PARSING WITH REGULAR EXPRESSIONS AND EXTENSIONS TO KLEENE ALGEBRA

Niels Bjørn Bugge Grathwohl
DIKU, November 4th 2015

PhD Thesis defense

STRING REWRITING

1,John,john@gmail.com,male,123456,DK
2 , Benny, benny@hotmail.com,male, 98234 ,UK

John 123456
Benny 98234
Want:

- Streaming - i.e., output while reading input.
- Fast - several Gbps throughput per core.
- Linear running time in the size of the input.

$$
\begin{aligned}
\operatorname{main}: & (\text { row } / \backslash \mathrm{n} /) * \\
\operatorname{col}:= & /[\sim, \backslash \mathrm{n}] * / \\
\text { row }:= & \sim(\operatorname{col} /, /) \operatorname{col} " \backslash \mathrm{t"} \sim /, / \sim(\operatorname{col} /, /) \\
& \sim(\operatorname{col} /, /) \operatorname{col} \sim /, / \quad \sim \operatorname{col}
\end{aligned}
$$

REGULAR EXPRESSIONS

Program is essentially a regular expression with outputs.

Regular expression syntax

$$
E::=0|1| a\left|E_{1}+E_{2}\right| E_{1} E_{2} \mid E_{1}^{\star}
$$

$(a \in \Sigma)$

Examples

$$
(\Sigma=\{a, b\})
$$

$$
\begin{aligned}
& a \\
& (a b)^{\star}+(a+b)^{\star} \\
& (a+b)^{\star}
\end{aligned}
$$

WHAT IS REGULAR EXPRESSION "MATCHING"?

Expression $(a b)^{\star}+(a+b)^{\star}$ Input $s=a b a b a b$

- acceptance testing-is input string member of language? Answer: "Yes!"
- subgroup matching-substrings in input for subterms in expression.
Answer: [0, 6], [4, 2]
- parsing-what is the parse tree of the input?

ACCEPTANCE TESTING

Input s matches E iff $s \in \mathcal{L} \llbracket E \rrbracket$.
Language interpretation

$$
\begin{aligned}
\mathcal{L} \llbracket 0 \rrbracket & =\emptyset \\
\mathcal{L} \llbracket 1 \rrbracket & =\{\epsilon\} \\
\mathcal{L} \llbracket a \rrbracket & =\{a\} \\
\mathcal{L} \llbracket E+F \rrbracket & =\{s \mid s \in \mathcal{L} \llbracket E \rrbracket\} \\
& \cup\{t \mid t \in \mathcal{L} \llbracket F \rrbracket\} \\
\mathcal{L} \llbracket E F \rrbracket & =\{s \cdot t \mid s \in \mathcal{L} \llbracket E \rrbracket, t \in \mathcal{L} \llbracket F \rrbracket\} \\
\mathcal{L} \llbracket E^{\star} \rrbracket & =\mathcal{L} \llbracket E \rrbracket^{\star}
\end{aligned}
$$

ACCEPTANCE TESTING

Example

$$
\begin{aligned}
& \mathcal{L} \llbracket(a b)^{\star}+(a+b)^{\star} \rrbracket \\
= & \mathcal{L} \llbracket(a b)^{\star} \rrbracket \cup \mathcal{L} \llbracket(a+b)^{\star} \rrbracket \\
= & \mathcal{L} \llbracket a b \rrbracket^{\star} \cup \mathcal{L} \llbracket a+b \rrbracket^{\star} \\
= & \{a b\}^{\star} \cup\{a, b\}^{\star} \\
= & \{\epsilon, a b, a b a b, \ldots\} \cup\{\epsilon, a, b, a b, b a, a b a, \ldots\} \\
= & \{\epsilon, a, b, a a, a b, a a a, a a b, \ldots\}
\end{aligned}
$$

PARSING

Construct parse tree from input s such that flattening of parse tree is s.

Type interpretation [FC'04;HN'11]

$$
\begin{aligned}
\mathcal{T} \llbracket 0 \rrbracket & =\emptyset \\
\mathcal{T} \llbracket 1 \rrbracket & =\{()\} \\
\mathcal{T} \llbracket a \rrbracket & =\{a\} \\
\mathcal{T} \llbracket E+F \rrbracket & =\{\operatorname{in}|v| v \in \mathcal{T} \llbracket E \rrbracket\} \\
& \cup\{\operatorname{inr} w \mid w \in \mathcal{T} \llbracket F \rrbracket\} \\
\mathcal{T} \llbracket E F \rrbracket & =\mathcal{T} \llbracket E \rrbracket \times \mathcal{T} \llbracket \mathbb{F} \rrbracket \\
\mathcal{T} \llbracket E^{\star} \rrbracket & =\left\{\left[v_{1}, \ldots, v_{n}\right] \mid n \geq 0, v_{i} \in \mathcal{T} \llbracket E \rrbracket\right\}
\end{aligned}
$$

Values in $\mathcal{T} \llbracket E \rrbracket$ are parse trees.

Example

$\mathcal{T} \llbracket(a b)^{\star}+(a+b)^{\star} \rrbracket$ contains the parse trees:

- inl $[(a, b),(a, b),(a, b)]$
- inr [inl $a, \operatorname{inr} b, \operatorname{inl} a, \operatorname{inr} b, \operatorname{inl} a, \operatorname{inr} b]$
which are not in $\mathcal{T} \llbracket(a+b)^{\star} \rrbracket$!
So

$$
\mathcal{T} \llbracket(a b)^{\star}+(a+b)^{\star} \rrbracket \neq \mathcal{T} \llbracket(a+b)^{\star} \rrbracket,
$$

whereas

$$
\mathcal{L} \llbracket(a b)^{\star}+(a+b)^{\star} \rrbracket=\mathcal{L} \llbracket(a+b)^{\star} \rrbracket
$$

AMBIGUITY

One input string can be parsed in multiple ways: ababab under $E=(a b)^{\star}+(a+b)^{\star}$ can be parsed both as

$$
\begin{aligned}
& \operatorname{inl}[(a, b),(a, b),(a, b)] \\
& \text { and } \\
& \text { inr }[\operatorname{inl} a, \operatorname{inr} b, \operatorname{inl} a, \operatorname{inr} b, \operatorname{inl} a, \operatorname{inr} b]
\end{aligned}
$$

Disambiguation policy: the left-most option is always prioritized. "Greedy parsing."

AMBIGUITY

One input string can be parsed in multiple ways: ababab under $E=(a b)^{\star}+(a+b)^{\star}$ can be parsed both as

$$
\begin{aligned}
& \operatorname{inl}[(a, b),(a, b),(a, b)] \\
& \text { and } \\
& \text { inr }[\operatorname{inl} a, \operatorname{inr} b, \operatorname{inl} a, \operatorname{inr} b, \operatorname{inl} a, \operatorname{inr} b]
\end{aligned}
$$

Disambiguation policy: the left-most option is always prioritized. "Greedy parsing."

BIT-CODING

Bit-coded parse trees: only store choices.
Parse tree as stream of bits; meaningless without expression!

Example

$E=(a b)^{\star}+(a+b)^{\star}$, ababab:
$\operatorname{inl}[(a, b),(a, b),(a, b)]$
inr [inl $a, \operatorname{inr} b, \operatorname{inl} a, \operatorname{inr} b, \operatorname{inl} a$, inr $b]$

00001
10001000100011

FINITE STATE TRANSDUCERS

- Thompsons FSTs with input alphabet Σ, output alphabet $\{0,1\}$.
- Construction:

E	$\mathcal{N}\left(E, q^{s}, q^{f}\right)$
0	start $\longrightarrow q^{s}$
1	start $\left.-q^{s}\right)$
a	start $\left.\longrightarrow q^{s} q^{f}=q^{s}\right)$
a / ϵ	

FINITE STATE TRANSDUCERS

PARSE TREES AS PATHS

Theorem (Brüggemann-Klein 1993, GHNR 2013)
1-to-1 correspondence between

- parse trees for E,
- paths in Thompson FST for E,
- bit-coded parse trees.

Constructing the parse tree corresponds to finding a path through the FST.

OPTIMAL STREAMING

Optimally streaming parsing

Output the longest common prefix of possible parse trees after reading each input symbol.

Example

$E=(a a a+a a)^{\star}$
Possible parse tree prefixes after aaaa:

$$
\{01011,000 \ldots\}
$$

Possible parse tree prefixes after aaaaa:

$$
\{00011,0000 \ldots\}
$$

GREEDY PARSING

	Time	Space	Aux	Answer
Parse $(3-p)^{1}$	$O(m n)$	$O(m)$	$O(n)$	greedy parse
Parse $(2-p)^{2}$	$O(m n)$	$O(m)$	$O(n)$	greedy parse
Parse $(s t r .)^{3}$	$O\left(m n+2^{m \log m}\right)$	$O(m)$	$O(n)$	greedy parse

(n size of input, m size of expression)

[^0]
GREEDY PARSING

	Time	Space	Aux	Answer
Parse $(3-p)^{1}$	$O(m n)$	$O(m)$	$O(n)$	greedy parse
Parse $(2-p)^{2}$	$O(m n)$	$O(m)$	$O(n)$	greedy parse
Parse $(s t r .)^{3}$	$O\left(m n+2^{m \log m}\right)$	$O(m)$	$O(n)$	greedy parse

(n size of input, m size of expression)

[^1]
FST SIMULATION

Optimally streaming algorithm

- Preprocessing step of FST: compute coverage of state sets.
- Maintain a path tree during FST simulation, recording the path taken to each state in the FST.
- Prune states that are covered by higher-prioritized states.
- Output on the stem of the path tree is longest common prefix of any succeeding parse.

Theorem (GHR'14)

Optimally streaming algorithm computes the optimally streaming parsing function in time $O\left(m n+2^{m \log m}\right)$.

PATH TREE EXAMPLE: $(a a a+a a)^{\star}$

PATH TREE EXAMPLE: $(a a a+a a)^{\star}$

PATH TREE EXAMPLE: $(a a a+a a)^{\star}$

PATH TREE EXAMPLE: $(a a a+a a)^{\star}$

PATH TREE EXAMPLE: $(a a a+a a)^{\star}$

PATH TREE EXAMPLE: $(a a a+a a)^{\star}$

PATH TREE EXAMPLE: $(a a a+a a)^{\star}$

Observation

Approach is not limited to Thompson FSTs outputting bit-coded parse trees.

Kleenex is a surface language for specifying FSTs and their output:

- grammar with greedy disambiguation;
- embedded output actions.
- Essentially optimally streaming behaviour.
- Linear running time in size of input string.
- Fast. >1 Gbps common.

main $:=$ (num /\n/)*
 num $:=\operatorname{digit}\{1,3\}$ ("," digit\{3\})* digit := /[0-9]/

$$
" 100000000000 " \rightarrow \text { "100,000,000,000" }
$$

- Problem: need to read entire number; no bounded lookahead!
- But: each newline ends a number, so output.
- Optimal streaming gives this for free!

Path tree algorithm is "NFA simulation with path trees as state sets."

Compilation of FSTs? Analogy to NFA-DFA determinization with subset construction?

Path tree algorithm is "NFA simulation with path trees as state sets."

Compilation of FSTs? Analogy to NFA-DFA determinization with subset construction?

Problem: Inifinite number of path trees!

Path tree algorithm is "NFA simulation with path trees as state sets."

Compilation of FSTs? Analogy to NFA-DFA determinization with subset construction?

Problem: Inifinite number of path trees!

Solution: contract unary paths in path trees and store output in registers.

DETERMINIZATION

DETERMINIZATION

DETERMINIZATION

DETERMINIZATION

DETERMINIZATION

$x_{1}^{\prime}:=x_{\epsilon} \cdot x_{0} \ldots x_{1}^{\prime}:=x_{00}$

- Streaming string transducer:
- deterministic finite automata,
- each state equipped with fixed number of registers containing strings
- registers updated on transititon by affine function;
- Alur, D'Antoni, Raghothaman (2015).
- Streaming string transducer:
- deterministic finite automata,
- each state equipped with fixed number of registers containing strings
- registers updated on transititon by affine function;
- Alur, D'Antoni, Raghothaman (2015).

Theorem

FSTs with greedy order semantics correspond to SSTs.

- States are contracted path trees.
- Edges in contracted path trees \cong registers in SST.

DETERMINIZATION

IMPLEMENTATION

Haskell implementation

Kleenex source \rightarrow FST \rightarrow SST \rightarrow C
C code compiled with GCC/clang
Performance comparison with regular expression libraries:

- AWK, Perl, Python, Sed, Tcl
- RE2/RE2j
- Ragel state machine compiler
https://github.com/diku-kmc/kleenexlang

PERFORMANCE

- Program fragments as output actions
- Memoization techniques à la NFA/DFA memoization in RE2.
- Applications - bioinformatics, finance, log digging,;
- Parallel processing: read >8 bits in parallel;
- Approximate matching - necessary in biological applications;
- Expressiveness, visibly pushdown automata;
- Automatically generate interfaces for various programming languages.

Kleene algebra

KLEENE ALGEBRA

Kleene algebra

A structure ($K,+, \cdot,{ }^{\star}, 0,1$):

- A set of elements K,
- binary operators + and •,
- unary operator *,
- special elements 0 and 1,
that satisfies the Kleene algebra axioms.

KLEENE ALGEBRA

Semiring

$$
\begin{array}{lr}
x \cdot(y \cdot z)=(x \cdot y) \cdot z & x+(y+z)=(x+y)+z \\
1 \cdot x=x=x \cdot 1 & 0+x=x=x+0 \\
x+y=y+x
\end{array}
$$

$$
\begin{gathered}
x \cdot(y+z)=x \cdot y+x \cdot z \\
(x+y) \cdot z=x \cdot z+y \cdot z \\
0 \cdot x=0=x \cdot 0
\end{gathered}
$$

- idempotence: $x+x=x$
- partial order: $x \leq y \Longleftrightarrow x+y=y$

KLEENE ALGEBRA

Kleene algebra

Idempotent semiring with * operator:

$$
\begin{array}{ll}
1+x \cdot x^{\star} \leq x^{\star} & b+a \cdot x \leq x \Longrightarrow a^{\star} \cdot b \leq x \\
1+x^{\star} \cdot x \leq x^{\star} & b+x \cdot a \leq x \Longrightarrow b \cdot a^{\star} \leq x
\end{array}
$$

KLEENE ALGEBRA MODELS

Any structure with these operators that satisfies the axioms is a Kleene algebra.

- Languages: $\left(L, \cup, \cdot,{ }^{\star}, \emptyset,\{\epsilon\}\right)$.
- L is set of strings over an alphabet,
- \cup is set union,
- . is string concatenation,
- * is repetition of strings,
- partial order \leq is subset inclusion \subseteq.

Language interpretation of regular expressions from before.

- Relation model, tropical semiring, ...

KLEENE ALGEBRA

"Regular expressions:" syntax to describe elements in a Kleene algebra.

Canonical interpretation

The canonical interpretation of a term E is the regular language interpretation:

$$
\begin{aligned}
L_{\Sigma}(x) & =\{x\} & L_{\Sigma}\left(e_{0}+e_{1}\right) & =L_{\Sigma}\left(e_{0}\right) \cup L_{\Sigma}\left(e_{1}\right) \\
L_{\Sigma}(0) & =\emptyset & L_{\Sigma}\left(e_{0} e_{1}\right) & =\left\{v w \mid v \in L_{\Sigma}\left(e_{0}\right), w \in L_{\Sigma}\left(e_{1}\right)\right\} \\
L_{\Sigma}(1) & =\{\epsilon\} & L_{\Sigma}\left(e^{\star}\right) & =\bigcup_{n \geq 0} L_{\Sigma}\left(e^{n}\right) .
\end{aligned}
$$

POLYNOMIALS

Polynomials

Given idempotent semiring C and a set of variables X, form polynomials over C and X :

$$
0 \quad a \quad a x^{2}+b x y^{3}+1 \quad 1+a+a x+b y
$$

System of polynomial inequalities

$$
\begin{aligned}
1+a B+b A & \leq S \\
A+a S+b A A & \leq A \\
b S+a B B & \leq B
\end{aligned}
$$

CHOMSKY ALGEBRA

Solution: valuation of variables in X such that the inequalities are satisfied.

A semiring C is algebraically closed if all finite systems of polynomials have least solutions.

Definition

A Chomsky algebra is a an algebraically closed idempotent semiring.

CHOMSKY ALGEBRA

Context-free languages over symbols from X are not Kleene algebras, but they are Chomsky algebras.
Context-free grammar corresponds to system of polynomial inequalities:

$$
\begin{aligned}
& S \rightarrow \epsilon|a B| b A \\
& A \rightarrow a S \mid b A A \\
& B \rightarrow b S \mid a B B
\end{aligned}
$$

$$
\begin{aligned}
1+a B+b A & \leq S \\
a S+b A A & \leq A \\
b S+a B B & \leq B
\end{aligned}
$$

- Regular expressions: denote elements in Kleene algebra.
- μ-terms: denote elements in Chomsky algebra.
μ-terms
TX are μ-terms over an alphabet X :

$$
t::=0|1| x|t+t| t \cdot t \mid \mu x . t \quad x \in X
$$

n-fold composition

$$
0 x . t \equiv 0 \quad(n+1) x . t \equiv t[x / n x . t]
$$

Examples

$$
\begin{aligned}
& 0 \times \cdot a \times b+1=0 \\
& 1 \times \cdot a \times b+1=a(0 \times \cdot a \times b+1) b+1=a 0 b+1=1 \\
& 2 \times \cdot a \times b+1=a(1 \times \cdot a \times b+1) b+1=a b+1
\end{aligned}
$$

Given interpretation of literals: $\sigma: X \rightarrow C$, interpretation of μ-terms over Chomsky algebra C.

Function $\sigma: \mathrm{TX} \rightarrow C$ where:

$$
\begin{aligned}
\sigma(0) & =0 \quad \sigma(a+b) \\
\sigma(1) & =1 \quad \sigma(a \cdot b)=\sigma(a)+\sigma(b) \\
\sigma(\mu x . t) & =\text { least } a \in C \text { such that } \sigma[x / a](t) \leq a
\end{aligned}
$$

Canonical interpretation

Canonical interpretation as context-free languages:

$$
\begin{aligned}
& L_{x}(x)=\{x\} \quad L_{x}\left(t_{0}+t_{1}\right)=L_{x}\left(t_{0}\right) \cup L_{x}\left(t_{1}\right) \\
& L_{x}(0)=\emptyset \quad L_{x}\left(t_{0} \cdot t_{1}\right)=\left\{v w \mid v \in L_{x}\left(t_{0}\right), w \in L_{x}\left(t_{1}\right)\right\} \\
& L_{x}(1)=\{\epsilon\} \quad L_{x}(\mu x . t)=\bigcup_{n \geq 0} L_{x}(n x . t) \text {. }
\end{aligned}
$$

μ-CONTINUITY

$\sum_{n \geq 0} t_{n}$ denotes supremum with respect to partial order \leq

μ-continuity

A Chomsky algebra C is μ-continuous if

$$
\sigma(a(\mu x . t) b)=\sum_{n \geq 0} \sigma(a(n x . t) n)
$$

for any interpretation σ over C .
Canonical interpretation as context-free language is μ-continuous:

$$
L_{x}(\mu x . t)=\bigcup_{n \geq 0} L_{x}(n x . t)
$$

Theorem
The following are equivalent:
(i) $\mathrm{S}=t$ holds in all μ-continous Chomsky algebras,
(ii) $L_{x}(s)=L_{x}(t)$ holds in the canonical interpretation as a context-free language over variables X.

AXIOMATIZATION

Two context free languages $L_{x}(s)$ and $L_{x}(t)$ are equivalent if and only if $s=t$ is provable from the axioms of μ-continuous Chomsky algebra:

Axioms

$$
\begin{array}{lr}
x \cdot(y \cdot z)=(x \cdot y) \cdot z & x+(y+z)=(x+y)+z \\
1 \cdot x=x=x \cdot 1 & 0+x=x=x+0 \\
x \cdot(y+z)=x \cdot y+x \cdot z & x+y=y+x \\
(x+y) \cdot z=x \cdot z+y \cdot z & x+x=x \\
0 \cdot x=0=x \cdot 0 & \\
\qquad a(\mu x . t) b=\sum_{n \geq 0} a(n x . t) b &
\end{array}
$$

AXIOMATIZATION

μ-continuity axiom is infinitary:

$$
\begin{gathered}
a(n x . t) b \leq a(\mu x . t) b, \quad n \geq 0 \\
\left(\bigwedge_{n \geq 0}(a(n x . t) b \leq w)\right) \Longrightarrow a(\mu x . t) b \leq w
\end{gathered}
$$

- Equivalence of context-free languages is undecidable.
- To use inference, one must establish infinitely many premises.

SUMMARY, FURTHER DIRECTIONS

- Extend Chomsky algebra with test symbols, analogously to Kleene algebra with tests.
- Coalgebraic treatment of Chomsky algebra?
- Applications to program verification, like Kleene algebra?
- "Visibly pushdown" Chomsky algebra?
- KAT+B! is an extension to Kleene algebra with tests adding mutable state:
- elements correspond to square matrices with regular language entries.
- extend Kleenex with mutable state?

THANK YOU

[^0]: ${ }^{1}$ Frisch, Cardelli (2004)
 ${ }^{2}$ Grathwohl, Henglein, Nielsen, Rasmussen (2013)
 ${ }^{3}$ Grathwohl, Henglein, Rasmussen (2014)

[^1]: ${ }^{1}$ Frisch, Cardelli (2004)
 ${ }^{2}$ Grathwohl, Henglein, Nielsen, Rasmussen (2013)
 ${ }^{3}$ Grathwohl, Henglein, Rasmussen (2014)

