA states containing p.

The equivalence of (6.1) and (6.3) gives us a method to decide ⋟ in a Thompson FST
FE , provided thatwehave computedD(FE)beforehand. Checking (6.3) for a particularQ
andp canbedoneby intersecting all states ofDStateFE

withQ, using timeO(|Q||DStateFE
|) =

O(|Q|2O(m)), wherem is the size of the regular expressionE.
The exponential cost appears to be unavoidable—the problem of deciding coverage is

inherently hard to compute:

Proposition 6.1. The problem of deciding coverage, that is the set

{(E,Q, p) | Q ⊆ QE ∧Q ⋟ p} ,

is PSPACE-hard.

Proof. We can reduce regular expression equivalence to coverage: Given regular expressions
E and F , produce a Thompson FST FE+F for E + F and observe that FE and FF are
subautomata. Now observe that there is a path

qin
E+F

α
qfin
E (respectively qin

E+F

β
qfin
F)

98 CHAPTER 6. OPTIMALLY STREAMING PARSING

inFE+F if and only if there is a path

qin
E

α′
qfin
E

with read(α) = read(α′) in FE (respectively qin
F

β′

qfin
F with read(β) = read(β′) in

MF). Hence, inFE+F we have{
qin
F

}
⋟ qin

E ⇐⇒ LJEK ⊆ LJF K.
Regular expression containment is PSPACE-complete [132], so therefore coverage must be
PSPACE-hard.

Even after having computed a determinized automaton, the decision version of the cov-
erage problem is still NP-complete, which we show by reduction to and fromMin-Cover,
a well-known NP-complete problem [37, Chapter 35.3]. Let State-Cover refer to the
problem of deciding membership for the language

{(F , D(F), p, k) | ∃Q. |Q| = k ∧ p ̸∈ Q ∧Q ⋟ p inF} .

Recall that Min-Cover is the problem of deciding membership for the language{
(X,H, k) | ∃C ⊆ H. |C| = k ∧X =

∪
C
}
.

Proposition 6.2. State-Cover is NP-complete.

Proof. State-Cover =⇒ Min-Cover: Let (F , D(F), p, k) be given. Define X =
{S ∈ DStateF | p ∈ S} and H = {Rq | q ∈

∪
X} where Rq = {S ∈ X | q ∈ S}.

Then any k-sized set cover
C = {Rq1 , ..., Rqk}

gives a state coverQ = {q1, ..., qk} and vice-versa.
Min-Cover =⇒ State-Cover: Let (X,H, k) be given, where |X| = m and

|H| = n. Construct a Thompson FSTFX,H over the alphabetΣ = X ⊎ {$}. Define its
states to be the set {

qin, qfin, p
}
∪ {H1, . . . , Hn} .

For eachHi, add transitions

Hi
$
qfin and qin xij

Hi

for each xij ∈ Hi. Finally, add transitions p $
qfin and qin x

p for each x ∈ X .
Observe thatD(FX,H)will have states

{{
qin} ,{qfin}} ∪ {Sx | x ∈ X}where

Sx = {H ∈ H | x ∈ H} ∪ {p} ,

and∆FX,H(
{
qin} , x) = Sx. The time to computeD(FX,F) is bounded byO(|X||H|).

Then any k-sized state coverQ = {H1, . . . ,Hk} is also a set cover.

6.7. ALGORITHM 99

6.7 Algorithm

Our parsing algorithm produces a bit-coded parse tree from an input string w for a given
regular expression E. We will simulate FE in lock-step, reading a symbol from w in each
step. The simulation maintains a set of all partial paths that read the prefix of w that has
been consumed so far; there are always only finitelymany paths to consider, sincewe restrict
ourselves to paths without non-productive loops (non-problematic paths). When a path
reaches a non-deterministic choice, it will “fork” into two paths with the same prefix. Thus,
the path set can be represented as a tree of states, where the root is the initial state, the edges
are transitions between states, and the leaves are the reachable states.

Definition 6.6 (Path trees). A path tree is a rooted, ordered, binary tree with internal nodes
of outdegrees 1 or 2. Nodes are labeled by Thompson FST-states and edges by Γ = Σ ∪
{ϵ, 0, 1}. Binary nodes have a pair of 0- and 1-labeled edges (in this order only), respectively.

We use the following notation:

• root(T) is the root node of path tree T .

• path(n, c) is the path from n to c, where c is a descendant of n.

• init(T) is the path from the root to the first binary node reachable or to the unique
leaf of T if it has no binary node.

• leaves(T) is the ordered list of leaf nodes.

• Trempty is the empty tree.

As a notational convenience, the tree with a root node labeled q and no children is written
q⟨·⟩, where q is a state in a Thompson FST. Similarly, a tree with a root labeled q with
children l and r is written q⟨0 : l, 1 : r⟩, where q is a state in a Thompson FST and l and r
are path trees and the edges from q to l and r are labeled 0 and 1, respectively. Unary nodes
are labelled byΣ ∪ {ϵ} and are written q⟨ℓ : c⟩, denoting a tree rooted at q with only one
ℓ-labelled child c.

In the following we shall use Tw to refer to a path tree created after processing input
wordw and T to refer to path trees in general, where the input string giving rise to the tree
is irrelevant.

Definition 6.7 (Path tree invariant). Let Tw be a path tree andw a word. Define I(Tw) as
the proposition that all of the following hold:

1. The leaves(Tw) have pairwise distinct node labels; all labels are symbol sources, that
is states with a single symbol transition, or the accept state.

2. All paths from the root to a leaf readw:

∀n ∈ leaves(Tw). read(path(root(Tw), n)) = w.

3. For each leaf n ∈ leaves(Tw) there exists w′′ ∈ CE(w) such that the bit-coded
parse ofw′′ starts with write(path(root(Tw), n)).

4. For eachw′′ ∈ CE(w) there exists n ∈ leaves(Tw) such that the bit-coded parse of
w′′ starts with write(path(root(Tw), n)).

100 CHAPTER 6. OPTIMALLY STREAMING PARSING

Require: A Thompson FSTF , a coverage relation⋟, and an input stream S.
Ensure: The greedy leftmost parse tree of S, emitted in an optimally-streaming fashion.

1: function Stream-Parse(F ,⋟, S)
2: w ← ϵ
3: (Tϵ,)← closure(F , ∅, qin) ▷ Initialize path tree as the output of closure
4: while S has another input symbol a do
5: if CE(wa) = ∅ then
6: return write(init(Tw)) followed by ♯ and exit.
7: end if
8: Twa ← Establish-Invariant(Tw, a,F ,⋟)
9: Output new bits on the path to the first binary node in Twa, if any.
10: w ← wa
11: end while
12: if qfin ∈ leaves(Tw) then
13: return write(path(root(Tw), qfin))
14: else
15: return write(init(Tw)) followed by ♯
16: end if
17: end function

Algorithm 1: Optimally streaming greedy regular expression parsing algorithm.

Require: A path tree Tw satisfying invariant I(Tw), a character a, a Thompson FST F ,
and a coverage relation⋟.

Ensure: A path tree Twa satisfying invariant I(Twa).
1: function Establish-Invariant(Tw , a,F ,⋟)
2: Remove leaves from Tw that do not have a transition on a.
3: Extend Tw to Twa by following all a-transitions.
4: for each leaf n in Twa do
5: (T ′,)← closure(F , ∅, n).
6: Replace the leaf nwith the tree T ′ in Twa.
7: end for
8: return prune(Twa,⋟)
9: end function

Algorithm 2: Establishing invariant I(Twa).

The path tree invariant is maintained by Algorithm 2: line 2 establishes part 1; line 3
establishes part 2; and lines 4–7 establish part 3 and 4.

Theorem 6.3 (Optimal streaming property). Assume extended w = ŵ, CE(w) ̸= ∅.
Consider the path tree Tw after reading w upon entry into the while-loop of the algorithm in
Algorithm 1. Then write(init(Tw)) = OE(w).

In other words, the initial path from the root of Tw to the first binary node in Tw is the
longest common prefix of all paths that accept words that are prefixed by w. Operationally,
whenever that path gets longer by pruning branches, we output the bits on the extension.

Proof. Assume w extended, that is w = ŵ; assume CE(w) ̸= ∅, that is there exists w′′

such thatw ⊑ w′′ andw′′ ∈ LJEK.

6.7. ALGORITHM 101

Require: A path tree T and a covering relation⋟.
Ensure: A pruned path tree T ′ where all leaves are alive.

1: function prune(T,⋟)
2: for each l in reverse(leaves(T)) do
3: S ← {n | n comes before l in leaves(T)}
4: if S ⋟ l then
5: p← parent(l)
6: Delete l from T
7: T ← cut(T, p)
8: end if
9: end for
10: return T
11: end function
12: function cut(T, n) ▷ Cuts a chain of 1-ary nodes.
13: if |children(n)| = 0 then
14: p← parent(n)
15: T ′ ← T with n removed
16: return cut(T ′, p)
17: else
18: return T
19: end if
20: end function

Algorithm 3: Pruning algorithm.

Claim: |leaves(Tw)| ≥ 2 or the unique node in leaves(Tw) is labeled by the accept
state. Proof of claim: Assume otherwise, that is |leaves(Tw)| = 1, but its node is not
the accept state. By (1) of I(Tw), this means the node must have a symbol transition on
some symbol a. In this case, all accepting pathsCE(wa) = CE(w) and thus ŵ = ŵa; in
particular ŵ ̸= w, which, however, is a contradiction to the assumption thatw is extended.

This means we have two cases. The case |leaves(Tw)| = 1 with the sole node being
labeled by the accept state is easy: It spells a single path from initial to accept state. By (2)
and (3) of I(Tw)we have that this path is correct forw. By (4) and since the accept state has
no outgoing transitions, we haveCE(w) = {w}, and the theorem follows for this case.

Consider the case |leaves(Tw)| ≥ 2. Recall thatCE(w) ̸= ∅ by assumption. By (4) of
I(Tw) the accepting path of every w′′ ∈ CE(w) starts with path(root(Tw), n) for some
n ∈ leaves(Tw), and by (3) each path from the root to a leaf is the start of some accept
path. Since |leaves(Tw)| ≥ 2we know that there exists a binary node in Tw. Consider the
first binary node on the path from the root to a leaf. It has both 0- and 1-labeled out-edges.
Thus the longest common prefix of

{write(p) | n ∈ leaves(Tw), p ∈ path(root(Tw), n)}

is write(init(Tw)), the bits on the initial path from the root of Tw to its first binary node.

The algorithm as given is only optimally streaming for extended prefixes. It can bemade
to work for all prefixes by enclosing it in an outer loop that for each prefix w computes ŵ
and calls the Algorithm 1 with ŵ. The outer loop then checks that subsequent symbols

102 CHAPTER 6. OPTIMALLY STREAMING PARSING

Require: A Thompson FSTF , a set of visited states V , and a state q
Ensure: A path tree T and a set of visited states V ′

1: function closure(F , V, q)
2: if q 0 ql and q 1 qr then
3: (T l, Vl)← closure(F , V ∪ {q} , ql) ▷Try left option first.
4: (T r, Vlr)← closure(F , Vl, qr) ▷Use Vl to skip already-visited nodes.
5: return (q⟨T l : T r⟩, Vlr)
6: end if
7: if q ϵ p then
8: if p ∈ V then ▷ Stop loops.
9: return (Trempty, V)
10: else
11: (T ′, V ′)← closure(F , V ∪ {q} , p)
12: return (q⟨ϵ : T ′⟩, V ′)
13: end if
14: else ▷ q is a symbol source or the final state.
15: return (q⟨·⟩, V)
16: end if
17: end function

Algorithm 4: Ordered ϵ-closure with path tree construction.

match until ŵ is reached. By Theorem 6.2, the resulting algorithm gives the right result for
all input prefixes, not only extended ones.

Theorem 6.4. The optimally streaming algorithm can be implemented to run in time

O(2m logm +mn),

wherem = |E| and n = |w|.

Proof. As shown in Section 6.6, we can decide coverage in timeO(m2O(m)). The set of or-
dered lists leaves(T) for anyT reachable from the initial state can be precomputed and cov-
ered states marked in it. (This requires unit-cost random access since there areO(2m logm)
such lists.) The ϵ-closure can be computed in timeO(m) for each input symbol, and prun-
ing can be amortized over ϵ-closure computation by charging each edge removed to its ad-
dition to a tree path.

For a fixed regular expressionE this is linear time in n and thus asymptotically optimal.
An exponential inm as an additive preprocessing cost appears practically unavoidable since
we require the coverage relation, which is inherently hard to compute (Proposition 6.1).

6.8 Examples

Werevisit the example fromSection 3.8. Consider theRE (aaa+aa)⋆. A simplified versionof
itsThompsonFST is shown inFigure 6.2. The following twoobservations are requirements
for an earliest parse of this expression:

• After one a has been read, the algorithmmust output a 0 to indicate that one iteration
of the Kleene star has been made, but:

6.8. EXAMPLES 103

• five consecutive as determine that the leftmost possibility in the Kleene star choice
was taken, meaning that the first three as are consumed in that branch.

The first point can be seen by noting that any parse of a non-zero number of as must
follow apath through theKleene star. This guarantees that if a successful parse is eventually
performed, it must be the case that at least one iteration was made.

The second point can be seen by considering the situation where only four input as
have been read: it is not known whether these are the only four or more input symbols in
the stream. In the former case, the correct (and only) parse is two iterations with the right
alternative, but in the latter case, the first three symbols are consumed in the left branch
instead.

These observations correspond intuitively to what “earliest” parsing is: as soon as it is
impossible that an iteration was not made, a bit indicating this fact is emitted, and as soon
as the first three symbols must have been parsed in the left alternative, this fact is output.
Furthermore, a 0-bit is emitted to indicate that (at least) another iteration is performed.

Figure 6.2 shows the evolution of the path tree during executionwith theRE (aaa+aa)⋆
on the input aaaaa.

By similar reasoning as above, after five as it is safe to commit to the left alternative af-
ter every third a. Hence, for the inputs aaaaa(aaa)n, aaaaa(aaa)na, and aaaaa(aaa)naa the
“commit points” are placed as follows (· indicates end-of-input):

a
0
| aaaa

00
|
(
aaa
00
| · · · | aaa

00

)
︸ ︷︷ ︸

n times

| ·
11

a
0
| aaaa

00
|
(
aaa
00
| · · · | aaa

00

)
︸ ︷︷ ︸

n times

| a·
01

a
0
| aaaa

00
|
(
aaa
00
| · · · | aaa

00

)
︸ ︷︷ ︸

n times

| aa·
1011

6.8.1 Complex Coverage

The previous example does not exhibit any non-trivial coverage, i.e., situations where a state
n is coveredbyk > 1other states. One can construct an expression that contains non-trivial
coverage relations by observing that if each symbol source s in the FST is associated with
the RE representing the language recognized from s, coverage can be expressed as a set of
(in)equations in Kleene algebra (see also Section 4.1). Thus, the coverage {n0, n1} ⋟ n
becomesRE(n0) + RE(n1) ≥ RE(n) in Kleene algebra, whereRE(·) is the function
that yields the regular expression for the language recognized from a symbol source in a
Thompson FST.

Any expression of the form x1zy1 + x2zy2 + x3z(y1 + y2) satisfies the property
that two subterms cover a third. If the coverage is to play a role in the algorithm, however,
the languages denoted by x1 and x2 must not subsume that of x3, otherwise the subterm
(subautomaton) starting with x3 would never play a role due to the greedy leftmost disam-
biguation.

Choose x1 = x2 = (aa)⋆, x3 = a⋆, y1 = a, and y2 = b. Figure 6.3 shows the
expression

(aa)⋆za+ aa⋆zb + a⋆za + b = (aa)⋆(za+ zb) + a⋆z(a + b).

The earliest point where any bits can be output is when the z is reached. Then it becomes
knownwhether there was an even or odd number of as. Due to the coverage {8, 13} ⋟ 20,

104 CHAPTER 6. OPTIMALLY STREAMING PARSING

0 1 2 3
7
11

ϵ

0 1 2 3
7

4
8

a

0 1 2 3
7

4
8 9 10 1 2

7
11

5
a

0 1 2 3
7

4
8 9 10 1 2

7

5 6 10 1 2 3
7
11
8

a

0 1 2 3
7

4
8 9 10 1 2

7

5 6 10 1 2 3
7

8

4
8

9 10 1
11

a

0 1 2 3 4 5 6 10 1 2 3
7

4
8

5
9 10 1 2

7
11

a

0 1 11

2

3 4 5 6

7 8 9

10

ϵ 1

0 ϵ

0

1

ϵ

ϵ

a a a

a a

{5} ⋟ 8

{4} ⋟ 7

{8} ⋟ 5

{7} ⋟ 4

{5} ⋟ 3

Figure 6.2: Example run of the algorithm on the regular expression E = (aaa + aa)⋆ and
the input string aaaaa. The dashed edges represent the partial parse trees that can be emitted:
thus, after one a we can emit a 0, and after five as we can emit 00 because the bottom “leg”
of the tree has been removed in the pruning step. The automaton forE and its associated
minimal covering relation are shown in the inset.

6.8. EXAMPLES 105

1 2 3 4

8
13

18
20

7

1710 19 17 18
20

5 6 3 4

8
13

18
20

7

1719 19 17 18
20

5

21 22
25 26 24 12

ϵ a a a z b

1 2 3 4

8
13

18
20

7

1710 19 17 18
20

5 6 3 4

8
13

18
20

7

1719

9
14 15 11 12

ϵ a a z b

1

2 3

4 5 6

7

8 9 10

11

13 14 15

16 17

18 19

20 21

22 23

24

25 26

12

0

ϵ

0
a a

ϵ

1
0

z a
ϵ

1
z b

ϵ
ϵ

1

ϵ

0

a

ϵ

1 z
0

a
ϵ

1
b

ϵ

ϵ

{14} ⋟ 25

{9} ⋟ 22

{8, 13} ⋟ 20

{4, 5} ⋟ 18

{25} ⋟ 14

{20} ⋟ 13

{22} ⋟ 9

{20} ⋟ 8

{18} ⋟ 5

{18} ⋟ 4

Figure 6.3: Example run of the algorithm onE = (aa)⋆(za+ zb) + a⋆z(a+ b). Note that
state 20 is covered by the combination of states 8 and 13. The earliest time the algorithm
can do a commit is when a z is encountered, which decides whether there is an even or odd
number of as. The topmost figure shows the evolution of the path tree on the input aaazb.
There is a long “trunk” from state 1 to state 21 after reading z, as the rest of the branches
have been pruned (not shown). The desired output, corresponding to taking the rightmost
option in the sum, can be read off the labels on the edges. Likewise in the second figure,
we see that if the z comes after an even number of as, a binary-node-free path from 1 to
7 emerges. Due to the cover {8, 13} ⋟ 20, the branch starting from 20 is not expanded
further, even though there could be a z-transition on it. This is indicated with . Overall,
the resulting parse tree corresponds to the leftmost option in the sum.

106 CHAPTER 6. OPTIMALLY STREAMING PARSING

state 20 is pruned away on the input aazb, thereby causing the path tree to have a large trunk
that can be output.

6.8.2 CSV Files

The expression ((a+b)⋆(;(a+b)⋆)⋆n)⋆ defines the format of a simple semicolon-delimited
data format with data consisting of words over {a, b} and rows separated by the newline
character, n. Our algorithm emits the partial parse trees after each letter has been parsed, as
illustrated on the example input below:

a;ba;a
b;;b a

000
| ;

10
| b

01
| a

00
| ;

10
| a

00
| n

11
| b

001
| ;

10
| ;

10
| a

00
| n

11
| ·

1

Due to the star-height of three, many widespread implementations would not be able
to meaningfully handle this expression using only the RE engine. Capturing groups under
Kleene stars return either the first or lastmatch, but not a list ofmatches—and certainly not
a list of lists of matches! Hence, if using an implementation like Perl’s [30], one is forced to
rewrite the expression by removing the iteration in the outer Kleene star and reintroduce it
as a looping construct in Perl.

6.9 Related and Future Work

Parsing regular expressions is not new [42, 57, 64, 114, 134], and streaming parsing of XML
documents has been investigated for more than a decade in the context of XQuery and
XPath—see, e.g., [41, 70, 152]. However, streaming regular expression parsing appears to
be new.

In earlier work [64], presented in Chapter 5, we described a compact “lean log” for-
mat for storing intermediate information required for two-pass regular expression parsing.
The algorithm presented here may degenerate to two passes, but requires often just one
pass in the sense being effectively streaming, using onlyO(m) work space, independent of
n. The preprocessing of the regular expression and the intermediate data structure during
input string processing are more complex, however. It may be possible to merge the two
approaches using a tree of lean log frames with associated counters, observing that edges
in the path tree that are not labeled 0 or 1 are redundant. This is an area for future work.
In Chapter 7 we shall see a method for determinizing FSTs while getting mostly-optimal
streaming, based on the algorithm presented here.

7 Kleenex: Compiling Nondeterministic
Transducers to Deterministic Streaming
Transducers

This chapter is based on the paper “Kleenex: Compiling Nondeterministic Transducers to
Deterministic Streaming Transducers” that has been submitted to POPL 2016 [66].

7.1 Introduction

Imagine you want to implement syntax highlighting. This can be thought of as parsing
the input into its tokens and processing each token according to its class. For illustration,
assumewehaveonekeyword, “for,” and alphabetic identifiers as the only tokens. The lexical
structure of the input is essentially described by the regular expression ((for+ [a− z]⋆))⋆,
where whitespace is, for simplicity, represented by the single blank between the two closing
parentheses. This scenario highlights the following:

Ambiguity by design. The RE is ambiguous. The intended semantics is that the left alter-
native has higher priority than the right. This is greedy disambiguation: Choose the
left alternative if possible, treatingE⋆ as its unfolding EE⋆ +1. Accordingly, in our
example “for” matches the left alternative, not the right.

Regular expression parsing. Note that the RE has star height two; in particular, we need to
parse the input undermultiple Kleene stars. For ourRE the parse of a string is a list of
segments (corresponding to the outer Kleene star), with each segment represented by
a pair, a token and whitespace (corresponding to concatenation), where each token
is tagged (corresponding to the alternation) to indicate that it is either the keyword
“for” or an identifier; an identifier, in turn, consists of a list (corresponding to the
inner Kleene star) of characters.

Output actions. We need to output something, the highlighted tokens, not just accept or
reject a string as is done by finite automata. Note that output actions are not specified
in our RE.

Wewould like to do the highlighting in a streaming fashion, using as little internal storage as
possible and performing output actions as early as they are determined by the input prefix
read so far, at a high sustained input processing rate, in particular in worst-case linear-time
in the length of the input stream with a low factor depending linearly on the size of the RE.
We would like to accomplish this automatically for arbitrary REs (or similar input format
specification) and output actions, with speeds that in practice adapt to how much output

107

108 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

actually needs to be produced; in particular, performance should gracefully approach pure
acceptance testing as more and more output actions are removed. How?

Asdiscussed inChapter 3, it turns out that the set of parses are exactly the elements of the
RE read as a type [57, 75]: Kleene star is the (finite) list type constructor, concatenation the
Cartesian product, alternation the sum type and an individual character the singleton type
containing that character. A Thompson automaton [141] represents an RE in a strong sense:
the complete paths—paths from initial to final state—are in one-to-one correspondence
with the parses (Theorem 5.1) [64]. If a string has four parses (e.g. “for for ”), then there are
exactly four complete paths accepting it. Let us look at bit closer at a Thompson automaton
(Definition 3.5): It is non-deterministic, with ϵ-transitions, easily constructed, havingO(m)
states and transitions from anRE of sizem. It has exactly one initial and one accepting state.
Every state is either non-deterministic: it has two outgoing ϵ-transitions (“left” or “right”);
or it is deterministic: it has exactly one outgoing transition labeled by ϵ or an input symbol,
or it is the final state, which has no outgoing transition. Every complete path is determined
by a sequence of bits used as an oracle (Chapter 5) [64]. Startingwith the initial state, follow
all outgoing transitions fromdeterministic states; upon arriving at a non-deterministic state
query the oracle to determine whether to go left or right, until the final state is reached. The
bit sequence of query responses yields a prefix-free binary code for the string accepted on
the designated path. This bit-code can also be computed directly from the RE underlying
the Thompson NFA [75, 114]. The key observation is that only alternation needs to be
coded by a bit; symbols, concatenation and unfolding of Kleene-star expresssions require
zero bits. Since a bit-code represents a particular parse, a string can have multiple bit-codes
if and only if theRE (and thusThompson automaton) is ambiguous (Definition 3.20): The
greedy parse of a string, which we are interested in, corresponds to the lexicographically least
amongst its bit-codes (Chapter 5) [64].

The greedy RE parsing problem is producing this lexicographically least bit-code for a
stringmatching a givenRE.Aswe saw inChapter 6, this can be done by an optimally stream-
ing algorithm, running in time linear in the size of the input string for fixed RE [65]: The
bits in the output are produced as soon as they are uniquely determined by the input prefix
read so far, assuming the input string will eventually be accepted. The algorithmmaintains
an ordered path tree from the initial state to all the automata states reachable by the input
prefix read so far. Abranching node represents both sides of an alternation that are both still
viable. The (possibly empty) path segment from the initial state to the first branching node
is what can be output based on the input prefix processed so far, without knowingwhich of
the presently reached stateswill eventually accept the rest of the input. Thisworks for all reg-
ular expressions and all inputs; e.g., it automatically results in constant memory space con-
sumption for REs that are deterministic modulo finite look-ahead, e.g. one-unambiguous
REs [25].

Let us step back a bit. It is possible to aggressively (“earliest possible”) and efficiently
stream out the bit-code of the greedy parse of an input string under a given regular expres-
sion as the input is streaming in: worst-case linear time in the input string size, no back-
tracking and each input symbol can be processed in time O(m), linear in the size of the
RE and of its Thompson NFA. (Here it is critical that Thompson NFAs have ϵ-transitions
since equivalent ϵ-free automata require Ω(m logm) transitions [128] and standard ϵ-free
NFA-constructions [9, 59, 81] evenΩ(m2).)

Coming back to our syntax highlighting problem, we can use this algorithm to parse the
input, build the parse tree from the bit-code and recursively descend it to perform the syn-
tax highlighting. We might (correctly) suspect that the highlighting can be done by piping
the bit-code into a separate highlighter process, eliding the materialization of the bit-code.
In this chapter we show that we can do better yet: The algorithm can be generalized to

7.2. TRANSDUCERS 109

simulating arbitrary non-deterministic finite-state transducers, NFAs with output actions.
Furthermore, we can compile their non-determinism away by producing theoretically and
practically very efficient streaming string transducers [3–5].

7.1.1 Contributions

We present the following contributions in this chapter:

• Anaggressively streaming algorithmfornon-deterministic finite state transducers (FSTs)
for orderedoutput alphabets, which emits the lexicographically least output sequence
generated by all accepting paths of an input string. It runs in O(mn) time, for au-
tomata of sizem and inputs of size n.

• An effective determinization of FSTs into a subclass of streaming string transducers
(SST) [3], finite state machines with string registers that are updated linearly when
entering the state upon reading an input symbol. The number of registers required
adapts to the number of output actions in the FST: The fewer output actions the
fewer registers. Inparticular, without special-casing, no registers are generated—yielding
a deterministic finite automata (DFA).

• An expressive declarative language, Kleenex, for specifying FSTs with full support
for and clear semantics of unrestricted nondeterminism by greedy disambiguation.
A basic Kleenex program is a context-free grammar with embedded semantic output
actions, but syntactically restricted to ensure that the input is regular.1 Basic Kleenex
programs can be functionally composed into pipelines. The central technical aspect
of Kleenex is its semantic support for unbridled (regular) non-determinism and its
effective determinization and compilation to SSTs, thus both highlighting and com-
plementing their significance.

• An implementation, including some empirically evaluated optimizations, ofKleenex
that generates SSTs and sequential machines rendered as standard single-threaded C-
code, which is eventually compiled to X86machine code. The optimizations, which
are neither conclusive nor final, illustrate the design robustness obtained by the un-
derlying theories of ordered FSTs and SSTs.

• Use cases and examples that illustrate the expressive power of Kleenex, and a per-
formance comparison with related tools, including Ragel [142], RE2 [139], and spe-
cialized string processing tools. These document Kleenex’s consistently high perfor-
mance (typically around 1Gbps, single core, on stockhardware) evenwhen compared
to expressivelymore specialized tools with special-cased algorithms and tools with no
or limited support for non-determinism.

7.2 Transducers

The semantics of Kleenex will be given by translation to non-deterministic finite state trans-
ducers, which are finite automata extendedwith output in a freemonoid. In this section, we
will recall the standard definition (see also Chapter 3 and the standard work by Berstel [18]).

1This facilitates avoiding theΩ(M(n)) lower bound for context-free grammar parsing, whereM(n) is the
complexity of multiplying n× nmatrices.

110 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

Since Kleenex is deterministic, we also need to define a disambiguated semantics which al-
lows us to interpret any non-deterministic transducer as a partial function, even when it
may have more than one possible output for a given input string.

In the following, an alphabet is understood to be a finite subset {0, 1, ..., n− 1} ⊆ N
of consecutive natural numbers with their usual ordering. The alphabets Σ and Γ called
the input and output alphabets, respectively. We recall some definitions about finite state
transducers and paths through them from Chapter 3.

Definition 7.1 (Finite state transducer). A finite state transducer (FST) over Σ and Γ is a
six-tuple

F = (Q,Σ,Γ, qin, qfin,∆)

where

• Q is a finite set of states;

• qin, qfin ∈ Q are the initial and final states, respectively;

• ∆ ⊆ Q× (Σ ∪ {ϵ})× (Γ ∪ {ϵ})×Q is the transition relation.

We write q
x|y−−→ q′ whenever (q, x, y, q′) ∈ ∆.

Definition 7.2. The support of q ∈ Q is:

supp(q) =
{
x ∈ Σ ∪ {ϵ} | ∃q′, v. q

x|v
q′
}
.

A path inF is a sequence of transitions (Definition 3.27):

q0
x1|y1−−−→ q1

x2|y2−−−→ . . .
xn|yn−−−−→ qn.

It has input label u = x1x2...xn and output label v = y1y2...yn. We write q0
u|v

qn if a
path from q0 to qn with input label u and output label v exists.

Definition 7.3 (Normalized FST). AnFSTF is normalized if for every state q ∈ QF , either

supp(q) = {ϵ} or supp(q) ⊆ Σ,

and supp(qf) ⊆ Σ. If supp(q) ⊆ Σwe write q ↓.

In other words, a q such that q ↓ is a state with no outgoing ϵ-transitions but possibly
with outgoing symbol transitions.

The formulation of our simulation algorithm in Section 7.4 becomes simpler when re-
stricting our attention to normalized transducers, since we can take advantage of the follow-
ing separation property:

Proposition 7.1. If F is normalized, then

p
uv|z

r ↓,

for v ̸= ϵ, if and only if there exists a q such that z = xy and

p
u|x

q ↓
v|y

r ↓ .

7.2. TRANSDUCERS 111

Proof. Let a path in a normalized FSTF be given:

p
uv|z

r ↓ .

As v ̸= ϵ it must be the case that after reading u the state r from which the first symbol in
v is read has a character transition. Because F is normalized, if r has a character transition
it has only character transitions: r ↓. Therefore,

p
u|x

q ↓
v|y

r ↓ .

The other direction follows immediately.

Definition 7.4 (Relational semantics). An FSTF denotes a relation

JFK ⊆ Σ⋆ × Γ⋆

with (u, v) ∈ JFK if and only if qin u|v
qfin.

The relations definable as FSTs are the rational relations [18]. In the special case where
for any u ∈ Σ⋆ there is at most one v ∈ Γ⋆ such that (u, v) ∈ JFK, the transducer
computes a partial function.

Any FSTF can be translated to an equivalent normalized FST: For any state q inF that
has both ϵ- and character-transitions, add an extra state q′, move the character transitions
from q to q′ and make a new ϵ-transition from q to q′. Now q has only ϵ-transitions and q′
has only character transitions.

In the following we give a refined semantics which allows us to interpret any FST as de-
noting apartial function, using the assumedorderingon alphabets todisambiguate between
outputs. As usual, our semantics requires restricting paths to be non-problematic [57] (Def-
inition 3.28): If a path contains a non-empty loop

q′
ϵ|v′

q′

with empty input label, then the path is said to be problematic. If not, it is non-problematic.
If there is a non-problematic path from q to q′ with labels u, v, then we write a subscript
on the arrow:

q
u|v

np q
′.

The output words (elements of Γ⋆) are lexicographically ordered. That is,w1 ≤ w2 if
either:

• w1 ⊑ w2,w1 is a prefix ofw2, or

• there existwordsw′, w′
1, w

′
2 and symbols b1, b2 ∈ Γ such thatw1 = w′b1w

′
1,w2 =

w′b2w
′
2 and b1 < b2.

We use the ordering on output words to choose a single path from a non-empty set of paths:

Definition 7.5 (Functional semantics). Any transducerF denotes a partial function

JFK≤ : Σ⋆ → Γ⋆ ∪ {∅}

JFK≤(u) = min
{
v | qin u|v

np q
fin
}
.

112 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

Why the restriction to non-problematic paths? Consider the following transducer:

q1 q2a|1

ϵ|0

Then
min

{
v | q1

a|v
q2

}
= ∅,

as evidenced by the following infinitely descending chain of outputs: 1 ≥ 01 ≥ 001 ≥
0001 ≥ Operationally, such a chain corresponds to a non-terminating backtracking
search. On the other hand, the number of non-problematic paths with a given input label is
always finite, ensuringwell-foundedness of the lexicographic order. Every problematic path
has a corresponding non-problematic pathwith the same input label. We therefore have the
following property:

Proposition 7.2. dom(JFK≤) = dom(JFK).
Proof. For any input w ∈ dom(JFK) the set of paths through F will either only contain
non-problematic paths or it will contain some problematic paths. In the former case we are
done, and in the latter case we can just use the fact that w · ϵ = ϵ · w = w to remove the
non-problematic paths.

7.3 Kleenex

The core syntax of Kleenex is essentially that of right linear grammars extended with output
actions and choice operators. Semantically, a Kleenex program denotes a function which
transforms an input string from a regular language into a sequence of action symbols, with
the caveat that if the input grammar is ambiguous, then the production rules are chosen
according to a greedy leftmost disambiguation strategy.

We will first present the abstract syntax of core Kleenex, which is given a semantics in
terms of the transducers introduced in Section 7.2.

Definition 7.6 (Kleenex syntax). Let Σ and Γ be two alphabets. A Kleenex program is a
non-empty list p = d0d1 . . . dn of definitions di, each of the formNi:= ti, where ti is a
term generated by the grammar:

t ::= 1 | N | a t | "b" t | t0|t1

In the above,N is assumed to rangeover some set ofnon-terminal identifiers{N1, . . . , Nn},
a ∈ Σ over input symbols and b ∈ Γ over output actions.

We restrict the valid Kleenex programs to those where there is atmost one definition for
each non-terminal identifier.

Let p be aKleenex programover non-terminals {N1, . . . , Nn}. We define a set of states
Qp and two transition relationsEA

p , E
C
p as the smallest sets closed under the following rules:

N1 ∈ Qp

Ni ∈ Qp

ti ∈ Qp (Ni, ϵ, ϵ, ti) ∈ EA
p ∩ EC

p

(Ni:= ti)

a t ∈ Qp

t ∈ Qp (a t, a, ϵ, t) ∈ EC
p (a t, ϵ, ϵ, t) ∈ EA

p

7.3. KLEENEX 113

main := odd ~/a/
| even ~/a/

odd := ~/aa/ "bb" odd
| "c"

even := ~/a/ "c" even
| "b"

Nmain :=Nodd|Neven

Nodd := a a "b" "b"Nodd

|" c " a 1
Neven := a "c"Neven|"b" a 1

Nmain

Nodd

a1 a2

a3

Neven

a4

a5

1

ϵ/1

ϵ/0

ϵ/0

ϵ/1

a/ϵ a/ϵ ϵ/ϵ

ϵ/ϵ

ϵ/ϵ a/ϵ
ϵ/ϵ

ϵ/0

ϵ/1

a/ϵ

ϵ/ϵ

ϵ/ϵ a/ϵ

ϵ/ϵ

Nmain

Nodd

Neven

1

1/ϵ

0/ϵ

0/ϵ

1/ϵ

ϵ/ϵ ϵ/ϵ ϵ/b

ϵ/b

ϵ/c ϵ/ϵ
ϵ/ϵ

0/ϵ

1/ϵ

ϵ/ϵ

ϵ/c

ϵ/b ϵ/ϵ

ϵ/ϵ

Figure 7.1: In the top left is a Kleenex program in the surface syntax and on the right is the
desugared version. Below, the oracle transducer and action machine is shown, from left to
right. The transduction realized by the program maps a2n+1 to b2nc, and a2n+2 to c2nb,
respectively.

"b"t ∈ Qp

t ∈ Qp ("b" t, ϵ, ϵ, t) ∈ EC
p ("b" t, ϵ, b, t) ∈ EA

p

t0|t1 ∈ Qp

{t0, t1} ⊆ Qp (t0|t1, ϵ, 0, t0), (t0|t1, ϵ, 1, t1) ∈ EC
p

(t0|t1, 0, ϵ, t0), (t0|t1, 1, ϵ, t1) ∈ EA
p

The sets are easily seen to be finite. They define two transducers, an oracle

FC
p = (Σ, {0, 1} , Qp, N1, 1, EC

p)

and an action machine

FA
p = ({0, 1} ,Γ, Qp, N1, 1, EA

p),

where FA
p is easily seen to be deterministic, and FC

p is non-deterministic and possibly am-
biguous. Intuitively, the oracle translates an input string to a set of codes for the possible
paths through p which reads the given string. The action machine translates a code to a
sequence of actions.

Disambiguating according to the greedy leftmost strategy corresponds to choosing the
lexicographically least code (Chapter 5), and we can thus define the semantics as follows:

Definition 7.7 (Kleenex semantics). Let p be a Kleenex program and let FC
p and FA

p be
defined as above. The program p denotes a partial function

JpK : Σ∗ → Γ∗ ∪ {∅}JpK = JT A
p K ◦ JT C

p K≤.
Figure 7.1 contains a small example of the oracle and action machines. Combining the

machines in the figure corresponds to following the leftmost path through this automaton:

114 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

Nmain

Nodd

Neven

1

ϵ/ϵ

ϵ/ϵ

ϵ/ϵ

ϵ/ϵ

a/ϵ a/ϵ ϵ/b

ϵ/b

ϵ/b a/ϵ
ϵ/ϵ

ϵ/ϵ

ϵ/ϵ

a/ϵ

ϵ/c

ϵ/b a/ϵ

ϵ/ϵ

7.3.1 Syntactic Sugar

The full syntax of our language is obtained by extending the syntax of core Kleenex with
the following term-level constructors:

t ::= . . . | "v" | /e/ | ~t | t0 · t1 | t* | t+ | t?
| t{n} | t{n,} | t{,m} | t{n,m}

where v ∈ Γ⋆, n,m ∈ N, and e is a regular expression. The term "xyz..." is just
shorthand for a sequence of action symbols. The regular expressions are special versions
of Kleenex terms that do not contain identifiers. They always desugar to terms that output
the matched input string: The sugared term /e/ adds a default action "α(a)" after every
input symbol a in e using a given default action map α : Σ → Γ. For example, the reg-
ular expression /a*|b{n,m}|c?/ becomes the term (a"a")*|(b"b"){n,m}|(c"c")?.
A suppressed subterm is written ~t, and it desugars into t with all action symbols removed.
Composition t0 · t1 allows general sequential composition instead of the strict cons-like
form of the core syntax. The operators ·*, ·+ and ·? desugar to their usual meaning as regu-
lar operators, as do operators ·{n}, ·{n,}, ·{,m}, and ·{n,m}.

By convention, the nonterminal named main is the entry point to a Kleenex program.
The desugaring can be described more precisely by a desugaring operatorDJ·, ·K. The

result of desugaring a program p = d1 . . . dn with initial termN1:= t1 is a program with
initial termN ′

1:=DJt1, 1K which furthermore is a solution to the equations in Figure 7.2.
The system does not always have a well-defined solution: The generalized composition op-
erator of sugared Kleenex allows one to write non-regular grammars, for example:

main := "a" main "b" | 1

Aprogram that does not have awell-defined desugaring is not considered to bewell-formed,
and we will not attempt to give it a semantics.

7.3.2 Custom Register Updates

The full Kleenex language as implemented in the Kleenex compiler2 also supports register
actions:

t ::= . . . | R @ t | !R
| [R <- (R | "v")⋆]
| [R += (R | "v")⋆]

2https://github.com/diku-kmc/repg

https://github.com/diku-kmc/repg

7.3. KLEENEX 115

DJ1, kK = DJ~1, kK = k

DJ"b1 . . . bn", kK = "b1" . . . "bn" k
DJ~("b" t), kK = DJ~t, kK

DJa t, kK = aDJt, kK
DJ~(a t), kK = aDJ~t, kK

DJ~(t0|t1), kK = DJ~t0, kK|DJ~t1, kK
DJN, kK = NDJt,kK (whereN:= t)
DJ~N, kK = NDJ~t,kK (whereN:= t)
DJ/e/, kK = DJte, kK
DJt0 · t1, kK = DJt0,DJt1, kKK
DJt0|t1, kK = DJt0, kK|DJt1, kK
DJt*, kK = DJt,DJt*, kKK|k
DJt+, kK = DJt,DJt*, kKK
DJt?, kK = DJt, kK|k

DJt{n}, kK = DJt · . . . · t︸ ︷︷ ︸
n

, kK
DJt{n,}, kK = DJt · . . . · t︸ ︷︷ ︸

n

·t*, kK
DJt{n,m}, kK = DJt · . . . · t︸ ︷︷ ︸

n

· t? · . . . · t?︸ ︷︷ ︸
m

, kK

Figure 7.2: Desugaring operator. A non-terminal name Nt on the right-hand side of an
equation implies the presence of a definition Nt:= t, and the term te corresponds to the
regular expression e.

where R is a lower-case register name. They allow a rudimentary support for expressing
“variables” in Kleenex programs without breaking the semantic link to right-linear gram-
mars: Intuitively, these constructs allow one to store actions and perform them later. Writ-
ingR @ t redirects all actions that would have resulted from running t into the register R,
which can be performed later by writing !R. The registerR can be either set to a sequence
of actions (R | "v")⋆ or appended with them, using the <- and += construct, respectively.

Register actions were developed as part of Søholm and Tørholm’s Master’s thesis [131].
The semantics of register are specified in detail in their work using what they call ordered fi-
nite action transducers (OFATs)—herewewill just outline the general ideas. Themain point
withOFATs is to lay bare the underlying layer of SST registers at the FST stage. As outlined
in Chapter 3 and discussed later in this chapter, Thompson FSTs can be determinized into
streaming string transducers, an automatonmodel with a concept of register. However, the
registers are introducedonly as artefacts of the determinizationprocedure, not as a reflection
of a programmer’s direct intention. This is the difference to OFATs: they contain a set of
registers that are carried over into the SST in the SST construction. As a result, the addi-
tion of these custom register updates do not change the underlying mathematical model of

116 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

Kleenex.
An example of a Kleenex program that uses the register actions is the following that

swaps two input lines by storing them in registers a and b and outputting them in reverse
order:

main := a@line b@line !b !a
line := /[^\n]*\n/

7.4 Simulation and Determinization

In this section, we specify an algorithm for simulating FSTs under the functional semantics,
allowing us to efficiently evaluate the oracle transducer defined in Section 7.3. We also show
how the simulation algorithm can be implemented by finite deterministic streaming string
transducers [4] whose states are identified by equivalence classes of simulation states. The
latter construction gives a deterministic machinemodel for Kleenex programs which can be
compiled to efficient code that can be executed on hardware.

We note that non-deterministic transducers are strictly more powerful than their de-
terministic counterparts, and can thus not always be determinized. Determinization pro-
cedures exist [16, 115] which result in a deterministic transducer with an infinite state set
in the general case, and a finite state set if and only if the underlying transduction is sub-
sequential [18, 129], i.e., if it is realized by a subsequential transducer, a transducer without
ϵ-transitions andwith final outputwords associated to the accepting states. The oracle trans-
ducers of Kleenex programs are not subsequential in general—the oracle in Figure 7.1 is an
example of this. Our simulation algorithm is also different from the existing methods for
determinizing transducers by also taking disambiguation into account.

In the following we fix a transducer F = (Q,Σ,Γ, qin, qfin,∆). We will assume that
F is normalized, and that it furthermore satisfies the following property:

Definition 7.8 (Prefix-free transducer). A transducer F is said to be prefix-free if for all
p, q, q′ ∈ QF where supp(q), supp(q′) ⊆ Σwe have that if

p
x|y

q and p
x|y′

q′

then y ̸≺ y′.

It is easy to verify that the oracle transducers constructed Section 7.3 are both normal-
ized and prefix-free. Note that they will always have ∆ = {0, 1}, but our construction
generalizes to oracle alphabets of all sizes.

7.4.1 Generalized State Set Simulation

LetD be a finite and totally ordered set, and write S(D,Q) for the set of partial functions
Q → D⋆ ∪ {∅}. Elements A ∈ S(D,Q) can be seen as generalized subsets ofQ where
everymember q is labeledby some elementA(q) ∈ D⋆, and everynon-memberhasA(q) =
∅. We extend word concatenation inD⋆ to the setD⋆ ∪ {∅} by setting

x · ∅ = ∅ = ∅ · x.

For u, v ∈ D⋆ ∪ {∅}, write u ⊑ v if u is a prefix of v (Definition 2.8). Write u < v if
u ⊑ v and u ̸= v. Let u ∧ v refer to the longest common prefix of u and v:

u ∧ v def
=
l
{u, v} ,

7.4. SIMULATION AND DETERMINIZATION 117

i.e., the longest p such that u = pu′ and v = pv′ for some u′, v′. Note that in view of this
definition, ∅ becomes a neutral element with u ∧ ∅ = u = ∅ ∧ u.

We define a right action on the generalized state sets as follows:

Definition 7.9 (Right action). Let A ∈ S(D,Q) and u ∈ Σ⋆. The right action on
S(D,Q) is:

_ · _ : S(D,Q)× Σ⋆ → S(D ∪ Γ, Q)

(A · u)(q) = min
{
A(p)v | p

u|v
np q ↓

}
.

WhenD = Γ the right action is a mapS(Γ, Q)×Σ⋆ → S(Γ, Q). It is easily seen that
the right action is related to the functional semantics in the following way:

Proposition 7.3. Let A(q) = ϵ if q = qin and A(q) = ∅ otherwise. Then

(A · u)(qfin) = JFK≤(u).
A generalized subset A ∈ S(D,Q) is prefix-free if A(p) ̸⊑ A(q) for all p, q ∈ Q

(Definition 2.10). When F is normalized and prefix-free, the right action preserves prefix-
freeness of generalized subsets and commutes with word concatenation:

Proposition 7.4. If F is normalized and prefix-free and A is prefix-free, then for all u, v ∈
Σ⋆,

1. A · u is prefix-free, and

2. (A · u) · v = A · uv.

Proof. The first property follows directly byA andF being prefix-free. For the second, we
have for r ∈ Q,

((A · u) · v)(r) = min
{
(A · u)(q)y | q

v|y
np r ↓

}
= min

{
min

{
A(p)x | p

u|x
np q ↓

}
y | q

v|y
np r ↓

}
= min

{
min

{
A(p)xy | p

u|x
np q ↓

}
| q

v|y
np r ↓

}
(7.1)

= min
{
A(p)xy | p

u|x
np q ↓

v|y
np r ↓

}
(7.2)

= min
{
A(p)z | p

uv|z
np r ↓

}
(7.3)

= (A · uv)(r).

Equality (7.1) is a consequence of the fact thatA andF are prefix-free andLemma2.2. Equal-
ity (7.2) is just associativity ofminimum, and equality (7.3) follows fromProposition 7.1 and
the fact thatF is normalized.

For x ∈ D⋆ andA ∈ S(D,Q), define xA ∈ S(D,Q) by (xA)(q) = x(A(q)). We
say that x is a prefix ofA ifA = xA′ for someA′, which is equivalent to x being a prefix
of everyA(q). The right action commutes with the prefix operation:

118 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

Proposition 7.5. Let x ∈ D⋆, then (xA) · u = x(A · u) for all u ∈ Σ⋆.

Proof. Follows from the fact that lexicographic ordering satisfies

min {xy | y ∈ Y } = xminY.

7.4.2 Streaming Simulation Algorithm

A streaming simulation algorithm onF processes an input from left to right andmay write
zero or more symbols to the output in each step.

Definition 7.10 (Streaming FST simulation). Let F be a normalized and prefix-free trans-
ducer, and let the input u = a1a2 · · · an be given. Let A0 ∈ S(Γ, Q) be defined as in
Proposition 7.3. Reading symbol ai, computeBi = Ai ·ai+1. Append pi =

∧
q∈QBi(q)

to the output stream and setAi+1 = B′
i, where the equalityBi = piB

′
i definesB′

i. When
there are nomore input symbols left, append (An · ϵ)(qfin) to the output and return, or fail
if (An · ϵ)(qfin) = ∅.

By Propositions 7.3, 7.4, and 7.5, the algorithm computes JFK≤(u). This algorithm
is essentially the same as Algorithm 1 from Chapter 6, with the caveat that no coverage re-
lation is used here. Therefore, it is not optimally streaming in the sense of Definition 6.4,
which Algorithm 1 is. However, the full coverage relation is expensive to compute (Propo-
sition 6.1), and we conjecture that it will only make a difference in pathological cases, such
as the example in Figure 6.3.

7.4.3 A Deterministic Computation Model

Wewish to translate Kleenex programs to completely deterministic programswithout a sim-
ulation overhead.

As discussed above, the oracle transducers that are constructed fromKleenex programs
are not subsequential in general, and so they cannot be determinized to finite state transduc-
ers [18, 129].

We turn instead to streaming string transducers [4] (SSTs), a deterministicmodel of com-
putation which generalizes subsequential transducers by allowing copy-free updates to a fi-
nite set of word registers. It turns out that every transducer that can be simulated by our
generalized state set algorithm can be expressed as an SST.

Definition 7.11 (Streaming string transducer [3–6]). A deterministic streaming string trans-
ducer (SST) over alphabetsΣ and Γ is a structure

(Q,Σ,Γ, X, qin, F, δ1, δ2),

where

• Q is is a finite set of states;

• X is a finite set of register variables;

• qin ∈ Q is the initial state;

• F : Q→ (Γ∪X)⋆∪{∅} is a partial functionmapping each final state q ∈ dom(F)
to a word F (q) ∈ (Γ ∪X)⋆ such that for each q, each x ∈ X occurs at most once
in F (q);

7.4. SIMULATION AND DETERMINIZATION 119

• δ1 : Q× Σ→ Q is the transition function;

• δ2 : Q×Σ×X → (Γ∪X)⋆ is the register update function such that for each q ∈ Q,
a ∈ Σ and x ∈ X , there is at most one y ∈ X such that x occurs in δ2(q, a, y).

The semantics are defined as follows.

Definition 7.12 (Configuration, valuation of SST). A configuration of an SST S is a pair
(q, ρ)where q ∈ QS is a state, and

ρ : XS → Γ⋆

is a valuation. A valuation extends as a monoid homomorphism to a map

ρ̂ : (XS ∪ Γ)⋆ → Γ⋆

by setting ρ(x) = x for x ∈ Γ. The initial configuration is (qin, ρin)where ρin(x) = ϵ for
all x ∈ XS .

A configuration steps to a new configuration given an input symbol:

δS((q, ρ), a)
def
= (δ1S(q, a), ρ

′),

where ρ′(x) = ρ̂(δ2S(q, a, x)). The transition function extends to a transition function δ⋆S
on words by

δ⋆S((q, ρ), ϵ) = (q, ρ)

δ⋆S((q, ρ), au) = δ⋆S(δS((q, ρ), a), u).

With these definitions, we can formulate the semantics of an SST.

Definition 7.13 (SST semantics). The partial function denoted by an SST S is:

JSK : Σ⋆ → Γ⋆ ∪ {∅}

JSK(u) =

ρ̂′(FS(q

′)) if δ⋆((qin, ρin), u) = (q′, ρ′)

and q′ ∈ dom(FS)

undefined otherwise

7.4.4 Tabulation

Weneed to come upwith a representation of our streaming simulation algorithm as an SST
with a designated register used for streaming output. Our representation needs to satisfy
the property of being finite state as well as the property that the output register contains the
output p1p2...pi of the algorithm in Definition 7.10 after reading the ith input symbol ai.
The latter requirement means that we must somehow statically encode the prefix structure
of all potential outputs in the states of the SST, since SSTs cannot access the contents of
registers. It turns out that this is possible by letting the states of the SST be equivalence
classes of generalized state sets, where the equivalence relates state sets that agree on state
ordering and prefix structure.

120 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

Trees

We will call a prefix-free generalized state setA an ordered tree with node set

NA = {A(p) ∧A(q) | p, q ∈ Q,A(p) ∧A(q) ̸= ∅} .

Under this view, the leaves ofA seen as a tree is the subset of nodes

LA = {A(q) | q ∈ Q,A(q) ̸= ∅} ⊆ NA,

and the leaves are labeled by A−1 : LA → {0, 1}Q. Because A is assumed prefix-free, we
have for any nodes x, y ∈ NA that x ⊑ y if and only if there is a z ∈ NA such that
x = y ∧ z. In this case x is called an ancestor of y and z, which in turn are called the
descendants of x. Importantly, the root node of any (sub)tree is the longest common prefix
of its descendants.

Example 7.1. We illustrate the tree interpretation as follows. Consider the oracle transducer
from Figure 7.1. LetA0 be the generalized state set that mapsNmain to ϵ and every other
state to ∅. Then the state setsA0 · a andA0 · aa can be seen as trees in the following way:

A0 · a : A0 · aa :

ϵ 0 00

01

10 100

101

{a2}
{1}
{a4}
{a5}

(−)·a
=⇒

ϵ 00 000

001

10 100 1000

1001

101

{a1}
{a3}
{a4}
{a5}
{1}

Wewill consider two generalized state sets to be equivalent if they are indistinguishable
as ordered trees.

Definition 7.14 (Ordered tree isomorphism). LetD1, D2 be totally ordered and letA1 ∈
S(D1, Q) andA2 ∈ S(D2, Q) be trees. An ordered tree isomorphism betweenA1 andA2

is a bijective map h : NA1 → NA2 such that for all p, q ∈ Q:

1. h(A1(p) ∧A1(q)) = A2(p) ∧A2(q); and

2. A1(p) ≤ A1(q) if and only ifA2(p) ≤ A2(q).

We write h : A1 ≡ A2 and say thatA1 andA2 are equivalent when h is an ordered tree
isomorphism betweenA1 andA2. Tree equivalence is preserved by the right action:

Proposition 7.6. If A ∈ (D1, Q), B ∈ (D2, Q) and h : A ≡ B then for all a ∈ Σ, we
have A · a ≡ B · a.

Proof sketch. Since h is an order isomorphism and since A and B are prefix-free, we have
for all q ∈ Q exists pq ∈ Q and yq ∈ Γ⋆ such that (A · a)(q) = A(pq)yq and

(B · a)(q) = h(A(pq))yq.

Observe that for any n ∈ NA·a there exists q1, q2 ∈ Q such that

n = (A · a)(q1) ∧ (A · a)(q2)

=

{
A(q1)(yq1 ∧ yq2) ifA(q1) = A(q2)

A(q1) ∧A(q2) otherwise

7.4. SIMULATION AND DETERMINIZATION 121

Furthermore, there does not exist q1, q2, r1, r2 ∈ Q such that

A(q1)(yq1 ∧ yq2) = A(r1) ∧A(r2),

since that would imply that A(q1) is a prefix of A(r1) and A(r2). We define a map such
that for all q1, q2 ∈ Q,

h′ : NA·a → NB·a

h′((A · a)(q1) ∧ (A · a)(q2)) =

{
h(A(q1)(yq1 ∧ yq2)) ifA(q1) = A(q2)

h(A(q1) ∧A(q2)) otherwise.

This is a well-defined function by the previous observations, and a tree isomorphism by the
fact that h is a tree isomorphism.

Canonical Representatives

Definition 7.15 (Canonical generalized set). A generalized setA ∈ S(D,Q) is canonical if

1. rng(A) is prefix closed: if y ∈ rng(A) and x ⊑ y then x ∈ rng(A); and

2. rng(A) is downwards closed: if xb ∈ rng(A) for b′ < b then xb′ ∈ rng(A) (for
b, b′ ∈ Γ).

Write S̃(D,Q) for the subset of canonical trees. The set is finite, as every canonical tree
A has a prefix closed node set, so the longest word inNA is bounded by |dom(A)|− 1 (the
maximum depth of a tree with |dom(A)| leaves).

Any tree has a canonical representative:

Proposition 7.7. For any set D and tree A ∈ S(D,Q), there is a unique C ∈ S̃(N, Q)
with A ≡ C .

As a consequence, there is a reduction map

[·] : S(D,Q)→ S̃(N, Q)

such that A ≡ B if and only if [A] = [B], implying that the quotient set S(D,Q)/≡
must be finite. Any A ∈ S(D,Q) is thus canonically represented by a homomorphism
hA : N[A] → NA such thatA = hA ◦ [A].

In view of Proposition 7.6, this means that we can statically enumerate all possible trees
up to tree isomorphism by computing with the canonical representatives. Any concrete
tree reachable by the simulation algorithm is an instance of a canonical tree composed with
a suitable homomorphism. An SST implementing the simulation algorithm can thus take
the set of canonical trees as its states, and will then need to maintain the associated homo-
morphism via register updates.

Paths

We need to represent tree homomorphisms using SST registers such that the effect of com-
puting right actions on the underlying tree can be expressed as SST updates.

122 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

For a tree A ∈ S(D,Q), any node x ∈ NA has a unique maximal decomposition
x = x0x1 · · ·xn such that each x0x1 · · ·xi ∈ NA for all 0 ≤ i ≤ n. Intuitively, this
reflects the full path from the root node to the node x, and we can define the map

pathA : NA → N⋆
A

pathA(x) = (x0, x0x1, . . . , x0x1 · · ·xn),

which maps nodes to their maximal path decomposition (we use the tuple notation to dis-
tinguish between the two levels of monoids). In view of this and the fact that homomor-
phisms must preserve descendants, for any homomorphism h : A ≡ B there is a unique
κh : NA → NB such that

h(x) = κh(t0)κh(t1) · · ·κh(tn), (7.4)

where pathA(x) = (t0, t1, ..., tn). Intuitively, κ can be seen as a “differential” represen-
tation of h, representing the change of h between a node and its immediate ancestor. By
viewing κh as a mapNA → D⋆

B which extends uniquely to a monoid homomorphism

κ̂h : N
⋆
A → D⋆

B,

we obtain h = κ̂h ◦ pathA. Considering the unique isomorphism hA : [A] ≡ A, write
κA for the associated decomposition satisfying (7.4), and we thus have

A = κ̂A ◦ path[A] ◦ [A]. (7.5)

The path-operator is easily seen to be a tree isomorphism since it preserves node order-
ing and prefix structure. That is, for anyA ∈ S(D,Q), we have pathA : A ≡ A♯ where
A♯ ∈ S(ND, Q) is defined byA♯ = pathA ◦A. Using this notation, (7.5) becomes

A = κ̂A ◦ [A]♯. (7.6)

SST Construction

We construct an SST implementing the FST simulation algorithm and sketch a proof of its
correctness.

Theorem 7.1. For any normalized prefix-free transducer F = (Q,Σ,Γ, qin, qfin,∆), there
is an SST S such that JSK = JFK≤.
Proof. We define S as follows. Let A0 be defined as in Definition 7.10, and observe that
A0 ∈ S̃(N, Q). The states are the canonical trees labeled byQ:

QS = {[A] | A ∈ S(Γ, Q)} ∪ {A0} ⊆ S̃(N, Q),

qin
S (q) = A0(q)

The registers will be identified by canonical tree nodes:

XS =
∪
{NC | C ∈ QS} .

7.4. SIMULATION AND DETERMINIZATION 123

The final output and the transition maps are given as follows:

FS(C) = (C♯ · ϵ)(qfin),

δ1S(C, a) = [C · a],

δ2S(C, a, x) =

{
κC♯·a(x) if x ∈ N[C♯·a]

ϵ otherwise

We claim that S computes the same function asF under the functional semantics.
For u ∈ Σ⋆ let (Cu, ρu) refer to the value δ⋆S((qin

S , ρ
in), u) = (Ci, ρi). We show that

for any u ∈ Σ⋆, we have ρ̂u ◦ (C♯
u · ϵ) = A0 · u. Suppose that this holds. Then for any

u ∈ Σ⋆, we have by the above and Proposition 7.3 that

JSK(u) = ρ̂u(FS(Cu)) = ρ̂u ◦ (C♯
u · ϵ)(qfin) = (A0 · u)(qf) = JFK≤(u).

Our claim follows as a special case of Lemma 7.1.

Lemma 7.1. Let A ∈ S(Γ, Q) and ρ : XS → Γ⋆ such that A = ρ̂ ◦ [A]♯. Then for any
u ∈ Σ+ with δ⋆S(([A], ρ), u) = (C, ρ′) we have ρ̂′ ◦ C♯ = A · u.

Proof. By induction on u. For u = awe haveC = [[A] ·a] = [A ·a] and ρ′ = ρ̂◦κ[A]♯·a.
We can easily verify that ρ̂′ = ρ̂ ◦ κ̂[A]♯·a so for any q ∈ Q,

ρ̂′ ◦ [A · a]♯(q) = ρ̂ ◦ κ̂[A]♯·a ◦ [A · a]♯(q)
= ρ̂ ◦ ([A]♯ · a)(q)

= ρ̂

(
min

{
[A]♯(p)y | p

a|y
np q ↓

})
= min

{
ρ̂ ◦ [A]♯(p)y | p

a|y
np q ↓

}
= min

{
A(p)y | p

a|y
np q ↓

}
= (A · a)(q).

The second equality follows by observing thatA ≡ [A] ≡ [A]♯, so by Proposition 7.6, we
haveA · a ≡ [A]♯ · a and thus [A · a] = [[A]♯ · a]. Therefore,

κ̂[A]♯·a ◦ [A · a]♯ = κ̂[A]♯·a ◦ [[A]♯ · a]♯ = [A]♯ · a

by using the identity (7.6). The fourth equality is justified by the fact that [A]♯(p) ≤
[A]♯(q) if and only ifA(p) ≤ A(q).

Foru = au′ whereu′ ̸= ϵ, we have (C, ρ′) = δ⋆S(([A·a], ρ̂◦κ[A]♯·a). By the previous
argument we can apply the induction hypothesis, and we obtain C = [(A · a) · u′] and
ρ̂′ ◦ C♯ = (A · a) · u′. The result then follows by Proposition 7.4.

Example 7.2. We illustrate how the construction works by showing how Example 7.1 is im-
plemented as an SST update between states [A0 · a] and [A · aa]. The register update is
obtained by computing κ[A0·a]♯·a. The tree [A0 · a]♯ looks as follows:

124 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

(ϵ) (ϵ, 0) (ϵ, 0, 00)

(ϵ, 0, 01)

(ϵ, 1) (ϵ, 1, 10)

(ϵ, 1, 11)

{a2}
{1}
{a4}
{a5}

Recall that each node is a full path in the canonical tree [A0 · a]. The node names from
N[A0·a] are overlined and elements of the path monoid N⋆

[A0·a] are written (x1, x2, . . .).
The tree [A0 · a]♯ · a looks as follows:

(ϵ) (ϵ, 0, 00) (ϵ, 0, 00, 0)

(ϵ, 0, 00, 1)

(ϵ, 1) (ϵ, 1, 10) (ϵ, 1, 10, 0)

(ϵ, 1, 10, 1)

(ϵ, 1, 11)

{a1}
{a3}
{a4}
{a5}
{1}

Note that symbols that are not overlined are output symbols from Γ. The map

κ′ = κ[A0·a]♯·a : N[A0·aa] → (N[A0·a] ∪ Γ)⋆

gives us the relevant SST update strings:

κ′(ϵ) = (ϵ) κ′(0) = (0, 00) κ′(00) = 0

κ′(01) = 1 κ′(1) = (1) κ′(10) = (10)

κ′(100) = 0 κ′(101) = 1 κ′(11) = (11)

The full construction of an SST from the oracle transducer in Figure 7.1 can be seen in
Figure 7.3.

7.5 Implementation

Our implementation compiles a Kleenex program to machine code by implementing the
transducer constructions described in the earlier sections. We have also implemented several
optimizations to decrease the size of the generated SSTs and improve the performance of the
generated code. Wewill briefly describe these in the following section, andwe note that they
are all orthogonal to the underlying principles behind our compilation.

The possible compilation paths of our implementation can be seen in Fig. 7.4.

7.5.1 Transducer Pipeline

It is possible to chain together several Kleenex programs in a pipeline, letting the output of
one serve as the input of the next. This can for example be used to strip unwanted characters
before performing a transformation. By using the optional pipeline pragma:

start: t1 >> . . . >> tn,

a programmer can specify that the entry point to the program is t1 (instead of main) and
that the output should be chained together as specified, with the final output being that
of tn. The current implementation does this by building separate transducers for each ti
running them as separate processes connected with UNIX pipes.

7.5. IMPLEMENTATION 125

[A0] [A0 · a] (ϵ)(0)(01)

[A0 · aa] (ϵ)(1)(11)

a

/ ϵ 7→ ϵ
0 7→ 0
00 7→ 0
01 7→ 1
1 7→ 10
10 7→ 0
11 7→ 1

a

/
ϵ 7→ (ϵ)
0 7→ (0, 00)
00 7→ 0
01 7→ 1
1 7→ (1)
10 7→ (10)
100 7→ 0
101 7→ 1
11 7→ (11)

a

/ ϵ 7→ (ϵ)
0 7→ (0)
00 7→ (00)
01 7→ (01)
1 7→ (1, 10)
10 7→ (100, 0)
11 7→ (101, 1)

Figure 7.3: Example of SST computing the same function as the oracle transducer in Fig-
ure 7.1. Each transition is tagged by a register update, and the nodes of the canonical tree
identifying the destination state make up the registers. The wide arrows exiting the accept-
ing states indicate the final output string. Note that this always includes the root variable (ϵ)
which thus acts as an interface for streaming output (although for this particular example,
nothing can output until the end of the input).

Kleenex Symbolic Oracle+Action FSTs

Symbolic SST+Action FSTC codemachine code

translate

constant propagation

pipeline

inline (woACT)
gcc

clang 1-LAk-LA

Figure 7.4: Compilation paths. 1-LA is symbolic SST constructionwith single-symbol tran-
sitions; k-LA is construction of SST with up to k symbols of lookahead for some k deter-
mined by the program. The “pipeline” translation path indicates that the resulting program
keeps the oracle SST and action FST separate, with data being piped from the SST to the
FST at runtime. The “inline” path indicates that the action FST is fused into the oracle SST.
Programs compiled with this path have the suffix “woACT” in the performance plots.

126 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

7.5.2 Inlining the Action Transducer

When we have constructed the oracle SST we end up with two deterministic machines
which need to be composed. We can either do this at runtime by piping the output of
the oracle SST into the action FST, or we can apply a form of deforestation to inline the
output of the action FST directly in the SST (this is straightforward since the action FST
is deterministic by construction). The former approach is advantageous if the Kleenex pro-
gram produces a lot of output and is highly nondeterministic. We have implemented both
approaches, and discuss their strengths and weaknesses in Section 7.6.3.

7.5.3 Constant Propagation

The SSTs generated by our construction contains quite a lot of trivial register updateswhich
can be eliminated in order to achieve better run-time efficiency. Consider the SST in Fig. 7.3,
where all registers but (0) and (1) are easily seen tohave a constant knownvalue in each state.
Eliminating the redundant registers means that we only have to maintain two registers at
run-time.

We achieve this by constant propagation: computing reaching definitions by solving a
set of data-flow constraints. As this is a quite standard technique, we will discuss it further
here, but refer to existing text books [10].

7.5.4 Symbolic Representation

Text transformationprograms often contain idiomswith a very redundant representation as
pure transducers. For example, a program might match against a whole range of characters
and proceed in the same way regardless of which one was matched. This will, however, lead
to a transition for each concrete character in the generated FST, even though all transitions
have the same source and destination states. For large ranges, like all ASCII characters, this
causes poor performance.

A more succinct representation can be obtained by using a symbolic representation
of the transition relation by introducing transitions whose input labels are predicates, and
whose output labels are terms indexed by input symbols. Replacing input labels with pred-
icates was described by Watson [148]. Such symbolic transducers have been developed fur-
ther and have recently received a lot of attention, with applications in verification and veri-
fiable string transformations [115, 144, 146, 147].

Our implementation of Kleenex uses a symbolic representation for basic ranges of sym-
bols in order to get rid of most redundancies. Both the simulation algorithm and the SST
construction can be generalized in a fairly straight-forward way to the symbolic case with-
out altering the fundamental structure, so we have omitted the details of this optimization.
Instead, we refer the reader to the cited literature for the technical details of symbolic trans-
ducers.

7.5.5 Finite Lookahead

A common pattern in Kleenex programs are definitions of the form

token := ~/abcd/ commonCase | ~/[a-z]+/ fallback

that is, a specific pattern appearing with higher priority than a more general fallback pat-
tern. Patterns of this form will result in (symbolic) SSTs containing the following kind of
structure:

7.6. BENCHMARKS 127

...

...

a/... b/... c/... d/...

[^a]/... [^b]/... [^c]/... [^d]/...

The primary case and the fallback pattern are simulated in lockstep, and in each state there is
a transition for when the common case fails after reading 0, 1, 2, etc., symbols. The problem
is that we are effectively specializing the fallback pattern to all of the prefixes a, ab, and abc.
With constantpropagation applied, this can result in successively longer output strings from
the fallback case being present in the updates on the transitions along the primary branch,
leading to a quadratic size blow-up.

If the SST was able to look more than one symbol ahead before determining the next
state, we would be able to tabulate amuch coarser set of simulation states and do awaywith
the fine-grained interleaving. For the above example, we would like a transition structure
like the following:

...

...

abcd/...

[a-z]/...

If the first four symbols of the input are abcd, the upper transition is taken. If this is not
the case, but the first symbol is a, then the lower transition is taken. The idea is that any
string successfullymatched by the primary case will satisfy the test abcd, so if the transition
with [a-z] is taken, then the FST states corresponding to the primary case can be removed
from the generalized state set and tabulation can continue with a simpler simulation state.

The semantics of SSTswith lookahead are still deterministic despite the seeming overlap
of patterns, as the model requires that any pair of tests are either disjoint (no string will
satisfy both at the same time), or one test is completely contained in another (if a string
satisfies the first test, it also satisfies the second). This restriction gives a total order between
tests, specifying their priority—the most specific test must be tried first.

7.6 Benchmarks

We have run comparisons with different combinations of the following tools:

RE2, Google’s automata-based regular expression C++ library [139].

RE2J, a recent re-implementation of RE2 in Java [140].

GNU AWK, GNU grep, and GNU sed, programming languages and tools for text process-
ing and extraction [136].

Oniglib, a regular expression library written in C++ with support for different character
encodings [86].

Ragel, a finite state machine compiler with multiple language backends [142].

In addition, we implemented test programs using the standard regular expression libraries
in the scripting languages Perl [30], Python [105], and Tcl [149]. Version numbers of the
tested software are shown in Table 7.1.

128 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

Name Version
gcc 4.8.4
clang 3.5.0
Perl 5.20.1
Python 2.7.9
Tcl 8.6.3
GNU AWK 4.0.2
GNU grep 2.21
GNU sed 4.2.1
GNU coreutils 8.21
Oniguruma 5.9.6
RE2 GitHub: bdb5058
RE2J 1.0
Ragel 6.9
DRex 20150114

Table 7.1: Version numbers of tools, libraries, etc.

Meaning of plot labels. The plot labels for Kleenex programs indicate the compilation
path. They follow the format [<0|3>[-la] | woACT] [clang|gcc]. 0/3 indicates
whether constant propagation was disabled/enabled. la indicates whether lookahead was
enabled. clang/gcc indicates which C compiler was used. The last part woACT indicates
that custom register updates are disabled, in which case we generate a single fused SST as
described in 7.6.3. These are only run with constant propagation and lookahead enabled.

Experimental setup. The benchmark machine runs Linux, has 32 GBRAM and an eight-
core Intel Xeon E3-1276 3.6 GHz CPU with 256 KB L2 cache and 8 MB L3 cache. Each
benchmark program was run 15 times, after first doing two warm-up rounds. All C and
C++ files have been compiled with -O3 on both GCC and Clang.

Difference between Kleenex and the other implementations. Unless otherwise stated, all
the non-Kleenex implemetations follow the same structure: a loop that reads the input line
by line and applies a regular expression to the line. Hence, in these implementations there
is an interplay between the regular expression library used and the external language. For
instance, in theRE2 programs, C++ control structures are used to achieve the desired behav-
ior. In Kleenex, line breaks do not carry any special significance, so the multi-line programs
can be formulated entirely within Kleenex.

Ragel optimization levels. Ragel is a state-machine compiler that generates C code. It im-
plements several different compilation techniques; we have compiled all Ragel programs
with the most optimized versions of each compilation technique. These are called “T1,”
“F1,” and “G2.” “T1” and “F1” causes the generated C code to be based on a lookup-table,
and “G2” means that it should be based on C goto statements.

Kleenex compilation timeout. Someof the plots donot contain all versions of theKleenex
implementations. This is because the C compiler has timed out (after 30 seconds). Because
our compiler performs a determinization of a non-deterministic machine, the set of states

7.6. BENCHMARKS 129

ke
x

0-
la
 c
la
ng

ke
x

0-
la
 g

cc

ke
x

0
cl
an

g

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
cl
an

g

ke
x

3
gc

c

ra
ge

l F
1

ra
ge

l G
2

ra
ge

l T
1

0

200

400

600

800

1,000

1,200

1,400

1,600

M
b
it

/s

flip_ab (ab_lines_len1000_250mb.txt 238.42 MB)

Figure 7.5: The program flip_ab run on lines with average length 1000.

can be very large in programs with a high degree of overlap. Here, the C code that is gen-
erated becomes very large, which causes the C compiler to spend more time than we have
allowed. This is a an area for future research.

7.6.1 Baseline

The following three programs are intended to give a baseline impression of the performance
of Kleenex programs.

Flipping “a”s and “b”s

The programflip_ab swaps “a”s and “b”s on all its input lines. Thus, any implementation
of this program is forced to inspect every single input character. In Kleenex it looks like this:

main := ("b" ~/a/ | "a" ~/b/ | /\n/)*

We made a corresponding implementation with Ragel, using a while-loop in C to get
each new input line and feed it to the automaton code generated by Ragel.

Implementing this functionalitywith regular expression libraries in theother toolswould
be an unnatural use of them, so we have not measured those.

The performance of the two implementations run on input with an average line length
of 1000 characters is shown in Figure 7.5.

130 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

ga
wk

ke
x

0-
la
 c
la
ng

ke
x

0-
la
 g

cc

ke
x

0
cl
an

g

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
cl
an

g

ke
x

3
gc

c

on
ig

ur
um

a
pe

rl

py
th

on re
2

re
2j

se
d tc

l
0

200

400

600

800

1,000

M
b
it

/s

patho2 (ab_lines_len1000_250mb.txt 238.42 MB)

Figure 7.6: The non-streaming program patho2 run on lines with average length 1000.

A Pathological Program

The program patho2 is inherently non-streaming: for each line of input, output can only
be made after the last character on that line has been read.

main := ((~/[a-z]*a/ | /[a-z]*b/)? /\n/)+

In this benchmark, the constant propagationmakes a big difference, as Figure 7.6 shows.
Due to the high degree of interleaving and the lack of keywords, in this program the look-
ahead optimization reduces overall performance.

This benchmark was not run with Ragel because Ragel requires the programmer to do
all disambiguation manually when writing the program; the C code that Ragel generates
does not handle ambiguity in a predictable way. It is very difficult to implement highly
ambiguous text transformations with Ragel because the programmer must play the part
of the disambiguator! This exemplifies one benefit of Kleenex, namely that it is no more
difficult for a programmer point of view to express ambiguous transformations, for example
to express fallback cases.

7.6.2 Rewriting

In this section we study some programs that perform slightly more interesting transforma-
tions than above.

7.6. BENCHMARKS 131

ke
x

0-
la
 c
la
ng

ke
x

0-
la
 g

cc

ke
x

0
cl
an

g

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
cl
an

g

ke
x

3
gc

c
pe

rl

py
th

on
0

200

400

600

800

1,000

1,200

M
b
it

/s

thousand_sep (numbers_250mb.txt 238.42 MB)

Figure 7.7: Inserting thousand separators on random numbers with average length 1000.

Thousand Separators

The following Kleenex program inserts thousand separators in a sequence of digits:

main := (num /\n/)*
num := digit{1,3} ("," digit{3})*
digit := /[0-9]/

Weevaluated theKleenex implementation alongwith twoother implementations usingPerl
and Python. The performance can be seen in Figure 7.7. Both Perl and Python are signif-
icantly slower than all of the Kleenex implementations; this is a problem that is tricky to
formulate with normal regular expressions. Interestingly, if one reads the input right-to-
left, it becomes trivial to formulate, as a simple greedy strategy would suffice then.

CSV Rewriting

The program csv_project3 deletes all columns except number two and five from a CSV
file. It outputs those two columns with a separating tabulation character:

main := (row /\n/)*
col := /[^,\n]*/
row := ~(col /,/) col "\t" ~/,/ ~(col /,/)

~(col /,/) col ~/,/ ~col

Various specialized tools exist that can handle this transformation are included in Figure 7.8;
GNU cut is a command that splits its input on certain characters, and GNU AWK has built-
in support for this type of transformation.

132 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

cu
t

ga
wk

ke
x

0-
la
 c
la
ng

ke
x

0-
la
 g

cc

ke
x

0
cl
an

g

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
cl
an

g

ke
x

3
gc

c

on
ig

ur
um

a
pe

rl

py
th

on

ra
ge

l F
1

ra
ge

l G
2

ra
ge

l T
1

re
2

re
2j

se
d tc

l
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

M
b
it

/s

csv_project3 (csv_format1_250mb.csv 238.42 MB)

Figure 7.8: The program csv_project3 reads in a CSV file with six columns and outputs
columns two and five with a tabulation character as separator. The label “gawk” refers to
GNU AWK. The tool “cut” is a command from GNU coreutils that is designed to split up
lines.

Apart from cut, which is really fast for its own use-case, the Kleenex implementation is
the fastest. The performance of Ragel is slightly lower, but this is likely due to the way the
implementation produces output: In a Kleenex program, output strings are automatically
put in an output buffer which is flushed routinely, whereas a programmer has to manually
handle buffering when writing a Ragel program.

IRC Protocol Handling

The following Kleenex program parses the IRC protocol as specified in RFC 2812.3 It fol-
lows roughly the output style described in part 2.3.1 of the RFC. Note that the Kleenex
source code and the BNF grammar in the RFC are almost identical. Figure 7.9 shows the
throughput on 250 MiB data.

main := (message | "Malformed line: " /[^\r\n]*\r?\n/)*
message := (~/:/ "Prefix: " prefix "\n" ~/ /)?

"Command: " command "\n"
"Parameters: " params? "\n"
~crlf

command := letter+ | digit{3}
prefix := servername

3https://tools.ietf.org/html/rfc2812

https://tools.ietf.org/html/rfc2812

7.6. BENCHMARKS 133

ke
x

0-
la
 g

cc

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
cl
an

g

ke
x

3
gc

c
0

50

100

150

200

250

300

350

400

450

M
b
it

/s

irc (irc_250mb.txt 238.42 MB)

Figure 7.9: Throughput when parsing 250 MiB random IRC data.

| nickname ((/!/ user)? /@/ host)?
user := /[^\n\r @]/+ // Missing \x00
middle := nospcrlfcl (/:/ | nospcrlfcl)*
params := (~/ / middle ", "){,14} (~/ :/ trailing)?

| (~/ / middle){14} (/ / /:/? trailing)?
trailing := (/:/ | / / | nospcrlfcl)*
nickname := (letter | special)

(letter | special | digit){,10}
host := hostname | hostaddr
servername := hostname
hostname := shortname (/\./ shortname)*
hostaddr := ip4addr
shortname := (letter | digit) (letter | digit | /-/)*

(letter | digit)*
ip4addr := (digit{1,3} /\./){3} digit{1,3}

7.6.3 The Effects of Action-Separation

One can choose touse themachine resulting in combining the oracle and the actionmachine
when compiling Kleenex. Doing so results in only one process doing both the disambigua-
tion and outputting, which in some cases is faster and in other slower. Figures 7.8, 7.11, 7.15,
and 7.17 illustrate both situations. It depends on the structure of the problem whether it
pays off to split up the work in two processes; if all the work happens in the oracle and
the action machine nearly does not do anything, then the added overhead incurred by the

134 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

process context switches becomes noticeable. On the other hand, in cases where both ma-
chines do much work, the fact that two CPU cores can be utilized speeds up the program.
This would bemore likely if Kleenex had support for actionswhich could perform arbitrary
computation, e.g. in the form of embedded C code.

Furthermore, the fact that two processes communicate over a pipe adds the factor that
the size of the bit-code transferred is not too large. In their current form, the oraclemachines
only have a binary sum operator, no

∑
operator that can range over n cases. This means

that in a choice such as

m := a | b | c | d | e | f | g

there will be six direction bits per input character that should be parsed by the g case. For
implementation reasons, each direction bit is really a whole byte, so the above causes a six-
fold increase in the size of the transmitted data between oracle and action machine. This is
an effect visible in the rot13 program (Figure 7.17).

7.7 Use Cases and Example Programs

In this sectionwewill briefly touch upon various interesting use cases for Kleenex and show
some example programs.

7.7.1 JSON logs to SQL

We have implemented a Kleenex program that transforms a JSON log file into an SQL in-
sert statement. The program works on the logs provided by Issuu.4 The code is shown in
Figure 7.10.

The Ragel version we implemented outperforms Kleenex by about 50% (Figure 7.11),
indicating that further optimizations of our SST construction should be possible.

7.7.2 Apache CLF to JSON

The Kleenex program in Figure 7.12 rewrites Apache CLF5 log files into a list of JSON
records.

This is a re-implementation of a Ragel program.6 Figure 7.13 contains the benchmark
results. The versions compiled with clang are not included, as the compilation timed out
after 30 seconds. Curiously, the non-optimized Kleenex program is the fastest in this case.

7.7.3 ISO Date/Time Objects to JSON

Inspired by a regular expression “cookbook” [61], the program iso_datetime_to_json
converts date and time stamps in an ISO standard format to JSONobjects. Its source code is
shown in Figure 7.14 and Figure 7.15 shows the performance compared to other implemen-
tations of the transformations.

4The line-based data set consists of 30 compressed parts and part one is available from http://labs.
issuu.com/anodataset/2014-03-1.json.xz. The script on https://github.com/diku-kmc/
repg/blob/master/test/data/issuu/download.sh can be used to fetch parts of it.

5https://httpd.apache.org/docs/trunk/logs.html#common
6https://engineering.emcien.com/2013/04/5-building-tokenizers-with-ragel

http://labs.issuu.com/anodataset/2014-03-1.json.xz
http://labs.issuu.com/anodataset/2014-03-1.json.xz
https://github.com/diku-kmc/repg/blob/master/test/data/issuu/download.sh
https://github.com/diku-kmc/repg/blob/master/test/data/issuu/download.sh
https://httpd.apache.org/docs/trunk/logs.html#common
https://engineering.emcien.com/2013/04/5-building-tokenizers-with-ragel

7.7. USE CASES AND EXAMPLE PROGRAMS 135

main :=
"INSERT INTO issuu_log (ts, visitor_uuid, "
"visitor_useragent, visitor_country) VALUES\n"
json2sql

json2sql := object ",\n" ws json2sql
| object ";\n" ws

object := "(" ~/\{/ ws keyVals ws ~/}/ ")"
keyVals := (ws keyVal)+

keyVal :=
~/"ts"/ sep someInt keepComma

| ~/"visitor_uuid"/ sep stringReplaceQuotes keepComma
| ~/"visitor_useragent"/ sep stringReplaceQuotes keepComma
| ~/"visitor_country"/ sep stringReplaceQuotes dropComma
| fb

fb := ~(/"/ someString /"/ sep (/"/ someString /"/
| someInt
) (dropComma | ""))

stringReplaceQuotes := qt someString qt
qt := "'" ~/"/ // replace double with single quote
sep := ws ~/:/ ws
someString := /[^"\n]*/
someInt := /-?[0-9]*/
someNumber := someInt /\./ someInt
contryCode := /[A-Z]{2}/

// Skip whitespace
ws := ~/[\n]*/
keepComma := ws /,/
dropComma := ws ~/,/

Figure 7.10: The Kleenex code for the Issuu JSON log file to SQL transformation.

7.7.4 The ROT13 Text Transformation

The rot13 program shifts letters in the English alphabet by 13 places. In Kleenex it can be
implemented as shown in Figure 7.16.

Figure 7.17 shows a performance comparison of Kleenex andRagel implementations of
ROT13. The fact that the deforestation optimization (woACT) makes such a big difference
on this plot is caused, as discussed in Section 7.6.3, by the fact that the input data is random,
so for all input characters except “a” the data transferred between oracle and actionmachine
will be multiple times larger than the input size.

7.7.5 BibTeX Rewriting

DReX is another tool for specifying string rewriting programs based on streaming string
transducers [3]. We have implemented some of the example programs used by the authors

136 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

ke
x

0-
la
 g

cc

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
gc

c

ra
ge

l F
1

ra
ge

l G
2

ra
ge

l T
1

0

500

1,000

1,500

2,000

2,500

3,000

M
b
it

/s

issuu_json2sql (issuu_14000000objs.json 7471.78 MB)

Figure 7.11: The speeds of transforming JSON objects to SQL INSERT statements using
Ragel and Kleenex.

main := "[" loglines? "]\n"
loglines := (logline "," /\n/)* logline /\n/
logline := "{" host ~sep ~userid ~sep ~authuser sep

timestamp sep request sep code sep
bytes sep referer sep useragent "}"

host := "\"host\":\"" ip "\""
userid := "\"user\":\"" rfc1413 "\""
authuser := "\"authuser\":\"" /[^ \n]+/ "\""
timestamp := "\"date\":\"" ~/\[/ /[^\n\]]+/ ~/]/ "\""
request := "\"request\":" quotedString
code := "\"status\":\"" integer "\""
bytes := "\"size\":\"" (integer | /-/) "\""
referer := "\"url\":" quotedString
useragent := "\"agent\":" quotedString
ws := /[\t]+/
sep := "," ~ws
quotedString := /"([^"\n]|\\")*"/
integer := /[0-9]+/
ip := integer (/\./ integer){3}
rfc1413 := /-/

Figure 7.12: A Kleenex program that transforms Apache log files into a JSON format.

7.7. USE CASES AND EXAMPLE PROGRAMS 137

ke
x

0
gc

c

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
gc

c
pe

rl

ra
ge

l F
1

ra
ge

l G
2

ra
ge

l T
1

0

200

400

600

800

1,000

1,200

M
b
it

/s

apache_log (example_big.log 247.23 MB)

Figure 7.13: Speed of the conversion from the Apache Common Log Format to JSON.

// Kleenex program to transform datetime corresponding to
// the xml schema "datetime" object. Outputs a JSON-like format.
// More or less completely taken from
// "Regular Expressions Cookbook", p. 237.
start: dateTimes

dateTimes := (dateTime ~/\n/)+

dateTime := "{'year'='" year ~/-/ "'"
", 'month'='" month ~/-/ "'"
", 'day'='" day ~/T/ "'"
", 'hours'='" hours ~/:/ "'"
", 'minutes'='" minutes ~/:/ "'"
", 'seconds'='" seconds "'"
", 'tz'='" timezone "'"
"}\n"

year := /(?:[1-9][0-9]*)?[0-9]{4}/
month := /1[0-2]|0[1-9]/
day := /3[0-1]|0[1-9]|[1-2][0-9]/
hours := /2[0-3]|[0-1][0-9]/
minutes := /[0-5][0-9]/
seconds := /[0-5][0-9]/
timezone := /Z|[+-](?:2[0-3]|[0-1][0-9]):[0-5][0-9]/

Figure 7.14: The Kleenex source for iso_datetime_to_json.

138 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

ga
wk

ke
x

0-
la
 c
la
ng

ke
x

0-
la
 g

cc

ke
x

0
cl
an

g

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
cl
an

g

ke
x

3
gc

c

on
ig

ur
um

a
pe

rl

py
th

on

ra
ge

l F
1

ra
ge

l G
2

ra
ge

l T
1

re
2

re
2j

se
d tc

l
0

200

400

600

800

1,000

1,200

M
b
it

/s

iso_datetime_to_json (datetimes_250mb.txt 248.55 MB)

Figure 7.15: The performance of the conversion of ISO time stamps into JSON format.

main := (rot13 | /./)*
rot13 := ~/a/ "n" | ~/b/ "o" | ~/c/ "p" | ~/d/ "q"

| ~/e/ "r" | ~/f/ "s" | ~/g/ "t" | ~/h/ "u"
| ~/i/ "v" | ~/j/ "w" | ~/k/ "x" | ~/l/ "y"
| ~/m/ "z" | ~/n/ "a" | ~/o/ "b" | ~/p/ "c"
| ~/q/ "d" | ~/r/ "e" | ~/s/ "f" | ~/t/ "g"
| ~/u/ "h" | ~/v/ "i" | ~/w/ "j" | ~/x/ "k"
| ~/y/ "l" | ~/z/ "m"

Figure 7.16: An implementation of the ROT13 text tranformation in Kleenex.

7.7. USE CASES AND EXAMPLE PROGRAMS 139

ke
x

0-
la
 g

cc

ke
x

0
gc

c

ke
x

3-
la
 c
la
ng

ke
x

cl
an

g,
 w

oA
CT

ke
x

3-
la
 g

cc

ke
x

gc
c,
 w

oA
CT

ke
x

3
cl
an

g

ke
x

3
gc

c

ra
ge

l F
1

ra
ge

l G
2

ra
ge

l T
1

0

100

200

300

400

500

600

700

M
b
it

/s

rot13 (random_250mb.txt 238.42 MB)

Figure 7.17: The speed of the rot13 program. The choice of C compiler and the constant
propagation make a big difference.

main := (~/\/\// ~line | line)*
line := /[^\n]*\n/

Figure 7.18: A Kleenex program that deletes comments from BibTeX files.

//Concatenate all XML tags, ignore things in between.
main := (tag | ~/./)*
tag := /<[^>]*>/

Figure 7.19: A Kleenex program that strips tags from an XML file.

of DReX here; Figures 7.18, 7.19, and 7.20 contains the corresponding Kleenex versions of
their examples.

7.7.6 Highlighting Kleenex Code

The Kleenex code examples in this chapter have been highlighted with a Kleenex program
that emits LATEX-commands for coloring. Figure 7.21 contains a variant of this program that
emits ANSI color codes.

140 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

// Moves all title entries up to the previous entry
// in a bibtex file. The last entry is deleted.

// Uncomment to also swap title to the top
//start: align >> swap
start: align
align := head@header field* foot@footer

(!head head@header put_rest field*
!title !foot foot@footer)*

swap := (header field* !title put_rest footer)*
field := title@(sp /title/ sp /=/ sp /\{[^}]*},?\n/)

| f@(sp word sp /=/ sp /\{[^}]*},?\n/) [rest += f]
header := /@/ word sp /\{/ sp alnum /,\n/
footer := /}/ (sp|/\n/)*
put_rest := !rest [rest <- ""]
word := /[A-Za-z_]+/
alnum := /[A-Za-z0-9_]+/
sp := /[\t]/*

Figure 7.20: A Kleenex program that shifts the title field in a BibTeX file to the entry one
position up.

main := (escape | comment | term
| symbol | ignored | ws*)*

term := black /~/ (constant | match | ident) end
| (teal constant | yellow match | blue ident) end

ignored := /[]()|{},:[]/
ident := (letter | /[0-9_]/)+
symbol := yellow /<-|\+=|:=|>>|*|\?|\+/ end
constant := /"/ (/\\./ | /[^\\"]/)* /"/
comment := black (/\/\/[^\n]*\n/

| /\/*[^*\/]**\//) end
match := /\// (/[^\/\n]/ | /\\./)+ /\//
escape := /\\\\/

| blue /\\x[0-9a-fA-F]{2}/ end
| /\\[tnr]/

sp := / /*
letter := /[a-zA-Z]/
word := letter+
ws := /[\t\r\n]/
red := "\x1b[31m"
green := "\x1b[32m"
yellow:= "\x1b[33m"
blue := "\x1b[34m"
end := "\x1b[39;49m"
black := "\x1b[30m"
teal := "\x1b[36m"

Figure 7.21: AKleenex program that highlights Kleenex syntax and emits ANSI color codes.
A modified version of this was used to highlight the code in this chapter.

7.7. USE CASES AND EXAMPLE PROGRAMS 141

// Parses a list of RFC1738 generic URLs.
// https://www.ietf.org/rfc/rfc1738.txt
main := (genericurl /\n/)*
genericurl := scheme ~/:/ schemepart
scheme := "Scheme: " /[a-z0-9.+-]+/ "\n"
schemepart := ip_schemepart

| "Scheme-part: " xchars "\n"
ip_schemepart := ~/\/\// login (~/\// urlpath)?
login := (user (~/:/ password)? ~/@/)? hostport
hostport := host (~/:/ port)?
host := "Host: " (hostname | hostnumber) "\n"
hostname := domainlabels toplabel
domainlabels := (domainlabel /\./)*
domainlabel := alphadigit (alphadashdigits alphadigit)?
toplabel := alpha (alphadashdigits alphadigit)?
alphadashdigits := (alphadigit | /-/)*
alphadigit := alpha | digit
hostnumber := digits (/\./ digits){3}
port := "Port: " digits "\n"
user := "User: " userstr "\n"
password := "Password: " userstr "\n"
userstr := (uchar | /[;?&=]/)*
urlpath := "Path: " xchars "\n"
xchars := xchar*

alpha := /[a-zA-Z]/
digit := /[0-9]/
digits := /[0-9]+/
safe := /[$_.+-]/
extra := /[!*'(),]/
reserved := /[;\/?:@&=]/
escape := /%[0-9A-Fa-f]{2}/
unreserved := alpha | digit | safe | extra
uchar := unreserved | escape
xchar := unreserved | reserved | escape

Figure 7.22: RFC1738 generic URL parser in Kleenex.

7.7.7 URL Parsing

Figure 7.22 contains a Kleenex implementation of a URL parser.

7.7.8 HTML Comments

The Kleenex program in Figure 7.23 finds HTML comments with basic formatting com-
mands and renders them in HTML after the comment. For example,

<!-- doc: *Hello* world -->

becomes

<!-- doc: *Hello* world --><div> Hello world </div>.

142 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

main := (comment | /./)*
comment := /<!-- doc:/ clear doc* !orig /-->/

"<div>" !render "</div>"
doc := ~/*/ t@/[^*]*/ ~/*/

[orig += "*" t "*"] [render += "" t ""]
| t@/./ [orig += t] [render += t]

clear := [orig <- ""] [render <- ""]

Figure 7.23: A Kleenex program that finds and rewrites comments in HTML documents.

7.8 Related Work

We discuss related work in the context of current and future work.

7.8.1 Regular Expression Matching

Regular expressionmatching has different meanings in the literature.
For acceptance testing, which corresponds to classical automata theory, Bille and Tho-

rup [19] improve on Myers’ [111] log-factor improved RE-membership testing of classical
NFA-simulation, based on tabling. They design a O(kn) algorithm [20] with word-level
parallelism, where k ≤ m is number of strings occurring in a regular expression. The
tabling techniquemay be promising in practice; the algorithms have not been implemented
and evaluated empirically, though.

In subgroup matching as in PCRE [73], an input is not only classified as accepting or
not, but a substring is returned for each sub-RE in an RE designated to be of interest. Sub-
group matching is often implemented by backtracking over alternatives, which yields the
greedy match.7 It may result in exponential-time behavior, however. Consequently, con-
siderable human effort is expended to engineer REs to perform well. REs resulting in expo-
nential run-time behavior are used in algorithmic attacks, leading to proposals for counter-
measures to such attacks by classifying REs with slow backtracking performance [124, 133],
where the countermeasures in turn appear to be attackable. Even in the absence of inher-
ently hardmatching with backreferences [1], backtracking implementations with avoidable
performance blow-ups are amazingly wide-spread. This may be due to a combination of
their good best-case performance and PCRE-embellishments driven by use cases. Some sub-
match libraries with guaranteed worst-case linear-time performance, notably RE2 [139], are
making inroads, however. Both Myers, Oliva and Guimaraes [110] and Okui, Suzuki [117]
describe POSIX-disambiguatedmatching algorithms, running inO(mn) andO(m2n), re-
spectively. Sulzmann and Lu [135] use Brzozowski and Antimirov derivatives [9, 27] for
Perl-style subgroup matching for greedy and POSIX disambiguation.

FullRE parsing generalizes submatching: it returns a list ofmatches for eachKleene-star,
also for nested ones. Kearns [83] and Frisch and Cardelli [57] devise three-pass linear-time
greedy RE parsing; they require two passes over the input, the first consisting of reversing
the entire input, before generating output in the third pass. Grathwohl, Henglein, Nielsen,
Rasmussen devise a two-pass [64] and an optimally streaming [65] greedy regular expres-
sion parsing algorithm, described inChapers 5 and 6. Streaming guarantees that line-by-line
REmatching can be coded as a single REmatching problem. Sulzman and Lu [134] remark

7Committing to the left alternative before checking that the remainder of the input is accepted is the essence
of parsing expression grammars [53].

7.8. RELATEDWORK 143

that POSIX is notoriously difficult to implement correctly and showhow touse Brzozowski
derivatives [27] for POSIX RE parsing.

There are specialized RE matching tools and techniques too numerous to review com-
prehensively. Wemention a few employing automaton optimization techniques applicable
toKleenex, but presently unexplored. Yang,Manadhata,Horne, Rao, Ganapathy [153] pro-
pose an OBDD representation for subgroup matching and apply it to intrusion detection
REs; the cycle counts per byte appear a bit high, but are reported to be competitive with
RE2. Sidhu and Prasanna [130] implementNFAs directly on an FPGA, essentially perform-
ing NFA-simulation in parallel; it outperforms GNU grep. Brodie, Taylor, Cytron [24]
construct amultistrideDFA,which processesmultiple input symbols in parallel, and devise
a compressed implementation on stock FPGA, also achieving very high throughput rates.
Likewise, Ziria employs tabledmultistriding to achieve high throughput [60]. Navarro and
Raffinot [113] show how to code DFAs compactly for efficient simulation.

7.8.2 Ambiguity

Regular expressionsmay be ambiguous, which is irrelevant for acceptance testing, but prob-
lematic for submatching and parsing since the output depends on which amongst possibly
multiple matches is to be returned. Brüggemann-Klein [26] provides an efficient O(m2)
REambiguity testing algorithm. Vansummeren [143] illustrates differences betweenPOSIX,
first/longest and greedymatches. Colcombet [35] analyzes notions of (non)determinism of
automata.

7.8.3 Transducers

From RE parsing it is a surprisingly short distance to the implementation of arbitrary non-
deterministic finite state transducers (FSTs) [18, 109]. In contrast to the situation for au-
tomata, non-deterministic transducers are strictly more powerful than deterministic trans-
ducers; this, together with observable ambiguity, highlights why RE parsing is more chal-
lenging than RE acceptance testing.

As we have seen, efficient RE parsing algorithms operate on arbitrary NFAs, not only
those corresponding to REs. Indeed, REs are not a particularly convenient or compact way
of specifying regular languages: they can be represented by certain smallNFAswith low tree-
width, but may be inherently quadratically bigger even for DFAs [44, Theorem 23]. This
is why Kleenex employs context-free grammars restricted to denote regular languages, with
embedded output actions, to denote FSTs.

We have shown that FSTs, in particular unambiguous FSTs, can be implemented by a
subclass of streaming string transducers (SSTs). SSTs extensionally correspond to regular
transductions, functions implementable by 2-way deterministic finite-state transducers [4],
MSO-definable string transductions [46] and a combinator language analogous to regular
expressions [6]. The implementation techniques used in Kleenex appear to be directly ap-
plicable to all SSTs, not just the ones corresponding to FSTs.

Allender andMertz [2] showthat the functions computable by register automata,which
generalize output strings to arbitrary monoids, are inNC and thus inherently parallelizable.
This is achievable by performing relational FST-composition by matrix multiplication on
the matrix representation of FSTs [18], which can be performed by parallel reduction. This
is tantamount to running an FST from all states, not just the input state, on input string
fragments. Mytkowicz, Musuvathi, Schulte [112] observe that there is often a small set of
cut states sufficient to run each FST. This promises to be an interesting parallel harness for
a suitably adapted Kleenex implementation running on fragments of very large inputs.

144 CHAPTER 7. KLEENEX: DETERMINIZATION OF TRANSDUCERS

Veanes,Molnar,Mytkowics [147] employ symbolic transducers [21, 40, 146] and a data-
parallel intermediate language in the implementation of BEK for multicore execution.

7.9 Conclusions

We have presented Kleenex, a convenient language for specifying (non-deterministic) finite
state transducers; and its compilation to machine code representations of streaming state
transducers, which emit the output.

Kleenex is comparatively expressive and performs consistently well—for complex reg-
ular expressions with nontrivial amounts of output almost always better in the evaluated
use cases—vis-à-vis text processing tools such as RE2, Ragel, grep, AWK, sed and standard
regular expression-libraries in Perl, Python, and Tcl.

We believe that Kleenex’s clean semantics, streaming optimality, algorithmic generality,
worst-case guarantees and absence of tricky code and special casing provide a useful basis for

• extensions to deterministic visible push-down automata, restricted versions of back-
references and approximate/probabilistic matching;

• known, but so far unexploredoptimizations, such asmulticharacter input processing,
automata minimization and symbolic representation, hybrid FST-simulation/SST-
construction (analogous to NFA-simulation with NFA-state set memoization to im-
plement on-demand DFA-construction);

• massively parallel (log-depth, linear work) input processing.

We thank Issuu for releasing their data set to the research community.

Part II

Extensions to Kleene Algebra

145

8 Infinitary Axiomatization of the
Equational Theory of Context-Free
Languages

This chapter is based on the paper “Infinitary Axiomatization of the Equational Theory
of Context-Free Languages,” published as FICS 2013 and under review for a Fundamenta
Informaticae special issue [63].

8.1 Introduction

Algebraic reasoning about programming language constructs has been a popular research
topic formany years. At the propositional level, the theory of flowchart programs and linear
recursion are well handled by such systems as Kleene algebra and iteration theories, systems
that characterize the equational theory of the regular sets. To handle more general forms
of recursion including procedures with recursive calls, one must extend to the context-free
languages, and here the situation is less well understood. One reason for this is that, unlike
the equational theory of the regular sets, the equational theory of the context-free languages
is not recursively enumerable. This has led some researchers to declare its complete axiom-
atization an insurmountable task [104].

Whereas linear recursion can be characterized with the star operator ⋆ of Kleene alge-
bra or the dagger operation † of iteration theories [22], the theory of context-free languages
requires a more general fixpoint operator µ. The characterization of the context-free lan-
guages as least solutions of algebraic inequalities involving µ goes back to a 1971 paper of
Gruska [69]. More recently, several researchers have given equational axioms for semirings
withµ and have developed fragments of the equational theory of context-free languages [38,
49, 50, 78, 79, 104].

In this chapter we consider another class of models satisfying a condition called µ-con-
tinuity analogous to the star-continuity condition of Kleene algebra:

a(µx.p)b =
∑
n≥0

a(nx.p)b,

where the summation symbol denotes supremum with respect to the natural order in the
semiring, and

0x.p = 0 (n+1)x.p = p[x/nx.p].

This infinitary axiom combines the assertions that µx.p is the supremum of its finite ap-
proximantsnx.p and thatmultiplication in the semiring is continuouswith respect to these

147

148 CHAPTER 8. INFINITARY AXIOMATIZATION OF CFLS

suprema. Analogous to a similar result for star-continuous Kleene algebra, we show that all
context-free languages over a µ-continuous idempotent semiring have suprema. Our main
result is that the µ-continuity condition, along with the axioms of idempotent semirings,
completely axiomatize the equational theory of the context-free languages. This is the first
completeness result for the equational theory of the context-free languages, answering a
question of Leiß [104].

8.1.1 Related Work

Courcelle [38] investigates regular systems, finite systems of fixpoint equations over first-
order terms over a ranked alphabet with a designated symbol+ denoting set union, thereby
restricting algebras to power set algebras. He stages their interpretation by first interpreting
recursion over first-order terms as infinite trees, essentially as the final object in the corre-
sponding coalgebra, then interpreting the signature symbols in ω-complete algebras. He
provides soundness and completeness for transforming regular systems that preserve all so-
lutions and soundness, but not completeness for preserving their least solutions. Courcelle’s
approach is syntactic since it employs unfolding of terms in fixpoint equations.

Leiß [104] investigates three classes of idempotent semirings with a syntactic least fix-
point operator µ. The three classes are called KAF, KAR, and KAG in increasing order of
specificity. All these classes are assumed to satisfy the fundamental Park axioms

p[x/µx.p] ≤ µx.p p ≤ x =⇒ µx.p ≤ x,

which say thatµx.p is the least solution of the inequality p ≤ x. The classesKAR andKAG
further assume

µx.(b+ ax) = µx.(1 + xa) · b µx.(b+ xa) = b · µx.(1 + ax)

and

µx.(s+ rx) = µx.(µy.(1 + yr) · s) µx.(s+ xr) = µx.(s · µy.(1 + ry)),

respectively. These axioms can be viewed as imposing continuity properties of the semiring
operators with respect to µ. All standard interpretations, including the context-free lan-
guages over an alphabetX , are continuous and satisfy the KAG axioms. Ésik and Leiß [49,
50] show that conversion to Greibach normal form can be performed purely algebraically
under these assumptions.

Ésik andKuich [48] introduce continuous semirings, which are required tohave suprema
for all directed sets, and they employ domain theory to solve polynomial fixpoint equations.

8.1.2 Outline

In Section 8.2 we lay the foundations of our completeness result. In Sections 8.2.1–8.2.3 we
introduce Chomsky algebras, our name for algebraically closed idempotent semirings, and
develop a few of their basic properties. In Sections 8.2.4–8.2.5 we review the µ-notation, a
well-known syntax for describing least solutions of systems of polynomial inequalities ex-
plicitly, and recall Bekić’s theorem, which states that the µ operator is sufficient to describe
the least solution of a finite system of simultaneous inequalities. In Section 8.2.6 we de-
fine the notion of µ-continuity, which is the cornerstone of our axiomatization. We also
give an example of a Chomsky algebra that is not µ-continuous. In Section 8.2.7 we give
several results establishing the relationship of our axiomatization to others in the literature.

8.2. CHOMSKY ALGEBRAS 149

Our main result, that our axiomatization exactly characterizes the equational theory of the
context-free languages, is presented in Section 8.3. Finally, Section 8.4 contains discussion
and conclusions.

8.2 Chomsky Algebras

In this section we introduce Chomsky algebras and the notion of µ-continuity and develop
some of their properties. Intuitively, a Chomsky algebra is an idempotent semiring inwhich
all systems of polynomial inequalities have unique least solutions.

8.2.1 Polynomials

Recall that an idempotent semiring (Definition 4.5) is a structure with binary operations+
and · and constants 0 and 1 satisfying the following equations:

a+ (b+ c) = (a+ b) + c a(bc) = (ab)c

a+ b = b+ a 1a = a1 = a

a+ 0 = a+ a = a a0 = 0a = 0

a(b+ c) = ab+ ac (a+ b)c = ac+ bc.

The adjective idempotent refers to the axiom a + a = a. Every idempotent semiring has a
natural partial order a ≤ b ⇐⇒ a+ b = b.

Let (C, +, ·, 0, 1) be an idempotent semiring andX a fixed set of variables. A poly-
nomial over indeterminates X with coefficients in C is an element ofC[X], whereC[X] is
the coproduct of C and the free idempotent semiring on generatorsX in the category of
idempotent semirings. For example, if a, b, c ∈ C and x, y ∈ X , then the following are
polynomials:

0 a axbycx+ 1 ax2byx+ by2xc 1 + x+ x2 + x3.

The elements of C[X] are not purely syntactic, as they satisfy all the equations of idempo-
tent semirings and identities ofC . For example, if a2 = b2 = 1 inC , then

(axa+ byb)2 = ax2a+ axabyb+ bybaxa+ by2b.

Every polynomial can be written as a finite sum ofmonomials of the form

a0x0a1x1 · · · an−1xn−1an,

where each ai ∈ C − {0} and xi ∈ X . The free variables of such an expression p are
the elements of X appearing in it and are denoted FV(p). The representation is unique
up to associativity of multiplication and associativity, commutativity, and idempotence of
addition.

8.2.2 Polynomial Functions and Evaluation

Let C[X] be the semiring of polynomials over indeterminatesX and letD be an idempo-
tent semiring containing C as a subalgebra. By general considerations of universal algebra,
any valuationσ : X → D extends uniquely to a semiring homomorphism σ̂ : C[X]→ D
preserving C pointwise. Formally, the functor X 7→ C[X] is left adjoint to a forgetful
functor that takes an idempotent semiringD to its underlying set:

150 CHAPTER 8. INFINITARY AXIOMATIZATION OF CFLS

C[X] D

X |D|

σ̂

C[−]

σ

| − |

Intuitively, σ̂ is the evaluation morphism that evaluates a polynomial at the point σ ∈ DX .
Thus each polynomial p ∈ C[X] determines a polynomial function JpK : DX → D, whereJpK(σ) = σ̂(p).

The set of all functionsDX → D with the pointwise semiring operations is itself an
idempotent semiring withC as an embedded subalgebra under the embedding c 7→ λσ.c.
The map J·K : C[X]→ (DX → D) is actually τ̂ , where τ(x) = λf.f(x).

For the remainder of this chapter, we write σ for σ̂, as there is no longer any need to
distinguish them.

8.2.3 Algebraic Closure and Chomsky Algebras

A system of polynomial inequalities over C is a set

p1 ≤ x1, p2 ≤ x2, . . . , pn ≤ xn (8.1)

where xi ∈ X and pi ∈ C[X], 1 ≤ i ≤ n. A solution of (8.1) in C is a valuation
σ : X → C such that σ(pi) ≤ σ(xi), 1 ≤ i ≤ n. The solution σ is a least solution if
σ ≤ τ pointwise for any other solution τ . If a least solution exists, then it is unique.

An idempotent semiringC is said to be algebraically closed if every finite system of poly-
nomial inequalities overC has a least solution inC .

The category ofChomsky algebras consists of algebraically closed idempotent semirings
alongwith semiring homomorphisms that preserve least solutions of systems of polynomial
inequalities.

The canonical example of a Chomsky algebra is the family of context-free languages
CFX over an alphabet X . A system of polynomial inequalities (8.1) can be regarded as
a context-free grammar, and the least solution of the system is the context-free language
generated by the grammar. For example, the set of strings in {a, b}⋆ with equally many a’s
and b’s is generated by the grammar

S → ε | aB | bA A→ aS | bAA B → bS | aBB, (8.2)

which corresponds to the system

1 + aB + bA ≤ S aS + bAA ≤ A bS + aBB ≤ B, (8.3)

where the symbols a, b are interpreted as the singleton sets {a} , {b}, the symbols S,A,B
are variables ranging over sets of strings, and the semiring operations+, ·, 0, and 1 are inter-
preted as set union, set productAB = {xy}x ∈ A, y ∈ B, ∅, and {ϵ}, respectively.

Continuous idempotent semirings are also µ-continuous Chomsky algebras. These in-
clude Boolean semirings, the tropical semiring, the powerset of strings over an alphabetX ,
and the binary relations RelX overX [48, p. 44]. Specifically, RelX consists of all binary
relationsR ⊆ X ×X , where+ is set union, · relational composition, 0 the empty set, and
1 the identity relation {(x, x) | x ∈ X}.

Consider for example the relation P =
∪

n≥0R
nSn, whereRn = R · · ·R︸ ︷︷ ︸

n

.

8.2. CHOMSKY ALGEBRAS 151

Rn Sn

P

Then P is the least solution in RelX to the systemRxS + 1 ≤ x.

8.2.4 µ-Expressions

LetX be a set of indeterminates. Leiß [104] andÉsik andLeiß [49, 50] considerµ-expressions
defined by the grammar

t ::= x | t+ t | t · t | 0 | 1 | µx.t

wherex ∈ X . These expressions provide a syntax with which least solutions of polynomial
systems can be named. Scope, bound and free occurrences of variables, α-conversion, and
safe substitution are defined as usual (see e.g. [14]). We denote by t[x/u] the result of sub-
stituting u for all free occurrences of x in t, renaming bound variables as necessary to avoid
capture. Let TX denote the set of µ-expressions over indeterminatesX .

LetC be a Chomsky algebra andX a set of indeterminates. An interpretation overC is
a map σ : TX → C that is a homomorphism with respect to the semiring operations and
such that

σ(µx.t) = the least a ∈ C such that σ[x/a](t) ≤ a, (8.4)

where σ[x/a] denotes σ with x rebound to a. The element a exists and is unique: Infor-
mally, by Bekić’s theorem, eachµ-expression t can be associatedwith a systemof polynomial
inequalities such that σ(t) is a designated component of its least solution, which exists by
algebraic closure.

Every set map σ : X → C extends uniquely to such a homomorphism. An interpre-
tation σ satisfies the equation s = t if σ(s) = σ(t) and satisfies the inequality s ≤ t if
σ(s) ≤ σ(t). All interpretations over Chomsky algebras satisfy the axioms of idempotent
semirings, α-conversion (renaming of bound variables), and the Park axioms [47, 120]

t[x/µx.t] ≤ µx.t t ≤ x =⇒ µx.t ≤ x. (8.5)

Intuitively, the Park axioms say that µx.t is the least solution of the single inequality t ≤ x.
It follows easily form (8.4) and (8.5) that

t[x/µx.t] = µx.t. (8.6)

Thus, Chomsky algebras are essentially the ordered Park µ-semirings of [49] with the
additional restriction that+ is idempotent and the order is the natural order x ≤ y ⇐⇒
x+ y = y.

8.2.5 Bekić’s Theorem

It is well known that the ability to name least solutions of single inequalities withµ gives the
ability to name least solutions of all finite systems of inequalities. This is known as Bekić’s
theorem [17]. The construction is analogous to the definition ofM⋆ for a matrixM over a
Kleene algebra.

Bekić’s theorem can be proved by regarding a systemof inequalities as a single inequality
on a Cartesian product, partitioning into two systems of smaller dimension, then applying
the result for the 2×2 case inductively. See also [151] or [49] for a comprehensive treatment.

152 CHAPTER 8. INFINITARY AXIOMATIZATION OF CFLS

Proposition 8.1 (Bekić). The 2× 2 system

p(x, y) ≤ x q(x, y) ≤ y

has least solution a0, b0, where

a(y) = µx.p(x, y) b0 = µy.q(a(y), y) a0 = a(b0).

Proof. From (8.6) we have

a(y) = p(a(y), y) b0 = q(a(b0), b0) = q(a0, b0)

a0 = a(b0) = p(a(b0), b0) = p(a0, b0).

Thus a0, b0 is a solution of the system. To show it is the least solution, suppose

p(c, d) ≤ c q(c, d) ≤ d.

By definition of a,

p(c, d) ≤ c =⇒ a(d) = µx.p(x, d) ≤ c.

By monotonicity, assumptions on c, d and definition of b0,

q(a(d), d) ≤ q(c, d) ≤ d =⇒ b0 ≤ d.

Again by monotonicity and assumptions on c, d and definition of a0,

p(c, b0) ≤ p(c, d) ≤ c =⇒ a0 ≤ c.

For example, in the context-free languages, the set of strings in {a, b}⋆ with equally
many a’s and b’s is represented by the term

µS.(1 + a · µB.(bS + aBB) + b · µA.(aS + bAA)) (8.7)

obtained from the system (8.2) by this construction.

8.2.6 µ-Continuity

Letnx.tbe an abbreviation for then-fold composition of t applied to0, defined inductively
by

0x.t = 0 (n+1)x.t = t[x/nx.t].

A Chomsky algebra is called µ-continuous if it satisfies the µ-continuity axiom:

a(µx.t)b =
∑
n≥0

a(nx.t)b, (8.8)

where the summation symbol denotes supremum with respect to the natural order x ≤
y ⇐⇒ x+ y = y. Note that the supremum of a and b is a+ b.

The family CFX of context-free languages over an alphabetX forms a µ-continuous
Chomsky algebra. The canonical interpretation over this algebra is LX : TX → CFX ,
where

LX(x) = {x} LX(t+ u) = LX(t) ∪ LX(u)

LX(0) = ∅ LX(tu) = {xy}x ∈ LX(t), y ∈ LX(u) (8.9)

LX(1) = {ε} LX(µx.t) =
∪
n≥0

LX(nx.t).

8.2. CHOMSKY ALGEBRAS 153

UnderLX , every term in TX represents a context-free language over its free variables (note
thatx is not free innx.t). In the example (8.7) of Section 8.2.5, the free variables area, b and
the bound variables are S,A,B, corresponding to the terminal and nonterminal symbols,
respectively, of the grammar (8.2) of Section 8.2.3.

Not all Chomsky algebras areµ-continuous. AswithKleene algebra [99] (Example 4.5),
we can construct a Chomsky algebra that is not µ-continuous. Consider the set of ordered
pairs ofnatural numbers ordered lexicographically, extendedwith adjoined least andgreatest
elements⊥ and⊤. Define+ as supremum and

x · ⊥ = ⊥ · x = ⊥
x · ⊤ = ⊤ · x = ⊤ (x ̸= ⊥)

(a, b) · (c, d) = (a+ c, b+ d).

This is a Chomsky algebra, but it is not µ-continuous. We have

µx.(0, 1) · x+ (0, 1) = ⊤

since (0, 1) ·⊤+(0, 1) ≤ ⊤ and neither⊥ nor any (k, l) satisfy the inequality (0, 1) ·x+
(0, 1) ≤ x:

(0, 1) · ⊥+ (0, 1) = ⊥+ (0, 1) = (0, 1) ̸≤ ⊥
(0, 1) · (k, l) + (0, 1) = (k, l + 1) + (0, 1) = (k, l + 1) ̸≤ (k, l).

On the other hand,∑
n≥0

(nx.(0, 1) · x+ (0, 1)) = sup {(0, n) | n ≥ 1} = (1, 0).

We have µx.t ̸=
∑

n≥0 nx.t for t = (0, 1) · x + (0, 1), which shows that this Chomsky
algebra is not µ-continuous.

8.2.7 Relation to Other Axiomatizations

In this section we show that the axiomatizations considered in [49, 50, 104] are valid in all
µ-continuous Chomsky algebras.

Definition 8.1 (µ-semiring [49]). A µ-semiring [49] is a semiring (A,+, ·, 0, 1) satisfying
the µ-congruence and substitution properties:

t = u =⇒ µx.t = µx.u σ(t[y/u]) = σ[y/σ(u)](t).

Idempotence is not assumed.

Lemma 8.1. Every Chomsky algebra is a µ-semiring.

Proof. The µ-congruence property is immediate from the definition of the µ operation
(8.4). The substitution property is a general property of systems with variable bindings; see
[14, Lemma 5.1.5]. It can be proved by induction. For the case of µx.t, we assume without
loss of generality that y ̸= x (otherwise there is nothing to prove) and that x is not free in
u.

σ((µx.t)[y/u]) = σ(µx.(t[y/u]))

= least a such that σ[x/a](t[y/u]) ≤ a
= least a such that σ[x/a][y/σ(u)](t) ≤ a (8.10)
= least a such that σ[y/σ(u)][x/a](t) ≤ a
= σ[y/σ(u)](µx.t),

154 CHAPTER 8. INFINITARY AXIOMATIZATION OF CFLS

where we have used the induction hypothesis in (8.10).

We now consider various axioms proposed in [104].

Lemma 8.2. In all µ-continuous Chomsky algebras,

µx.(1 + ax) = µx.(1 + xa), x ̸∈ FV(a).

Proof. By µ-continuity, it suffices to show that nx.(1 + ax) = nx.(1 + xa) for all n. We
show by induction that for all n, nx.(1 + ax) = nx.(1 + xa) =

∑n
i=0 a

i. The basis
n = 0 is trivial:

0x.(1 + ax) = 0x.(1 + xa) =

0∑
i=0

ai = 0.

For the inductive case,

(n+1)x.(1 + ax) = 1 + a(nx.(1 + ax))

= 1 + a(
∑n

i=0 a
i)

=
∑n+1

i=0 a
i

= 1 + (
∑n

i=0 a
i)a

= 1 + (nx.(1 + xa))a

= (n+1)x.(1 + xa).

Lemma 8.3. The following two equations hold in all µ-continuous Chomsky algebras:

a(µx.(1 + xb)) = µx.(a+ xb) (µx.(1 + bx))a = µx.(a+ bx).

Proof. We show the first equation only; the second follows from a symmetric argument. By
µ-continuity, we need only show that the equation holds for anyn. We do this by induction
over n. The basis n = 0 is trivial:

a(0x.(1 + xb)) = a0 = 0 = 0x.(a+ xb).

For the inductive case,

a((n+1)x.(1 + xb)) = a+ a(nx.(1 + xb))b

= a+ (nx.(a+ xb))b

= (n+1)x.(a+ xb),

where the induction hypothesis has been used in the second step.

These properties also show that µ-continuous Chomsky algebras are algebraically com-
plete semirings, and therefore also algebraic Conway semirings in the sense of [49, 50].

Lemma 8.4. The Greibach inequalities

µx.s(µy.(1 + ry)) ≤ µx.(s+ xr) µx.(µy.(1 + yr))s ≤ µx.(s+ rx)

of KAG [104] hold in all µ-continuous Chomsky algebras.

8.2. CHOMSKY ALGEBRAS 155

Proof. For the left-hand inequality, let u = µx.(s+ xr). By the Park axioms, it suffices to
show that s(µy.(1 + ry))[x/u] ≤ u. But

s(µy.(1 + ry))[x/u] = s[x/u](µy.(1 + r[x/u]y))

= s[x/u](µy.(1 + yr[x/u]))

= µy.(s[x/u] + yr[x/u])

= µx.(s+ xr),

where Lemmas 8.2 and 8.3 have been used.
The right-hand inequality can be proved by a symmetric argument.

Definition 8.2 (Algebraic Conway semiring [49]). An algebraic Conway semiring is a µ-
semiring satisfying

µx.t[x/t′] = t[x/µx.t′[x/t]] (8.11)
µx.µy.t = µx.t[y/x] (8.12)

(µx.1 + ax)b = µx.b+ ax (8.13)
b(µx.1 + xa) = µx.b+ xa (8.14)
µx.1 + ax = µx.1 + xa (8.15)

Lemma 8.5. Any Chomsky algebra is an algebraic Conway semiring.

Proof. Any Chomsky algebra is a µ-semiring by Lemma 8.1, and (8.13)–(8.15) hold by Lem-
mas 8.2 and 8.3. For (8.11), we have

σ(t[x/µx.t′[x/t]]) = least a such that σ(t[x/t′[x/t[x/a]]]) ≤ a
= least a such that σ(t[x/t′][x/t[x/a]]) ≤ a
= least b such that σ(t[x/t′][x/b]) ≤ b
= σ(µx.t[x/t′]),

and for (8.12) only need to show nx.µy.t = nx.t[y/x] for all n by µ-continuity. We use
induction on n. The base case n = 0 is trivial: 0x.µy.t = 0 = 0x.t[y/x], and for n > 0
we have

(n+1)x.µy.t = µy.t[x/nx.µy.t]

= µy.t[x/nx.t[y/x]]

= (n+1)x.t[y/x].

Various other axioms of [49, 50, 104] follow from the Park axioms.
The µ-continuity condition (8.8) implies the Park axioms (8.5), but we must defer the

proof of this fact until Section 8.3. For nowwe just observe a related property of the canon-
ical interpretationLX .

Lemma 8.6. For any s, t ∈ TX and y ∈ X ,

LX(s[y/µy.t]) =
∪
n≥0

LX(s[y/ny.t]).

156 CHAPTER 8. INFINITARY AXIOMATIZATION OF CFLS

Proof. We proceed by induction on the structure of s. The base cases are straightforward:

LX(0[y/µy.t]) = LX(0) =
∪
n

LX(0[y/ny.t])

LX(1[y/µy.t]) = LX(1) =
∪
n

LX(1[y/ny.t])

LX(x[y/µy.t]) = LX(x) =
∪
n

LX(x[y/ny.t]) (x ̸= y)

LX(y[y/µy.t]) = LX(µy.t) =
∪
n

LX(y[y/ny.t]).

The remaining cases are shown as follows:

LX((p+ q)[y/µy.t]) = LX(p[y/µy.t]) ∪ LX(q[y/µy.t])

=
∪
m

LX(p[y/my.t]) ∪
∪
n

LX(q[y/ny.t])

=
∪
n

LX(p[y/ny.t]) ∪ LX(q[y/ny.t])

=
∪
n

LX((p+ q)[y/ny.t]).

LX((pq)[y/µy.t]) = LX(p[y/µy.t]) · LX(q[y/µy.t])

=
∪
m

LX(p[y/my.t]) ·
∪
n

LX(q[y/ny.t])

=
∪
n

LX(p[y/ny.t]) · LX(q[y/ny.t])

=
∪
n

LX((pq)[y/ny.t]).

For µx.s, assume without loss of generality that y ̸= x and x is not free in t.

LX((µx.s)[y/µy.t]) =
∪
m

LX((mx.s)[y/µy.t])

=
∪
m

∪
n

LX((mx.s)[y/ny.t])

=
∪
n

∪
m

LX((mx.s)[y/ny.t])

=
∪
n

LX((µx.s)[y/ny.t]).

8.3 Main Result

Ourmain result depends on an analog of a result of [96] (see [99]). It asserts that the supre-
mum of a context-free language over a µ-continuous Chomsky algebraK exists, interpret-
ing strings overK as products inK . Moreover, multiplication is continuous with respect
to suprema of context-free languages.

8.3. MAIN RESULT 157

Lemma 8.7. Let σ : TX → K be any interpretation over a µ-continuous Chomsky algebra
K . Let τ : TX → CFX be any interpretation over the context-free languages CFX such
that for all x ∈ X and s, u ∈ TX ,

σ(sxu) =
∑

y∈ τ(x)

σ(syu).

Then for any s, t, u ∈ TX ,

σ(stu) =
∑

y∈ τ(t)

σ(syu).

In particular,

σ(stu) =
∑

y∈LX(t)

σ(syu), (8.16)

where LX is the canonical interpretation defined in §8.2.6.

Note carefully that the lemma does not assume a priori knowledge of the existence of
the suprema. The equations should be interpreted as asserting that the supremum on the
right-hand side exists and is equal to the expression on the left-hand side.

Proof. The proof is by induction on the structure of t, that is, by induction on the subex-
pression relation t + u ≻ t, t + u ≻ u, t · u ≻ t, t · u ≻ u, µx.t ≻ nx.t, which is
well-founded [97].

All cases are similar to the proof in [99, Lemma 7.1] for star-continuous Kleene algebra,
with the exception of the case t = µx.p.

For variables t = x ∈ X , the desired property holds by assumption. For the constants
t = 0 and t = 1,

σ(s0u) = 0 =
∑
∅ =

∑
y∈∅

σ(syu) =
∑

y ∈ τ(0)

σ(syu)

σ(s1u) = σ(su) =
∑

y∈{ε}

σ(syu) =
∑

y ∈ τ(1)

σ(syu).

For sums t = p+ q,

σ(s(p+ q)u) = σ(spu) + σ(squ)

=
∑

x∈ τ(p)

σ(sxu) +
∑

y∈ τ(q)

σ(syu) (8.17)

=
∑

z ∈ τ(p)∪τ(q)

σ(szu) (8.18)

=
∑

z ∈ τ(p+q)

σ(szu). (8.19)

158 CHAPTER 8. INFINITARY AXIOMATIZATION OF CFLS

Equation (8.17) is by two applications of the induction hypothesis. Equation (8.18) is by the
properties of supremum. Equation (8.19) is by the definition of sum in CFX .

For products t = pq,

σ(spqu) =
∑

x∈ τ(p)

∑
y ∈ τ(q)

σ(sxyu) (8.20)

=
∑

z ∈ τ(p)·τ(q)

σ(szu) (8.21)

=
∑

z ∈ τ(pq)

σ(szu). (8.22)

Equation (8.20) is by two applications of the induction hypothesis. Equations (8.21) and
(8.22) are by the definition of product in CFX .

Finally, for t = µx.p,

σ(s(µx.p)u) =
∑
n

σ(s(nx.p)u) (8.23)

=
∑
n

∑
y∈ τ(nx.p)

σ(syu) (8.24)

=
∑

y∈
∪

nτ(nx.p)

σ(syu) (8.25)

=
∑

y∈ τ(µx.p)

σ(syu). (8.26)

Equation (8.23) is just the µ-continuity property (8.8). Equation (8.24) is by the induction
hypothesis, observing that µx.p ≻ nx.p. Equation (8.25) is a basic property of suprema.
Finally, equation (8.26) is by the definition of τ(µx.p) in CFX .

The result (8.16) for the special case of τ = LX is immediate, observing thatLX satisfies
the assumption of the lemma: for x ∈ X ,

σ(sxu) =
∑

y∈{x}

σ(syu) =
∑

y∈LX(x)

σ(syu).

At this point we can show that the µ-continuity condition implies the Park axioms.

Theorem 8.1. The µ-continuity condition (8.8) implies the Park axioms (8.5).

Proof. We first show p ≤ x =⇒ µx.p ≤ x in any idempotent semiring satisfying the
µ-continuity condition. Let σ be a valuation such that σ(µx.p) =

∑
n σ(nx.p). Suppose

that σ(p) ≤ σ(x). We show by induction that for all n ≥ 0, σ(nx.p) ≤ σ(x). This is
certainly true for 0x.p = 0. Now suppose it is true for nx.p. Using monotonicity,

σ((n+1)x.p) = σ(p[x/nx.p]) ≤ σ(p[x/x]) = σ(p) ≤ σ(x).

By µ-continuity, σ(µx.p) =
∑

n σ(nx.p) ≤ σ(x).
Now we show that p[x/µx.p] ≤ µx.p. This requires the stronger property that a µ-

expression is chain-continuous with respect to suprema of context-free languages as a func-

8.3. MAIN RESULT 159

tion of its free variables. Using Lemmas 8.6 and 8.7,

σ(p[x/µx.p]) =
∑
{σ(y) | y ∈ LX(p[x/µx.p])}

=
∑{

σ(y) | y ∈
∪
n

LX(p[x/nx.p])

}
=
∑
n

∑
{σ(y) | y ∈ LX(p[x/nx.p])}

=
∑
n

σ(p[x/nx.p])

=
∑
n

σ((n+1)x.p)

= σ(µx.p).

The following is our main theorem.

Theorem 8.2. Let X be a set and let s, t ∈ TX . The following are equivalent:

(i) The equation s = t holds in all µ-continuous Chomsky algebras; that is, s = t is a log-
ical consequence of the axioms of idempotent semirings and the µ-continuity condition

a(µx.t)b =
∑
n≥0

a(nx.t)b, (8.27)

or equivalently, the universal formulas

a(nx.t)b ≤ a(µx.t)b, n ≥ 0 (8.28)∧
n≥0

(a(nx.t)b ≤ w)

 =⇒ a(µx.t)b ≤ w. (8.29)

(ii) The equation s = t holds in the semiring of context-free languages CFY over any set
Y .

(iii) LX(s) = LX(t), where LX : TX → CFX is the standard interpretation mapping
a µ-expression to a context-free language of strings over its free variables.

Thus the axioms of idempotent semirings and µ-continuity are sound and complete for the
equational theory of the context-free languages.

Proof. The implication (i) =⇒ (ii) holds since CFY is a µ-continuous Chomsky algebra.
The implication (ii) =⇒ (iii) holds because (iii) is a special case of (ii). Finally, if (iii)
holds, then by two applications of Lemma 8.7, for any interpretation σ : TX → K over a
µ-continuous Chomsky algebraK ,

σ(s) =
∑

x∈LX(s)

σ(x) =
∑

x∈LX(t)

σ(x) = σ(t),

which proves (i).

Corollary 8.1. The context-free languages over the alphabet X form the free µ-continuous
Chomsky algebra on generatorsX .

160 CHAPTER 8. INFINITARY AXIOMATIZATION OF CFLS

Proof. LetK be aµ-continuousChomsky algebra. Anymapσ : X → K extends uniquely
to an interpretation σ : TX → K . By Lemma 8.7, this decomposes as

CFX CFK

TX K

CFσ

LX

σ

Σ

where

LX : TX → CFX

is the canonical interpretation in the context-free languages overX ,

CFσ : CFX → CFK

is the map CFσ(A) = {σ(x) | x ∈ A}, and

Σ: CFK → K

takes the supremum of a context-free language over K , which is guaranteed to exist by
Lemma 8.7. The uniquemorphism CFX → K corresponding to σ isΣ◦CFσ. Thus CF
is left adjoint to the forgetful functor from µ-continuous Chomsky algebras to Set. The
maps x 7→ {x} : X → CFX and Σ: CFK → K are the unit and counit, respectively,
of the adjunction.

8.4 Conclusion

We have given a natural complete infinitary axiomatization of the equational theory of the
context-free languages:

a+ (b+ c) = (a+ b) + c (8.30)
a+ b = b+ a (8.31)
a+ 0 = a (8.32)
a+ a = a (8.33)
a(bc) = (ab)c (8.34)

1a = a (8.35)
a1 = a (8.36)

a(b+ c) = ab+ ac (8.37)
(a+ b)c = ac+ bc (8.38)

0a = 0 (8.39)
a0 = 0 (8.40)

a(nx.t)b ≤ a(µx.t)b, n ≥ 0 (8.41)∧
n≥0

(a(nx.t)b ≤ w)

 => a(µx.t)b ≤ w. (8.42)

Leiß [104] states as an open problem:

8.4. CONCLUSION 161

Are there natural equations between µ-regular expressions that are valid in all
continuous models of KAF, but go beyond KAG?

Herewe have identified such a system, thereby answering Leiß’s question. He does not state
axiomatization as an open problem, but observes that the set of pairs of equivalent context-
free grammars is not recursively enumerable, then goes on to state:

Since there is an effective translation between context-free grammars and µ–
regular expressions …, the equational theory of context-free languages in terms
of µ-regular expressions is not axiomatizable at all.

Nevertheless, we have given an axiomatization. How dowe reconcile these two views? Leiß
is apparently using “axiomatization” in the sense of “recursive axiomatization.” But observe
that the axiom (8.42) is an infinitary Horn formula. To use it as a rule of inference, one
needs to establish infinitelymany premises of the formx(ny.p)z ≤ w. But this in itself is a
Π0

1-complete problem. One can show that it isΠ0
1-complete to determine whether a given

context-free grammarG over a two-letter alphabet generates all strings [89]. By codingG
as a µ-expression w, the problem becomes µx.(1 + ax + bx) ≤ w, which by (8.27) is
equivalent to showing that nx.(1 + ax+ bx) ≤ w for all n.

Acknowledgments

We thank Zoltán Ésik, Hans Leiß, and the anonymous referees for helpful comments.

9 KAT+B!

This chapter is based on the paper “KAT+B!” [67].

9.1 Introduction

Kleene algebra with tests (KAT) is a propositional equational system that combines Kleene
algebra (KA) with Boolean algebra. It has been shown to be an effective tool for many
low-level program analysis and verification tasks involving communication protocols, safety
analysis, source-to-source program transformation, concurrency control, and compiler opti-
mization [8, 15, 31–33, 93, 101]. A notable recent success is its adoption as a basis forNetKAT,
a foundation for software-defined networks (SDN) [7, 95].

One advantage of KAT is that it allows a clean separation of the theory of the domain
of computation from the program restructuring operations. The former typically involves
first-order reasoning, whereas the latter is typically propositional. It is often advantageous
to separate the two, because the theory of the domain of computation may be highly unde-
cidable. With KAT, one typically isolates the needed properties of the domain as premises
in a Horn formula

s1 = t1 ∧ · · · ∧ sn = tn → s = t,

where the conclusion s = t expresses a more complicated equivalence between, say, an
unoptimized or unannotated version of a program and its optimized or annotated version.
The premises are verified once and for all using the properties of the domain, and the con-
clusion is then verified propositionally in KAT under those assumptions.

Certain premises that arise frequently in practice can be incorporated as part of the the-
ory using a technique known as elimination of hypotheses, in which Horn formulas with
premises of a certain form can be reduced to the equational theory without loss of effi-
ciency [31, 71, 102]. However, there are a few useful ones that cannot. In particular, it
is known that there are certain program transformations that cannot be effected in pure
KAT, but require extra structure. Two paradigmatic examples are the Böhm–Jacopini the-
orem [23] (see also [12, 118, 121, 123, 150]) and the folklore result that all while programs can
be transformed to a program with a single while loop [72, 108].

The Böhm–Jacopini theorem states that every deterministic flowchart can be written as
a while program. The construction is normally done at the first-order level and introduces
auxiliary variables to remember values across computations. It has been shown that the
construction is not possible without some kind of auxiliary structure of this type [12, 87,
103].

Akin to the Böhm–Jacopini theorem, and often erroneously conflated with it, is the
folklore theorem that every while program can be written with a single while loop. Like
the proof of the Böhm–Jacopini theorem, the proofs of [76, 108], as reported in [72], are

163

164 CHAPTER 9. KAT+B!

normally done at the first-order level and use auxiliary variables. It was a commonly held
belief that this result had no purely propositional proof [72], but a partial refutation of this
view was given in [93] using a construction that foreshadows the construction we present
here.

One can carry out these constructions in an uninterpreted first-order version of KAT
called schematic KAT (SKAT) [8, 98], but as SKAT is undecidable in general [92], one
would prefer a less radical extension.

In this chapter we investigate the minimal amount of structure that suffices to perform
these transformations and showhow to incorporate it inKATwithout sacrificing deductive
completeness or decidability. Our main results are:

• We show how to extend KATwith a set of independentmutable tests. The construc-
tion is done axiomatically with generators and additional equational axioms. We for-
mulate the construction as a general commutative coproduct construction that satisfies
a certain universality property. The generators are abstract setters of the form b! and
b̄! and testers b? and b̄? for a test symbol b. We can think of these intuitively as opera-
tions that set and test the value of a Boolean variable, although we do not introduce
any explicit notion of storage or variable assignment.

• We prove a representation theorem (Theorem 9.2) for the commutative coproduct
of an arbitrary KATK and a KAT of binary relations on a finite set, namely that it
is isomorphic to a certain matrix algebra overK .

• As a corollary to the representation theorem, we show that the extension is conser-
vative; that is, an arbitrary KAT K can be augmented with mutable tests without
affecting the theory of K . This is captured formally by a general property of the
commutative coproduct, namely injectivity. It is not known whether the coproduct
of KATs is injective in general, but we show that it is injective if at least one of the two
cofactors is a finite relational KAT, which is the case in our application.

• We show that the free mutable test algebra on generators bi, 1 ≤ i ≤ n, is isomor-
phic to the KAT of all binary relations on a set of 2n states. We also characterize the
primitive operations in terms of a tensor product of n copies of a 2-state system. We
show that the equational theory of this algebra is PSPACE-complete, thus no easier
or harder to decide than KAT.

• We show that the equational theory of an arbitrary KATK augmented with muta-
ble tests is axiomatically reducible to the theory of K . In particular, the free KAT,
augmented with mutable tests, is completely axiomatized by the KAT axioms plus
the axioms for mutable tests.

• We show that the equational theory of KAT with mutable tests, KAT+B!, is EXP-
SPACE-complete.

• We demonstrate that the program transformations mentioned above, namely the
Böhm–Jacopini theorem and the folklore result about while programs, can be car-
ried out in KAT with mutable tests.

Balbiani et al. [13] present a related system, DL-PA, a variant of propositional dynamic
logic (PDL) with mutable tests only. Their system corresponds most closely to our free
mutable test algebra, which is PSPACE-complete. The semantics of DL-PA is restricted

9.2. KAT ANDMUTABLE TESTS 165

to relational models, and they show that model checking and satisfiability are EXPTIME-
complete. The added complexity is partly due to the presence of the modal operators in
PDL, which are absent in KAT.

This chapter is organized as follows. In Section 9.2 we introduce the theory of mutable
tests and prove that the free mutable test algebra on n generators is isomorphic to the KAT
of all binary relations on a set of size 2n. We also introduce the commutative coproduct
construction and prove our representation theorem for the commutative coproduct of an
arbitraryKATK and a finite relationalKAT. InSection9.3weprove ourmain completeness
and complexity results. In Section 9.4we apply the theory to give an axiomatic treatment of
two applications involving program transformations. In Section 9.5 we present conclusions
and open problems.

9.2 KAT and Mutable Tests

Recall that a Kleene algebra is a structure (K,+, ·, ⋆, 0, 1) that is an idempotent semiring
(Definition 4.5) with an iteration operator ⋆ satisfying

1 + pp⋆ = p⋆ q + pr ≤ r =⇒ p⋆q ≤ r
1 + p⋆p = p⋆ q + rp ≤ r =⇒ qp⋆ ≤ r

where≤ refers to the natural partial order onK given by (4.8):

x ≤ y ⇐⇒ x+ y = y.

All KA operations are monotone with respect to≤ (Proposition 4.2).
The following are some typical KA identities:

(p⋆q) ⋆ p⋆ = (p+ q)⋆ (9.1)
p(qp)⋆ = (pq)⋆p (9.2)

p⋆ = (pn)⋆(1 + p+ · · ·+ pn−1). (9.3)

A Kleene algebra with tests (KAT) is a Kleene algebra with an embedded Boolean sub-
algebra (Definition 4.17). That is, it is a two-sorted structure (K,B,+, ·, ⋆, ,̄ 0, 1) such
that

• (K,+, ·, ⋆, 0, 1) is a Kleene algebra,

• (B,+, ·, ,̄ 0, 1) is a Boolean algebra, and

• B as a semiring is a subalgebra ofK .

The Boolean complementation operator ¯ is defined only on B. Elements of B are called
tests. The letters p, q, r, s denote arbitrary elements ofK and a, b, c denote tests. The oper-
ators+, ·, 0, 1 each play two roles: applied to arbitrary elements ofK , they refer to nonde-
terministic choice, composition, fail, and skip, respectively; and applied to tests, they take
on the additional meaning of Boolean disjunction, conjunction, falsity, and truth, respec-
tively. These two usages do not conflict; for example, sequential testing of b and c is the
same as testing their conjunction.

Conventional imperative programming constructs and Hoare partial correctness asser-
tions can be encoded, and propositional Hoare logic is subsumed. The deductive complete-
ness and complexity results for KA and KAT [34, 88, 102] say that the axioms are complete
for the equational theoryof standard language and relationalmodels and that the equational
theory is decidable in PSPACE.

166 CHAPTER 9. KAT+B!

9.2.1 Mutable Tests

LetTn = {t1, . . . , tn}be a set of primitive test symbols. Consider a set of primitive actions
{t!, t̄! | t ∈ Tn} (note that ¯̄t! = t!). We write t? for the test t to emphasize the distinction
between t? and t!. Let Fn be the free KAT over primitive actions {t!, t̄! | t ∈ Tn} and
primitive tests Tn modulo the following equations:

(i) t!t? = t!

(ii) t?t! = t?

(iii) t!t̄! = t̄!

(iv) s!t! = t!s!, provided s ̸= t̄.

(v) s!t? = t?s!, provided s ̸∈ {t, t̄}.

Intuitively, axiom (i) says that the action t!makes a subsequent test t? true, (ii) says that if
t? is already true, then the action t! is redundant, (iii) says that setting a value overrides a
previous such actionon the same value, and (iv) and (v) say that actions and tests ondifferent
values are independent.

The theory B! refers to the equational consequences of (i)–(v) along with the axioms of
KAT on terms over Tn (Definition 4.23). Two immediate such consequences are (4.39) and
(4.40):

(vi) t!t! = t!

(vii) t!t̄? = 0.

Recall that an atom ofTn is a sequence s1s2 · · · sn, where each si is either ti or t̄i (Defi-
nition). Atoms are denotedα, β, . . ., and the set of atoms is denotedAt. Wewriteα ≤ t if
t appears inα. Letα[t] denote the atomα ifα ≤ t andαwith t̄ replaced by t ifα ≤ t̄. Each
atom α = s1 · · · sn determines a complete test α? = s1?s2? · · · sn? ∈ Fn and a complete
assignment α! = s1!s2! · · · sn! ∈ Fn. The following are elementary consequences of B!:

t? =
∑
α≤t

α?α! t! =
∑
α

α?α[t]! (9.4)

α!α? = α! α?α! = α? α!β! = β! α?β? = 0 if α ̸= β. (9.5)

9.2.2 Mutable Tests and Binary Relations

The following theorem characterizes the free B! algebra Fn. The theorem shows that B! is
sound in the sense that the free model does not trivialize to the one-element algebra.

Theorem 9.1. The algebra Fn is isomorphic to the KAT of all binary relations on a set of
size 2n.

Proof. The set At is of size 2n. Consider the KAT of binary relations on At. This algebra
is isomorphic to Mat(At,2), the KAT of At × At matrices over the two-element KAT
with the usual Boolean matrix operations. We will construct an isomorphism hn : Fn →
Mat(At,2).

9.2. KAT ANDMUTABLE TESTS 167

For the generators, let hn(t?) and hn(t!) be At× At matrices with components

hn(t?)αβ =

{
1 if β = α ≤ t
0 otherwise,

hn(t!)αβ =

{
1 if β = α[t]

0 otherwise.

One can show without difficulty that the axioms (i)–(v) of B! are satisfied under the inter-
pretation hn. We show (i) and (ii):

(hn(t!)hn(t?))αβ =
∑
γ

hn(t!)αγhn(t?)γβ

=

{
1 if γ = α[t] and β = γ ≤ t
0 otherwise

=

{
1 if β = α[t]

0 otherwise

= hn(t!)αβ .

(hn(t?)hn(t!))αβ =
∑
γ

hn(t?)αγhn(t!)γβ = hn(t?)ααhn(t!)αβ

=

{
1 if α ≤ t and β = α[t]

0 otherwise

=

{
1 if α ≤ t and β = α

0 otherwise

= hn(t?)αβ .

Since Fn is the free B! algebra on generators Tn, hn extends uniquely to a KAT homomor-
phism hn : Fn → Mat(At,2). Under this extension, hn(α?β!) is the matrix with 1 in
location αβ and 0 elsewhere. As every matrix in Mat(At,2) is a sum of such matrices, hn
is surjective.

We wish also to show that hn is injective. To do this, we show that every element of
Fn is a sum of elements of the form α?β!. This is true for primitive tests t? and primitive
actions t! by (9.4). The constants 1 and 0 are equivalent to

∑
α α?α! and the empty sum,

respectively.
For sums, the conclusion is trivial. For products, we observe using (9.5) that

α?β!γ?δ! = 0 if β ̸= γ and α?β!β?δ! = α?δ!.

By distributivity, this allows the product of two sums of elements of the form α?β! to be
reduced to a sum of the same form. For ⋆, any element of the form e⋆ where e is a sum of
elements of the form α?β! is equivalent to 1 + e+ e2 + · · ·+ em for somem, since At is
finite.

Now if A ⊆ At2, then hn(
∑

αβ∈A α?β!) is the matrix with 1 in locations αβ ∈ A
and 0 elsewhere. Thus ifA,B ⊆ At2 andhn(

∑
αβ∈A α?β!) = hn(

∑
αβ∈B α?β!), then

A = B, therefore
∑

αβ∈A α?β! =
∑

αβ∈B α?β!.

9.2.3 The Commutative Coproduct

Let K and F be KATs. The commutative coproduct of K and F is the coproduct of K
and F modulo extra commutativity conditions {ps = sp | p ∈ K, s ∈ F} that say that

168 CHAPTER 9. KAT+B!

elements ofK andF commute multiplicatively. The commutativity conditions model the
idea that operations in K and F are independent of each other. We will give an explicit
construction below.

The usual coproductK ⊕ F comes equipped with canonical coprojections iK : K →
K ⊕F and iF : F → K ⊕F . The coprojections are often called injections, although they
need not be injective.1 The coproduct is said to be injective if iK and iF are injective.

Injectivity is important because it means the extension of an algebraK with extra fea-
tures F is conservative in the sense that it does not introduce any new equations. The co-
product of KATs is not known to be injective in general; however, we shall show that if F
is a finite relational KAT, then the coproduct and commutative coproduct are injective.

Our proof relies on an explicit coproduct construction fromuniversal algebra that holds
for any variety or quasivariety V (class of algebras defined by universally quantified equa-
tions or equational implications) over any signatureΣ. We briefly review the construction
here.

LetTK be the set ofΣ-terms overK . The identity functionK → K extends uniquely
to a canonical homomorphism TK → K . The diagram ofK , denoted ∆K , is the kernel
of this homomorphism; this is the set of equations betweenΣ-terms overK that hold inK .
It follows from general considerations of universal algebra thatTK/∆K

∼= K , whereT/E
denotes the quotient ofT modulo theV -congruence generated by equationsE; that is, the
smallestΣ-congruence on T containingE and closed under the equations and equational
implications defining V .

Now let TK,F denote the set of mixed Σ-terms over the disjoint union of the carriers
ofK and F . The coproduct is

K ⊕ F = TK,F /(∆K ∪∆F).

The canonical injection iK : K → K⊕F is obtained from the identity embeddingTK →
TK,F reduced modulo∆K on the left and∆K ∪∆F on the right; the map is well-defined
on∆K -classes since∆K refines∆K∪∆F . This construction satisfies the usual universality
property for coproducts, namely that for any pair of homomorphisms k : K → H and
f : F → H , there is a unique homomorphism ⟨k, f⟩ : K ⊕ F → H such that k =
⟨k, f⟩ ◦ iK and f = ⟨k, f⟩ ◦ iF .

Now letK and F be KATs, and letD be the set of commutativity conditions

D = {iK(p)iF (s) = iF (s)iK(p) | p ∈ K, s ∈ F} .

onK ⊕ F . The commutative coproduct is the quotient (K ⊕ F)/D. Composed with the
canonical map [·] : K ⊕F → (K ⊕F)/D, iK and iF injectK andF , respectively, into
(K ⊕ F)/D. The following universality property is satisfied:

Lemma 9.1. For any pair of homomorphisms k : K → H and f : F → H such that

∀p ∈ K ∀s ∈ F k(p)f(s) = f(s)k(p), (9.6)

there is a unique universal arrow ⟨k, f⟩D : (K ⊕ F)/D → H such that k = ⟨k, f⟩D ◦
[·] ◦ iK and f = ⟨k, f⟩D ◦ [·] ◦ iF .

Proof. Property (9.6) implies thatD refines the kernel of ⟨k, f⟩ : K ⊕ F → H , therefore
⟨k, f⟩ factors uniquely as ⟨k, f⟩D ◦ [·], as shown in Figure 9.1.

1For example,Zm ⊕ Zn
∼= Zgcd(m,n) in the category of commutative rings.

9.2. KAT ANDMUTABLE TESTS 169

K ⊕ FK F

(K ⊕ F)/D

H

iK

k

iF

f

[·]
⟨k, f⟩

⟨k, f⟩D

Figure 9.1: Universality property of the commutative coproduct.

Our main results depend on the following key lemma.

Lemma 9.2. LetK and F be KATs. If F is finite, then every element of (K ⊕ F)/D can
be expressed as a finite sum

∑
s∈F pss, where ps ∈ K .

Note that the lemma is not true in general without the assumption of finiteness. For
example, it can be shown that the commutative coproduct of two copies of the free KA on
one generator does not satisfy the lemma.

Proof. The lemma is certainly true of individual elements ofK and F . We show that the
property is preserved under the KAT operations. The cases of+ and · are quite easy, using
commutativity and distributivity:(∑

s

pss

)
+

(∑
s

p′ss

)
=
∑
s

(ps + p′s)s(∑
s

pss

)
·

(∑
s

p′ss

)
=
∑
s

(∑
s

pss

)
· p′ss

=
∑
s

∑
s

pssp
′
ss

=
∑
s

∑
s

psp
′
sss

=
∑
s

psp
′
sss.

The only difficult case is that of ⋆. We wish to show that (
∑

s∈F pss)
⋆ is equivalent to

a finite sum of the form
∑

t∈F qtt. Let Σ = {as | s ∈ F} be a finite alphabet with one
letter for each element of F , and let RegΣ be the free KA on generators Σ. Consider the
following homomorphisms generated by the indicated actions onΣ:

f : Σ⋆ → F g : RegΣ → K ⊕ F h : RegΣ → K

f(as) = s g(as) = pss h(as) = ps.

For each t ∈ F , the set f−1(t) = {x ∈ Σ⋆ | f(x) = t} is a regular set, as it is the set
accepted by the deterministic finite automaton with states F , start state 1, accept state t,
and transitions δ(s, a) = s · f(a). It is easily shown by induction that for all x ∈ Σ⋆,
δ(s, x) = s · f(x). Thus the automaton accepts x exactly when t = δ(1, x) = f(x), that
is, when x ∈ f−1(t).

170 CHAPTER 9. KAT+B!

Let A be the F × F transition matrix of this automaton: Ast =
∑

sr=t ar . Then
(A⋆)st represents the set of strings x such that s · f(x) = t. Moreover,(∑

s∈F

as

)⋆

=
∑
t∈F

(A⋆)1t (9.7)

since every string is accepted at some state t.
LetM be theF×F diagonalmatrix with diagonal elementsMss = s and off-diagonal

elementsMst = 0 for s ̸= t. The homomorphisms g and h lift to F × F matrices over
RegΣ with

g(A)st =
∑
sr=t

prr h(A)st =
∑
sr=t

pr.

Then for any s, t ∈ F ,

(M · g(A))st =
∑
r

Msrg(A)rt =Mssg(A)st = s
∑
sr=t

prr

=
∑
sr=t

prsr =
∑
sr=t

prt = h(A)stMtt

=
∑
r

h(A)srMrt = (h(A) ·M)st.

Since s, twere arbitrary,M · g(A) = h(A) ·M . By the bisimulation rule of KA (Proposi-
tion 4.4),

M · g(A⋆) =M · g(A)⋆ = h(A)⋆ ·M = h(A⋆) ·M,

thus for all s, t ∈ F ,

sg(A⋆)st =Mssg(A
⋆)st =

∑
r∈F

Msrg(A
⋆)rt = (M · g(A⋆))st

= (h(A⋆) ·M)st =
∑
r∈F

h(A⋆)srMrt

= h(A⋆)stMtt = h(A⋆)stt.

In particular, setting s = 1 and summing over t ∈ F ,∑
t∈F

g(A⋆)1t =
∑
t∈F

h(A⋆)1tt. (9.8)

Using (9.7) and (9.8),(∑
s∈F

pss

)⋆

=

(∑
s∈F

g(as)

)⋆

= g

((∑
s∈F

as

)⋆)
= g

(∑
t∈F

(A⋆)1t

)
=
∑
t∈F

g(A⋆)1t =
∑
t∈F

h(A⋆)1tt.

Setting qt = h(A⋆)1t, we have expressed (
∑

s∈F pss)
⋆ in the desired form.

Theorem 9.2. If K is a KAT and F is the KAT of all binary relations on a finite set S,
then (K ⊕ F)/D ∼= Mat(S,K).

9.2. KAT ANDMUTABLE TESTS 171

Proof. For p ∈ K , let k(p) ∈ Mat(S,K) be the S × S diagonal matrix with p on the
main diagonal and 0 elsewhere. For s ∈ F , let f(s) be the standard representation of
the binary relation s as an S × S Boolean matrix. The maps k : K → Mat(S,K) and
f : F → Mat(S,K) are injective KAT homomorphisms and embedK and F isomorphi-
cally inMat(S,K). The image ofF under f is Mat(S,2), a subalgebra ofMat(S,K). By
the universality property for coproducts, we have that

⟨k, f⟩ : K ⊕ F → Mat(S,K)

and k and f factor as k = ⟨k, f⟩ ◦ iK and f = ⟨k, f⟩ ◦ iF .
Moreover, because k(p) is a diagonal matrix for p ∈ K and f(s) is a Boolean matrix

for s ∈ F , the commutativity conditions D are satisfied in the sense that k(p)f(s) =
f(s)k(p), thus Lemma 9.1 applies and we have a KAT homomorphism

⟨k, f⟩D : (K ⊕ F)/D → Mat(S,K).

That this homomorphism is an isomorphism follows fromLemma 9.2 by an argument sim-
ilar to that of Theorem 9.1. For α, β ∈ S, let nαβ ∈ F such that h(nαβ)αβ = 1 and all
other entries are 0. Then for all s ∈ F ,

nααsnββ =

{
nαβ if h(s)αβ = 1

0 if h(s)αβ = 0

∑
α

nαα = 1.

We have

h

(∑
s

pss

)
αβ

=
∑
s

psh(s)αβ =
∑

h(s)αβ=1

ps (9.9)

∑
s

pss =
∑
s

ps

(∑
α

nαα

)
s

∑
β

nββ

=
∑
α,β

∑
s

psnααsnββ =
∑
α,β

∑
h(s)αβ=1

psnαβ (9.10)

If h(
∑

s pss) = h(
∑

s qss), then for all α, β ∈ S, h(
∑

s pss)αβ = h(
∑

s qss)αβ . By
(9.9) and (9.10),∑

s

pss =
∑
α,β

∑
h(s)αβ=1

psnαβ =
∑
α,β

∑
h(s)αβ=1

qsnαβ =
∑
s

qss.

The construction is illustrated in Figure 9.2.

Corollary 9.1. IfK is a KAT and F is any KAT of binary relations on a finite set S, then
(K ⊕ F)/D is isomorphic to a subalgebra of Mat(S,K).

Proof. Compose an embedding ofF into theKATof all binary relations onS with themap
f of Theorem 9.2.

The following corollary says that the extension of an arbitrary KAT with mutable tests
is conservative.

172 CHAPTER 9. KAT+B!

K ⊕ FK F

(K ⊕ F)/D
∼= Mat(S,K)

iK

k

iF

f

⟨k, f⟩

Figure 9.2: Matrix representation of the commutative coproduct.

Corollary 9.2. IfK is a KAT and F is any KAT of binary relations on a finite set S, then
the commutative coproduct (K ⊕ F)/D is injective.

Proof. The maps k = ⟨k, f⟩ ◦ iK : K → Mat(S,K) and f = ⟨k, f⟩ ◦ iF : F →
Mat(S,K) are injective. By Theorem 9.2, (K ⊕ F)/D ∼= Mat(S,K), and k and f com-
pose with this isomorphism to give the canonical injections fromK and F , respectively, to
(K ⊕ F)/D.

9.3 Completeness and Complexity

In Section 9.2, we showed that an arbitrary KAT K can be conservatively extended with
a small amount of state in the form of a finite set of mutable tests and their correspond-
ing mutation actions. As shown in Theorem 9.2, the resulting algebra is isomorphic to
Mat(At,K), where At is the set of atoms of the free Boolean algebra generated by the mu-
table tests.

In this sectionweprove three results. First, theKATaxioms alongwith the axiomsB! for
mutable tests and the commutativity conditionsD are complete for the equational theory
of (K ⊕ Fn)/D relative to the equational theory ofK . This is quite a strong result in the
sense that it holds for an arbitrary KATK , regardless of its nature. In particular, for the
special case in whichK is the free KAT on some set of generators, the model (K ⊕Fn)/D
is the free KAT with mutable tests Tn. Most of the work for this result has already been
done in Section 9.2.

The second result is that the equational theory B! is complete for PSPACE. This com-
plexity class is characterized by alternating polynomial-time Turing machines [100].

The third result is that the equational theory of a free KAT augmented with mutable
tests is complete for EXPSPACE, deterministic exponential space. This result is quite sur-
prising, as both KAT and B! separately are complete for PSPACE, yet their combination is
exponentially more complex in the worst case.

9.3.1 Completeness

Let K be an arbitrary KAT. Let KAT+B! denote the deductive system consisting of the
axioms of KAT, the axioms for mutable tests B!, and the commutativity conditionsD over
a language of KAT terms with primitive action and test symbols interpreted inK as well as
a set of mutable tests Tn. Let∆K be the diagram ofK .

Theorem 9.3. The axioms KAT+B!+∆K are complete for the equational theory of (K ⊕
Fn)/D. In other words, the axioms KAT+B! are complete for the equational theory of
(K ⊕ Fn)/D relative to the equational theory ofK .

9.3. COMPLETENESS AND COMPLEXITY 173

Proof. Let e1 and e2 be expressions denoting elements of (K ⊕ Fn)/D. By Theorem 9.1
and Lemma 9.2, we have

KAT+B!+∆K ⊢ e1 =
∑

α,β∈At
pαβα?β!

KAT+B!+∆K ⊢ e2 =
∑

α,β∈At
qαβα?β!.

If (K ⊕ Fn)/D ⊨ e1 = e2, we have under the canonical interpretation ⟨k, i⟩ that the
matrices ⟨k, i⟩(e1) and ⟨k, i⟩(e2) are equal, thus for all α, β ∈ At,

pαβ = ⟨k, i⟩(e1)αβ = ⟨k, i⟩(e2)αβ = qαβ ,

and conversely.

Corollary 9.3. The axioms KAT+B! are complete for the equational theory of (K⊕Fn)/D,
whereK is the free KAT on some set of generators.

9.3.2 Complexity

Theorem 9.4. The equational theory B! is PSPACE-complete.

Wenote that neither the upper nor the lower bound follows from previous results. The
upper bound does not follow from results on elimination of hypotheses [31, 71, 102], as
axioms (i) and (ii) can be eliminated by these results, but not the others.

Proof. We first show that the problem of deciding α?β! ≤ e, where α, β ∈ At, is in
PSPACE. We give an alternating polynomial-time algorithm that operates inductively on
the structure of e.

To decide α?β! ≤ t? or α?β! ≤ t!, using (9.4) we can ask whether α = β ≤ t or
β = α[t], respectively.

For addition, we have α?β! ≤ e1 + e2 if and only if α?β! ≤ e1 or α?β! ≤ e2. We
nondeterministically choose one of these alternatives and check it recursively.

For multiplication, we haveα?β! ≤ e1e2 if and only if there exists γ such thatα?γ! ≤
e1 and γ?β! ≤ e2. We guess γ nondeterministically using existential branching and check
both conditions recursively using universal branching.

Finally, to check α?β! ≤ e⋆, by Theorem 9.1 it suffices to check that α?β! ≤ ek for
some 0 ≤ k < 2n. We guess k nondeterministically using existential branching. To check
α?β! ≤ ek, we guess γ nondeterministically using existential branching, and for each such
γ, we check recursively using universal branching that α?γ! ≤ e⌊k/2⌋ and γ?β! ≤ e⌈k/2⌉.

To decide the equational theory in PSPACE, we note that e1 ≤ e2 if for all α, β ∈ At,
ifα?β! ≤ e1, thenα?β! ≤ e2. Theα and β can be chosen universally and the implication
α?β! ≤ e1 =⇒ α?β! ≤ e2 checked in PSPACE.

To showPSPACE-hardness,we encode themembershipproblemfordeterministic linear-
bounded automata, a well known PSPACE-complete problem. LetM be a deterministic
linear-bounded automaton with states Q and tape alphabet Γ. Let x = x1 · · ·xn be an
input string of length n overM ’s input alphabet. For a ∈ Γ, q ∈ Q, and 0 ≤ i ≤ n + 1,
introduce mutable tests P a

i andQq
i with the following intuitive meanings:

P a
i = the symbol currently occupying tape cell i is a,
Qq

i =M is currently in state q scanning tape cell i.

174 CHAPTER 9. KAT+B!

The operation of the machine is governed by a transition function δ : Q× Γ→ Q× Γ×
{+1,−1}. Intuitively, the transition δ(p, a) = (q, b, d)means, “When in state p scanning
symbol a, print b on that cell, move the head in direction d, and enter state q.” For each
such transition, consider the expressions

P a
i ?Q

p
i ?P̄

a
i !Q̄

p
i !P

b
i !Q

q
i+d! (9.11)

for all i. The part P a
i ?Q

p
i ? tests whether the machine is currently scanning a on cell i in

state p. If so, P̄ a
i !Q̄

p
i !P

b
i !Q

q
i+d! effects the transition to the new configuration as dictated

by the transition function δ. The truth values of variables not mentioned do not change.
Assume that the input is delimited by left and right endmarkers ⊢ and ⊣, thatM starts

in its start state s scanning the left endmarker ⊢, thatM never overwrites the endmarkers,
and that before accepting, M erases its tape by writing a blank symbol ⌞⌟ on all tape cells
except for the endmarkers, moves its head all the way to the left, and enters state t. The start
and accept configurations are atoms

start = Qs
0 P

⊢
0 P

x1
1 P x2

2 · · ·P xn
n P⊣

n+1 U

accept = Qt
0 P

⊢
0 P

⌞⌟
1 P

⌞⌟
2 · · ·P ⌞⌟

n P
⊣
n+1 V

whereU and V are the negations of the remaining variables. Let e be the sum of all expres-
sions (9.11). ThenM accepts x if and only if start?accept! ≤ e⋆.

LetK be the free KAT on some set of generators. As shown in Corollary 9.3, the equa-
tional theory of (K ⊕ Fn)/D is completely axiomatized by KAT+B!.

Definition 9.1 (Automata on guarded strings [90]). An automaton on guarded strings over
Σ andB is a four-tupleM = (Q,∆, start, final)where

• Q is the set of states;

• start ⊆ Q is the set of start states;

• final ⊆ Q is the set of final states;

• ∆ ⊆ Q × (Σ ∪ B) × Q is the transition relation, where B is the set of composite
tests built from the atomic testsB.

Theorem 9.5. The set of equational consequences of KAT+B! (that is, the equational theory
of a free KAT augmented with mutable tests) is EXPSPACE-complete.

Proof. Let K be the free KAT on generators Σ and B. The atomic tests B are ordinary
KAT tests and are not mutable. The set of equational consequences of KAT+B! coincides
with the equational theory of the structure (K ⊕ Fn)/D (Corollary 9.3). This structure
is isomorphic to the matrix algebra Mat(At,K) (Theorem 9.2), where At is the set of 2n
atoms generatedby themutable testsTn. Every element ofMat(At,K) is anAt×Atmatrix,
each entry of which is a regular set of guarded strings over Σ, B. Regular sets of guarded
strings are recognized by non-deterministic automata on guarded strings (Definition 9.1).
In such an automaton, a transition of the form (s, p, t) with p ∈ Σ is called an action
transition, and one of the form (s, b, t)with b ∈ B is called a test transition. In particular, a
test transition of the form (s, 1, t) is called an ϵ-transition. We refer the reader to [90] for a
definition of how these automata compute on guarded strings. LetL(s, t) be the set of the

9.3. COMPLETENESS AND COMPLEXITY 175

guarded strings x so that there is some computation on x starting from state s that ends in
state t. The guarded automatonM recognizes the language of guarded strings∪

s∈start

∪
t∈final

L(s, t).

We extend this automaton model so that it recognizes matrices of regular sets of guarded
strings. Amatrix automaton is a tuple

M = (Q× At,∆, start, final),

where start, final : At→ 2Q and∆ ⊆ (Q×At)× (Σ∪B)× (Q×At). The automaton
recognizes theAt×AtmatrixL, each entry ofwhich is a regular language of guarded strings:

L(α, β) =
∪

s∈start(α)

∪
t∈final(β)

L(⟨s, α⟩, ⟨t, β⟩).

We will now describe a construction similar to Kleene’s theorem. Given a KAT+B! expres-
sioneoverΣ, B, Tn wewill give amatrix automaton that recognizes thematrix of languages
denoted by e under its standard interpretation in the structure Mat(At,K). For all base
cases p, b, t?, t! we define the set Q = {s1, s2}, the start states start(α) = {s1}, and
the accepting states final(α) = {s2}, for every α ∈ At. We give the set ∆ of transitions
separately for each of these base cases:

• Case: action letter p inΣ. For every atom α, we put a transition ⟨s1, α⟩
p→ ⟨s2, α⟩.

• Case: arbitrary test b inB. For every atomα, we have a transition ⟨s1, α⟩
b→ ⟨s2, α⟩.

• Case: mutable test t?. We put the transitions ⟨s1, α⟩
1→ ⟨s2, α⟩ for every α ≤ t.

• Case: primitive action t!. The automaton has the transitions ⟨s1, α⟩
1→ ⟨s2, α[t]⟩

for every α. Recall that α[t] is the modification of α so that t holds.
The remaining base cases are for 1 and 0. We define the corresponding automata as follows:

• For the case of 1, we have the trivial automaton with Q = {s}, start(α) = {s},
final(α) = {s}, and∆ = ∅.

• The automaton for 0 is defined as Q = {s}, start(α) = {s}, final(α) = ∅, and
∆ = ∅.

Suppose thatM1 = (Q1×At,∆1, start1, final1) andM2 = (Q2×At,∆2, start2, final2)
are the matrix automata for the expressions e1 and e2 respectively. Without loss of general-
ity the setsQ1 andQ2 are disjoint.

• For the expression e1+ e2 we define the automatonM = (Q×At,∆, start, final)
byQ = Q1 ∪Q2,

start(α) = start1(α) ∪ start2(α)
final(α) = final1(α) ∪ final2(α)

and∆ = ∆1 ∪∆2.
• For the expression e1 · e2 defineM = (Q× At,∆, start, final) byQ = Q1 ∪Q2,

start(α) = start1(α), final(α) = final2(α), and∆ = ∆1 ∪∆2 ∪∆′, where

∆′ =
{
⟨s, α⟩ 1→ ⟨t, α⟩ | s ∈ final1(α), t ∈ start2(α)

}
.

Now, suppose thatM = (Q×At,∆, start, final) is the matrix automaton for the expres-
sion e. The automaton for e·e⋆ results fromM by adding ϵ-transitions from the final states
back to the start states:

⟨s, α⟩ 1→ ⟨t, α⟩,

176 CHAPTER 9. KAT+B!

where s ∈ final(α), t ∈ start(α), andα ∈ At. Finally, the automaton for e⋆ = 1+ e · e⋆
can be obtained using the constructions for 1 and+ that we have already described.

Consider now two KAT+B! expressions e1, e2 and the problem of checking whether
they denote the same matrix in the structure Mat(At,K). We can construct effectively the
corresponding matrix automataM1 andM2, as described in the previous paragraph. We
can have an explicit representation of these automata, since exponential space suffices for
this. LetL1 andL2 be the matrices of languages accepted byM1 andM2 respectively. For
every pair of atoms α, β we have to check whether L1(α, β) = L2(α, β). This problem
amounts to checking the equivalence of automata on guarded strings, which can be done
in space polynomial in the size of the automata [90]. It follows that we can decide whether
e1 = e2 in exponential space.

For the lower bound,we encode themembershipproblem for exponential-space bound-
edTuringmachines. Given such amachineM and an inputx of lengthn, we usenmutable
tests to construct an integer counter that can count up to 2n − 1, as illustrated below:

t̄0!; t̄1!; · · · ; t̄n−1!;
while t̄0? + t̄1? + · · ·+ t̄n−1? {

if t̄0? then t0!;
else if t̄1? then t̄0!; t1!;
else if t̄2? then t̄0!; t̄1!; t2!;
else …
else if t̄n−1? then t̄0!; t̄1!; · · · ; t̄n−2!; tn−1!;
else skip;

}
We use the counter as a “yardstick” to construct an expression e that simulates a non-de-
terministic automaton which accepts all strings that are not valid computation histories of
M on input x. The automaton decides nondeterministically where to look for an incorrect
move ofM . It remembers a few symbols of the input string, then starts the counter. With
each iteration of the counter, it skips over an input symbol (not shown above). In this way
it can compare symbols a distance 2n apart to check whether the transition rules ofM are
followed. The expression e generates all strings if and only ifM does not accept x. This
construction is quite standard (see for example [51, 100, 132]), soweomit further details.

9.4 Applications

9.4.1 The Böhm-Jacopini Theorem

Awell-studiedproblem inprogram schematology is that of transformingunstructured flow-
graphs to structured form. An early seminal result is the Böhm–Jacopini theorem [23],
which states that anydeterministic flowchart program is equivalent to adeterministicwhile
program. This theorem has reappeared in many contexts and has been reproved by many
different methods [12, 118, 121, 123, 150].

Like most early work in program schematology, the Böhm–Jacopini theorem is usually
formulated at the first-order level. This allows auxiliary individual or Boolean variables to
be introduced to preserve information across computations. This is an essential ingredient
of the Böhm–Jacopini construction, and they asked whether it was strictly necessary. This
question was answered affirmatively by Ashcroft and Manna [12] and Kosaraju [87].

In [103], a purely propositional account of this negative result was given. A class of
automata called strictly deterministic automata was presented, an abstraction of determin-
istic flowchart schemes. The three-state strictly deterministic automaton of Figure 9.3 was

9.4. APPLICATIONS 177

halt

0

1 2

α
1
p 0

1

α2p02
α0

α2p12

α0p10

α1

α
0 p

2
0

α1p21

α2

Figure 9.3: A strictly deterministic automaton not equivalent to any while program [103].

t0!; t̄1!; t̄2!; //start state is 0
while true {

if t0? then
t̄0!; if α1 then p01; t1!; else if α2 then p02; t2!; else halt;

else if t1? then
t̄1!; if α2 then p12; t2!; else if α0 then p10; t0!; else halt;

else //must be t2
t̄2!; if α0 then p20; t0!; else if α1 then p21; t1!; else halt;

}

Figure 9.4: A while program with mutable tests equivalent to Figure 9.3.

shownnot to be equivalent to any deterministicwhile program,where theαi aremutually
exclusive and exhaustive tests and the pij are primitive actions.

With strictly deterministic automata, Boolean values are provided by the environment
in the form of an input string consisting of an infinite sequence of atoms, and the program
responds with actions, including halting or failing. This is the correct propositional seman-
tics: it allows all possible interpretations of the actions that could cause tests to become true
or false. Two strictly deterministic automata are considered equivalent if they generate the
same set of finite guarded strings (see [103] for formal definitions and details).

The Böhm–Jacopini theorem is true in the presence of mutable tests. The technique is
well known, so rather than give a general account, we illustrate with the strictly determin-
istic automaton of Figure 9.3. We introduce mutable tests t0, t1, and t2, which serve as
program counters. An equivalent deterministic while programwithmutable tests is shown
in Figure 9.4.

Themajor difference here is that themutable tests are under the control of the program
instead of the environment.

We have not given the formal definition of the set of guarded strings generated by a
strictly deterministic automaton with mutable tests, but under the appropriate definition,
it can be shown that this while program and the strictly deterministic automaton of Fig-
ure 9.3 generate the same set of guarded strings.

178 CHAPTER 9. KAT+B!

9.4.2 A Folk Theorem

In this section we illustrate how KAT+B! can be used in practice. We will show, reasoning
equationally inKAT+B!, a classical result of program schematology: Everywhileprogram
canbe simulatedby awhileprogramwith atmost onewhile loop, assuming thatwe allow
extra Boolean variables. An example of part of the proof done using only KAT is shown in
Section 4.3.1.

Weworkwith a programming language that has atomic programs (writtena, b, . . .), the
constant programs skip and fail, atomic tests, as well as the constructs: sequential compo-
sition f ; g, conditional test if p then f else g, and iteration while p do f . These constructs
are modeled in KAT as follows:

skip = 1 fail = 0 f ; g = fg

if e then f else g = ef + ēg while e do f = (ef)⋆ē

There is a semantic justification for these translations, using the standard relation-theoretic
semantics for the input-output behavior of while programs. Intuitively, to show the re-
sult we introduce extra Boolean variables that encode the control structure of the program.
These variables are modeled in KAT+B! using mutable tests t1, t2, . . ., which are taken to
be disjoint from any mutable tests that might already appear in the program.

Commutativity axioms: KAT+B! has axioms that say that primitive actions commute
with the mutable test symbols, that is, t?a = at? and t!a = at!. Moreover, t!p = pt!
and t!p̄ = p̄t! for every atomic KAT test p, since tests commute. The following lemmas
establish that using the axioms of KAT+B! more commutativity equations can be shown.

Lemma 9.3. If the mutable test symbols t, t̄ do not appear in the KAT+B! test term p, then
we have that t!p = pt! and t!p̄ = p̄t!.

Proof. By induction on p. If p is an atomic KAT test, then the claim follows directly from
the axioms. The cases for the constants 0 and 1 are trivial. If p is a mutable test s?, then
by our assumption we have that s ̸= t, t̄ and therefore t!s? = s?t! and t!s̄? = s̄?t! are
axioms of B!. For the induction step, consider the case p+ q:

t!(p+ q) = t!p+ t!q = pt! + qt! = (p+ q)t!

t!(p+ q) = t!p̄q̄ = p̄t!q̄ = p̄q̄t! = (p+ q)t!

The case pq is similar. For the case of p̄, the equation t!p̄ = p̄t! follows from the induction
hypothesis for p. Similarly, t! ¯̄p = t!p = pt! = ¯̄pt!.

Lemma 9.4. If the mutable test symbols t, t̄ do not appear in the KAT+B! term f , then
t?f = ft? and t!f = ft!.

Proof. We only show the part involving t!, for t? the proof is essentially the same. We argue
by induction on the structure of f . If f is a test, then the result follows from Lemma 9.3. If
f is an atomic program a, then from the axioms we have that t!a = at!. For composition
and choice we have using the induction hypothesis: t!fg = ft!g = fgt!, and

t!(f + g) = t!f + t!g = ft! + gt! = (f + g)t!.

It remains to show that t!f⋆ = f⋆t!. By virtue of the bisimulation rule, it suffices to see
that t!f = ft!, which is the induction hypothesis.

9.4. APPLICATIONS 179

The theorem that follows is a normal form theorem, from which the result we want to
show follows immediately. Working in a bottom-up fashion, every while program term is
put into the normal form. That the transformed program in normal form is equivalent to
the original one is shown in KAT+B!.

Theorem 9.6. For any while program f , there are while-free u, p, ϕ and a finite collec-
tion t1, . . . , tk of extra mutable tests such that

f ; z = u;while p doϕ; z,

where z = t̄1!; . . . ; t̄k!.

Proof. In thenormal formgiven above, the pre-computationu, thewhile-guardp, and the
while-body ϕ may involve the extra mutable test symbols t1, . . . , tk, t̄1, . . . , t̄k. These
symbols do not appear in f . The post-computation z = t̄1!; . . . ; t̄k “zeroes out” all the
extra mutable Boolean variables. Its role is in some sense to simply project out this extra
finite state. The proof proceeds by induction on the structure of the while program term
f .

For the base case, suppose that f is a while-free program term, and let t be a fresh
mutable test symbol. Intuitively, t? holds if f has not been executed yet, and t̄? holds when
f has been executed. The base case follows from Lemma 9.5.

From the induction hypothesis, we can bring the programs f and g in normal form so
that

f ; z = u;while p doϕ; z

and
g; z = v;while q doψ; z,

where z sets to zero all the mutable tests that appear in the transformations of f and g. For
the cases of a conditional test if e then f else g and composition f ; g, we introduce a fresh
mutable test symbol t.

• Case if e then f else g: The Boolean variable corresponding to the symbol t records
the branch to be taken. So, t? holds when f should be executed, and t̄? holds when
g should be executed. The case follows from Lemma 9.6.

• Case f ; g: The Boolean variable for the symbol t records the current position of exe-
cution. So, t? holds when we are executing f , and t̄? when we are executing g. The
case follows from Lemma 9.7.

It remains to handle the case of the while loop while e do f . First, we have by Lemma 9.8
that

while e do f ; z = while e do (f ; z); z.

With this, we can put the program in a more convenient form with Lemma 9.9:

if e then
(
u;while (e+ p) do if p thenϕ else (z;u)

)
; z.

But we already know how to transform conditional statements, so we apply that transfor-
mation to bring the term in the desired normal form.

Lemma 9.5. f ; z = t!;while t? do (f ; t̄!); z, where z = t̄!.

180 CHAPTER 9. KAT+B!

Proof. First, we unravel the expression (f?f t̄!)⋆ twice and observe that

(t?f t̄!)⋆ = 1 + t?f t̄!(t?f t̄!)⋆

= 1 + t?f t̄!(1 + t?f t̄!(t?f t̄!)⋆)

= 1 + t?f t̄! + t?f t̄!t?f t̄!(t?f t̄!)⋆

= 1 + t?f t̄!,

because t̄!t? = t̄!t̄?t? = 0. So, we conclude that

RHS = t!(t?f t̄!)⋆t̄?t̄!

= t!(1 + t?f t̄!)t̄?

= t!t̄? + t!t?f t̄!t̄?,

which is equal to t!f t̄! = ft!t̄! = f t̄! = f ; z, since t was chosen to be fresh (Lemma 9.4).

Lemma 9.6 (Normal form for conditional). The program (if e then f else g); z; t̄! is equal
to

if e then (t!;u) else (t̄!; v);
while ((t? ∧ p) ∨ (t̄? ∧ q)) do (if t? thenϕ elseψ);
z; t̄!.

Proof. The while-free pre-computation in the normal form translation is equal to et!u+
ēt̄!v. The guard of the while loop is t?p+ t̄?q, and the body is t?ϕ+ t̄?ψ. So,

((t? ∧ p) ∨ (t̄? ∧ q)); (if t? thenϕ elseψ) =
(t?p+ t̄?q)(t?ϕ+ t̄?ψ) =

t?pϕ+ t̄?qψ.

The negation of the guard of the loop is¬(t?p+ t̄?q) = (t̄?+p̄)(t?+ q̄) = t̄?q̄+t?p̄+p̄q̄.
First, we claim that t?(t?pϕ)⋆ = t?(pϕ)⋆. Since t? ≤ 1 and ⋆ is monotone, we

have that (t?pϕ)⋆ ≤ (pϕ)⋆, and therefore t?(t?pϕ)⋆ ≤ t?(pϕ)⋆. In order to show that
t?(pϕ)⋆ ≤ t?(t?pϕ)⋆, it suffices to see that t? ≤ t?(t?pϕ)⋆, and that

t?(t?pϕ)⋆pϕ = t?(1 + (t?pϕ)⋆t?pϕ)pϕ

= t?pϕ+ t?(t?pϕ)⋆t?pϕpϕ

= t?t?pϕ+ t?(t?pϕ)⋆t?t?pϕpϕ

= t?t?pϕ+ t?(t?pϕ)⋆t?pϕt?pϕ

= t?(1 + (t?pϕ)⋆t?pϕ)t?pϕ

= t?(t?pϕ)⋆t?pϕ ≤ t?(t?pϕ)⋆.

Now, we want to show that t?(t?pϕ + t̄?qψ)⋆ = t?(t?pϕ)⋆. By monotonicity of ⋆,
the right-hand side is less than or equal to the left-hand side. For the other direction, we
need to show that

t?(t?pϕ)⋆(t?pϕ+ t̄?qψ) =

t?t?(t?pϕ)⋆(t?pϕ+ t̄?qψ) = [prev. claim]
t?t?(pϕ)⋆(t?pϕ+ t̄?qψ) = [t not in p, ϕ]
t?(pϕ)⋆t?(t?pϕ+ t̄?qψ) =

t?(pϕ)⋆t?pϕ = [prev. claim]
t?(t?pϕ)⋆t?pϕ,

9.4. APPLICATIONS 181

which is≤ t?(t?pϕ)⋆.
LetW abbreviate the entire while loop of the normal form translation. We have al-

ready seen that
W = (t?pϕ+ t̄?qψ)⋆(t̄?q̄ + t?p̄+ p̄q̄)

and therefore

t?W = t?(t?pϕ)⋆(t̄?q̄ + t?p̄+ p̄q̄)

= t?(pϕ)⋆(t̄?q̄ + t?p̄+ p̄q̄)

= (pϕ)⋆t?(t̄?q̄ + t?p̄+ p̄q̄)

= (pϕ)⋆(t?p̄+ t?p̄q̄)

= (pϕ)⋆t?p̄,

because t?p̄q̄ ≤ t?p̄. So, we have

eRHS = e(et!u+ ēt̄!v)Wzt̄! = et!uWzt̄!

= et!t?uWzt̄! = et!ut?Wzt̄!

= et!u(pϕ)⋆t?p̄zt̄! = eu(pϕ)⋆p̄zt̄!,

which is equal to efzt̄! by the induction hypothesis. Similarly, it can be shown ēRHS =
ēgzt̄!. We thus conclude that

RHS = (e+ ē)RHS = eRHS + ēRHS
= efzt̄! + ēgzt̄! = (ef + ēg)zt̄!,

which is equal to (if e then f else g); z; t̄!, namely the left-hand size of the equation we
wanted to show.

Lemma 9.7 (Normal form for composition). The program f ; g; z; t̄! is equal to

t!;u;

while (t? ∨ (t̄? ∧ q)) do
if t? then (if p thenϕ else (z; t̄!; v)) elseψ;

z; t̄!.

Proof. The negation of the guard of the while loop is ¬(t? + t̄?q) = t̄?(t? + q̄) = t̄?q̄.
The body of the loop is equal to t?(pϕ+ p̄zt̄!v) + t̄?ψ = t?pϕ+ t?p̄zt̄!v+ t̄?ψ. So, the
encoding of the while loop is

((t? + t̄?q)(t?pϕ+ t?p̄zt̄!v + t̄?ψ))
⋆
t̄?q̄

= (t?pϕ+ t?p̄zt̄!v + t̄?qψ)⋆t̄?q̄

= (A+ t̄?qψ)⋆t̄?q̄

= A⋆(t̄?qψA⋆)⋆t̄?q̄,

where we putA = t?pϕ+ t?p̄zt̄!v.
From t̄?A = t̄?(t?pϕ + t?p̄zt̄!v) = 0 ≤ t̄? we obtain that t̄?A⋆ ≤ t̄?. Moreover,

t̄? ≤ t̄?A and hence t̄?A⋆ = t̄?. It follows that t̄?qψA⋆ = qψt̄?A⋆ = qψt̄?. Now,
we claim that (qψt̄?)⋆t̄? = t̄?(qψ)⋆. The inequality (qψt̄?)⋆t̄? ≤ t̄?(qψ)⋆ follows from
monotonicity of ⋆. For the inequality t̄?(qψ)⋆ ≤ (qψt̄?)⋆t̄?we need to show that

(qψt̄?)⋆t̄?qψ = (qψt̄?)⋆qψt̄? = (qψt̄?)⋆qψt̄?t̄?,

182 CHAPTER 9. KAT+B!

which is≤ (qψt̄?)⋆t̄?. We have thus shown that the while loop is equal to

A⋆(qψt̄?)⋆t̄?q = A⋆t̄?(qψ)⋆q̄.

Now, we focus on simplifying the expression t?A⋆t̄? = t?(t?pϕ+ t?p̄zt̄!v)⋆t̄?. First,
we observe that unfolding (t?p̄zt̄!v)⋆ twice gives us the equation

(t?p̄zt̄!v)⋆ = 1 + t?p̄zt̄!v.

Moreover, t̄?(t?pϕ)⋆ = t̄?(1 + t?pϕ(t?pϕ)⋆) = t̄?. Therefore, using the denesting rule,
we obtain that t?A⋆t̄? is equal to

t?(t?pϕ)⋆(t?p̄zt̄!v(t?pϕ)⋆)⋆t̄? =

t?(t?pϕ)⋆(t?p̄zt̄!vt̄?(t?pϕ)⋆)⋆t̄? =

t?(t?pϕ)⋆(t?p̄zt̄!vt̄?)⋆t̄? =

t?(t?pϕ)⋆(t?p̄zt̄!v)⋆t̄? =

t?(t?pϕ)⋆(1 + t?p̄zt̄!v)t̄? =

t?(t?pϕ)⋆t̄? + t?(t?pϕ)⋆t?p̄zt̄!vt̄? =

t?(t?pϕ)⋆t?p̄zt̄!vt̄? =

t?(pϕ)⋆p̄zt̄!v.

Finally, we can work on the right-hand side of the equation we want to establish:

RHS = t!uA⋆t̄?(qψ)⋆q̄zt̄! = t!ut?A⋆t̄?(qψ)⋆q̄zt̄!

= t!ut?(pϕ)⋆p̄zt̄!v(qψ)⋆q̄zt̄! = u(pϕ)⋆p̄zv(qψ)⋆q̄zt̄!,

which is equal by the induction hypothesis to fzgzt̄! = fgzzt̄! = f ; g; z; t̄!.

Lemma 9.8. while e do f ; z = while e do (f ; z); z.

Proof. The left-hand side is equal to (ef)⋆ēz, and the right-hand side is equal to (efz)⋆ēz.
It suffices to show that (ef)⋆z = (efz)⋆z.

(efz)⋆z ≤ (ef)⋆z ⇐= efz(ef)⋆z ≤ (ef)⋆z,

whichholdsbecauseefz(ef)⋆z = ef(ef)⋆zz ≤ (ef)⋆z. Now,weobserve that (efz)⋆z =
z(efz)⋆ by the bisimulation rule, because efzz = zefz (both are equal to efz). So,

(ef)⋆z ≤ (efz)⋆z ⇐= ef(efz)⋆z ≤ (efz)⋆z,

which holds because ef(efz)⋆z = ef(efz)⋆zz = efz(efz)⋆z ≤ (efz)⋆z.

Lemma 9.9 (Normal form for loop). The program (while e do f); z is equal to

if e then
(
u;while (e+ p) do if p thenϕ else (z;u)

)
; z.

Proof. The above program is equal to

ēz + eu((e+ p)(pϕ+ p̄zu))⋆(e+ p)z =

ēz + eu(epϕ+ ep̄zu+ pϕ)⋆ēp̄z =

ēz + eu(pϕ+ ep̄zu)⋆ēp̄z,

9.5. CONCLUSION 183

because epϕ ≤ pϕ. Using the denesting rule (9.1) and then the sliding rule (9.2), we see that
this is equal to

ēz + eu(pϕ)⋆(ep̄zu(pϕ)⋆)⋆ēp̄z =

ēz + eu(pϕ)⋆(p̄zeu(pϕ)⋆)⋆ēp̄z =

ēz + (eu(pϕ)⋆p̄z)⋆eu(pϕ)⋆ēp̄zz =

ēz + (efz)⋆eu(pϕ)⋆p̄zēz =

ēz + (efz)⋆(efz)ēz =

(1 + (efz)⋆(efz))ēz,

which is equal to (efz)⋆ēz = while e do (f ; z); z = (while e do f); z.

9.5 Conclusion

We have shown how to axiomatically extend Kleene algebra with tests with a finite amount
of mutable state. This extra feature allows certain program transformations to be effected
at the propositional level without passing to a full first-order system. The extension is con-
servative and deductively complete relative to the theory of the underlying algebra. The full
theory is decidable and complete for EXPSPACE. We have given a representation theorem
of the free models in terms of matrices.

An intriguing open problem is whether the coproduct of two KATs is injective. We
have shown that it is if one of the two cofactors is a KAT of binary relations on a finite set.

9.6 Acknowledgments

Thanks to Bob Constable, Nate Foster, Fritz Henglein, Mark Reitblatt, Ross Tate, and
Laure Thompson for valuable conversations and insights.

Bibliography

[1] A. V. Aho. Algorithms for finding patterns in strings. In J. v. Leeuwen, editor,
Handbook of theoretical computer science. Vol. Algorithms and Complexity (A),
pp. 255–300. Elsevier and MIT Press, 1990.
isbn: 0-444-88071-2 (cited on p. 142).

[2] E. Allender and I. Mertz. Complexity of regular functions. In A.-H. Dediu, E. For-
menti, C.Martı́n-Vide, and B. Truthe, editors,Language and automata theory and
applications.Vol. 8977, inLectureNotes inComputer Science, pp. 449–460. Springer
International Publishing, 2015.
doi: 10.1007/978-3-319-15579-1_35 (cited on p. 143).

[3] R. Alur, L. D’Antoni, and M. Raghothaman. DReX: a declarative language for ef-
ficiently evaluating regular string transformations. In Proc. 42nd ACM symposium
on principles of programming languages (POPL’15), 2015.
doi: 10.1145/2676726.2676981 (cited on pp. 109, 118, 135).

[4] R. Alur and P. Černỳ. Expressiveness of streaming string transducers. In Proc. foun-
dations of software technology and theoretical computer science (FSTTCS), 2010.
doi: 10.4230/LIPIcs.FSTTCS.2010.1 (cited on pp. 109, 116, 118, 143).

[5] R. Alur and P. Černỳ. Streaming transducers for algorithmic verification of single-
pass list-processing programs.ACM SIGPLAN notices, 46(1):599–610, 2011.
doi: 10.1145/1925844.1926454 (cited on pp. 109, 118).

[6] R. Alur, A. Freilich, and M. Raghothaman. Regular combinators for string trans-
formations. In Proc. of the joint meeting of the 23rd EACSL annual conference on
computer science logic (CSL) and the 29th annual ACM/IEEE symposium on logic
in computer science (LICS’14). In CSL-LICS ’14. ACM, Vienna, Austria, 2014, 9:1–
9:10.
doi: 10.1145/2603088.2603151 (cited on pp. 118, 143).

[7] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and
D. Walker. NetKAT: semantic foundations for networks. In Proceedings of the 41st
ACM SIGPLAN-SIGACT symposium on principles of programming languages. In
POPL ’14. ACM, San Diego, California, USA, 2014, pp. 113–126.
doi: 10.1145/2535838.2535862 (cited on pp. 70, 163).

[8] A.Angus andD.Kozen.Kleene algebrawith tests andprogram schematology.Tech.
rep. (TR2001-1844). Computer ScienceDepartment, Cornell University, July 2001.
url: http://hdl.handle.net/1813/5831 (cited on pp. 163, 164).

[9] V. Antimirov. Partial derivatives of regular expressions and finite automaton con-
structions. Theor. comput. sci., 155(2):291–319, 1996.
doi: http://dx.doi.org/10.1016/0304-3975(95)00182-4 (cited on
pp. 108, 142).

185

https://en.wikipedia.org/w/index.php?title=Special%3ABookSources&isbn=0-444-88071-2
http://dx.doi.org/10.1007/978-3-319-15579-1_35
http://dx.doi.org/10.1145/2676726.2676981
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.1
http://dx.doi.org/10.1145/1925844.1926454
http://dx.doi.org/10.1145/2603088.2603151
http://dx.doi.org/10.1145/2535838.2535862
http://hdl.handle.net/1813/5831
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(95)00182-4

186 BIBLIOGRAPHY

[10] A. W. Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998.
isbn: 0521582741.
url: http://dl.acm.org/citation.cfm?id=522388 (cited on p. 126).

[11] ASCII subset of unicode.
url: http://www.unicode.org/charts/PDF/U0000.pdf (cited on p. 8).

[12] E. Ashcroft and Z. Manna. The translation of GOTO programs into WHILE pro-
grams. In Proceedings of IFIP congress 71. C. Freiman, J. Griffith, and J. Rosenfeld,
editors. Vol. 1. North-Holland, 1972, pp. 250–255.
isbn: 0-917072-14-6 (cited on pp. 163, 176).

[13] P. Balbiani, A. Herzig, and N. Troquard. Dynamic logic of propositional assign-
ments: a well-behaved variant of PDL. In Proc. 28th symp. logic in computer science
(LICS’13). ACM/IEEE, 2013, pp. 143–152.
doi: 10.1109/LICS.2013.20 (cited on p. 164).

[14] H. Barendregt.The lambda calculus: its syntax and semantics. Vol. 103 of Studies in
Logic and the Foundations of Mathematics. North-Holland, 1984.
isbn: 978-0-444-87508-2 (cited on pp. 60, 151, 153).

[15] A. Barth and D. Kozen. Equational verification of cache blocking in LU decompo-
sition usingKleene algebrawith tests. Tech. rep. (TR2002-1865). Computer Science
Department, Cornell University, June 2002.
url: http://hdl.handle.net/1813/5848 (cited on p. 163).

[16] M.-P. Béal and O. Carton. Determinization of transducers over finite and infinite
words. Theoretical computer science, 289(1):225–251, Oct. 2002.
doi: 10.1016/S0304-3975(01)00271-7 (cited on p. 116).

[17] H. Bekić. Definable operations in general algebras, and the theory of automata and
flowcharts. InC. Jones, editor,Programming languages and their definition. Vol. 177,
inLectureNotes inComputer Science, pp. 30–55. SpringerBerlinHeidelberg, 1984.
doi: 10.1007/BFb0048939 (cited on p. 151).

[18] J. Berstel. Transductions and Context-Free Languages. Teubner Stuttgart, 1979.
url: http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/
LivreTransductions.html (cited on pp. 109, 111, 116, 118, 143).

[19] P.Bille andM.Thorup. Faster regular expressionmatching. InS.Albers,A.Marchetti-
Spaccamela, Y. Matias, S. Nikoletseas, and W. Thomas, editors, Automata, lan-
guages and programming. Vol. 5555, in Lecture Notes in Computer Science, pp. 171–
182. Springer Berlin Heidelberg, 2009.
doi: 10.1007/978-3-642-02927-1_16 (cited on p. 142).

[20] P. Bille and M. Thorup. Regular expression matching with multi-strings and inter-
vals. InProc. 21st ACM-SIAM symposium on discrete algorithms (SODA’10), 2010.
url: http://dl.acm.org/citation.cfm?id=1873601.1873705 (cited
on p. 142).

[21] N. Bjørner andM. Veanes. Symbolic transducers. Tech. rep. (MSR-TR-2011-3). Mi-
crosoft Research, 2011 (cited on p. 144).

[22] S. L. Bloom and Z. Ésik. Iteration theories. Springer, 1993.
doi: 10.1007/978-3-642-78034-9 (cited on p. 147).

https://en.wikipedia.org/w/index.php?title=Special%3ABookSources&isbn=0521582741
http://dl.acm.org/citation.cfm?id=522388
http://www.unicode.org/charts/PDF/U0000.pdf
https://en.wikipedia.org/w/index.php?title=Special%3ABookSources&isbn=0-917072-14-6
http://dx.doi.org/10.1109/LICS.2013.20
https://en.wikipedia.org/w/index.php?title=Special%3ABookSources&isbn=978-0-444-87508-2
http://hdl.handle.net/1813/5848
http://dx.doi.org/10.1016/S0304-3975(01)00271-7
http://dx.doi.org/10.1007/BFb0048939
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
http://dx.doi.org/10.1007/978-3-642-02927-1_16
http://dl.acm.org/citation.cfm?id=1873601.1873705
http://dx.doi.org/10.1007/978-3-642-78034-9

BIBLIOGRAPHY 187

[23] C. BöhmandG. Jacopini. Flowdiagrams,Turingmachines and languageswith only
two formation rules. Communications of the ACM :366–371, May 1966.
doi: 10.1145/355592.365646 (cited on pp. 163, 176).

[24] B. Brodie, D. Taylor, and R. Cytron. A scalable architecture for high-throughput
regular-expressionpatternmatching.Acm sigarch computer architecture news, 34(2):202,
2006.
doi: 10.1145/1150019.1136500 (cited on p. 143).

[25] A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Infor-
mation and computation, 140(2):229–253, 1998.
doi: 10.1006/inco.1997.2688 (cited on pp. 89, 108).

[26] A. Brüggemann-Klein. Regular expressions into finite automata. Theor. comput.
sci., 120(2):197–213, 1993.
doi: http://dx.doi.org/10.1016/0304-3975(93)90287-4 (cited on
p. 143).

[27] J. A. Brzozowski. Derivatives of regular expressions. J. acm, 11(4):481–494, 1964.
doi: 10.1145/321239.321249 (cited on pp. 142, 143).

[28] N. Chomsky. Three models for the description of language. IEEE transactions on
information theory, 2(3):113–124, 1956.
doi: 10.1109/TIT.1956.1056813 (cited on p. 58).

[29] N. Chomsky. On certain formal properties of grammars. Information and control,
2(2):137–167, 1959.
doi: 10.1016/S0019-9958(59)90362-6 (cited on p. 58).

[30] T. Christiansen, B. D. Foy, L.Wall, and J. Orwant. Programming Perl. O’ReillyMe-
dia, 4th edition ed., 2012.
isbn: 978-0-596-00492-7 (cited on pp. 7, 83, 94, 106, 127).

[31] E. Cohen. Hypotheses in Kleene algebra. Tech. rep. (Technical Report TM-ARH-
023814). Bellcore, 1993.
url: http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.
56.6067 (cited on pp. 163, 173).

[32] E. Cohen. Lazy caching in Kleene algebra. Tech. rep. Bellcore, 1994.
url: http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.
57.5074 (cited on p. 163).

[33] E. Cohen. Using Kleene algebra to reason about concurrency control. Tech. rep.
Telcordia, 1994 (cited on p. 163).

[34] E. Cohen, D. Kozen, and F. Smith. The complexity of Kleene algebra with tests.
Tech. rep. (TR96-1598). Computer Science Department, Cornell University, July
1996.
url: http://hdl.handle.net/1813/7253 (cited on pp. 65, 165).

[35] T. Colcombet. Forms of determinism for automata. In Proc. 29th symposium on
theoretical aspects of computer science (stacs). Vol. 14. LIPIcs, 2012, pp. 1–23.
doi: 10.4230/LIPIcs.STACS.2012.1 (cited on p. 143).

[36] J. H. Conway. Regular algebra and finite machines. Dover Publications, 2012.
isbn: 978-0-486-31058-9 (cited on p. 51).

http://dx.doi.org/10.1145/355592.365646
http://dx.doi.org/10.1145/1150019.1136500
http://dx.doi.org/10.1006/inco.1997.2688
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(93)90287-4
http://dx.doi.org/10.1145/321239.321249
http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1016/S0019-9958(59)90362-6
https://en.wikipedia.org/w/index.php?title=Special%3ABookSources&isbn=978-0-596-00492-7
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.6067
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.6067
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5074
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.5074
http://hdl.handle.net/1813/7253
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.1
https://en.wikipedia.org/w/index.php?title=Special%3ABookSources&isbn=978-0-486-31058-9

188 BIBLIOGRAPHY

[37] T.H.Cormen,C. E. Leiserson,R.L.Rivest, andC. Stein. Introduction to algorithms.
Of The MIT Electrical Engineering and Computer Science Series. MIT Press and
McGraw-Hill, 2nd edition ed., 2001.
isbn: 0-262-53196-8 (cited on p. 98).

[38] B. Courcelle. Equivalences and transformations of regular systems – applications
to recursive program schemes and grammars.Theoretical computer science, 42:1–122,
1986.
doi: 10.1016/0304-3975(86)90050-2 (cited on pp. 147, 148).

[39] R. Cox. Regular expression matching can be simple and fast.
url: http://swtch.com/~rsc/regexp/regexp1.html (cited on p. 87).

[40] L. D’Antoni and M. Veanes. Minimization of symbolic automata. In Proceedings
of the 41th ACM SIGPLAN-SIGACT symposium on principles of programming
languages (POPL’14). ACM Press, San Diego, California, Jan. 2014.
doi: 10.1145/2535838.2535849 (cited on p. 144).

[41] D.Debarbieux,O.Gauwin, J.Niehren, T. Sebastian, andM.Zergaoui. Early nested
word automata for XPath query answering on XML streams. In S. Konstantinidis,
editor, Proc. 18th international conference on implementation and application of au-
tomata (CIAA’13). Vol. 7982, in Lecture Notes in Computer Science, pp. 292–305.
Springer Berlin Heidelberg, July 2013.
doi: 10.1007/978-3-642-39274-0_26 (cited on p. 106).

[42] D.Dubé andM. Feeley. Efficiently Building a ParseTree FromaRegular Expression.
Acta informatica, 37(2):121–144, 2000.
doi: 10.1007/s002360000037 (cited on pp. 73, 83, 87, 89, 106).

[43] J. Earley. An efficient context-free parsing algorithm.Communications of the ACM,
13(2):94–102, 1970.
doi: 10.1145/362007.362035 (cited on pp. 7, 87).

[44] K. Ellul, B. Krawetz, J. Shallit, and M.-w. Wang. Regular expressions: new results
and open problems. Journal of automata, languages and combinatorics, 10(4):407–
437, 2005.
url: http://dl.acm.org/citation.cfm?id=1103362.1103368 (cited
on p. 143).

[45] E. Engeler.Algorithmicproperties of structures.Mathematical systems theory, 1(2):183–
195, 1967.
doi: 10.1007/BF01705528 (cited on p. 63).

[46] J. Engelfriet andH.Hoogeboom.MSOdefinable string transductions and two-way
finite-state transducers.ACMtransactions on computational logic (TOCL), 2(2):216–
254, 2001.
doi: 10.1145/371316.371512 (cited on p. 143).

[47] Z. Ésik. Completeness of Park induction. Theoretical computer science, 177(1):217–
283, 1997.
doi: 10.1016/S0304-3975(96)00240-X (cited on p. 151).

[48] Z. Ésik and W. Kuich. Modern automata theory. Unpublished manuscript. 2007
(cited on pp. 148, 150).

[49] Z. Ésik and H. Leiß. Algebraically complete semirings and Greibach normal form.
Annals of pure and applied logic, 133:173–203, 2005.
doi: 10.1016/j.apal.2004.10.008 (cited on pp. 60, 147, 148, 151, 153–155).

https://en.wikipedia.org/w/index.php?title=Special%3ABookSources&isbn=0-262-53196-8
http://dx.doi.org/10.1016/0304-3975(86)90050-2
http://swtch.com/~rsc/regexp/regexp1.html
http://dx.doi.org/10.1145/2535838.2535849
http://dx.doi.org/10.1007/978-3-642-39274-0_26
http://dx.doi.org/10.1007/s002360000037
http://dx.doi.org/10.1145/362007.362035
http://dl.acm.org/citation.cfm?id=1103362.1103368
http://dx.doi.org/10.1007/BF01705528
http://dx.doi.org/10.1145/371316.371512
http://dx.doi.org/10.1016/S0304-3975(96)00240-X
http://dx.doi.org/10.1016/j.apal.2004.10.008

BIBLIOGRAPHY 189

[50] Z. Ésik and H. Leiß. Greibach normal form in algebraically complete semirings. In
CSL ’02: proceedings of the 16th international workshop and 11th annual conference
of the eacsl on computer science logic. Springer-Verlag, London, UK, 2002, pp. 135–
150.
doi: 10.1007/3-540-45793-3_10 (cited on pp. 60, 147, 148, 151, 153–155).

[51] J. Ferrante and C. W. Rackoff. The computational complexity of logical theories.
Vol. 718 of Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1979.
doi: 10.1007/BFb0062837 (cited on p. 176).

[52] S. Fischer, F. Huch, and T. Wilke. A play on regular expressions: functional pearl.
In Proc. of the 15th ACM SIGPLAN international conference on functional pro-
gramming (ICFP’10). ACM, Baltimore, Maryland, USA, 2010, pp. 357–368.
doi: 10.1145/1863543.1863594 (cited on p. 87).

[53] B. Ford. Parsing expression grammars: a recognition-based syntactic foundation. In
Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on principles of pro-
gramming languages. In POPL ’04. ACM, Venice, Italy, 2004, pp. 111–122.
doi: 10.1145/964001.964011 (cited on p. 142).

[54] N.Foster,D.Kozen,K.Mamouras,M.Reitblatt, andA. Silva. ProbabilisticNetKAT.
Tech. rep. Computing and Information Science, Cornell University, July 2015.
url: http://hdl.handle.net/1813/40335 (cited on p. 70).

[55] N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson. A coalgebraic deci-
sion procedure for NetKAT. In Proc. 42nd acm sigplan-sigact symp. principles of
programming languages (POPL’15). ACM. Mumbai, India, Jan. 2015, pp. 343–355.
doi: 10.1145/2676726.2677011 (cited on p. 70).

[56] G. Fowler. An interpretation of the POSIX regex standard. Jan. 2003.
url: http://www2.research.att.com/~astopen/testregex/re-
interpretation.html (cited on p. 94).

[57] A. Frisch and L. Cardelli. Greedy regular expressionmatching. In Proc. 31st interna-
tional colloquium on automata, languages and programming (ICALP’04). Vol. 3142.
In Lecture Notes in Computer Science (LNCS). Springer, July 2004, pp. 618–629.
doi: 10.1007/978-3-540-27836-8_53 (cited on pp. 15, 20, 21, 24, 73, 74, 78,
83, 87, 89, 94, 106, 108, 111, 142).

[58] D.Giammarresi, J.-L. Ponty, andD.Wood.Thompson digraphs: a characterization.
InO. Boldt andH. Jürgensen, editors,Automata implementation. Vol. 2214, in Lec-
ture Notes in Computer Science, pp. 91–100. Springer Berlin Heidelberg, 2001.
doi: 10.1007/3-540-45526-4_9 (cited on p. 26).

[59] V.Glushkov.The abstract theoryof automata.Russianmathematical surveys, 16(5):1–
53, 1961.
doi: 10.1070/RM1961v016n05ABEH004112 (cited on pp. 10, 108).

[60] M.Gowda,G. Stewart,G.Mainland,B.Radunović,D.Vytiniotis, andD.Patterson.
Ziria: language for rapid prototyping of wireless PHY. In Proceedings of the 2014
ACM conference on SIGCOMM. ACM, 2014, pp. 359–362.
doi: 10.1145/2619239.2631427 (cited on p. 143).

[61] J. Goyvaerts and S. Levithan. Regular expressions cookbook. O’Reilly, 2009.
isbn: 978-0-596-52068-7 (cited on p. 134).

http://dx.doi.org/10.1007/3-540-45793-3_10
http://dx.doi.org/10.1007/BFb0062837
http://dx.doi.org/10.1145/1863543.1863594
http://dx.doi.org/10.1145/964001.964011
http://hdl.handle.net/1813/40335
http://dx.doi.org/10.1145/2676726.2677011
http://www2.research.att.com/~astopen/testregex/re-interpretation.html
http://www2.research.att.com/~astopen/testregex/re-interpretation.html
http://dx.doi.org/10.1007/978-3-540-27836-8_53
http://dx.doi.org/10.1007/3-540-45526-4_9
http://dx.doi.org/10.1070/RM1961v016n05ABEH004112
http://dx.doi.org/10.1145/2619239.2631427
https://en.wikipedia.org/w/index.php?title=Special%3ABookSources&isbn=978-0-596-52068-7

190 BIBLIOGRAPHY

[62] C. Grabmayer. Using proofs by coinduction to find “traditional” proofs. In J. L. Fi-
adeiro, N. Harman,M. Roggenbach, and J. Rutten, editors,Algebra and coalgebra
in computer science. Vol. 3629, in Lecture Notes in Computer Science, pp. 175–193.
Springer Berlin Heidelberg, 2005.
doi: 10.1007/11548133_12 (cited on p. 51).

[63] N. B. B. Grathwohl, F. Henglein, and D. Kozen. Infinitary axiomatization of the
equational theory of context-free languages. In Proc. 9th workshop fixed points in
computer science (FICS’13). D. Baelde andA. Carayol, editors. Vol. 126. In Electronic
Proceedings in Theoretical Computer Science. Torino, Italy, Sept. 2013, pp. 44–55.
doi: 10.4204/EPTCS.126.4 (cited on pp. 1, 2, 61, 147).

[64] N.B.B.Grathwohl, F.Henglein,L.Nielsen, andU.T.Rasmussen.Two-pass greedy
regular expression parsing. In S. Konstantinidis, editor,Proc. 18th international con-
ference on implementation and application of automata (CIAA’13). Vol. 7982, in
Lecture Notes in Computer Science, pp. 60–71. Springer Berlin Heidelberg, July
2013.
doi: 10.1007/978-3-642-39274-0_7 (cited on pp. 1, 2, 7, 29, 30, 73, 74, 76,
89, 94, 106, 108, 142).

[65] N.B.B.Grathwohl, F.Henglein, andU.T.Rasmussen.Optimally streaming greedy
regular expressionparsing. InTheoretical aspects of computing – ICTAC’14.G.Ciobanu
and D. Méry, editors. Vol. 8687. In Lecture Notes in Computer Science. Springer
International Publishing, Sept. 2014, pp. 224–240.
doi: 10.1007/978-3-319-10882-7_14 (cited on pp. 1, 2, 7, 37, 89, 90, 108,
142).

[66] N.B.B.Grathwohl, F.Henglein,U.T.Rasmussen,K.A. Søholm, andS.P.Tørholm.
Kleenex: compiling nondeterministic transducers to deterministic streaming trans-
ducers. Submitted for publication to: 43rd ACMSIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’16). 2016 (cited on pp. 1, 2, 7, 42,
107).

[67] N. B. B. Grathwohl, D. Kozen, and K. Mamouras. KAT + B! In Proceedings of the
joint meeting of the twenty-third eacsl annual conference on computer science logic
(csl) and the twenty-ninth annual acm/ieee symposium on logic in computer science
(lics). In CSL-LICS ’14. ACM, Vienna, Austria, 2014, 44:1–44:10.
doi: 10.1145/2603088.2603095 (cited on pp. 1, 2, 163).

[68] N. B. B. Grathwohl, U. T. Rasmussen, and F. Henglein. KleeneMeets Church: reg-
ular expressions as types. Poster presented at POPL 2015. Mumbai, India, 2015.
url: http://diku.dk/kmc/documents/kmcposter.pdf (cited on p. 7).

[69] J. Gruska. A characterization of context-free languages. J. comput. syst. sci., 5(4):353–
364, Aug. 1971.
doi: 10.1016/S0022-0000(71)80023-5 (cited on p. 147).

[70] A. K. Gupta and D. Suciu. Stream processing of XPath queries with predicates. In
Proc. 2003 ACM SIGMOD international conference on management of data. In
SIGMOD ’03. ACM, San Diego, California, 2003, pp. 419–430.
doi: 10.1145/872757.872809 (cited on p. 106).

[71] C. Hardin and D. Kozen. On the elimination of hypotheses in Kleene algebra with
tests. Tech. rep. (TR2002-1879). Computer Science Department, Cornell Univer-
sity, Oct. 2002.
url: http://hdl.handle.net/1813/5855 (cited on pp. 163, 173).

http://dx.doi.org/10.1007/11548133_12
http://dx.doi.org/10.4204/EPTCS.126.4
http://dx.doi.org/10.1007/978-3-642-39274-0_7
http://dx.doi.org/10.1007/978-3-319-10882-7_14
http://dx.doi.org/10.1145/2603088.2603095
http://diku.dk/kmc/documents/kmcposter.pdf
http://dx.doi.org/10.1016/S0022-0000(71)80023-5
http://dx.doi.org/10.1145/872757.872809
http://hdl.handle.net/1813/5855

BIBLIOGRAPHY 191

[72] D. Harel. On folk theorems. Communications of the ACM, 23(7):379–389, July
1980.
doi: 10.1145/358886.358892 (cited on pp. 65, 163, 164).

[73] P. Hazel. PCRE – Perl-compatible regular expressions.
url: http://www.pcre.org/pcre.txt (cited on pp. 8, 142).

[74] F. Henglein and L. Nielsen. Declarative coinductive axiomatization of regular ex-
pression containment and its computational interpretation (preliminary version).
TOPPS D-Report (612). Department of Computer Science, University of Copen-
hagen (DIKU), Feb. 2010.
url: http://www.diku.dk/hjemmesider/ansatte/henglein/papers/
henglein2010a.pdf (cited on p. 74).

[75] F.Henglein andL.Nielsen.Regular expression containment: coinductive axiomati-
zation and computational interpretation. InProc. 38th ACM SIGACT-SIGPLAN
symposium on principles of programming languages (POPL’11).Vol. 46. InSIGPLAN
Notices. ACM Press, Jan. 2011, pp. 385–398.
doi: 10.1145/1926385.1926429 (cited on pp. 15, 19, 108).

[76] K. Hirose and M. Oya. General theory of flowcharts. In Comment. math. univ. st.
paul, 1972 (cited on p. 163).

[77] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and
computation. Addison–Wesley, 1979.
isbn: 0-201-02988-X (cited on p. 58).

[78] M. Hopkins. The algebraic approach I: the algebraization of the Chomsky hierar-
chy. In Proc. 10th int. conf. relational methods in computer science and 5th int. conf.
applications of kleene algebra (relmics/aka 2008). R. Berghammer, B.Möller, andG.
Struth, editors. Vol. 4988. In Lecture Notes in Computer Science. Springer-Verlag,
Berlin Heidelberg, Apr. 2008, pp. 155–172.
doi: 10.1007/978-3-540-78913-0_13 (cited on p. 147).

[79] M.Hopkins.The algebraic approach II: dioids, quantales andmonads. InProc. 10th
int. conf. relational methods in computer science and 5th int. conf. applications of
kleene algebra (relmics/aka 2008). R. Berghammer, B. Möller, and G. Struth, edi-
tors. Vol. 4988. In LectureNotes in Computer Science. Springer-Verlag, BerlinHei-
delberg, Apr. 2008, pp. 173–190.
doi: 10.1007/978-3-540-78913-0_14 (cited on p. 147).

[80] IEEE Computer Society. Standard for information technology - portable operating
system interface (posix), base specifications, issue 7. IEEE Std 1003.1. IEEE, 2008.
doi: 10.1109/IEEESTD.2008.4694976 (cited on p. 94).

[81] L. Ilie and S. Yu. Follow automata. Information and computation, 186(1):140–162,
2003.
doi: 10.1016/S0890-5401(03)00090-7 (cited on p. 108).

[82] D. M. Kaplan. Regular expressions and the equivalence of programs. Journal of
computer and system sciences, 3(4):361–386, 1969.
doi: 10.1016/S0022-0000(69)80027-9 (cited on pp. 63, 64).

[83] S. Kearns. Extending regular expressions with context operators and parse extrac-
tion. Software - practice and experience, 21(8):787–804, 1991.
doi: 10.1002/spe.4380210803 (cited on pp. 89, 142).

http://dx.doi.org/10.1145/358886.358892
http://www.pcre.org/pcre.txt
http://www.diku.dk/hjemmesider/ansatte/henglein/papers/henglein2010a.pdf
http://www.diku.dk/hjemmesider/ansatte/henglein/papers/henglein2010a.pdf
http://dx.doi.org/10.1145/1926385.1926429
https://en.wikipedia.org/w/index.php?title=Special%3ABookSources&isbn=0-201-02988-X
http://dx.doi.org/10.1007/978-3-540-78913-0_13
http://dx.doi.org/10.1007/978-3-540-78913-0_14
http://dx.doi.org/10.1109/IEEESTD.2008.4694976
http://dx.doi.org/10.1016/S0890-5401(03)00090-7
http://dx.doi.org/10.1016/S0022-0000(69)80027-9
http://dx.doi.org/10.1002/spe.4380210803

192 BIBLIOGRAPHY

[84] S.M.Kearns. Extending regular expressions. PhD thesis. ColumbiaUniversity, 1990
(cited on pp. 73, 87).

[85] S. C. Kleene. Representation of events in nerve nets and finite automata.Automata
studies:3–42, 1956.
url:http://www.dlsi.ua.es/~mlf/nnafmc/papers/kleene56representation.
pdf (cited on p. 7).

[86] K. Kosako. The Oniguruma regular expression library. 2014.
url: http://www.geocities.jp/kosako3/oniguruma/ (cited on p. 127).

[87] S. R. Kosaraju. Analysis of structured programs. In Proceedings of the fifth annual
acm symposium on theory of computing. In STOC ’73. ACM, Austin, Texas, USA,
1973, pp. 240–252.
doi: 10.1145/800125.804055 (cited on pp. 163, 176).

[88] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Information and computation, 110(2):366–390, May 1994.
doi: 10.1006/inco.1994.1037 (cited on pp. 51, 52, 54, 56, 70, 165).

[89] D. Kozen.Automata and computability. Springer Verlag, 1997.
isbn: 978-1-4612-7309-7 (cited on pp. 58, 59, 62, 161).

[90] D.Kozen.Automataonguarded strings and applications.Matématica contemporânea,
24:117–139, 2003.
url: http://hdl.handle.net/1813/5821 (cited on pp. 174, 176).

[91] D. Kozen. Course notes: introduction to kleene algebra. 2004.
url: http://www.cs.cornell.edu/Courses/cs786/2004sp/ (cited on
pp. 51, 57).

[92] D. Kozen. Halting and equivalence of schemes over recursive theories. Tech. rep.
(TR2002-1881). Computer Science Department, Cornell University, Oct. 2002.
url: http://hdl.handle.net/1813/5857 (cited on p. 164).

[93] D. Kozen. Kleene algebra with tests.ACM transactions on programming languages
and systems, 19(3):427–443, May 1997.
doi: 10.1145/256167.256195 (cited on pp. 63, 65–67, 163, 164).

[94] D. Kozen. Kleene algebra with tests and commutativity conditions. In T.Margaria
and B. Steffen, editors, Tools and algorithms for the construction and analysis of
systems (TACAS’96). Vol. 1055, in Lecture Notes in Computer Science, pp. 14–33.
Springer Berlin Heidelberg, 1996.
doi: 10.1007/3-540-61042-1_35 (cited on p. 63).

[95] D. Kozen. NetKAT: a formal system for the verification of networks. In Proc. 12th
asian symposium on programming languages and systems (APLAS’14). J. Garrigue,
editor. Vol. 8858. In Lecture Notes in Computer Science. Asian Association for
Foundation of Software (AAFS). Springer, Singapore, Nov. 2014.
doi: 10.1007/978-3-319-12736-1_1 (cited on pp. 70, 163).

[96] D. Kozen. On induction vs. *-continuity. In Proc. logics of programs. Vol. 131. In
Lecture Notes in Computer Science (LNCS). Springer, May 1981, pp. 167–176.
doi: 10.1007/BFb0025769 (cited on p. 156).

[97] D. Kozen. Results on the propositional µ-calculus. Theoretical computer science,
27(3):333–354, 1983.
doi: 10.1016/0304-3975(82)90125-6 (cited on p. 157).

http://www.dlsi.ua.es/~mlf/nnafmc/papers/kleene56representation.pdf
http://www.dlsi.ua.es/~mlf/nnafmc/papers/kleene56representation.pdf
http://www.geocities.jp/kosako3/oniguruma/
http://dx.doi.org/10.1145/800125.804055
http://dx.doi.org/10.1006/inco.1994.1037
https://en.wikipedia.org/w/index.php?title=Special%3ABookSources&isbn=978-1-4612-7309-7
http://hdl.handle.net/1813/5821
http://www.cs.cornell.edu/Courses/cs786/2004sp/
http://hdl.handle.net/1813/5857
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1007/3-540-61042-1_35
http://dx.doi.org/10.1007/978-3-319-12736-1_1
http://dx.doi.org/10.1007/BFb0025769
http://dx.doi.org/10.1016/0304-3975(82)90125-6

BIBLIOGRAPHY 193

[98] D.Kozen. Some results in dynamicmodel theory. Science of computer programming,
51(1–2):3–22, 2004. Mathematics of Program Construction (MPC 2002).
doi: http://dx.doi.org/10.1016/j.scico.2003.09.004 (cited on
p. 164).

[99] D. Kozen. The design and analysis of algorithms. Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-4400-4 (cited on pp. 153, 156, 157).

[100] D. C. Kozen.Theory of computation. Springer Publishing Company, Incorporated,
1st ed., 2010.
isbn: 1849965714 (cited on pp. 172, 176).

[101] D.Kozen andM.-C. Patron.Certificationof compiler optimizations using kleene al-
gebrawith tests. In J. Lloyd,V.Dahl,U. Furbach,M.Kerber,K.-K.Lau,C.Palamidessi,
L. Pereira, Y. Sagiv, and P. Stuckey, editors,Computational logic — cl 2000. Vol. 1861,
in Lecture Notes in Computer Science, pp. 568–582. Springer Berlin Heidelberg,
2000.
doi: 10.1007/3-540-44957-4_38 (cited on p. 163).

[102] D. Kozen and F. Smith. Kleene algebra with tests: completeness and decidability.
In D. v. Dalen and M. Bezem, editors, Computer science logic. Vol. 1258, in Lecture
Notes in Computer Science, pp. 244–259. Springer Berlin Heidelberg, 1997.
doi: 10.1007/3-540-63172-0_43 (cited on pp. 64, 65, 163, 165, 173).

[103] D. Kozen and W.-L. Tseng. The Böhm–Jacopini theorem is false, propositionally.
In P. Audebaud and C. Paulin-Mohring, editors,Mathematics of program construc-
tion. Vol. 5133, in Lecture Notes in Computer Science, pp. 177–192. Springer Berlin
Heidelberg, 2008.
doi: 10.1007/978-3-540-70594-9_11 (cited on pp. 163, 176, 177).

[104] H. Leiß. Towards Kleene algebra with recursion. In CSL ’91: proceedings of the 5th
workshop on computer science logic. Springer-Verlag, London, UK, 1992, pp. 242–
256.
doi: 10.1007/BFb0023771 (cited on pp. 60, 147, 148, 151, 153–155, 160).

[105] M. Lutz. Programming python. Vol. 8. O’Reilly, 4th edition ed., Dec. 2010.
isbn: 978-0-596-15810-1 (cited on p. 127).

[106] R.McNaughtonandH.Yamada.Regular expressions and state graphs for automata.
IRE trans. on electronic comput., EC-9(1):38–47, 1960.
doi: 10.1109/TEC.1960.5221603 (cited on p. 10).

[107] M. Might, D. Darais, and D. Spiewak. Parsing with derivatives: a functional pearl.
In Proc. of the 16th ACM SIGPLAN international conference on functional pro-
gramming (ICFP’11). ACM, 2011, pp. 189–195.
doi: 10.1145/2034773.2034801 (cited on p. 87).

[108] G. Mirkowska. Algorithmic logic and its applications. PhD thesis. University of
Warsaw, 1972 (cited on p. 163).

[109] M. Mohri. Finite-state transducers in language and speech processing. Computa-
tional linguistics, 23(2):269–311, 1997.
url: http://dl.acm.org/citation.cfm?id=972695.972698 (cited on
p. 143).

http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2003.09.004
http://dx.doi.org/10.1007/978-1-4612-4400-4
https://en.wikipedia.org/w/index.php?title=Special%3ABookSources&isbn=1849965714
http://dx.doi.org/10.1007/3-540-44957-4_38
http://dx.doi.org/10.1007/3-540-63172-0_43
http://dx.doi.org/10.1007/978-3-540-70594-9_11
http://dx.doi.org/10.1007/BFb0023771
https://en.wikipedia.org/w/index.php?title=Special%3ABookSources&isbn=978-0-596-15810-1
http://dx.doi.org/10.1109/TEC.1960.5221603
http://dx.doi.org/10.1145/2034773.2034801
http://dl.acm.org/citation.cfm?id=972695.972698

194 BIBLIOGRAPHY

[110] E.W.Myers, P. Oliva, and K. Guimarães. Reporting exact and approximate regular
expression matches. In M. Farach-Colton, editor, Combinatorial pattern matching.
Vol. 1448, in Lecture Notes in Computer Science, pp. 91–103. Springer Berlin Hei-
delberg, 1998.
doi: 10.1007/BFb0030783 (cited on p. 142).

[111] G. Myers. A four Russians algorithm for regular expression pattern matching. J.
acm, 39(2):432–448, 1992.
doi: http://doi.acm.org/10.1145/128749.128755 (cited on p. 142).

[112] T. Mytkowicz, M. Musuvathi, and W. Schulte. Data-parallel finite-state machines.
In Proceedings of the 19th international conference on architectural support for pro-
gramming languages and operating systems (ASPLOS’14). ACM, 2014, pp. 529–542.
doi: 10.1145/2541940.2541988 (cited on pp. 48, 143).

[113] G. Navarro and M. Raffinot. Compact DFA representation for fast regular expres-
sion search. InG. S.Brodal,D. Frigioni, andA.Marchetti-Spaccamela, editors,Algo-
rithm engineering.Vol. 2141, inLectureNotes inComputer Science, pp. 1–13. Springer
Berlin Heidelberg, 2001.
doi: 10.1007/3-540-44688-5_1 (cited on p. 143).

[114] L. Nielsen and F. Henglein. Bit-coded regular expression parsing. In Proc. 5th int’l
conf. on language and automata theory and applications (LATA’11). Vol. 6638. In
Lecture Notes in Computer Science (LNCS). Springer, May 2011, pp. 402–413.
doi: 10.1007/978-3-642-21254-3_32 (cited on pp. 15, 73, 75, 76, 83, 87, 89,
106, 108).

[115] G. v. Noord andD.Gerdemann. Finite State Transducers with Predicates and Iden-
tities.Grammars, 4(3):263–286, 2001.
doi: 10.1023/A:1012291501330 (cited on pp. 116, 126).

[116] S. Okui andT. Suzuki. Disambiguation in regular expressionmatching via position
automata with augmented transitions. In M. Domaratzki and K. Salomaa, editors,
Implementation and application of automata. Vol. 6482, in Lecture Notes in Com-
puter Science, pp. 231–240. Springer Berlin Heidelberg, 2011.
doi: 10.1007/978-3-642-18098-9_25 (cited on p. 94).

[117] S. Okui and T. Suzuki. Disambiguation in regular expression matching via posi-
tion automata with augmented transitions. Tech. rep. (2013-002). The University
of Aizu, June 2013 (cited on p. 142).

[118] G. Oulsnam. Unraveling unstructured programs.The computer journal, 25(3):379–
387, 1982.
doi: 10.1093/comjnl/25.3.379 (cited on pp. 163, 176).

[119] J.Ousterhout.Tcl:AnEmbeddableCommandLanguage. InProc. USENIXwinter
conference, Jan. 1990, pp. 133–146 (cited on p. 83).

[120] D. M. R. Park. Fixpoint induction and proofs of program properties. InMachine
intelligence. D. Michie and B. Meltzer, editors. Vol. 5. Edinburgh University Press,
1969, pp. 59–78 (cited on p. 151).

[121] W. Peterson, T. Kasami, and N. Tokura. On the capabilities of while, repeat, and
exit statements. Comm. assoc. comput. mach., 16(8):503–512, 1973.
doi: 10.1145/355609.362337 (cited on pp. 163, 176).

http://dx.doi.org/10.1007/BFb0030783
http://dx.doi.org/http://doi.acm.org/10.1145/128749.128755
http://dx.doi.org/10.1145/2541940.2541988
http://dx.doi.org/10.1007/3-540-44688-5_1
http://dx.doi.org/10.1007/978-3-642-21254-3_32
http://dx.doi.org/10.1023/A:1012291501330
http://dx.doi.org/10.1007/978-3-642-18098-9_25
http://dx.doi.org/10.1093/comjnl/25.3.379
http://dx.doi.org/10.1145/355609.362337

BIBLIOGRAPHY 195

[122] V. Pratt. Dynamic algebras as a well-behaved fragment of relation algebras. In C. H.
Bergman, R. D. Maddux, and D. L. Pigozzi, editors, Algebraic logic and universal
algebra in computer science. Vol. 425, in LectureNotes inComputer Science, pp. 77–
110. Springer New York, 1990.
doi: 10.1007/BFb0043079 (cited on p. 52).

[123] L. Ramshaw. Eliminating goto’s while preserving program structure. Journal of the
ACM, 35(4):893–920, 1988.
doi: 10.1145/48014.48021 (cited on pp. 163, 176).

[124] A. Rathnayake and H. Thielecke. Static analysis for regular expression exponential
runtime via substructural logics. Corr, abs/1405.7058, 2014.
url: http://arxiv.org/abs/1405.7058 (cited on p. 142).

[125] Reduction of 3-CNF-SAT to Perl regular expression matching.
url: http://perl.plover.com/NPC/NPC-3SAT.html (cited on p. 8).

[126] T. Reps. ”Maximal-munch”tokenization in linear time.ACM trans. program. lang.
syst., 20(2):259–273, 1998.
doi: http://doi.acm.org/10.1145/276393.276394 (cited on p. 87).

[127] A. Salomaa. Two complete axiom systems for the algebra of regular events. J. ACM,
13(1):158–169, Jan. 1966.
doi: 10.1145/321312.321326 (cited on p. 51).

[128] G. Schnitger. Regular expressions and NFAs without ε-transitions. In B. Durand
and W. Thomas, editors, STACS 2006. Vol. 3884, in Lecture Notes in Computer
Science, pp. 432–443. Springer, 2006.
doi: 10.1007/11672142_35 (cited on p. 108).

[129] M. Schützenberger. Sur une variante des fonctions sequentielles. Theoretical com-
puter science, 4(1):47–57, Feb. 1977.
doi: 10.1016/0304-3975(77)90055-X (cited on pp. 116, 118).

[130] R. Sidhu and V. Prasanna. Fast regular expression matching using FPGAs. In Proc.
9th annual IEEE symposium on field-programmable custom computing machines
(FCCM’01), 2001, pp. 227–238 (cited on p. 143).

[131] K. A. Søholm and S. P. Tørholm. Ordered finite action transducers for high-perfor-
mance stream processing. Master’s Thesis. University of Copenhagen, 2015 (cited
on pp. 42, 115).

[132] L. J. Stockmeyer and A. R.Meyer.Word problems requiring exponential time (pre-
liminary report). In Proceedings of the fifth annual acm symposium on theory of
computing. In STOC ’73. ACM, Austin, Texas, USA, 1973, pp. 1–9.
doi: 10.1145/800125.804029 (cited on pp. 38, 56, 98, 176).

[133] S. Sugiyama and Y.Minamide. Checking time linearity of regular expressionmatch-
ing based onbacktracking. In IPSJ transactions on programming. (3) in 7, 2014, pp. 1–
11.
doi: 10.2197/ipsjtrans.7.82 (cited on p. 142).

[134] M. Sulzmann and K. Z. M. Lu. POSIX regular expression parsing with derivatives.
In Proc. 12th international symposium on functional and logic programming. In
FLOPS ’14. Kanazawa, Japan, June 2014.
doi: 10.1007/978-3-319-07151-0_13 (cited on pp. 94, 106, 142).

http://dx.doi.org/10.1007/BFb0043079
http://dx.doi.org/10.1145/48014.48021
http://arxiv.org/abs/1405.7058
http://perl.plover.com/NPC/NPC-3SAT.html
http://dx.doi.org/http://doi.acm.org/10.1145/276393.276394
http://dx.doi.org/10.1145/321312.321326
http://dx.doi.org/10.1007/11672142_35
http://dx.doi.org/10.1016/0304-3975(77)90055-X
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.2197/ipsjtrans.7.82
http://dx.doi.org/10.1007/978-3-319-07151-0_13

196 BIBLIOGRAPHY

[135] M.SulzmannandK.Z.M.Lu.Regular expression sub-matchingusingpartial deriva-
tives. In Proc. 14th symposium on principles and practice of declarative programming.
In PPDP ’12. ACM, Leuven, Belgium, 2012, pp. 79–90.
doi: 10.1145/2370776.2370788 (cited on pp. 89, 94, 142).

[136] The GNU Project. 2015.
url: http://www.gnu.org/software/coreutils/coreutils.html
(cited on pp. 83, 127).

[137] The GNU project. GCC, the GNU conpiler collection.
url: http://gcc.gnu.org/ (cited on p. 42).

[138] The LLVM project. Clang: a C language frontend for LLVM.
url: http://clang.llvm.org/ (cited on p. 42).

[139] The RE2 authors. RE2.
url: https://code.google.com/p/re2/ (cited on pp. 48, 83, 109, 127, 142).

[140] The RE2J authors. RE2J. 2015.
url: https://github.com/google/re2j (cited on p. 127).

[141] K.Thompson.Programming techniques: regular expression search algorithm.Com-
munications of the ACM, 11(6):419–422, 1968.
doi: 10.1145/363347.363387 (cited on pp. 7, 10, 11, 91, 108).

[142] A. Thurston. Ragel state machine compiler. 2015.
url: http://www.colm.net/open-source/ragel/ (cited on pp. 49, 109,
127).

[143] S. Vansummeren.Type inference for unique patternmatching.Acm trans. program.
lang. syst., 28(3):389–428, 2006.
doi: http://doi.acm.org/10.1145/1133651.1133652 (cited on p. 143).

[144] M. Veanes. Symbolic String Transformations with Regular Lookahead and Roll-
back. InErshov informatics conference (PSI’14). Vol. 8974. In LectureNotes inCom-
puter Science. Springer Verlag, 2014.
doi: 10.1007/978-3-662-46823-4_27 (cited on p. 126).

[145] M. Veanes, P. d. Halleux, and N. Tillmann. Rex: symbolic regular expression ex-
plorer. In Proc. 3rd international conference on software testing, verification and val-
idation (icst’10). IEEE Computer Society Press, Paris, France, Apr. 2010, pp. 498–
507.
doi: 10.1109/ICST.2010.15 (cited on p. 85).

[146] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner. Symbolic finite
state transducers: algorithms and applications. In Proceedings of the 39th annual
symposium on principles of programming languages. In POPL ’12. Philadelphia, PA,
USA, 2012, pp. 137–150.
doi: 10.1145/2103656.2103674 (cited on pp. 126, 144).

[147] M.Veanes,D.Molnar,T.Mytkowicz, andB.Livshits.Data-parallel string-manipulating
programs. In Proceedings of the 42nd annual ACM SIGPLAN-SIGACT sympo-
sium on principles of programming languages (POPL’15). ACM, 2015.
doi: 10.1145/2676726.2677014 (cited on pp. 48, 126, 144).

[148] B. W. Watson. Implementing and using finite automata toolkits.Natural language
engineering, 2(04):295–302, 1996.
doi: 10.1017/S135132499700154X (cited on p. 126).

http://dx.doi.org/10.1145/2370776.2370788
http://www.gnu.org/software/coreutils/coreutils.html
http://gcc.gnu.org/
http://clang.llvm.org/
https://code.google.com/p/re2/
https://github.com/google/re2j
http://dx.doi.org/10.1145/363347.363387
http://www.colm.net/open-source/ragel/
http://dx.doi.org/http://doi.acm.org/10.1145/1133651.1133652
http://dx.doi.org/10.1007/978-3-662-46823-4_27
http://dx.doi.org/10.1109/ICST.2010.15
http://dx.doi.org/10.1145/2103656.2103674
http://dx.doi.org/10.1145/2676726.2677014
http://dx.doi.org/10.1017/S135132499700154X

BIBLIOGRAPHY 197

[149] B. B. Welch, K. Jones, and J. Hobbs. Practical programming in tcl and tk. Prentice
Hall, 4th edition ed., 2003.
isbn: 0130385603 (cited on p. 127).

[150] M. Williams and H. Ossher. Conversion of unstructured flow diagrams into struc-
tured form. The computer journal, 21(2):161–167, 1978.
doi: 10.1093/comjnl/21.2.161 (cited on pp. 163, 176).

[151] G. Winskel. The formal semantics of programming languages. MIT Press, 1993.
isbn: 9780262231695 (cited on p. 151).

[152] X. Wu and D. Theodoratos. A survey on XML streaming evaluation techniques.
The VLDB journal, 22(2):177–202, Apr. 2013.
doi: 10.1007/s00778-012-0281-y (cited on p. 106).

[153] L. Yang, P. Manadhata, W. Horne, P. Rao, and V. Ganapathy. Fast submatch ex-
traction using obdds. In Proceedings of the eighth acm/ieee symposium on architec-
tures for networking and communications systems. InANCS ’12.ACM,Austin,Texas,
USA, 2012, pp. 163–174.
doi: 10.1145/2396556.2396594 (cited on p. 143).

https://en.wikipedia.org/w/index.php?title=Special%3ABookSources&isbn=0130385603
http://dx.doi.org/10.1093/comjnl/21.2.161
https://en.wikipedia.org/w/index.php?title=Special%3ABookSources&isbn=9780262231695
http://dx.doi.org/10.1007/s00778-012-0281-y
http://dx.doi.org/10.1145/2396556.2396594

	List of Figures
	Acknowledgements
	Introduction
	Preliminaries
	Regular Expression-Based Parsing Algorithms
	Regular Expressions
	The Language Interpretation of Regular Expressions
	Non-Deterministic Finite Automata
	Simulation

	Deterministic Finite Automata
	The Type Interpretation of Regular Expressions
	Handling Lists
	Value Flattening
	Structured Values are Parse Trees
	Bit-Coding Structured Values
	Ambiguity in Regular Expressions

	Finite State Transducers
	First Algorithm (CIAA'13)
	Symmetry of Thompson FSTs
	Ordered FST Simulation
	Two-Pass Regular Expression Parsing

	Second Algorithm (ICTAC'14)
	Optimal Streaming
	Algorithm

	Determinization, Implementation (POPL'16)
	Streaming String Transducers

	The Kleenex Language (POPL'16)
	Kleenex Syntax
	Kleenex Semantics
	An Example

	Further Work

	Kleene Algebra and Extensions
	Kleene Algebra
	Star-Continuous Kleene algebra

	Chomsky Algebra (FICS'13 / FI)
	Kleene Algebra with Tests
	A Folk Theorem—while Programs

	KAT + B! (LICS'14)
	Future Work

	Parsing With Regular Expressions
	Two-Pass Greedy Regular Expression Parsing
	Introduction
	Symmetric NFA Representation of Parse Trees
	Greedy Parsing
	NFA-Simulation with Ordered State Sets
	Lean-Log Algorithm
	Evaluation
	Pathological Expressions
	Practical Examples

	Related Work

	Optimally Streaming Greedy Regular Expression Parsing
	Introduction
	Preliminaries
	Thompson FSTs
	Disambiguation
	Optimal Streaming
	Coverage
	Algorithm
	Examples
	Complex Coverage
	CSV Files

	Related and Future Work

	Kleenex: Compiling Nondeterministic Transducers to Deterministic Streaming Transducers
	Introduction
	Contributions

	Transducers
	Kleenex
	Syntactic Sugar
	Custom Register Updates

	Simulation and Determinization
	Generalized State Set Simulation
	Streaming Simulation Algorithm
	A Deterministic Computation Model
	Tabulation

	Implementation
	Transducer Pipeline
	Inlining the Action Transducer
	Constant Propagation
	Symbolic Representation
	Finite Lookahead

	Benchmarks
	Baseline
	Rewriting
	The Effects of Action-Separation

	Use Cases and Example Programs
	JSON logs to SQL
	Apache CLF to JSON
	ISO Date/Time Objects to JSON
	The ROT13 Text Transformation
	BibTeX Rewriting
	Highlighting Kleenex Code
	URL Parsing
	HTML Comments

	Related Work
	Regular Expression Matching
	Ambiguity
	Transducers

	Conclusions

	Extensions to Kleene Algebra
	Infinitary Axiomatization of the Equational Theory of Context-Free Languages
	Introduction
	Related Work
	Outline

	Chomsky Algebras
	Polynomials
	Polynomial Functions and Evaluation
	Algebraic Closure and Chomsky Algebras
	-Expressions
	Bekić's Theorem
	-Continuity
	Relation to Other Axiomatizations

	Main Result
	Conclusion

	KAT+B!
	Introduction
	KAT and Mutable Tests
	Mutable Tests
	Mutable Tests and Binary Relations
	The Commutative Coproduct

	Completeness and Complexity
	Completeness
	Complexity

	Applications
	The Böhm-Jacopini Theorem
	A Folk Theorem

	Conclusion
	Acknowledgments

	Bibliography

