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ABSTRACT

A biomolecular computer is a computer constructed using materials and
concepts borrowed from the disciplines biochemistry and molecular biology.
So far, biomolecular computers have been more akin to specialized Boolean
circuits than to a “computer” in the normal understanding of the word,
in the sense that each computer is constructed for one specific purpose,
thus not being programmable.

The Blob Model is an abstract computational model that models a
“biologically plausible,” naturally programmable computer. This thesis
concerns the actual realizability in biomolecular substrates of the Blob
Model. We present the following results: a) a survey of existing work
on biomolecular computation; b) a classification of computers into either
of the two groups mechanically universal and linguistically universal,
establishing a distinction between Turing-universality in the sense that
any computable function can be built and Turing-universality in the sense
that any computable function can be programmed; c) an evaluation of
the realizability of the Blob Model in the context of DNA self-assembly,
four different versions of biomolecular Boolean gates, and Fokl restriction;
d) a theoretical implementation scheme, disregarding the use of actual
tested laboratory methods.

We find that the Blob Model cannot be realized in any one of the
studied biomolecular substrates. This indicates that the Blob Model
should be revised in order to maintain its biological plausibility.

RESUME

En biomolekylaer computer er en computer der er konstrueret ved brug af
materialer og koncepter lant fra disciplinerne biokemi og molekylaerbiologi.
Indtil videre har biomolekyleere computere mindet mere om specialiserede
boolske kredslgb end om en egentlig “computer” i den dagligdags opfattelse
af ordet, forstaet saledes at hver enkelt computer er konstrueret til ét
specifikt formal, hvorfor den ikke er programmerbar.

Blobmodellen er en abstrakt beregningsmodel som modellerer en
“biologisk plausibel”, naturligt programmerbar computer. Dette speciale
omhandler realiserbarheden i en biomolekylaer kontekst af Blobmodellen.
Vi praesenterer fplgende resultater: a) en undersggelse af eksisterende arbe-
jde pa biomolekyleere computere; b) en klassifikation af computere i én af
de to grupper af mekanisk universelle og lingvistisk universelle computere,
for dermed at etablere en skelnen mellem Turing-fuldsteendighed i den for-
stand at alle beregnelige funktioner kan bygges, og Turing-fuldsteendighed
i den forstand at alle beregnelige funktioner kan programmeres; c) en
evaluering af realiserbarheden af Blobmodellen ved brug af selvsamlende
DNA, fire forskellige versioner af biomolekylsere boolske gates, samt
FokI-restriktion; d) et forslag til en teoretisk fremgangsmade for en im-
plementering, formuleret uden hensyntagen til ngdvendigheden af brugen
af egentlige, laboratorielt afprgvede metoder.

Vi viser, at Blobmodellen ikke kan realiseres i nogen af de studerede
biomolekylaere substrater. Dette indikerer at Blobmodellen skal revideres,
hvis den skal bevare sin biologiske plausibilitet.
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INTRODUCTION

The aim of this thesis is to answer the following question: Can the blob model,
introduced by Hartmann, Jones, and Simonsen in [57], be realized using existing
biomolecular techniques that are used in the construction of other biomolecular
computing models?
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Does programmability pertain to the computers constructed in the past 200
years only, or is the traditional notion of programmability merely one shade of
a more fundamental property? Comparing the inner workings of a eukaryotic
cell to those of a 2011-era PC, we certainly see some huge differences: The
cell performs many tasks in an inherently parallel way, and the environment
in which the cell operates is more “noisy” than that of the PC. Consequently,
the notion of programming in a biological context is likely to be a lot different
from what we know, if it is at all possible. In spite of this, attempts at unifying
the rather orthogonal fields of biology and computer science are plentiful: enter
biomolecular computing.

Figure 1: Colonies of E. coli, demonstrating an expression of the solution to
an instance of small Hamiltonian path problem. The bacteria that contain a
representation of a correct solution fluoresce yellow.

The term “biomolecular computing” covers a variety of goals and approaches.
As noted, one of the properties of biological systems that sets them apart from
classic computers is their inherent parallelism. Due to this observation, an
early aspiration in the development of biomolecular computers were to find a
possible solution route to large instances of NP-complete problems, thereby
offering performance that traditional computers were far from achieving. This
initial excitement has faded, however, as it has become evident that in spite of
inherent parallelism, the biomolecular computers are unable to scale as the size
of the problem instances grow larger.

Although biomolecular computers cannot solve large instances of NP-com-
plete problems fast (the earliest breakthrough from 1994, solving the Hamilto-
nian path problem for a seven-node graph, is still comparable in size to the state
of the art), they are still interesting. One should view the several efforts for
constructing biomolecular computers not as an attempt to produce rivals to the
existing electronic computers, but rather as an endeavor to bring the techniques,

iX
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Figure 2: The ability of DNA to self-assemble in a consistent way can is
exploited by crafting special “tiles” of DNA whose formation can be regarded as
a computer.

approaches, and knowledge developed in the field of computer science to use
in new areas: Sub-cellular-sized biomolecular computers acting directly on bio-
logical material may be capable of doing things that a modern supercomputer
would be completely unable to do, even though the supercomputer very likely
would be magnitudes faster than the biological computer when it comes to
“raw” computing power. When blue-sky-dreaming, one sees medical uses due
to the expected “natural interface” to biological objects, allowing scientists to
program medicine in a much more systematic way which (at least from the
point of view of a computer scientist) is more desirable than a less systematic
trial-and-error-based methodology.

Still, in spite of great expectations, implementing computers with biomolecu-
lar techniques is still in its infancy. Interesting proof-of-concept implementations
have been constructed, capable of performing basic operations such as logic
functions or transitions in a deterministic finite automaton, but so far the
demonstrated computers have been more akin to small, specialized circuits than
what is commonly understood with a computer. As a result they are non-pro-
grammable, a property that we would normally deem to be a key component of
a computer.

This observation was the motivation behind the work of Hartmann et al.
when they developed the blob model; an abstract computational model designed
with the objective that it should be “naturally programmable” and be realizable
in some form of biomolecular substrate. The challenge in defining such a

Figure 3: Using green and cyan fluorescent protein injected into onion cells,
it is revealed whether the final state of a DFA is accepting or rejecting.
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Figure 4: A biomolecular AND gate, implemented with deoxyribozymes, a
DNA structure with catalytic properties.

model is that programmability needs to be conceptualized in the fuzzy world of
“wetware,” where the environment and the factors that have to be taken into
account are drastically different from those of normal computers.

Equipped with this model, one “only” needs to find a suitable implementation
substrate and technique, as the Turing completeness and programmability of the
blob model have both been established theoretically. Looking at the approaches
taken in previous work in biomolecular computing leaves an impression that
this model is a very novel approach; the directionality of the design has been
the opposite of many others, moving from a solid theoretical base towards
the wet world of a laboratory instead of the other way around. Indeed, some
authors simply ignore theoretical questions regarding the computer science
behind their construction, although to be fair, those authors are not computer
scientists themselves. This exemplifies the variation in goals found in the
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Figure 5: An enzyme-based circuit, using the output of the catalyzed reactions
of some enzymes as reactants in the reactions catalyzed by other enzymes.
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Figure 6: A blob program’s explicit physical nature causes data and program
code to be representable as physically adjacent “blobs.”

research on biomolecular computers: Some are biochemists looking for clever
ways to implement molecular switches, to which end they consider basic Boolean
logic. Others are geneticists researching ways to control gene expression, while
yet others are computer scientists hoping for a new, fast way to solve hard
problems.

The general approach taken in this thesis is to conduct a broad literature
survey and extract the methods that look most promising. We also provide
a formal treatment of the notion “natural programmability” in order to have
a firmer base when evaluating selected biomolecular techniques. To underline
the generality of the notion “computer,” electronic, biological, and mechanical
examples are used in the treatment.

Five different techniques, all of them tested in proof-of-concept laboratory
implementations of simple (non-programmable) computers, are evaluated. When
used alone, none of them can be used as an implementation substrate for the
blob model. When used in concert with each other, they still do not stand as
implementation substrates unless some serious obstacles were addressed. Moving
on from this saddening truth, we develop a more free-flowing implementation
scheme, in which some liberties are taken as to what has actually been built in
a laboratory. The hope with this latter part is to shed light on ways for future
research in programmable biomolecular computers.

The ideal reader has a computer science education equivalent to that de-
scribed by ACM’s guidelines [1], along with introductory knowledge about
computability theory roughly equivalent to the contents in [103]. Proficiencies
in areas related to molecular biology is not necessary, as the concepts required
to understand the points delineated in this thesis are introduced.
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1.1.1

PRELIMINARIES

Within this chapter the necessary basic concepts of molecular biology is intro-
duced, along with a reminder of the concepts from theoretical computer science
that are used in this thesis.

Readers familiar with the contents of Sipser’s introduction to computability
theory [103] or Alberts et al.’s introduction to cell biology [4] might find no use
in reading the corresponding parts herein.

COMPUTABILITY THEORY

Refer to textbooks such as [103] for a detailed treatment of the subjects that
are briefly presented here.

Definition 1.1 An alphabet is a non-empty set X of symbols.

Definition 1.2 A set L of finite strings over a finite alphabet X is called a
language over the alphabet 3.

A language may be both finite and infinite. Examples include the infinite
language of all strings consisting purely of as, Ly = {a™ | n € N}, and the finite
language consisting of all strings from the alphabet ¥ = {a, b} of length two:
L, = {aa, ab,ba,bb}.

Languages can be described by formal grammars:

Definition 1.3 A formal grammar is a 4-tuple (N,X, R, S) where N is a
non-empty finite set of mon-terminals; X is a non-empty finite set of ter-
minals where Y NN = 0; R is a finite set of production rules of the form
(BUN)*N(ZUN)* = (XUN)*; and S € N s the start symbol.

The formal grammars are ordered in the Chomsky hierarchy, denoting the
relative complexity of the grammars. Grammars higher in the hierarchy are
able to express everything that the lower grammars can.

The following definition will be useful later on:

Definition 1.4 The number w is the smallest infinite ordinal number. Thus:
VneN:n<w.

Remark 1.1 Throughout this thesis we will be differing between “hard” math-
ematical definitions and definitions that are more loose. They shall be called
“Definitions” and “Concepts,” respectively.

Concept 1.1 An automaton is a machine that is capable of self-operation,
i.e., one that, once given an input, requires no intelligent intervention from its
exterior in order to process the input.

DETERMINISTIC FINITE AUTOMATA

Definition 1.5 A deterministic finite automaton is a 5-tuple (Q,%, 9, qo, F)
where Q is a non-empty finite set of states, 33 is a finite alphabet, 6: QXX — Q
is a transition function, gy € Q is the start state, and F C @ is a set of accepting
states.
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A deterministic finite automaton (DFA) is an abstract formalization of a
machine with finite memory. Due to the finiteness of their memory, they are only
able to recognize the most restricted class of languages: the regular languages.
A regular language can be described by a regular grammar.

Definition 1.6 A left regular grammar is a formal grammar where the pro-
duction rules are of one of the following forms: {N — X, N — NX, N — ¢}
where € is the empty string. A right regular grammar is defined analogously,
with N — XN instead of N — NX. A regular grammar is one that is either
left or right regular.

The regular languages are at the bottom of the Chomsky hierarchy, and the
DFAs can therefore be regarded as being the simplest (non-trivial) automaton.

THE TURING MACHINE

Definition 1.7 A Turing machine is a 7-tuple (Q,T',%,0, g0, Gaccept: Greject)
where Q is a non-empty finite set of states; " is a finite alphabet with the blank
symbol b € T'; 3 C T'\ {b} is a finite input alphabet; 6: QxT — QxT x{L, R}
is a transition function; gy € Q is the initial state; qoecept € Q 5 the accepting
state; and Greject € Q@ 15 the rejecting state, Greject # Qaccept- 1he machine has
an infinitely large string of symbols from T' as its memory and input/output
mechanism.

At any point in time, exactly one symbol is active, meaning that it is the
input to the transition function. Furthermore, the Turing machine is always in
exactly one state, which can only be changed by the transition function.

Intuitively, a Turing machine consists of an infinitely long tape with a
moveable read/write head on top. The head can read and write a symbol from
a cell on the tape, alter the state of the Turing machine based on its internal
rules, and move either one cell to the left left or one cell to the right right,
where it reiterates the process. When the machine transitions into one of the
special states in F', it comes to a complete halt.

A Turing machine has the property that it is possible to make one machine
that can simulate any other Turing machine. It is said to compute the function
7: X% — I'* if it halts with exactly 7(z) = y € I'* on its tape on every input
x € ¥*. As the tape is infinitely long, the blank symbol is used to represent
“nothingness” on the infinitely many unused tape cells. The Turing machine
always starts with its tape filled with blanks on all cells that have not been
given an input.

AUTOMATON BEHAVIOUR

Started with an input string, an automaton either halts after a finite number of
steps, finishing in an accepting or rejecting state, or it continues forever.

Definition 1.8 An automaton that always halts in an accepting state when
given an input string s € L and never halts in an accepting state when given an
input s' € L is said to be a recognizer for the language L.

Definition 1.9 An automaton that always halts in an accepting state when
given a string s € L and always halts in a non-accepting state when given a
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1 turn = 10 base pairs = 3.4 nanometers

siajawouel g

major groove minor groove

Figure 1.1: Two single strands of DNA form a double helix because of the
hydrogen bonds between the base pairs. The backbones (solid lines) contain
stronger covalent bonds, so the bonds between the two strands break easier than
the strands themselves. Image from Wikimedia Commons [10§].

string s’ € L is said to be a decider for the language L.

As can be seen from the two definitions above, the difference between a
decider and a recognizer is that the decider can guarantee that it always halts.

A language that is recognized by a Turing machine is said to be recursively
enumerable. Moreover, if the language is decided by the Turing machine, i.e., if
the Turing machine is guaranteed to halt eventually, the language is recursive.
The class of the recursively enumerable languages is at the top of the Chomsky
hierarchy. Consequently, if we have a Turing machine, all other automata can
be simulated on that.

A DFA is a decider for a regular language; it consumes one symbol at a time
until no more remain on the input, leaving the automaton in an accepting or a
rejecting state.

NECESSARY MOLECULAR BIOLOGY

A disclaimer: The author is a computer scientist, not a biologist. The following
is supposed to serve the purpose of introducing other computer scientists to the
biological concepts used, and as such it runs the risk of being construed too
simple by a biologist. Terms and concepts are introduced in a less formal way
than that used in conjunction with theoretical computer science, as different
traditions and methods exist in the two disciplines, reflected in the language
used about and in them.

For a more in-depth introduction, the book by Alberts et al. [g] is recom-
mended.

DEOXYRIBONUCLEIC ACID — DNA

Deoxyribonucleic acid (DNA) is used in the cell to store genetic information,
lending itself to be regarded as “storage” in a computer scientist’s terminology.

Under normal circumstances, DNA has a helical structure, referred to as the
“double helix,” see Figure Such a molecule is also called double stranded
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DNA, as it consists of two single strands intertwined. The two strands of the
helix each consists of a sequence of nucleotides, which are sugar-phosphate
molecules with a base attached to each of them. There are four different bases,
each having a one-letter acronym: Adenine (A), cytosine (C), guanine (G), and
thymine (T). Because the sugar-phosphate molecules in each nucleotide are
always the same, a DNA strand is described entirely by a string from this
four-letter alphabet. The nucleotides attach to each other through covalent
bonds* between the sugar-phosphate components. These occur between the fifth
and the third corner of the pentagonal sugar component, giving directionality
to a DNA molecule: The end with the exposed fifth end is denoted 5’, and the
other end is denoted 3’. When writing the letter-sequence of a DNA strand, it
is always done in the 5’-3’ direction (unless otherwise noted). Two strands, =
and y, of DNA are Watson—Crick complementary if the 5’-3” direction of strand
x matches the g’-5’ direction of strand y, only with T interchanged with A, and
C interchanged with G. The following demonstrates a short segment of double
stranded DNA, written with the four-letter alphabet and directionality:

5-ACGTAACGGTC-3’
3" TGCATTGCCAG-5’

The base pairs (A, T) and (C, G) form hydrogen bonds! with each other,
thereby causing two Watson—Crick complementary DNA strands to be bonded
and form the double helix. The helical structure stems from a slight twist
between each nucleotide. A short segment of single stranded DNA is called an
oligonucleotide.

When heating double stranded DNA, the two strands separate. Due to the
difference in the strength of the hydrogen bonds and covalent bonds, each strand
remains intact, it is only the bonds between the two that are broken. This
process of “melting” the DNA is called denaturation, and the reverse process,
slowly cooling the single stranded, Watson—Crick complementary DNA to form
a double helix again, is called hybridization.

RIBONUCLEIC ACID — RNA

Closely related to the DNA molecule is the ribonucleic acid (RNA). It consists
of three of the same four bases, where the fourth, thymine, has been replaced
with uracil (U). In the cell, RNA plays a role in the intermediary steps between
the DNA and the proteins that the DNA code for.

RNA can be transcribed from a DNA strand. When this happens, only
a single strand is synthesized. Hence, RNA is usually single stranded, and
therefore not forming the double helix. Instead, RNA can fold itself into various
three-dimensional shapes known as the tertiary structure, enabling it to have
more versatile uses than the DNA molecule. This, combined with a less stable
backbone structure, causes RNA to be less stable than DNA.

RNA is categorized into different types depending on its use, including
transfer RNA (tRNA), used to supply amino acids to the process that builds

*A covalent bond is formed when two atoms share one or more electrons. The number of
shared electrons influence the three-dimensional structure of the compound.

TA hydrogen bond is formed when a hydrogen atom is “shared” between two atoms, i.e.,
it is exerting electrical influence over both atoms. Hydrogen bonds are weaker than covalent
bonds.
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Figure 1.2: Written from the center to the periphery are the codons of RNA,
along with the one-letter names of the 20 amino acids that they each code for.
The codons for {1 are stop codons that signal the end of a sequence of amino
acids, and the codon AUG functions both as an initiation symbol that starts a
protein-coding sequence, and as the codon for methionine (M). The coloring
indicates the type of amino acid: negatively charged are red, positively charged
are green, uncharged are orange, and nonpolar are blue. Based on an example
from [64d].

the proteins (see next section); messenger RNA (mRNA), transcribed from the
DNA and used as the code for a protein; and ribosomal RNA (rRNA), used
as a catalytic component in the process known as translation from mRNA to
amino acid chains. The translation of RNA to amino acids happens in triplets:
Three RNA bases code for an amino acid, illustrated on Figure Due to its
combined storage and catalytic capabilities, RNA has the interesting property
that it is in theory able to self-replicate; a property that neither DNA nor
proteins share.

PROTEINS

A protein is a sequence of amino acids attached to a backbone structure, similar
to the structure of DNA. However, where DNA almost always folds into the
same helical shape, the shape of different proteins varies, being determined by
the properties and sequence of the amino acids which they consist of.

20 different amino acids are used as the building blocks for proteins, although
several more exists. They are grouped in two main categories: the polar and
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Figure 1.3: Two cycles of PCR. After each cycle, the amount of DNA 1is
doubled. The short red lines indicate the DNA primers, used by the polymerase
enzyme to locate where the DNA helix should be restored. In this stylized example,
the entire DNA strand is amplified, but it can also be done with a specific subpart
of the original DNA strand.

the nonpolar amino acids. The polar amino acids are further categorized, being
grouped as negatively charged, positively charged, or uncharged.

The groups of amino acids influence the shape of the protein molecule in
different ways; the negatively and positively charged polar amino acids cause
electrostatic attractions between each other, the uncharged polar amino acids
can form weak hydrogen bonds, and the nonpolar are more rigid and do not
form bindings to other amino acids. A third force called the van der Waals
attractiont also assists in the formation of the protein. Moreover, in an aqueous
environment, the nonpolar molecules tend to be “packed” together because they
are hydrophobic and therefore repelled by the water molecules surrounding
them — analogous to the behavior of oil in water.

A protein’s shape determines its chemical and physical capabilities; some
proteins work as a kind of infrastructure, providing the mechanical support for
tissue, whereas others serve as catalysts for different chemical reactions. The
latter type is called an enzyme.

One enzyme that plays an important role in many DNA-based computing
models is DNA ligase. It is able to “glue,” or ligate, together two DNA strands.
In the cell, among other places, it is used in the repairing of broken DNA
strands. Usually, for two DNA strands to be attached to each other by a ligase
enzyme, they must have have matching sticky ends, which are short pieces of
single stranded DNA at the ends of a double stranded DNA molecule.

POLYMERASE CHAIN REACTION

Due to the Watson—Crick complementarity, each strand of a DNA double helix
contains the same information, albeit in different representations. Consequently,
with only one of them it is possible to restore the original helix. This property

fA bonding between atoms when they are very close to each other, stemming from
fluctuating electrical charges between the atoms.
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is used in the process known as polymerase chain reaction (PCR), which is used
to amplify DNA, i.e., increase the amount of certain DNA strands in a solution.

Each cycle of the process works by separating DNA into single strands by
heating them, letting a short piece of DNA (a primer) attach to each of the two
DNA strands, and letting a DNA polymerase restore each single stranded DNA
to a double helix. A DNA polymerase is an enzyme that, when given a single
stranded DNA with a short double stranded section, rebuilds the DNA and
reestablishes its double-helical structure, beginning from the double stranded
section. The primer forms the short double stranded section, and thus serves
the purpose of guiding the polymerase.

A cycle can be repeated as needed, enabling the production of 2™ copies
of the original DNA upon n cycles. As the output DNA of cycle n is treated
in cycle n 4 1, the process is called a chain reaction. Figure is a stylized
representation of the first two cycles of a PCR process.

RESTRICTION ENZYMES

The special class of enzymes called the restriction enzymes can cut single or
double stranded DNA at specific short segments of bases in the DNA strand,
known as the recognition sites. A “cut” is a breaking of one of the covalent
bonds between the sugar-phosphate backbone links on each side of the double
helix, and possibly the breaking of hydrogen bonds between base pairs. The
latter happens only if the restriction enzymes leave a sticky end.

For example, the restriction enzyme Fokl, the uses of which are discussed
later, recognizes the sequence GGATG and its complementary strand, and cuts
the DNA strand g and 13 base pairs to the right of the recognition site, thereby
leaving a sticky end [58]. Using X as a placeholder for any of the four bases, it
looks like the following, where the molecule is split at the spacer between the
black and the red part:

5-XXXXXGGAT GXXXXXXXXX  XXXXXXXX-3’
3"-XXXXXCCTACKXXXXXXXXXXXXK  XXXX-5’

GEL ELECTROPHORESIS

Gel electrophoresis is a technique used to sort DNA strands based on their
lengths. The strands are placed in small wells on an agarose gel,$ and an electric
field is applied. Because the DNA molecules are negatively charged, they move
through the gel, which acts as a hindrance or “sieve” for the molecules, letting
smaller molecules pass more easily. The distribution of lengths of the DNA
strands in a solution can therefore be approximated by inspecting how far in the
gel the strands have migrated. This is done with the help of a special “marker
well,” containing a sample of DNA strands with known sizes.

After performing an electrophoresis, a part of the gel can be cut out, and
the DNA present in it can be used again. It is therefore a way to extract DNA
strands with specific lengths out of a solution.

§ Agarose gels are made from polysaccharides obtained from red algae.
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LITERATURE SURVEY

The intent of this chapter is to explore and describe a relevant and representative
subset of the literature on the subject of biomolecular computation. The research
has been categorized into the two categories “dry” and “wet” methods.

The subject is broad and the articles many. More thorough surveys are
presented in [13} [36] 46 50, (2, [63]-

DRY METHODS

We use the classification “dry” to denote those methods that are inspired
by natural, biological, or biomolecular processes, but not implemented in a
biomolecular substrate.

CELLULAR AUTOMATA

One method of computation having Nature as its inspiration is the cellular
automaton. It was introduced in the 1940s by John von Neumann [116] and
has been shown to have universal computing capabilities [20].

A cellular automaton consists of an n-dimensional grid with infinitely many
cells and a finite set of states for each cell. Cells change their state according to
a finite set of rules; for example, a cell can switch from “on” to “oft” if it has got
no neighbors, anthropomorphically interpreted as “loneliness.”

NEURAL NETWORKS

The man-made computing devices have been compared with the capabilities of
the human brain since at least the late fifties [T15], and mathematical models for
logic based on the human nervous system were proposed as early as 1943 [75].
In the hope of 1) identifying the exact processes taking place in the brain, and 2)
using those processes to build better computers, the field of neural computation
evolved. The two-sided structure of the ambitions of this field has caused it
to split into two; brain theory deals with the first aspect, while the theory of
artificial neural networks deals with the latter.

An artificial neural network is a mathematical abstraction that seeks to
model the way ‘“real” neurons in the brain work. A network is thus a set
of interconnected neurons, each with a set of inputs and one output. The
output of one neuron can be the input of another, hence the network structure.
Mathematically, a neuron is a function of n inputs with n associated weights
wq ... w,. The behavior of the network is highly dependent on the associated
weights, and an important part of the power of neural networks is their ability
to “learn” these weights during a training phase. A neural network can therefore
be described by its network topology, its primitive functions that are performed
by the neurons, and the method used for adjusting the weights in order to
attain optimal performance.
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EVOLUTIONARY COMPUTATION

Inspired by Darwinian evolution [37], the field of evolutionary computation
arose [8]. This field seeks to obtain efficient and correct computation through a
more “high-level” simulation of Nature: Whereas the idea behind neural networks
and cellular automata is to simulate small, separate entities, evolutionary
computation performs the simulation on larger systems of interconnected entities,
each one not necessarily being modelled after Nature. It can be divided into
four subfields [36]: genetic algorithms [59], evolution strategies [21], evolutionary
programming [42], and genetic programming [69).

The field is called “evolutionary” because the different methods that can be
categorized under this umbrella all share the same basic algorithm: A population
of possible solutions is created; a series of mutations, crossings, and mixings
between solutions is performed; and natural selection, represented by a fitness
function, is used to pick out the best ones of a generation that will multiply
and survive. This is repeated several times, causing the later generations to
consist of more “good” solutions than the earlier. The crux of the method is the
use of variation and natural selection to perform adaptation of the solutions to
the environment. Hence, the difficulty of using the method lies in choosing a
correct measure for fitness and a correct fitness function.

SWARM INTELLIGENCE

Another approach whose power comes from high-level synthesis of the behavior
of several seemingly simple components is the discipline swarm intelligence.
The term was coined in the field of robotics in the late 1980s [18], and the
motivation behind it is the emergence of complex behaviors in societies of simple
individuals, e.g., ants, birds, or fish.

Studies of the ant type Iridomyrmex humilis revealed an ability to quickly
find the shortest route to a food source by laying pheromone trails [48]. Inspired
by this, a model with artificial ants laying artificial pheromone trails has been
devised to generate solutions to the traveling salesman problem: The ants
could iteratively find shorter paths through the graph using the fact that the
pheromone concentration is lower on longer trails [38]. Repeating the algorithm
caused the solution estimate to become better, i.e., shorter.

Similarly, the flocking behavior of birds has been studied, and an emulation
has been devised in which each “bird” shares three simple behaviors: Avoid
collisions, maintain the same speed as the others, and stay close to them. The
complex flocking behavior emerged in the interplay of several birds following
these rules [g3]. Recently, Chazelle has studied the convergence rates of flocking
networks, viz., the time it takes for the bird flock to agree on a direction and
speed. He found both a high upper and lower bound, as a “tower-of-twos’
function of the number of steps in the simulation, defined by:

2 1=2
241t n = 221100 for n > 1.

9

Chazelle showed that the number of steps required for a flock of n birds
to reach a steady state is upper-bounded by 2 1 O(n) and lower-bounded
by 2 11 Q(logn) [2g]. Given these bounds, the method must be said to be
impractical, and, if used, it should employ some kind of approximation technique.
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THEORETICAL MODELS FOR BIOMOLECULAR COMPUTATION

Geffert showed a normal form theorem in [g7] stating that any recursively
enumerable language can be generated by a phrase-structure grammar con-
sisting of five nonterminals, three context-free rules, and two context-sensitive
rules. This property was used by Yokomori [133] to construct a computation
model based on DNA self-assembly (denoted “grammar-based computation of
self-assembly” in [52], and “YAC” in [133]). The model works by constructing
DNA molecules in a clever way, such that Geffert’s grammar rules and the way
the DNA strands hybridize behave equivalently. Yokomori showed that any
recursively enumerable language can be recognized by this model.

Another approach is based on equality machines (EM) [39]. An EM is an
automaton with one read-only input tape; two write-only, one-way output tapes;
and a set of states. The machine behaves according to a transition function, as
a Turing machine, but it accepts if and only if the contents of the two output
tapes are the same in the terminating state. Engelfriet and Rozenberg showed
that the class of languages recognizable by a non-deterministic EM is the class
of recursively enumerable languages [39]. Yokomori and Kobayashi gave a model
for DNA computation and showed that it can simulate any EM [137].

Kobayashi suggested to use a subset of Horn clause logic [61] called simple
Horn programs as a basis for a DNA implementation of a computer [67]. A
simple Horn program consists of a finite set of Horn formulas in the format
VX1, .., Xm: (F+< FiA...A\NF,), where each F and F; are Horn clauses:
A(X1,...,Xk). They are called ground atoms when X; ... X} are constants.
Informally, the computation in simple Horn programs is performed by iteratively
reducing a rule’s body to its head, provided that the body evaluates to true. This
starts from a set of statements known to be true, i.e., axioms. Kobayashi gave a
method to implement this reduction function, called the immediate consequence
operator, using whiplash polymerase chain reaction (whiplash PCR, see Section
to perform the equality checking and parameter copying. It is necessary
to construct two types of specialized DNA strands; one for the constant symbols
and one for each of the predicate symbols. Further investigations of Horn clause
logic and DNA molecules are explored in [T13].

Boneh with colleagues gave a small taxonomy of available DNA strand
operations when designing algorithms, such as “extract” and “amplify” [22].
They presented some theoretical results concerning the problems Circuit-SAT,
MAX-Circuit-SAT, and Regular-Circuit-SAT, proving that they are all solvable
using a DNA-based computer with the operations from their taxonomy.

Regev et al. suggested the use of the process calculus known as w-calculus [[76]
to model biological systems [g2} @1}, [g0]. This was inspired by Fontana, who
in 1996 discussed how “to develop a formal understanding of self-maintaining
organizations” [g3]. Other attempts to formally model biological systems have
been Danos and colleagues’ k-calculus [33], which attempts to model protein
behavior, and Cardelli’s “DNA strand algebra” [27].

Inspired by cell membranes, Paun studied a model of computation known as
membrane computing in 1999 using a formalism that he called the P-system [84]
85]. Ardelean et al. studied the feasibility of realizing the model using bacteria
I65, 7.

Head introduced the splicing system, alternatively known as the H-system,
in 1987, thereby describing a formal model for the manipulation of DNA strands,



2.1.6

2.2

2.2.1

2211

12 CHAPTER 2. LITERATURE SURVEY

for instance by cutting them with enzymes [56]. This model was shown to be
able to simulate any Turing machine [32].

STRING ENCODING

In several of the articles referenced in this chapter, the authors speak about
encoding information, such as solution candidates or machine states, on DNA
molecules. The actual coding schemes used are not described, but it is implied
that “some” practical scheme is used, which minimizes the amount of unwanted
and unstable hybridizations in the DNA. Boneh et al. discussed one way to
represent binary strings using DNA strands with 30 bases (30-mers) [22]. The
idea is to assign each bit value on each position a unique 3o0-mer strand and
joining them together with a special separator strand. To minimize the amount
of unwanted hybridizations, one must minimize the length of the longest common
substrings between any two parts. The authors suggest using “some good code,”
or using a randomized method [22].

WET METHODS

Contrary to the “dry” methods, the “wet” methods are the ones that have been
constructed in a laboratory, using some biomolecular technique.

DNA-BASED COMPUTING

The research area DNA-based computing concerns interactions between DNA
strands as the basis for computation. A biomolecular toolbox of considerable size
exists for the manipulation and amplification of DNA molecules, a fact that could
explain the apparent preference over other models that DNA-based computing
enjoys. An early motivation for this approach was Bennett’s observation of the
possible energy efficiency of that type of computation [1g].

SOLUTIONS TO NP-COMPLETE PROBLEMS

The first breakthrough in computing with DNA strands was in 1994 with the
publication of Adleman’s paper [3], demonstrating a method to compute a
solution to an instance of the NP-complete directed Hamiltonian path problem.
Adleman noted that the computation rate of the DNA strands in his test tubes
were orders of magnitude higher than those of the fastest supercomputers of
the time, at least if each ligation reaction was viewed as an instruction. The
technique he used simulated a non-deterministic Turing machine, in the sense
that he started out with generating every possible solution, encoded on single
stranded DNA, whereafter the incorrect ones were removed, and it was checked
whether any correct solution candidates remained. This was accomplished
through several “washes,” performed in the laboratory over a period of seven
days. Lipton showed how to extend the method demonstrated by Adleman to
NP-complete problems in general [70].

Since then, several other NP-complete problems have been solved using
techniques similar to those of Adleman’s. In 1997 Ouyang and colleagues solved
an instance of the mazimal clique problem by encoding each possible clique in a
particular graph as binary digits on DNA strands, removing the incorrect ones
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(a) Solution candidate on a single stranded DNA molecule. (b) The impossibility of
the solution becomes evi-
dent when a hairpin is
formed.

Figure 2.1: Illustration of a hairpin formation on a single stranded DNA
molecule. Images from [52].

that contain vertices that are not connected, and picking out the largest [83].
As in Adleman’s approach, this technique utilizes the high degree of parallelism
inherent in a “soup” of DNA molecules in a test tube, thus allowing for simulation
of a non-deterministic Turing machine.

In 2002 Braich and colleagues solved a 20-variable instance of the 3-SAT
problem, finding the unique solution amongst the 220 possibilities [23]. Their
algorithm worked by repeatedly refining solution candidates by “sorting” them
using gel electrophoresis performed for each clause. They constructed an elec-
trophoresis box in such a way that strands satisfying the clause in question
were captured one place, while the rest ended in a reservoir in another place.
The problem instance they solved was larger than the one solved in the work of
Sakamoto et al. from 2000, where they computed the solution to a six-clause,
ten-variable instance of 3-SAT using a technique employing hairpin forma-
tion [98]. Solving the problem with hairpins, one generates every possible truth
value assignment, where at least one variable per clause is assigned “truth.” The
negation of the variable a, —a, is encoded as the Watson—Crick complement of
the encoding of a. Thus, if a strand contains both a and —a, those two parts will
hybridize, forming a “loop,” or hairpin, on the single stranded DNA molecule (see
Figure . Hence, eliminating every hairpin formation or greatly increasing
the percentage of non-hairpins in a pool will allow the correct solution to be
observable with gel electrophoresis. The authors note that their method has the
benefit of only requiring a constant number of laboratory steps, regardless of
the size of the problem. However, they also note that they require much more
DNA to perform the computation: 3™ strands are generated for m clauses, as
opposed to Adleman’s 2" strands for n variables [9§].

Liu with colleagues demonstrated a solution to the graph coloring problem
in 2002 [72]. The approach taken in that paper follows the same high-level
algorithm as the maximal clique solution in [83], insofar that all possible colorings
were generated, the incorrect ones removed and the minimum singled out. The
authors remark that the method is limited with respect to the problem size; the
exponential increase in the pool size renders it impractical to process problem
instances larger than 30 vertices.

An algorithm that solves the subset-sum problem using DNA computing
methods was presented by Chang and colleagues in 2004 [28]. For this they
developed an n-bit parallel adder and an n-bit parallel comparator, demonstrat-
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ing a stronger version of DNA addition than first showed in 1996 by Guarneri
et al. [z9].

In [120] an algorithm for solving integer linear programming problems using
DNA hybridization is described, but the authors do not apply the algorithm in
an experiment.

DATA STORAGE

In [g] it is remarked that the data storage capabilities of DNA molecules are
enormous — 1 bit per nm?. In comparison, Adleman notes, a videotape can
store 1 bit per 102 nm3. Shoshani et al. mention that the storage capacities of
1 gram of DNA in 1 cm? is approximately 750 terabytes [to1]. Cox discusses
ways to use DNA as a long-term storage medium in [31], and a memory model
based on DNA structures was presented by Kashiwamura et al. in 2005 [65].

Recently, the field of infochemistry has emerged, focusing not on the compu-
tational aspects of chemistry, but on the possibilities for storage and transmission
of information [112].

COMPLEXITY

A problem noted in Adleman’s paper [3] is, that the mechanics of the DNA
“computer” work in a less predictable way than that of the classic machines.
Hybridization can result in false positives or negatives due to reactions between
non-matching bases followed by PCR amplification [37]. Work has been done
to investigate how to compute reliably despite such noise [86, [64].

METHODS

A number of different methods for DNA computing have been proposed.

Adleman—Lipton method. The earliest type of method demonstrated was
by Adleman in 1994 [3] and reformulated for more general use by Lipton in
1995 [70], which encodes all possible solutions and removes the incorrect ones.
This is done by repeatedly ligating the solution instances to the strand-rep-
resentation of each vertex, followed by a process that removes those strands
which were not ligated to a vertex-strand. In Adleman’s original paper he states
that the total amount of work required was seven days in the laboratory. The
number of laboratory procedures required should grow linearly with the problem
size [3].

Boolean circuits. Ogihara et al. have studied the construction of Boolean
circuits using DNA molecules [81] [82]. Amos and Dunne demonstrated a method
for simulating a circuit more efficiently than Ogihara’s initial suggestion [g].
Later, Stojanovic and Stefanovic created the logic gates AND, NOT, and XOR
using enzymatic reactions on DNA [106]. They used this technique to build
a circuit that plays tic-tac-toe on a three-times-three board against a human
opponent [107]. Using fluorescent molecules, the circuit was able to mark its
moves in response wells, corresponding to the fields of the board. In 2004, Su and
Smith constructed a NOR gate using DNA molecules [10g], and in 2006 Seelig
et al. introduced another method to implement logic gates, based on branch
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Figure 2.2: Illustration from [71] illustrating the increased fluorescence at the
spots on the gold surface containing the correct solutions.

migration, i.e., the replacement of specific DNA strands [100]. Qian and Winfree
developed the seesaw gate based on branch migration, and demonstrated a
circuit capable of computing the square root of four-bit numbers [88] [87].

Sticker model. Roweis and his colleagues presented the sticker model of
DNA computing in 1998 [96]. The model has a random access memory wherein
bits are encoded as either single or double stranded DNA. Like other models it
utilizes DNA strand separation as the central computing mechanism. Four basic
operations on bit strings were described in the paper: combining, separating,
setting on, and clearing (setting off).

Whiplash PCR. A technique called whiplash PCR as the basis for execution
was first described by Hagiya et al. and Sakamoto et al. [51}, [gg]. Nishikawa
and Hagiya implemented a simulator for the technique in [7g]. Whiplash PCR
is a combination of a “whiplash” intramolecular reaction, in which one end
of a single strand folds back onto itself, thereby creating a hairpin structure,
and polymerase extension of the double stranded part, thus allowing for state
transitions. The state of the machine is represented in the end of the DNA
strand — the tip of the whip — and it is therefore a DFA. Komiya and
his colleagues performed a wet experiment with whiplash PCR, successfully
executing eight successive state transitions [68].

Surface-based computations. Liu et al. solved a simple four-clause instance
of the 3-SAT problem with four variables using a technique called surface-based
DNA computing [71]. The technique was first described by Smith, Frutos, and
colleagues in 1997 [104}, @5], and it works by fixating possible solutions encoded
as DNA strands to a gold surface, applying a mark-destroy-unmark algorithm
that removes the incorrect ones, and extracting the answer by inspection of the
surface. The “mark” phase hybridizes all but the single strand representations of
the incorrect solutions — those allowing a A —a. The “destroy” phase is executed
by an enzyme (E. coli exonuclease I) that destroys all unhybridized strands,
thereby removing the incorrect solution candidates. Finally, the “unmark”
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(a) Wang tile (b) DNA tile. The colored bands indicate the “sticky ends” (from [130],
(from [125)). slightly altered).

Figure 2.3: Two different types of representations of Wang tiles.

operation regenerates the molecules, returning the remaining strands into single
stranded form. This was repeated for every variable in the clause. The benefit
of this method is the increased ease of readout compared to the other, “test
tube based” approaches, because the researchers are able to attach a fluorescent
molecule to the remaining correct solutions and bind them to another gold
surface, containing a copy of each of the original solution candidate molecules.
Thereby, the spots with increased fluorescence indicate the correct solutions, as

in Figure

Self-assembly. In 1961 the mathematician Hao Wang proposed a system later
dubbed “Wang tiles” [T1g], which informally consists of a finite set of colored tiles.
It was later shown to be able to emulate any given Turing machine [g5]. The
logical equivalence of certain DNA structures with Wang tiles was demonstrated
by Winfree et al. in 120, 127, [130} [128], based on the construction of DNA “tiles’
consisting of special strand formations having four sticky ends; see Figure
The configuration of these four ends is the equivalent of the configuration of
the colors of Wang tiles. Thus, the computation proceeds by self-assembly of
the tiles, provided that they are designed properly [25]. Patterns for DNA tiles
have been designed to emulate an XOR gate [73], and Feldkamp et al. present
a compiler that translates formal grammars into DNA capable of structured
self-assembly [77].

More recently, Yin et al. have developed a model and pictorial language
called reaction graphs, depicting a high-level view of the way DNA molecules
can interact [131]. In their paper, they describe the path from a desired function
through its formulation as a reduction graph, to the construction of “secondary
structures” — logical representations of DNA molecules — and finally the actual
DNA strands. As the nodes of a reaction graph are abstract representations
of hairpin structures, an “execution” of a reaction graph corresponds to a
specific sequence of unfoldings or foldings of DNA hairpin structures. They
give an example of a DNA molecule with a structure resembling a binary tree,
constructed using a reaction graph with ten nodes.

)

RNA-BASED COMPUTING

Regulatory behaviors performed by processes in live cells with different types
of RNA as an integral part are described by Isaacs et al. and Davidson et al.
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in [62, 35]. These processes can be interpreted as the evaluation of Boolean logic
formulas [110]. Furthermore, the similarity between RNA and DNA molecules
have led researchers to believe that RNA has a similar potential as a basis for
computing [57]-

Benenson presents a brief survey of some of the newer RNA-based approaches
to biomolecular computing in [13, 14]. A major reason for some researchers’
preference of RNA over DNA in molecular computing is that RNA can readily
be synthesized in live cells, arguably improving the chances of building actual
“computers” for medical purposes in live cells [13, Section 4.3]. The methods
discussed in [17] focus on the construction of logical circuits in either conjunctive
or disjunctive normal form. Heitsch and colleagues describe methods to design
RNA strands with desired spatial structures in [57]. A more general discussion
of strand design is given in [77].

An early result using RNA as the basis for computation was by Faulhammer
et al. [g0], who solved an instance of the Knight problem: A special case of the
SAT-problem formulated as a chess problem. They used hybridization between
RNA and DNA as the basis for computation, removing the incorrect solutions
by applying an enzyme (ribonuclease H), similar to the technique of Liu and
colleagues [71]. Their reason for using RNA and not DNA was scalability,
because the enzyme allows for easier solutions to larger problem instances than
the DNA-cleaving enzymes offer [70, [7].

In [gg, [126] different approaches to the creation of Boolean logic processing
using RNA components are described.

PROTEIN-BASED COMPUTING

A DFA has been built using DNA molecules and the restriction enzyme Fokl
by Benenson et al. [T7, [15]. In their experiment they managed to construct
a DFA which had its states and symbols encoded on short DNA strands
(oligonucleotides) and the actual state transitions performed by the restriction
enzyme. Every (state, symbol)-pair was encoded as oligonucleotides, this
being the “software” of the machine, and the input string was encoded on
double stranded DNA with six base pairs for each symbol. This strand also
contained the state of the machine. To control the restriction enzyme, the
transition function of the DFA was encoded as a set of “transition molecules,”
implemented by partially hybridized DNA strands. The computation proceeded
by repeatedly cleaving the input strand at a special marker site, causing the
transition molecule representing the current (state, symbol) to hybridize with
the cleaved input strand, thus resulting in a new recognition site being exposed
and a new enzymatic reaction; see Figure In their article, the authors
report that 10'2 DNA automata ran independently in parallel, all encoding the
same DFA, with a combined transition rate of 10° per second. The start of the
computation was when the different components were mixed together. After
this step, no human interaction was needed until the result of the computation
was ready to be read out with gel electrophoresis. The inherent parallelism
of the machine was demonstrated when the authors tried to add two different
inputs simultaneously and the machine produced two different outputs.

The group presented a medical application of their molecular DFA in
2004 [16]. The idea is to use a DFA like the one described in [17], but con-
structed in such a way that it releases a drug when it enters its accepting state,
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Figure 2.4: Illustration of a DNA-based DFA in the process of computing; the
state/symbol strands are chopped off consecutively by Fokl, ultimately leaving
only the special accepting terminator strand (from [17]).

conditioned on the presence or absence of certain genes. This is accomplished
by constructing the automaton as a hairpin structure, where the hairpin-loop
encloses a drug and the stem represents a logical conjunction of clauses that
must be fulfilled in order for the drug to be released. The clause checking pro-
ceeds as the DFA, with an additional mechanism for checking for the presence
of certain genes. The latter is performed by having a “team” of DNA molecules
for each gene type that must be checked, constructed in such a way that they
hybridize and form a recognition site for Fokl in the presence of a certain gene.
Thus, for each fulfilled condition a part of the hairpin-stem is cleaved by FoklI,
with the result that the hairpin opens and the drug is released only if every
condition holds.

Recently, Ran et al. implemented a system capable of answering simple logic
queries (including the ubiquitous question regarding Socrates’ mortality) that
utilizes the Fokl enzyme [8g].

Shoshani et al. demonstrated another variant of the FokI-technique in 2010,
implementing a 2-state, 2-symbol DFA [102]. The team essentially attached
genes coding for green and cyan fluorescent proteins to the special marker
molecules that each attach to the (state, symbol)-strands representing final
states Sy and Si, respectively. The input strand and detector strands were
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Figure 2.5: The final step in the DFA computation from [102]. This part
comes right after a sequence of computation steps, constructed like the one
illustrated in Figurelz.4l The final output detection molecule DM containing
the gene coding for the fluorescent protein is restricted by Ncol and Pstl, thereby
making both ends of the strand sticky, enabling it to be ligated with another
strand to form a circular plasmid that can be inserted into cells.

engineered such that recognition sites for the restriction enzymes Ncol and Pstl
were present on the final, detected state. This allowed the “solution strands” to
be cleaved with Ncol and Pstl, thereby making them ligate with a special DNA
strand which caused them to become circular plasmids, see Figure This
plasmid was then amplified in colonies of E. coli, whereafter it was inserted
into cells from the onion plant. The expression of the fluorescence protein
genes in the plasmids resulted in green fluorescent onion cells for Sy and cyan
fluorescence for Sy, see Figure [2.6] The authors note that this demonstrates
the method’s ability to alter in vivo cells.

The construction of Boolean logic gates using proteins has been studied
by different groups. Willner and colleagues used specific chemical compounds,
among others glucose, to construct a network of enzyme-based logic gates,
each gate itself composed of one or more enzymes |11 [78]. Using these, they
constructed a half-subtractor and a half-adder [11]. In [T14] the authors discuss
a method to implement a NAND gate using specifically designed proteins, with
DNA strands acting as “wiring” between the gates, essentially pairing each
connected output and input port between two gates with two Watson—Crick
complementary DNA strands.

Coupling the enzyme RecA with single stranded DNA, Bar-Ziv et al. demon-
strated a stochastic automaton having as its operational basis random ligation
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(2) (b)

Figure 2.6: The onion cells fluoresce green (a) or cyan (b), depending on the
final state of the DFA; the plasmids resulting from each state contain the gene
for the appropriate protein. From [Toz].

and disassembly (that is, denaturation) [g]. By running several automata
(105-109) in parallel, the authors were able to observe the behavior of the
machines with noise removed.

BACTOPUTING

The field of bactoputing, i.e., computing with bacteria, is about moving the
DNA computing mechanisms inside a bacterium or into colonies of bacteria.
Baumgardner et al. give three main advantages of bactoputing over DNA based
computing [12]:

1. the autonomy of bacteria minimizes the need for human intervention;
2. as bacteria can evolve and adapt, they can adapt to specific problems;

3. a colony of bacteria grows exponentially in size, which can be regarded as
an addition of processors to the system.

The term cellular computing is also used [rz1].

Engineering of synthetic gene networks is discussed and reviewed by Weiss
et al. in 127, 123]. A synthetic gene network is an attempt to control the
behavior of cells, so as to obtain, e.g., logic functions, by assembling components
(including DNA, RNA, and proteins [122]) into structures and embedding them
in cells. The construction is performed both by conventional “top-down” design
[to5], employing circuit design techniques, but also by directed evolution, in
which cells are manipulated to mutate their DNA into genes that code for the
desired networks [80a} 132].

Haynes and colleagues constructed an FE. coli bacteria-based computation
that solved an instance of the burnt pancake problem, a sorting problem where
the only allowed operation is to reverse the top k elements of a stack [55]. The
authors used an enzyme from Salmonella typhimurium that recombines DNA
strands by reversing specific parts of it, enclosed by special palindromic markers.
Using this, they designed the DNA strands such that those representing correct
solutions caused the bacteria to be antibiotic resistant.
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Figure 2.7: Petri dishes with bacteria colonies encoding solution candidates.
The left column contains three different starting colonies, encoding ABC, ACB,
and BAC as candidates, respectively. Only ABC' is correct, so it fluoresces
yellow. The middle column shows the petri dishes after the recombination has
been performed, demonstrating that all of them arrived at correct, i.e., yellow,
combinations. Image from [12].

Baumgardner et al. solved a three-node instance of the directed Hamiltonian
path problem using colonies of FE. coli bacteria that were modified with synthetic
gene networks [12]. Nodes in the graph were represented using DNA strands
in a way similar to Adleman’s [3], but were designed using genes that result
in specific phenotypes: red and green fluorescence. The same technique as
in [55] was employed to ensure that only correct solutions exhibited the desired
phenotype, namely the combination of red and green fluorescence, observable as
yellow fluorescence (see Figure [2.7]). The authors argue that larger instances of
the problem can be solved using their method with a linear relationship between
the number of genes encoding nodes and the number of nodes.
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OTHER METHODS

The billiard ball model, a special type of cellular automaton, was introduced by
Fredkin and Toffoli in 1982 [gg]. This established the field of collision-based
computing, which has been studied from the perspective of biological computing.
Adamatzky et al. argue that the slime mold Physarum polycephalum can be
used as implementation substrate of a collision-based computer in [2], following
Nakagaki’s study of the slime mold’s apparent maze-solving capabilities [77].



3.1

3.2

MULTIPLE KINDS OF UNIVERSALITY

We will in this chapter work towards a theoretical foundation for quantifying
the nature of the particular qualities that make some machines, or computers,
capable of doing the work of others. To put it bluntly: what makes the simulation
of other computers by means of software possible? The extent to which this
capability is a requirement for a “practical” computer, suited for real-world
computational tasks, will hopefully be easier to ascertain once a more exact
notion of the capability has been established. The computers that possess
the desirable property of being programmable are also often quite modular in
nature: If a certain task is too great, it is not difficult to adjust the size of the
apparatus to accommodate the problem. As will be discussed, some types of
computers do not appear to lend themselves to easy extension, whereas other
types do. It is relevant to understand precisely what the difference between
the two types are, as we aim to construct the former type in a biomolecular
context.

Recall that we use a nomenclature wherein “Definition” and “Concept” refer
to mathematically exact definitions and intuitive, “hand-wavy” definitions,
respectively.

COMPUTERS

Concept 3.1 The word “computer” means any construction, physical or
non-physical, electronical or biological, capable of computing. That is, ca-
pable of performing, in an appropriate sense, a sequence defined by an outsider
of internally well-known steps with the purpose of repeated manipulation of some
state representation. It is an automaton, but with a possible physical embedding.

Concept 3.2 An execution of a computer is its performance of a number
of well-known internal steps. Thus, the execution is simply the process of
performing each small step in a sequence of steps.

Using these notions, it is evident that a “computer” can be many different
things; the desktop PC satisfies the definition, as do theoretical constructions
like the A-calculus [10] and various programming languages. More esoteric
constructions like a group of workers equipped with very specific tasks and
supervised by a manager can also be said to be a computer, as can a pocket
calculator. In the latter case, the computer is quite limited, but there is nothing
in the definition disallowing this. The sequence of steps given by an outsider is
in this case given at “assembly-time,” when the pocket calculator was built in
the factory.

UNIVERSAL COMPUTERS

A universal computer is a computer capable of simulating any other computer
of the same type. Also, if a computable reduction from computers of type
A exists, it is able to simulate all A-computers. The Church—Turing thesis

23
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states essentially that a universal computer has such a reduction for all types
A of computers. Universality in that sense thus implies that we will only ever
need one computer, if computational speed is not an issue. Alas, this notion
of universality by itself is for our purposes a too coarse-grained resolution in
which to study computers. A modern-day PC is universal; it can simulate any
computer and compute any computable function (within reasonable bounds, as
discussed below). Obviously, a single NAND gate cannot achieve this. However,
it has been shown that any Turing machine can be simulated using a circuit,
and therefore using a number of NAND gates wired together [go, m=1]. As
our normal PCs are constructed using electronic Boolean circuits, it is hardly
surprising that any computer can be constructed using NAND gates. The
tempting thing to conclude is then that the NAND gate is universal and equal
in expressiveness to a desktop PC. This conclusion is, for the above reasons,
not false, but there certainly is a difference, if not in anything else then in
practicality, between a PC and a NAND gate! Prompted by this difference, we
will introduce the notions of linguistic universality and mechanical universality
in this chapter.

COMPONENTS

Concept 3.3 A component c is an object with a finite set of input and output
channels.* Fach output channel has a finite number of receivers. The number
of receivers on a channel is called fan-out. 9M;(c) and M,(c) denote the input
and output communication methods of the component c, used in the input and
output channels, respectively. Channels have two types: internal and external.
Internal channels connect components with each other, and external channels
connect components with the environment.

Any component needs a mechanism that allows it to communicate with other
components. This implies that “some” substrate must be present which can be
altered into a number of distinguishable modes by the component, representing
the communication method. In order to be able to transmit anything besides a
constant signal, there must necessarily be at least two modes. Furthermore, for
a computer to be of any practical use, there must be some way that we can input
data to it, as well as a way of reading the computed data out again. This is
what the external channels are used for, as they allow some “border component”
to interface with a user, for instance in the form of a keyboard. The nature of
the difference between the two kinds of channels, internal and external, depends,
as the channels themselves, heavily on the type of components. Drastically
different communication methods may be employed on the two types.

The notion of a component is what we will base our understanding of a
“computer” on. A computer is constructed using components and the interplay
between them, so in the following it is implicit that a computer is a collection
of components put together in some appropriate way (for instance by wiring).

Concept 3.4 The set CM is the set of all components.

The presence of C'M is of a more philosophical than mathematically exact
nature. Our reason for putting it in a disguise of mathematical exactness is the

*Not related to the equivalently named notion of channels found in process calculi such
as the m-calculus and k-calculus.
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greatly simplified notation it allows us to use.

Determining which objects are present in CM and which are not is an
imprecise action. We are forced to use some common-sense argumentation along
the way, as the very definition of what a component is allows us to be very
generous with what should be in C M. This generosity must not be exploited
to place in CM components which are of a too small or too large level of
complexity, ultimately causing the problems we are trying to solve to be hidden
in the interior of the components. If it is decided, for instance, that a PC
is a component, which is perfectly acceptable according to its definition, the
components themselves contain the complexity to perform the actions which
we aim to dissect. Likewise, not much use of a component definition with
single atoms is likely to be found. Of course, the meaningfulness of a certain
component choice must be evaluated in the context of what kind of computer
we are trying to build. Taking a PC as a component might make sense if a large
scale cluster computer is to be built, and an atom-scale component might make
sense if circuits with molecular sizes are sought.

Example 3.1 A NAND gate is a component. It has two input channels and
one output channel; the communication methods for input and output are the
modulation of electric signals by altering between (ideally) two voltage levels.
The physical realization of the channels between components is wires. Two
gates can be attached to one output channel of another, making them both the
receivers on the same channel. This causes the fan-out of the latter gate to
be two. In practical implementations of electronic computers, human-friendly
input and output devices have been constructed, such as the keyboard and the
monitor. From the user’s point of view, this makes the external input channels
employ the mechanical force applied to keys on a board, and the external output
channels employ the colored light on a flat surface.

Example 3.2 Gears are components, having the transferred torque as their
method of communication. A gear has one input and one output channel,
namely the force applied to the gear and the force applied to other gears as
a result. If more than one gear is connected to a certain gear, g, they are all
receivers on the output channel of g. External communication with a computer
constructed this way could be performed using a set of reserved gears, having
special, human-readable markers on them. For instance, a primitive addition
function is shown in Figure which uses gears and rods as components. Input
from a user to the “computer” of Figure is given by adjusting the right digit
gear, and output is read by observing the left one.

Example 3.3 A DNA oligonucleotide of length n is a component. The capabil-
ity of the bases A, C, G, and T to form chemical bonds with their Watson—Crick
complementary bases embodies both the input and output channels; this prop-
erty is exploited to pass on and manipulate information in a variety of the
DNA-based computing schemes described in Chapter An internal input
and output communication method could for instance be DNA polymerase, as
discussed in Chapter [2l One example of an external communication method
for reading out computational results is the surface-based approach, outlined
in Chapter [2] in which DNA oligonucleotides are attached to small areas on a
gold surface, which can be observed as changes in fluorescence intensity [71].
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Figure 3.1: Gears as components in a simple computer. The gears on the
drawing implement addition modulo 10 of single digit numbers. Turning the
azxis A such that the right digit gear shows some number, lifting it such that the
right gear connects with the left through gears J and G, and turning A again,
causes the digit to be added modulo 10 to the number stored on the left digit
gear. The illustration is taken from [20].

COMPUTERS AS COMPONENT STRUCTURES

A computer always simulates at least one Turing machine. The word “simulate”
in this use is an analytical construction; an actual computer does not explicitly
simulate anything, it does what it is supposed to, like modifying bits in some
CPU. However, according to the Church—Turing thesis, we know that there
exists some Turing machine capable of doing the same work given enough time
and space, and hence we say that the computer “simulates” that particular
Turing machine. A practical computer is able to simulate more than one Turing
machine, but even if the computer is a hardwired small circuit, it simulates some
Turing machine. In that case, the simulated Turing machine is the machine
that computes the Boolean function of the circuit.

Concept 3.5 Let m be a computer simulating the Turing machine t and let
k be the number of tape cells written in t at a certain point in time, where |t| is
the size of the description of t. Let n =k -log |t| - log k; by the configuration of
a computer we mean the n-dimensional vector ¢ such that the Turing machine’s
current tape contents, its internal state, and the position of the reading head on
the tape s stored in c.

The notion of a configuration of a computer does not take external properties
of the computer and its environment into account. Neither the temperature nor
the weight of the computer is part of the configuration, unless the computer is
constructed in such a way that these are internal properties. Building a computer
using components that communicate in some way using temperature changes,
for instance, would result in the temperature being part of the configuration,
and the construction of a computer from components that communicate by
altering their mass would cause the mass to be part of the configuration.
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Example 3.4 A configuration of an ordinary PC is the memory contents, the
hard drive settings, the register values, etc.

Example 3.5 A configuration of a computer constructed using gears is the
positions of the gears relative to each other.

Example 3.6 One type of configuration of a DNA-based computer is the
sequence of base pairs coding for states and symbols of a finite automaton used
by Benenson et al. in their DNA-based DFA described in Chapter |2| [17].

To be able to speak about computers in general, we need some category from
which we can take the objects of our discussion. This category, the set of all
computers, consists of tuples which each couples a computer with a configuration
of it. Hence, one physical computer is present several times in the category,
once for each configuration.

Concept 3.6 The set M:
M = {(m, c) | for all computers m and all its configurations c}

is the set of all computers in every possible configuration.

Remark 3.1 The distinction between a computer and its configuration is
explicit in the tuple notation of Concept [3.6] A configuration of a computer is
not a part of the computer itself. For a Turing machine this means that while
the raw tape is part of the computer, the contents of the tape is not. Likewise
is the state of the Turing machine not part of the computer, even though it is
the computer that possesses the ability to be in more than one state.

As with the set C'M of all components, the presence of the set M is a some-
what wavy statement, as it may contain extremely diverse objects. Common
sense need be employed when we discuss computers and their inclusion in M, so
as not to categorize, e.g., a beach ball as a computer, capable of “computing” ex-
actly the trajectory of a beach ball of that particular size and mass when thrown.
Again, our common sense must take the context into account, as there might
be scenarios in which it is in fact beneficial to study the “ball-as-a-computer’
model.

We shall discuss computers from a physical perspective, taking into account
the actual, physical construction of the computer when assessing its capabilities.
To make it easier to do this in a mathematical notation, we introduce an
abstraction over the physical layout of the way the components, from which the
computer has been constructed, are put together.

9y

Concept 3.7 2A: M — (V,E) denotes the assembly graph of a computer.
A(m) is the graph G = (V, E) such that (i) each vertex in V corresponds to
one component in m and (i) each edge in E corresponds either to an internal
channel, connecting two components, or to an external channel.

An assembly graph can be thought of as a generalized form of circuit diagram:
A circuit diagram is an assembly graph of a computer built with Boolean logic
gates, etc., as components. Hence Example [3.7

The nodes and edges in an assembly graph contain state information. In
an assembly graph for an electrical circuit, each node and edge corresponds
to logical components and wires, respectively. Both the wires and the logical
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a ——
b NAND
NAND
C ——
d NAND

Figure 3.2: The assembly graph of the circuit from FExample @ Not shown
on the drawing is the contents of the nodes and edges, i.e., the electrical charge
on the wires that makes up the configuration of this particular computer.

components can contain electrical charge, and so a particular configuration of a
circuit is represented in the assembly graph by a “payload” of electrical charge
on the nodes and edges. Likewise, an assembly graph for a Turing machine
has as one of its components a single “cell” on the tape of the Turing machine,
i.e., the tape itself can be construed as consisting of several cells attached to
each other. These cell-components carry with them a piece of state information,
namely the symbol currently stored at the position on the tape corresponding
to the cell-component.

Example 3.7 The very simple computer implementing the Boolean function
f==(-(aAb)A=(cAd))

straightforwardly using NAND gates has an assembly graph with three vertices
and seven edges, see Figure[3.2] Four of the edges are external “input” edges; two
edges are internal, connecting NAND gates; one edge is external, serving as the
output of the function. The edges contain information about the electrical charge
on the corresponding wires. The state of the computer is entirely described
with what is on the wires, as no explicit memory is present in the system.

Definition 3.1 The set RE is the set containing all recursively enumerable
languages, represented as encodings of Turing machines that recognize them.

In the rest of this Chapter, whenever the “language” p is mentioned, an
encoding of a Turing machine recognizing p is meant.

For notational convenience, we introduce the recognizer function. As it is
undecidable, it can be regarded as a mathematical shorthand for the English
statement “the computer recognizes the language.”

Definition 3.2 Let R: M x RE — {T, F} be the recognizer function defined
by:

R(m, 1) T if the computer m recognizes the language of [;

m7 = .
F otherwise.

Remark 3.2 The recognizer function is undecidable. If R were decidable,

we could construct a Turing machine computing it, enabling us to construct

another Turing machine solving the Halting problem: On input (m, z), run the
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Turing machine for R(m,z) and return what it returns. This machine always
halts if R is decidable, and hence R is undecidable.

We need some method to bound infinite languages to subsets containing only
strings shorter than a certain length k. This enables us to consider computers
with a finite amount of memory that cannot recognize strings larger than k.

Definition 3.3 Let I,: RE — RE, k € N defined by:
Lip)={p' | P CSpAVsep :|s| <k}

be the function that takes a Turing machine recognizing a language and makes
a Turing machine recognizing strings in the language that are shorter than k.

Remark 3.3 For every k, the Ii-function is computable: It is possible to
construct a Turing machine that both performs a simulation of another Turing
machine and performs a length check.

ASSEMBLING COMPUTERS

Concept 3.8 Let ¢p: P(CM) x RE — M, k € N denote the assembler
function that, given a set of components C' and a Turing machine recognizing
the language 1, returns a computer composed of components in ¢ recognizing the
finite language Iy (1).

Our notion of an assembler function presumes nothing about the computabil-
ity or realizability of assembling a computer. However, as will become evident,
we limit ourselves to computable and “realistic” assembler functions, as neither
the uncomputable functions nor the physically unrealizable ones carry any other
significance for a practical construction of a computer than mere artistic novelty.

Remark 3.4 Let the projections 7;: T" — T, 1 < ¢ < n, be the functions
that each returns the ith element of an n-tuple. For two languages [ and I’, the
relation
m1(on(c,1) = m1(dr(c, 1))

does not hold in general, because a new computer is assembled for each language.
Example 3.8 (¢X2NP)  An assembler function for NAND gates is a function
that takes the singleton set containing a NAND gate, along with a Turing
machine description t that recognizes some language [. It physically wires
together a number of NAND gates such that they recognize a finite subset I (1)
of the language [, for instance using a method similar to the one described by
Chazelle [30] and Wegener [121].

Example 3.9 (¢;°™") For gears, one example of an assembler function is
a function that takes a set with different types of gears, rods, etc., and a
Turing machine recognizing the language [. It assembles the gears into discrete
arithmetic units, performing basic multiplication and addition operations on
a set of “integer gears,” representing the Turing machine state and -tape (see
Figure [3.4]) To indicate whether a given input is in the language Ij(l) or
not (that is, we do not know it yet), a special, “acceptance module” is added,
that reacts if the integer representation of the state reaches a special value,
corresponding to a halting state of the Turing machine.
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Example 3.10 (cblk)NA) Assembling the DNA components from Example
to recognize a language Iy (1) could be done in a number of different ways, as
described in Chapter [2| One assembly function is the now-classic Adleman—Lip-
ton method. All solution candidates are enumerated in a DNA representation,
causing the “execution” of the computer to be a sequence of ligation reactions
and laboratory washes. Input is given at assembly time, coded in the solution
candidate DNA strands, and output is obtained by gel electrophoresis.

As the usefulness of an assembler function also depends on its ability to
create simple structures that are easily extended, we need some method to
distinguish assembler functions from each other by this quality. We measure the
size of the computer, and the size change caused by constructing the computer
to a larger problem.

Definition 3.4 Let ||| : M — N represent a notion of computer size.

Example 3.11 Several size notions of a computer based on Boolean logic
gates could be used: the number of components, the longest path through the
circuit composed of the gates, etc., [121, Definition 3.2].

Example 3.12 A notion of size for a mechanical computer constructed using
a set of gears is either the total number of gears used, or some function of
the assembly graph indicating the amount of power required to turn the gears
(assuming a significant energy loss in the transmission of torque between gears).

Example 3.13 One possible size notion for a DNA-based computer is the
number of DNA oligonucleotides that must be created in order for the computer
to work, as this necessitates laboratory steps that must be performed by a
human. The Adleman-Lipton method [3} [70], for instance, requires the synthesis
of all possible solutions to a problem prior to the computation phase. The
number of possible solutions, and therefore the number of necessary DNA
strands, is a notion of size for that particular computer.

Example 3.14 If the amount of necessary laboratory steps does not only
depend on the number of possible solutions, the size notion from Example
can be altered to just refer to the total amount of “laboratory work,” defined,
e.g., as the amount of man-hours required of the laboratory assistant. As
mentioned in Chapter 2] Adleman notes that the amount of laboratory steps
required to operate his DNA computer should grow linearly with the problem
size [3]. However, as also noted, the required work in the laboratory was about
seven days, representing a rather high man-hour cost for the computation of a
Hamiltonian path on a seven-node graph.

PROGRAMMING COMPUTERS

Concept 3.9 Let Y: M x RE — M, k € N, denote the programming
function. Given a computer, m, and a Turing machine description of a language,
[, the function modifies the configuration of m such that it recognizes the finite
language I (1):

Y ((m,c),l) = (m,c).

The need for a bounded programming function, as opposed to an unbounded
one capable of recognizing arbitrarily large languages, arises from the fact that
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we wish to develop a theoretical foundation for buildable computers. We cannot
build an infinitely large computer, whence we cannot expect it to possess an
infinitude of configurations. Still, key to the usefulness of computers is their
ability to easily or cheaply improve the finite approximation to the notion of an
infinitely large computing device (e.g., a Turing machine with infinite tape).

The programming function does neither rebuild nor reassemble the computer.
The internal configuration is changed, thereby causing the entire computer to
behave differently, essentially simulating another computer. As the actual,
physical realization of a configuration varies with the type of computer, the
method used to modify it is necessarily vaguely described. As examples, the
configuration of a Turing machine is altered by manipulating the tape contents;
the configuration of an electronic computer is manipulated by setting bits in
the memory on and off; the configuration of a mechanical computer is changed
by turning some special gears and providing some punched cards, and so on.

Example 3.15 “Programming” in the sense of Concept [3.9] is broadly de-
scribed, as it entails that the computer consisting of a single NAND gate is
programmable too, albeit in a very limited sense: Fixing one of the inputs of
the gate to “true” causes the NAND gate to simulate a NOT gate. Equivalently,
the identity gate can be “programmed” into the NAND gate. This style of
programming uses the fact that the configuration of a NAND gate is entirely
described by the electricity levels on the incoming wires.

Example 3.16 There exists a computable function that maps any Turing
machine with an encoding shorter than n to a configuration in a PC (with
at least O(logn) bytes of memory). This function alters the configuration of
the PC by loading machine instructions into its memory. Therefore, a PC
has a programming function, which is a compiler from some Turing machine
description to the machine code of the PC’s CPU.

Example 3.17 A gear computer capable of reading and writing punched
cards while also executing instructions encoded on the cards has a programming
function, provided that the instruction set is of an adequate size. If this require-
ment is met, the programming function reads a Turing machine description and
perform a translation of it into a sequence of instructions, by punching holes in
the cardboard pieces in the fashion prespecified by the computer. The tape of
the Turing machine is simulated by instructions that cause the machine to read
or write on auxiliary cards. An injective mapping from the alphabet X7, of
the Turing machine to the alphabet Yy,jes of the gear computer is contained in
the programming function.

The assembler function ¢ and programming function v are akin, as both
produce some computer recognizing some language. The crucial difference is
that the assembler function utilizes a number of components, potentially several
of the same kind, and “wires” them together, whereas the programming function
performs a permutation of some internal parts of a configuration in a computer,
thus not causing the assembly graph 24(m) of m to be changed. The contents
of the nodes and edges of 2(m) encoding the configuration is changed by the
programming function, but the graph structure remains untouched.
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MECHANICAL AND LINGUISTIC UNIVERSALITY

Definition 3.5 Lete: V x E — {0,1} denote the computable graph encoding
which represents the finite graph G = (V, E) as a list of |E| tuples with adjacent
nodes, coding each node i with a sequence of symbols s; € {0, 1}1°82 VI,

When we use the notion of an encoding of a graph in the following, we shall
carelessly pretend to assume an efficient encoding to be present. “Encoding” of
a graph, as it is used later, therefore implicitly refers to Definition [3.5]

Definition 3.6 Let n € {NU {w}}. Let the family of assembler functions
denoted by
@, ={¢y | k <nA¢y€P(CM)x RE — M)}

be defined by:

(i) There exists a Turing machine computing the function:
mr: N— P(CM) — RE — (P(CM) x RE — M)
that computes ¢y (C,p) given k, a set of components C, and a language p.

(i) The construction of the computer described by the Turing machine from
(i) is physically realizable, i.e., there must exist some device capable of
performing the steps described by the machine.

Then ®,, contains computable assembler functions.

The definition of ®,, operates with “some device” that can be attached to a
Turing machine such that the former performs the actions encoded by the latter.
A suitable way to grasp an intuition about this is a robotic arm attached to a
Turing machine which encode a sequence of steps that the arm must perform.
The “device” need not be a robotic arm, but the possibility of automation must
be present. The family ®,, enables us to exclude unrealistic assembler functions,
such as those employing magic, from our further considerations.

Definition 3.7 Let n € {NU {w}}. Let the family of programming functions
denoted by
U, ={t¢p | k<nAt¢p€MxRE— M}

be defined by the Turing machine L computing the function:

7: N— M — RE — (M x RE — M).
Given k, a computer m, and a language p, the Turing machine L computes V.
Then the family V,, contains computable programming functions.

The presence of ¥, implies that a compiler can be constructed, as the
Turing machine L computes a representation of a language [ in the “language”
of configurations of computers, essentially performing an automated translation
from one representation of a language to another.

Definition 3.8 (Mechanical Universality) C € P(CM) is mechanically uni-
versal with strength z if:

Vp€ RE: Vk < z: d¢p € D,,: R(d)k (C,p),[k(p)).
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Definition 3.9 (Linguistic Universality) m € M is linguistically universal
with strength z if:

Vpe RE: Vk < z: I, € U, R(wk (m,p),]k(p)).

Remark 3.5 In the definitions of the two types of universality, we apparently
just pick an assembler or programming function out of thin air. Luckily, this
is not the case, as we pick them from the two sets defined by their very
computability in Definitions [3.6] and [3.7} ensuring that a linguistically universal
computer cannot rely on some uncomputable programming function. Otherwise
it would be impossible to program as no compiler can be constructed, and
therefore be worthless for practical applications.

A linguistically universal computer is able to alter its behavior based on its
input — a program written in a programming language. Given this input, the
computer performs an execution of the specialized computer described in the
language, hopefully producing the desired result. Thus, we can formulate the
“path” from problem to solution as:

problem — formulation in a suitable language — execution — result.

A mechanically universal computer is unable to alter its behavior in the
same way. However, for any specific computable problem instance we can always
construct a new computer that solves it. It is therefore necessary to assemble
it anew for each problem instance, if the behavior of a linguistically universal
computer is to be reproduced in a mechanically universal one. The abstract
path from problem to solution can then be formulated as:

problem — assemble computer and execute — result.

The execution step in this abstraction is implicit in the assembly of the computer,
as it cannot perform anything else once it is assembled. Therefore, the computer
cannot be said to “execute” in the same sense as the linguistically universal
computer, as it simply does what it was built to do, and not what the computer
described by an outsider was supposed to do. The simulation becomes a physical
realization of the simulated.

Mechanical universality can be “hidden” if it is contained in another, linguis-
tically universal computer. For instance, if a programmable computer capable of
assembling electronic circuits with NAND gates according to a software specifi-
cation were present, the “mechanicalness” of the universality of the NAND gates
would be hidden from our point of view. This “assembly” can also be likened to
the compilation of one programming language to another; the transformation
of one representation of a Turing machine into another.

A linguistically universal computer is constructed using a set of components.
The next Lemma shows that linguistic universality is “stronger” than mechanical
universality, in the sense that the latter is included in the former.

Lemma 3.1 If a computer m consisting of a finite number of components
is linguistically universal with strength n € N, the set of components C' from
which m has been constructed is mechanically universal with strength (at least)
n.
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Proof. Let A ={2(x) | z € M} be the set of all assembly graphs. Construct
the Turing machine G that computes the function:

7¢: A= RE - N— P(CM) - RE — (P(CM) x RE — M)

1. Take as input (i) an assembly graph 2(z), (ii) a Turing machine G’
computing 77, of Definition [3.7] (iii) an integer k, (iv) a set of components
C, and (v) a language p.

2. Run G’ on k, z, and p to obtain the new configuration d’ of z.
3. Fix the assembly graph of x such that it contains the configuration d'.

4. Write the newly created assembly graph using an encoding understandable
by a “device” in the sense of Definition (ii).

The finiteness of the computer m is not changed when altering m’s configuration.
Because m is linguistically universal, there exists a Turing machine L that
computes its programming function. Running the Turing machine G with the
component set argument fixed to the component set of m, the assembly graph
fixed to 2A(m), and the Turing machine argument fixed to L, we obtain the
Turing machine T of Definition [3.6] This implies that ®,, exists, and we have:

R((m,d), I(p)) = 3Jér € ®n: R(dk(C,p), I(p)),

coupling the linguistic universality of m to the mechanical universality of C":

Vp € RE: Yk <n: 3y, € Uy: Ry (m,p), Ir(p))
— Vp € RE: Vk < n: 3d: R((m,d), Ik((p)))
= Vpe RE: Vk <n: Hqﬁkeq)n:R( :(C,p), I ())

O

Remark 3.6 Lemma only considers finite computers. However, for a
linguistically universal computer m with infinite strength w, the Lemma implies
that every finite approximation m’ to m having strength n € N induces a
mechanically universal counterpart in C, the components of m/'.

Remark 3.7 The reverse implication of Lemma does not hold: For a
linguistic computer to be realizable, a way to encode foreign Turing machines
in the computer must be present. Mechanical universality per se does not imply
that this is possible.

Example 3.18 The singleton set that contains the NAND gate is mechanically
universal. The assembly functions ¢ could be qSl,:IAND from Example The
strength of the mechanically universal computer is infinite (w), as arbitrarily
large circuits can be constructed.

Example 3.19 The set containing gears of all sizes is mechanically universal:
As it is possible to construct mechanical calculators capable of basic arithmetic,
such as Blaise Pascal’s Pascaline, it is possible to define the assembly functions
¢r to assemble a calculator that simulates the operations of the given Turing
machine using a suitable Gédel-numbering, as outlined in Example [3.9] and
illustrated in Figure [3:4] The component set has infinite strength, as arbitrarily
large calculators can (in principle) be constructed.



3.2.6

3.2. UNIVERSAL COMPUTERS 35

Example 3.20 The classic, theoretical Turing machine with an infinite
amount of tape also has an infinite amount of configurations, as each ar-
rangement of the tape cells represents a particular configuration. The machine
has programming functions v, because any Turing machine can be encoded
on the tape. Thus, the machine is linguistically universal. Because it has an
infinite amount of tape there is no upper bound on the size of Turing machines
that can be encoded, meaning that the strength of the machine is infinite.

Example 3.21  When constructing an actual, mechanical Turing machine,
we cannot take the liberty of having an infinite amount of tape. On such a
computer there is only a finite amount of Turing machines encodeable with a
programming function, resulting in a strength n € N.

Example 3.22 A PC is linguistically universal because we can construct
a mapping between any Turing machine that recognizes a language and the
machine language of the CPU. The strength of the computer depends on the
amount of RAM, but it is finite.

Example 3.23 Charles Babbage’s Analytical Engine is a linguistically uni-
versal, mechanical computer. The programming functions 1, are mappings
between Turing machine descriptions and punched cards. As with the PC, the
strength is a measure of the memory of the computer, which in this case is
stored on axles with gears maintaining certain positions.

Example 3.24 Immortal human beings are linguistically universal computers:
The programming functions ;. are constructed such that they equip a person
with detailed instructions in how to perform the actions of the given Turing
machine. Without the immortality requirement there would exist languages
requiring more time than the life span of the human to compute, rendering the
computer non-universal.

Example 3.25 As mentioned in Chapter |2, Su and Smith created a NOR
gate using DNA strands [tog]. This construction represents a mechanically
universal computer, as there exists an assembler function that represents any
Turing machine as a circuit composed of NOR gates (simply alter ¢EAND to
use NOR gates, for instance).

COMPUTERS WITH LOCALIZED AND DISTRIBUTED CONTROL

To quantify what it is that makes some computers easier to “extend” than
others, thus severely improving their usefulness as they can be applied to a
broader range of problems, we will introduce a distinction between two types of
computers. The reader is reminded about the notion of a cut in graph theory:

Definition 3.10 A cut of a graph G = (V, E) is a partition, C = (L, R), of
the vertices of G such that LUR =V and LN R = ().

Definition 3.11 A computer my, with strength k has localized control if there
exists a cut C' = (L, , T, ) of the assembly graph 2A(m) such that:

(i) Ly, represents all the components in my, that implement the functionality
of the control mechanism of t;

(i1) Thn, Tepresents all the components in my, implementing the tape of t;
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Figure 3.3: Schematic view of the simulation suggested in [30] using electronic
Boolean circuits to simulate the behavior of any Turing machine. The “control
mechanism” on the diagram is a circuit implementing the program of the Turing
machine, and each “memory cell” on the diagram is another circuit corresponding
to one cell on the Turing machine’s tape.

(11i) T, and its component structure can be increased in size to Tp,, , n >k,
with Ly, unaltered.

Definition 3.12 A computer that does not have localized control has dis-
tributed control.

A computer with localized control possesses the ability to be increased in
strength by simply “adding more tape” — in the appropriate sense. A computer
with distributed control cannot have its strength increased in the same way,
as there is no “tape” to be extended. The price of increasing the strength
of a computer with localized control is thus in principle smaller than that of
increasing the strength of a computer with distributed control. The distinction
presumes that the repeated addition of the control mechanism is cumbersome
and expensive to do. This need not be the case; a distributed network of PCs
is easily extendable with new PCs, even though the exact location of the “tape’
is unclear.

i

Example 3.26 Chazelle’s Turing machine simulation used in Examples
and is a computer with distributed control: There is no way to make a
cut that satisfies the criteria in Definition [3.11] as the technique used in the
simulation does exactly the opposite — it supplies a copy of the entire control
mechanism each time a new piece of memory is required, see Figure [39].

Example 3.27 The computers constructed using the mechanically universal
gear component set from Example have distributed control, as memory can-
not be added to a completed construction. A sketch of a computer constructed
in the way outlined in the example is shown in Figure [3:4] It is evident from the
illustration that the addition of more tape would necessitate each “arithmetic
unit” to be modified.

Example 3.28 The Turing machines from Examples and do both
trivially have localized control: As can be seen on the illustration on Figure [3.5]
tape can be added without affecting the rest of the computer. For the infinitely
large Turing machine it would not make sense to enlarge it, but the property does
allow us to construct ever more “complete” finite approximations to the, from



3.2. UNIVERSAL COMPUTERS 37

TM transition rules

Integer
representing
TM tape

— —
E— —> —>
E— — —
— > —
E— —

Arithmetic | ... | Arithmetic | ... | Arithmetic

unitA unit B unit C

E— — —
E— —> —>
E— — —
— > —

ﬁﬁﬁ’—|

Figure 3.4: Sketch of a computer constructed using the method mentioned in
Ezample[3.19, Each transition rule is implemented as a sequence of arithmetic
operations, and the state and memory of the computer is encoded in one large
integer, represented as a set of lines on the illustration. Each arithmetic unit
operates on the integer and possibly changes the state. As the state is encoded
as part of the integer, it can be changed arithmetically, and likewise for the tape
contents. The integer runs in a loop, to allow the computer to loop. A special
“halting state” checker could be placed in one end, responding only if the state
part of the integer represents a halting state. Clearly, we cannot enlarge the
integer that the computer works upon without enlarging each “arithmetic unit,”
representing the control unit of the Turing machine.

Control mechanism

Figure 3.5: A stylized Turing machine. Tape can be added without the manip-
ulation of the components making up the control mechanism.

an engineering point of view, impossible construction that is a truly universal
(i.e., with an infinite amount of tape) Turing machine.

Example 3.29 The PC from Example has localized control, as it is
possible to add memory to the machine without altering the CPU.

Example 3.30 The Analytical Engine from Example has localized con-
trol, as it possesses the ability to write punched cards, offering the possibility
of the extension of the innate “memory axes” with punched card tape, at the
expense of increased computation time [26].
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Example 3.31 As we have observed that immortal humans can be viewed
as linguistically universal computers in Example we observe that, if more
memory is needed, pen and paper can be easily inserted into the system, thereby
heightening the strength. Hence, it is a computer with localized control.

Example 3.32 The DNA-circuit computer from Example has, for the
same reasons as its electronic counterpart in Example distributed control.

CHALLENGES OF BIOLOGICAL UNIVERSALITY

Whenever authors of biological computing articles claim to have constructed a
universal computer, it must be taken with a grain of salt. The constructions are
mechanically universal computers, as the several groups constructing biological
Boolean circuits demonstrate, but not linguistically universal computers: We
cannot take Stojanovic’s and Stefanovic’s tic-tac-toe circuit and ask it to do
word processing or database searching. Not even tic-tac-toe on a four-times-four
board is possible without the effort of rebuilding the circuit [to7]. Likewise, the
numerous solutions to instances of NP-complete problems using biological com-
puting techniques call for the same care in the use of the universality-attribute.
The constructions are tailor-made devices that do one specific thing, in these
cases solving (small) instances of NP-complete problems. We have no automatic
method to take any algorithm and pour into, say, Braich et al.’s construction
that solves the 20-variable instance of the 3-SAT problem [23].

Naturally, the construction of a linguistically universal biomolecular com-
puter poses several challenges, of which a few are enumerated here.

Signal propagation. In conventional electronic computers, the signals be-
tween components, i.e., Boolean logic gates, flow in discrete “lanes,” ensur-
ing that a signal from component A to component B does not accidentally
end up in component C. This property allows the computer to use the
“same” signal for any communication, namely high/low voltage. If the
components are implemented as free-flowing molecules in a liquid or gel,
for instance, this discreteness disappears. To ensure that signals end up
where they are supposed to be, we are forced to implement the computer
such that it uses different signals for different pathways through it.

Error tolerance. Intuitively, a high error rate is expected from a biological
computer. This intuition comes both from the issue with the signal
propagation, leading one to believe that sometimes some signals end
in the wrong place, but also from observing existing biological systems,
such as animals. If these systems were engineered, they would be so
with a fundamentally different philosophy than our usual engineering
philosophy — “our” machines tend to be built with high precision in
mind, making the more precise machine the better one, as it benefits from
being able to make its gears run smoother, its bits less faulty etc. This is
effective, but it also has weaknesses: In a computer, a single bit flip in
the wrong place can cause it to crash, and in a car, one broken gear out
of several hundreds can be fatal. Natural systems appear to have a more
plastic mode of working. A few dead cells in an organism is nothing to
worry about; they will just be replaced. A biological computer will most
likely need this robustness in order to function “amortizedly” correct.
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Input and output techniques. Some way to read out the computed data
must be present if the computer should be of any practical use. Likewise,
a method for input is needed if a computer capable of executing software
is desired. If the computer should also be practical, these steps should be
“fast.”

Memory I/0. Writing and reading contents to and from memory must be
made possible in some way, if the computer is supposed to be linguistically
universal.

Energy consumption. As computation is a physical act, energy is required
for the execution of a computer. Failure to provide this energy in some
external form, for instance as ATP molecules, and instead relying on some
internal properties of the chosen implementation substrate will cause the
computer to be a construction with a short lifespan, as it would stop
working when the internal energy source dried out. One could imagine
some cryptographic benefits from this, however, as it allows creation of
self-destructing software and hardware.






4.1

THE BLOB MODEL

In [57] the authors aim to design a model for a biomolecular computer that is
naturally programmable and biologically feasible. In order to fulfill the latter
criterion, a set of “natural” constraints for the model were formulated:

No data pointers. An instruction and the data must be physically adjacent
using, e.g., a chemical bond. Pointers in the sense of a traditional
programming language, i.e., an address of a part of the memory that can
be looked up, does not exist. What is colloquially referred to as a “pointer”
is a physical bond.

No action at a distance. If an instruction has to alter data that is situated
far away, it must be through a chain of local actions. This is caused by
the constraint that no real data pointers exist, making it impossible to
“point” at data arbitrary places and manipulate it.

Control flow cannot be arbitrarily changed. As with the data manipula-
tion, control flow change must happen locally, i.e., there cannot be any
equivalent to C’s goto.

Furthermore, programs must be data and vice versa if programmability in the
same sense as on a normal PC is desired. If the two things were different, there
would not be any way to make, say, a self-interpreter purely programmatically.

As discussed in [117], the constraints presented here make programming
in the blob model fundamentally different from that of classical programming
languages running on classical hardware (e.g., Python on a PC).

BLOBS

The blob model is a model for biomolecular computation suggested in [54] with
the constraints mentioned above in mind. A “computer” in this model is a “soup’
of biological molecules, referred to as “blobs,” connected to each other through
local bonds, for example chemical bonds. The atoms of the computer are the
blobs, which form the basis of both the software, hardware, and data.

)

Definition 4.1 A blob is an object with four bond sites, and a cargo of eight

7o 2,

bits. The bond sites are numbered “0,” “1,” “2,” and “3.”

Each bond site may be connected to another blob or be unused. Figure
shows a blob with its cargo and four connection sites. Several blobs can be linked
together through the bond sites, shown on Figure Using its eight cargo
bits, a blob either encodes an instruction or carries data, referred to as a program
blob or a data blob, respectively. A program is thus a sequence of program
blobs, connected using chemical bonds on the bond sites. Data is likewise a
sequence of data-carrying blobs connected on the bond sites. Figures and
illustrate program and data blobs; the two leftmost blobs are program
blobs and the two rightmost ones are data blobs on both illustrations.

Real programs consist of a set of program blobs connected in an appropriate
way (the actual program) and a set of data blobs (the memory, input, and

41
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Figure 4.1: A blob with the payload 10011001.

output). The program operates on the memory, reacting based on the currently
active instruction and the currently active memory location. Thus there are
always one program blob and one data blob that “communicate,” and it is only
this program blob and data blob that is executed or read/written, respectively.
This is a design decision, most likely taken because it would make the construc-
tion simpler and because it makes the reasoning about the system more clear.
The most obvious drawback with it is that the “natural parallelism” inherent in
the “soup” of blobs is forced into a sequential behavior. The blob model contains
the following well-formedness criterion:

Definition 4.2 (Well-formedness criterion.) At any point in time, exactly one
program blob and exactly one data blob are connected at bond site “0.” These
are referred to as the active program blob and active data blob, or APB and
ADB, respectively. The bond connecting the two is called *.

Figures and show the program and data blobs, connected by the
bond site *.

PROGRAM BLOBS
The eight bits in the cargo of the program blobs are arranged as follows:

e The first, high-order bit is the activation bit, indicating that the blob is
the APB, i.e., “1” means that it is the currently executed instruction.

e The seven other bits are used as instructions, making room for a total of
27 = 128 instructions. Each instruction is divided into an operation code
and between zero and two arguments, analogous to conventional assembly
code.

The seemingly arbitrary choice of the number of bond sites on a blob is
justified in [57], using the argument that one bond site is needed to connect
a program blob with its predecessor, another one is needed to connect the
program blob to a data blob when they are the APB and ADB, and another two
are needed to allow for branching operations. In other words, maintaining the
program blobs in a linked sequence, while also allowing for branch operations,
requires at least four bond sites. The branch operations are necessary in order
to simulate if-statements and other conditionals, such as while-loops.

Likewise, the cargo size of the blobs is also purely a design decision, based
on an estimate that eight bits leave enough room for an adequate amount of
instructions, while also being practical for containing numbers. The design
decision is volatile, meaning that, given practical reasons, it would be easy to
alter the model to contain, e.g., ten bits per blob.
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(a) Program and data blobs connected at  (b) Program and data blobs connected at the
the bond site * (the fat line). bond site *, one evecution step later.

Figure 4.2: FEzxecution of an SCG instruction.

Programs consist of a sequence of program blobs, and are thus by nature
sequential. They need not be linear, as special “conditional branch” instructions
may choose between two successor bond sites. For instructions that cannot
change program flow, the successor bond site is always “2,” which can be seen on
Figure Thus, a blob is connected through its bond site “2” to its successor’s
bond site “1,” or analogously: a blob is connected to its predecessor on its bond
site “1.” Bond site “0” is used to connect the APB and ADB, by Definition
and bond site “3” acts as a secondary successor site, used by branch operations.

The instruction set of the blob model contains 13 operation codes that either
manipulate a data blob, branch in the sequence of program blobs, make a fan-in,
“create” an entirely new data blob, or cause the program to halt. They are
grouped as follows:

1. The manipulation of data cargo bits (SCG).
2. Branch operations (JCG, JB).

3. “Insert,” the creation and insertion of new data blobs into the data blob
sequence (INS).

4. Manipulation of bond sites on the data blobs, altering the sequence of
data blobs (SWL, SBS, SWP1, SWP3, JN, CHD).

5. A special fan-in instruction (FIN).
6. A special “destination bond site” instruction (DBS).

7. A special halt instruction (EXT).

As any blob can only have a limited amount of “pointers,” i.e., bonds, from
other blobs, it is not possible to have, for instance, one point in a program to
which program flow can jump from several (more than three) different places.
This is the reason for the fan-in blob, as the effect of unbounded connections to
a certain program blob b can be obtained by placing several of the fan-in blobs
before b, allowing other program blobs to be connected to one of the fan-in
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Instruction  Description

SCG v ¢ Sets the cargo bit number ¢ to the value v.

JCG ¢ Proceeds to bond site “3” if cargo bit number c of the ADB
is 0, and to “2” otherwise.

JB b If bond site b is unbound (L), proceeds to bond site “3,”

otherwise to “2.”

INS bl b2 Inserts a new blob in the data sequence, connecting the new
blob’s bond site b2 to the ADB’s bond site b1, and bl of the
new blob to the blob of the ADB’s previous b1.

CHD b Sets the new ADB to the blob at bond site b of the current
ADB.

SWL bl b2 Swaps the bond site bl of the ADB with bl on the ADB’s
b2 blob.

SBS bl b2 Swaps bond sites bl and b2 on the ADB.

SWP1 bl b2 | Swaps bond sites “1” on the blobs at bl and b2 of the ADB.
SWP3 bl b2 | Swaps bond sites “3” on the blobs at bl and b2 of the ADB.
JN bl b2 Sets the APB’s bond site bl to be the bond site bl of the
blob at the APB’s bond site b2.

DBS b Sets the ADB’s cargo bits number 0 and 1 to the bond site
number on the blob connected to the ADB “in the other end”
of bond site b on the ADB.

FIN Fan-in instruction. Does nothing but propagate APB.

EXT Halts program.

Table 4.1: The 13 operation codes in the blob model instruction set. Naming:
v is a 1-bit value, c is a 3-bit cargo index, and b is a 2-bit bond site number. All
instructions proceed to the next program blob at bond site “2” unless otherwise
noted.

blobs: If ¢ different blobs need a bond to a program blob b, we put ¢ — 1 fan-in
blobs before b and connect the i blobs to them.

The blob instruction set is listed in Table along with an informal
description of their semantics.

The instruction for creating a new blob, INS, works by “grabbing” an unused
blob that is not connected to any other blobs. Consequently, a blob computer
can be thought of as a large pool of blobs, some of which are organized in a
program and a data structure, while others are floating around, acting as “blank”
blobs.

We adopt the notation from [54] to textually represent blobs. Let one blob
be represented by Blraxrraxzrx](sesisess), indicating that its cargo bits are
zxxxraxrx and its four bond sites are sgs15253. The default successor bond site
is named S, the predecessor P, the bond site between instruction and data *,
and an unused bond site L.

Example 4.1 The blob B[11001101](*PSL) is the program blob for the
instruction SCG (encoded as 100) with the arguments 1 and 101, meaning that
bit position 5 in the ADB shall be set to the value 1. Because the activation
bit (the leftmost bit) is set to 1, it is the APB, also evident by its possession
of the bond *. The effect of this operation is illustrated in Figures and
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Figure 4.3: The program “ListAppend,” visualized with the tool “BlobVis”
(available from http://blobvis.appspot.com/|). Program blobs are annotated with
their instruction code and arguments, and data blobs are annotated with their
cargo bits. The illustration clearly reveals the program’s two loops and currently
active program and data blob.

representing the program before and after execution of the SCG instruction,
respectively. As can be seen, the cargo of the ADB is altered from 00000000
to 00000100, but the ADB itself remains the same. SCG simply passes the
APB-role to its successor blob, evident by the activation bit’s change.

Example 4.2 Figure [1.3] shows an example of a “real” program. The illus-
tration shows the program at one moment during its execution, in which the
APB is the blob for the JB-instruction. The use of the fan-in blobs, FIN, is
exemplified, as are the creation of basic looping structures. We see that the
program has two exit points, represented as two distinct EXT-blobs.

DATA BLOBS

Data blobs are like program blobs, except that they are not equipped with
the same semantics, and that they are treated as binary numbers instead of
operations. Only seven of the eight cargo bits are available for data storage, as
the first bit is reserved as an activation bit, like on the program blobs. Allowing
all eight bits to be used would cause the data and program blobs to be of
different types, thus not allowing programs to be treated as data and vice versa:
Ouly one program blob may have its high-order bit set to 1 (by Definition ,
and all data blobs with high-order bits set to 1 would violate this if they were
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Figure 4.4: Basic sketch of a blob computer. The left and right oval shapes
represent the program and data blob structures, respectively. One program and
one data blob are active, the APB and ADB, and are connected at the bond
site *. Illustration from [57].

treated as program blobs. Therefore, the high-order bit is always 0 on data
blobs, except in the case where a data blob serves as dual purpose as program
blob, and it is the APB.

APl

Bond sites “0” to “3” of the data blobs may be connected to any other data
blob (indeed, to program blobs, as program and data blobs are indistinguishable).
For the ADB, bond site “0” is always used to connect the currently active data
blob to the currently active program blob, as per Definition

Both the cargo bits of the data blobs and the structure into which the data
blobs are arranged may be altered by the program blobs, as can be seen by
studying the SCG and various swap instructions in Table

PROGRAM FLOW

The flow of the program execution emerges from the continued change in
position of the bond * between the active data and active program blob. The
computation itself is the repeated manipulation of the cargo bits and the bond
sites of the data blobs (and potentially the program blobs as well). Because a
blob computer consists of nothing but the blob program and the blob data, the
distinction between software and hardware does not exist. This relies on the
assumption that “something” in the soup of blobs is capable of providing the
energy to move the bond sites and alter the cargo bits.

However, the “something” that provides the energy does not perform the
actual computations, i.e., it does not move the bond * and it does not alter
the cargo bits and bonds of the data blobs. If it did, the blob model would be
little more than an esoteric version of a Turing machine, as the blob structure
would be akin to a tape on which a foreign device operates. The program blobs
perform the computations by themselves, using physical capabilities intrinsic to
the blobs in the manipulation of data blobs. A useful way of thinking about the
required “something” is the presence of heat, allowing a certain set of chemical
reactions to take place.

Figure[4.4]is a general outline of a blob computer. Because data and program
blobs are the same thing and can be used interchangeably, the structure of
the computer may be a lot more intertwined and tangled than that of the
illustration.
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UNIVERSALITY OF THE BLOB MODEL

In [54] an algorithm that can convert any Turing machine description to a blob
program, along with an implementation of a self-interpreter in the blob model,
is shown. Hence, the blob model is a Turing-universal form of computation
because a universal Turing machine can be translated to a blob program, which
thus would be able to interpret any other Turing machine.

The algorithm for converting a Turing machine description to a blob program
described in Appendix A.3 in [57] uses the basic idea that the tape with n cells
is represented as a chain of n data blobs. Each data blob contains in its cargo
the symbol s from its corresponding tape cell (s € {0,1}), and the leftmost and
rightmost blobs carry a special marker in addition to s. The position of the
Turing machine’s head is represented as the currently active data blob. Each
state transition of the Turing machine may be one of the following two kinds,
giving rise to special cases of blob code generation: (i) change the contents of
the tape when not in the leftmost or rightmost cell; (ii) change the contents of
the tape in either the leftmost or the rightmost cell, resulting in the need for
an extension of the tape. The basic compilation strategy is to generate blob
code for each state transition and then collect the pieces into one large blob
program. For details, see [54].

The fundamental atoms of the procedure are the reading of a Turing ma-
chine description and the writing of a blob program’s textual representation.
Because each primitive action of the Turing machine (move, read, and write) is
representable as blob instructions, the combination of them is also representable.
Finally, while not explicitly argued in the article it is quietly assumed that this
algorithm can be performed by a Turing machine; an assumption that is further
justified for the reasons above.

UNIVERSALITY TYPE

For an analysis of the blob model in the language and context of Chapter [3]
to be possible, we must first establish a correspondence between the various
Definitions and Concepts, and the notions of the blob model.

e The computer is the blobs combined into program and data structures
“floating around” in a soup. Concept is applied to this notion. In
Figure[1.5} the computer is all the blobs illustrated using black circles and
the bonds between them.

e An ezecution is, as discussed above, the continuous change in position of
the bond *. This accounts for Concept Figure @ depicts an arrow
to indicate the movement of the bond.

e One example of a notion of size corresponding to Definition [3.4]is the total
number of blobs used in the computer, analogous to circuit complexity
measures in electronic computers. Using that size notion, the computer
drawn in Figure has the size 12, as the unused (grey) blobs are not
part of the computer.

Definition 4.3 An available data blob is a data blob that is not used in
the construction of blob program, i.e., a “blank” data blob. Figure [4.5 depicts
available data blobs as small grey circles.
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Figure 4.5: An abstract depiction of a blob computer. The small, grey circles
represent “blank” blobs that are not used by the computer. The large arrow is
intended to illustrate the flow of execution, namely the change in position of the
ADB-APB bond, which is illustrated with the thick line.

COMPONENTS

A component, as specified in Concept [3.3] is one blob. It has as input and
output channels the four bond sites, which each has a maximum of one receiver.
The input and output communication methods, 9;(blob) and I, (blob), are the
same, namely the biochemical reactions caused by the blobs themselves. These
consist of “reading” or “writing” the contents of a blob and “swapping” bond
sites.

CONFIGURATION

The configuration of a blob computer, in the sense of Concept|[3.5] is the ordering
and contents of a specific subset of the blobs of the computer. Information is
carried both in the cargo bits of the blobs and in the way they are connected to
each other, i.e., the bond sites. Hence, a configuration is made of the abstract
notions “contents” and “connectedness” of some blobs.

ASSEMBLY GRAPH

The assembly graph of Concept [3.7] refers to the graph structure emerging when
blobs are connected through their bond sites. Thus, the nodes of the assembly
graph represent single blobs, and the edges represent bonds between the blobs.

The risk of mentally erasing the distinction between what is data and what
is program or hardware is high, because the distinction is a purely analytical
construction in the blob model, and does not “really” exist. However, it does
make sense to maintain some sort of distinction for the blob model, in order to be
able to meaningfully reason about the assembly graph. Because the configuration
information is stored both in the cargo bits and in the interconnections between
certain blobs, it is impossible to alter the configuration without altering the
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bonds between some of the blobs. Thus, the blobs whose bond sites need to be
changed must be singled out and recognized as being “special.”

ASSEMBLER FUNCTION

The assembler function ¢y, from Concept is the function that takes a subset
of the set of all blobs (there are 27 = 128 different blobs) and a description of a
Turing machine T'. Using the algorithm above, it connects a number of blobs
into a structure that is a blob computer recognizing a subset of the language of
T, having only strings shorter than k. Arbitrarily high k can be used, as long
as a sufficient number of blobs is available.

To have a useful assembler function, the following notion of automation is
introduced:

Concept 4.1 An automated method of connecting together blobs is a method
whose steps can be written down and carried out by a person or device acting
purely on the basis of the written instructions. Hence, the method produces the
same result every time it is Tun.

The requirement imposed by Concept states basically that no “tricks”
can be used when putting the blobs together; the laboratory assistant whom the
task has been assigned may not perform any actions as a result of independent
thought or opinion.

Definition 4.4 The following requirements are the automateable require-
ments:

1) an automated method of physically connecting blobs together is present;
' t ted method hysicall ting blobs together i t
(i) the method from (i) is controllable by some Turing machine;

(1) the algorithm of Appendiz A.3 in [57)] can be run on some Turing machine.

Theorem 4.1 If the blob model satisfies the automateable requirements in
Definition 4.4 then the blob model is mechanically universal, and for each
k € N, a blob computer recognizing languages with strings of length smaller
than k can be constructed, whence the blob model has strength w.

Proof. Let n € N, and let ®,, be as defined in Definition [3.6

Per the assumptions, the algorithm for translating a Turing machine descrip-
tion to a blob code specification can be run on some Turing machine, and the
assembly of blobs can be controlled by some Turing machine. Furthermore, the
assembler functions ¢ can have arbitrarily large k, provided that enough raw
materials (i.e., blobs) are present. Hence, the assembler functions ¢ belong to
the set of computable assembler functions ®,,. This, together with the fact that
it can be done for any n € N, lets us invoke Definition to conclude that the
blob model is mechanically universal with strength w. O

WELL-BEHAVED BLOB COMPUTERS

To ensure that a program cannot modify itself, thereby severely limiting the
applicability of the cut-idea from Chapter [3} we introduce the notion of well-be-
haved blob computers.
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Definition 4.5 A simple cycle is a finite graph G = (V, E) with a cycle
containing every vertex in 'V, such that:

Yo e V: deg(v) =2.

Definition 4.6 (Immediate well-behavedness.) At time to during the exzecution
of the blob computer B, no subgraph of the assembly graph of B exists that is a
simple cycle containing both APB,, and ADB,,, the currently active program
and data blob, respectively.

Definition 4.7 (Well-behavedness.) The blob computer B is well-behaved if
it 1s immediate well-behaved at all times t during its execution.

Lemma 4.1 The well-behavedness criterion of Definition [f.7] is equivalent to
the following criterion:

e At no point in time may an n-cut C = (L, R), n > 2, of the assembly
graph exist, such that APB € L, ADB € R, and L and R are connected
graphs.

Proof. We show that well-behavedness from Lemma implicates well-be-
havedness from Definition [4.7} and that non-well-behavedness from Lemma
implicates non-well-behavedness from Definition [4.7}

n =1 If only 1-cuts exist, the program is well-behaved by assumption. We
cannot choose a subgraph of the assembly graph that contains both APB
and ADB while also being a simple cycle: Because APB and ADB are
in the subgraphs L and R, respectively, and no other edges from L to
R exists, at least one vertex will have an odd degree. Hence, the blob
program is well-behaved in the sense of Definition [4.7] for n = 1.

n > 2 Consider the n-cut for n = 2. The program is not well-behaved by
assumption. It is possible to pick a subgraph containing APB and ADB
that contains the two edges in the cut (one of them is the edge between
APB and ADB), which is a simple cycle because L and R are connected.
For n > 2 it is possible to pick the same subgraph as for n = 2. Hence, for
n > 2, the blob program is not well-behaved in the sense of Definition [4.7}

O

Consequently, a well-behaved blob program may only modify data in a
designated connected subgraph of the blob assembly graph. Figure [4.6] shows
two drawings of blob programs, one of which is well-behaved.

Lemma 4.2 The problem of determining whether a blob program is well-be-
haved is undecidable.

Proof. The blob program on Figure [1.7] is non-well-behaved after the execution
of the instruction CHD 0. Therefore, a blob program that executes CHD 0 is
non-well-behaved. Additionally, we see from the instruction set that no other
instruction is capable of moving the bond between APB and ADB to APB’s
bond site “0.” Hence, a blob program is well-behaved if and only if the instruction
CHD 0 is executed at some point in time, and it is immediate well-behaved at
time tg = 0.
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D5

Figure 4.6: Ezamples of a well-behaved (left) and an non-well-behaved (right)
blob program. The vertices and edges of the simple cycle are highlighted in red,
and the vertices representing the APB and ADB are connected with the fat edge.
Clearly, a 1-cut C = (L, R) where ADB € R, APB € L, and both are connected
graphs, exists for the left graph but not for the right one.

Notice that the Turing machine simulation from [57] does not use the CHD
0 instruction. Construct a program that alters the textual representation of
blob programs by inserting a CHD O instruction in front of each exit point
(EXT instruction). Assume that well-behavedness is decidable. As per the
bi-implication described above, this assumption means that we can decide
whether the instruction CHD O gets executed. Thus, we can pick any program P,
perform a polynomial-time reduction from P to a blob program that simulates
a Turing machine description of P, and decide whether CHD 0 is executed at
any point in time. But since we know that CHD 0 is only present at the exit
points of the program, this procedure also decides whether the Turing machine
halts, and therefore whether P halts: a contradiction. Hence, well-behavedness
is undecidable. O

Though seemingly fatal for practical reasonings about “good” programs,
Lemma is not a show-stopper. A key observation is that immediate well-be-
havedness is robust for programs that do not execute CHD 0, giving rise to the
following Lemma:

Lemma 4.3 If the instruction CHD 0 is absent from a blob program, well-be-
havedness is decidable.

Proof. As noted in the proof of Lemma a blob program is well-behaved
if and only if the instruction CHD O is never executed, and if the program is
immediate well-behaved at ty) = 0. Because CHD O is never executed, we can
check for well-behavedness by checking for immediate well-behavedness at ¢y = 0.
This can be done by checking for the existence of a 1-cut in the assembly graph
satisfying the criterion in Lemma which can be done in polynomial time in
the size of the assembly graph on a Turing machine. O
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(a) Before. (b) After.

Figure 4.7: A blob program before and after execution of the instruction
CHD 0. The instruction causes the APB to become the new ADB, thus allowing
self-modifying programs. The APB and the bond * between the ADB and the
APB are illustrated with thicker lines.

PROGRAMMING FUNCTION

A self-interpreter constructed using some 50,000 blobs is demonstrated in [57].
Figure [4.8]is a generated visualization of the self-interpreter, and an abstract
high-level view of a blob self-interpreter is given in Figure [4.9]

On the need for a self-interpreter. A programming function associates
with one particular computer. The function enables the computer A to act
like other computers, e.g., the computer B. Hence, the act of programming
computer A to do the computations of computer B introduces a layer of
abstraction between the actual act of computing and the computer B.

For the discussion about the self-interpreter, we invoke the artificial distinc-
tion between the “hardware” and the data mentioned above. One way of doing
this is to regard a subgraph of the assembly graph as a component, thereby
wrapping the configuration of the computer in one abstract object. Thus, the
“data” part of the self-interpreter, i.e., the rightmost two ovals of Figure [4.q] is
one giant component, which carries some configuration information, even though
it is really just the same thing as the rest, and the configuration information is
really just the bonds between the “real” blob components and their cargo bits.

The introduction of this artificial distinction may seem like a foul trick,
indicating fundamental problems with the used notions. However, it is not
different from, say, the magnetization of some metal, or the punched holes in
some cardboard. Our problem is simply that, whereas there is a very clear
distinction between the data (holes in cardboard, e.g.) and the hardware (the
cardboard itself) in other computing models, this distinction is completely
absent in the blob model. The fact that a program is structurally equivalent to
a piece of hardware, which is indistinguishable from data, renders the ability to
alter data the ability to alter hardware as well!

Furthermore, as an extra layer of precaution, we will assume that the
self-interpreter is well-behaved. Taking a look at the structure in Figure [4.q]
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Figure 4.8: A self-interpreter constructed using blobs. For the sake of readabil-
ity, the graph is limited to contain only those blobs that are distanced at least
25 bonds from the starting APB. Like Figure[4.4, the graph was generated using
“BlobVis” [11§].

seemingly justifies this assumption. Finally, if we disallow the CHD 0 instruction,
the assumption is non-controversial, as it is decidable (Lemma |4.3)).

Lemma 4.4 For the blob self-interpreter A; with ¢ - k available data blobs,
where c is some constant, a family of programming functions g ..., corre-
sponding to Concept [3.9] exists.

Proof. The self-interpreter uses as its “tape” a structure of data blobs encoding
the instructions and input data of the interpreted program (see Figure .
Hence, the structure and cargo bits of the data blobs represent the configuration
of the self-interpreter computer. The amount of data blobs available for this
structure is analogous to the number of cells on a Turing machine’s tape.
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Interpreter Program p

Data d

Figure 4.9: High-level structure of a blob self-interpreter. The interpreter is
the leftmost oval, and the two rightmost ovals annotated p and d encode the
program to be interpreted and its input data, respectively. The programming
function alters only p and d. Illustration from [57].

Therefore, for a suitable constant ¢, the self-interpreter can be programmed by
programming functions up to ¥, when it has ¢ - k available data blobs. O

Theorem 4.2 If the blob model satisfies the automateable requirements from
Definition @, and there exists ¢ - k available data blobs, for some constant ¢,
then the blob self-interpreter Ay is linguistically universal with strength k.

Proof. Let k € N, and let ¥, be as defined in Definition [3.7] Per Lemma [4.4]
we have that programming functions g . .. ¥ exists.

By assumption (i) and (ii) of Definition a Turing machine that can
modify blobs exists. Furthermore, the requirements for Theorem is satisfied
by assumptions (i)—(iii) of Definition meaning that we can convert any
Turing machine description into a blob program. Consequently, the program-
ming functions ¥y . .. are members of ¥, whence the self-interpreter Ay is
linguistically universal with strength k by Definition [3.g] O

Theorem 4.3 If the blob self-interpreter Ay is well-behaved, it has localized
control.

Proof. There exists a cut C' = (L4, , T4, ) of the assembly graph of the self-inter-
preter Ay, such that (i) Ly, represents the components that make up the control
mechanism of Ay (the leftmost oval shape on Figure [4.9), (ii) T, represents
the components making up the tape of Ay (the two rightmost ovals on Figure
7 and (iii) the underlying structure of T4, can be altered and increased in

size to T4, n > k, without altering the underlying structure of L4,. Hence,
per Definition the blob self-interpreter has localized control. O

Theorems [4.2] and [4.3] taken together show that the self-interpreter is linguis-
tically universal with arbitrarily high strength, as its memory can be extended
easily.
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Blob Model Yes Yes Yes Yes Yes No No
Adleman—Lipton Method | No No No No No Yes Yes
Hairpin Formation No No No No No Yes Yes
Boolean Circuits Yes Yes No Yes
Self-Assembly Yes Yes No Yes
E. Coli Recombination No No No No No Yes Yes
Whiplash PCR No No No No No Yes Yes
FoklI Restriction Yes Yes No No Yes

Table 4.2: Comparison of different biological models for computation. There
is a correlation between not generating the entire solution space and maybe
having a programming function.

ASSEMBLING VS. PROGRAMMING BLOB COMPUTERS

As a consequence of the equivalence between software and hardware, the blob
model has the peculiar feature that it is more efficient and simple to use it as a
mechanically universal computer, that is, to invoke the assembler function for
each new problem, than to use it as a linguistically universal computer. The
difference in efficiency originates from the programming function’s need for a
self-interpreter, which causes a fixed overhead per instruction: The real APB is
bonded with the real ADB, which represents the simulated APB that is again
bonded with the simulated ADB. Thus, using the programming function as
compared to using the assembler function is analogous to running a piece of
code on a virtualized PC versus running it directly on a real PC.

COMPARISON TO OTHER BIOMOLECULAR METHODS

After having established the correspondence between the notions of Chapter [3]
and the blob model, we compare the model to other biomolecular computing
techniques. Chapter [2| offers more detailed descriptions of the techniques, and
Table [4.2] gives an overview of the differences between the techniques discussed
here.

The set of methods selected for comparison here is necessarily a proper
subset of all the implemented methods from the literature. However, based on
the earlier literature survey, it is our impression that this subset provides an
overall impression of the relation between the blob model and previous methods,
most notably the exceptionality of the blob model’s programmability.

The following discussion uses the property “Generates all solutions.” Due to
space efficiency, this is shorthand for “Generates all solution candidates,” i.e.,
also candidates which turn out not to be solutions.
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ADLEMAN-LIPTON METHOD

A computer constructed using the Adleman—Lipton method has as its compo-
nents the individual DNA strands that represent a part of a solution. Hence,
for the calculation of a Hamiltonian path, the components are the DNA strands
representing the edges of the graph.

Assembler function. The general idea behind the Adleman—Lipton method is
to generate the entire solution space and then use some filtering technique
to remove the incorrect solution candidates. The particular implemen-
tation of this strategy in the Adleman—Lipton method suffers from the
problem that is does not scale: As noted in [53], the amount of DNA
required for a 200-vertex graph has a weight greater than that of the Earth.
Furthermore, for more general problems, i.e., any Turing machine, it is
not obvious how to simulate it, even when considerations about physical
constraints are ignored. One could imagine an approach in which the DNA
strands represent Turing machine tape configurations, and the filtering
technique ensures that only halting configurations remain.

Based on the problems with scalability and Turing machine simulation,
we conclude that this technique has no general assembler function.

Programming function. A computer constructed with the Adleman—Lipton
method cannot have a programming function. A programming function
rearranges the configuration of some computer, leaving the computer
itself intact. But there is no configuration to alter; the computational
model works by changing the computer itself, by filtering away incorrect
solutions.

Mechanically universal. Because there is no assembler function, the tech-
nique cannot be mechanically universal.

Linguistically universal. Likewise, as there is no programming function, the
technique cannot be linguistically universal.

Localized control. The memory of a computer constructed with this tech-
nique is distributed throughout all its components. There is no single
place where information is stored, rather, it is the sum of the remaining
DNA strands that define the contents of the memory. Hence, the computer
has distributed control.

Generates all solutions. As mentioned above, the method generates all so-
lution candidates.

HAIRPIN FORMATION

Hairpin formation was used to solve 3-SAT problems by letting wrong solutions
fold hairpin structures that are recognizable by an enzyme. The components
of a computer employing hairpin formation are the solution candidate strands,
that is, each set of truth value assignments.

Assembler function. Hairpin formation utilizes the same basic strategy as
the Adleman—Lipton method, namely generating the solution space and
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applying some method to eliminate incorrect solutions. Hence, the scal-
ability issues are likely to reappear here, causing an unrealistic amount
of DNA to be required for any “real” problems. Likewise, how to do the
simulation of any Turing machine is not clear. Hence, we note that the
method has got no assembler function.

Programming function. Like with the Adleman—Lipton method, a computer
using hairpin formation as its working principle has no means to alter its
configuration, because the computation proceeds by physically reducing
the computer, ending with a concentration of correct answers that can be
detected. Hence, there is no programming function.

Mechanically universal. Owing to the fact that no assembler function exists,
hairpin formation is not mechanically universal.

Linguistically universal. No programming function exists, whence hairpin
formation is not linguistically universal.

Localized control. Increasing the problem size forces one to increase the size
of all the candidate solution strands, that is, every component in the
computer, thus demonstrating that hairpin formation has distributed
control.

Generates all solutions. Hairpin formation generates all solutions, as dis-
cussed above.

BooOLEAN CIRCUITS

Biological Boolean circuits have been implemented and tested in various different
ways. Common for all of them is that basic logic gates are constructed, emitting
special signaling molecules, e.g., DNA marker strands, for other gates to operate
upon. The size of a circuit is therefore limited by the number of different signals
it can produce.

Assembler function. Assuming that it is possible to propagate signals to
arbitrarily many biological Boolean gates, an assembler function for bio-
logical Boolean circuits exists. This conclusion is reached from the fact
that any Turing machine can be represented as a Boolean circuit, and
under the mentioned assumption we are able to construct any biological
Boolean circuit.

Programming function. On the other hand, it is not clear whether a pro-
gramming function exists. There is a possibility that a programmable
circuit can be constructed, with an ability to accept some form of input
and moderate its behavior based upon that. This would correspond to
implementing a CPU with biological Boolean gates.

Mechanically universal. As there is an assembler function under the assump-
tion that arbitrarily many different signals can be sent, biological Boolean
circuits must be, like ordinary Boolean circuits, mechanically universal.

Linguistically universal. If a programmable circuit like described above
could be constructed, we would have a linguistically universal computer
with finite strength k.
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Localized control. A circuit that is programmable might also have localized
control. As it is conceivable that the circuit also has a part that works as
a memory unit, the size of this memory unit could be adjustable, and the
computer would have localized control.

Generates all solutions. This method does not generate all possible solution
candidates.

SELF-ASSEMBLY

In a computer that uses self-assembly of DNA tiles, the components of the
computer are the tiles themselves.

Assembler function. Because any Turing machine can be simulated by Wang
tiles, DNA tiles emulating Wang tiles can simulate any Turing machine by
self-assembly. Consequently, an assembler function for DNA tiles exists,
namely the generation of a set of tiles that self-assemble in such a way
that they represent a halting configuration of the Turing machine.

Programming function. It is not clear whether a cellular automaton with a
programming function exists. The intrinsically local actions performed in
the blob model seem to suggest that something similar could be done with
a cellular automaton. If that is possible, it would not be inconceivable that
it can be done with a DNA tile self-assembly version of the automaton.

Mechanically universal. As there is an assembler function that allows the
simulation of any Turing machine, the self-assembly of DNA tiles is
mechanically universal.

Linguistically universal. If a set of DNA tiles with a programming function
could be constructed, a linguistically universal DNA tile set with strength
k could be constructed.

Localized control. Moreover, localized control is not inconceivable, given an
appropriately constructed set of DNA tiles, allowing for a separation of
“memory tiles” and “work tiles.”

Generates all solutions. Self-assembly with DNA tiles does not generate
every candidate solution.

E. CoLi RECOMBINATION — “BACTOPUTING”

Successful demonstrations of E. coli-based DNA recombination have been
constructed, as mentioned in Chapter [2] based on a “miniature” version of the
Adleman—Lipton method that occurs in the interior of each cell.

Assembler function. The fundamental computational mechanism relies on
the approach wherein every possible solution candidate is generated and
then scrutinized for correctness. The by now well-known problems regard-
ing scalability and simulations of general Turing machines therefore arise
in this context as well. Again, the approach is unlikely to allow for the
simulation of general Turing machines, leading us to the conclusion that
no assembler function exists.
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Programming function. Due to the fact that the fundamentally same ap-
proach as in the Adleman—Lipton method is used, a programming function
does not exist. Like previously, the problem is that the computer con-
sumes itself in the process of computing, thus not allowing us to alter a
configuration and let the computer operate based on that.

Mechanically universal. No assembler function exists, and hence the tech-
nique is not mechanically universal.

Linguistically universal. On a similar note, no programming function exists,
whence bactoputing as understood here is not linguistically universal.

Localized control. The memory belonging to a computation resides in all the
solution candidate strands. As a result, increasing the size of the problem
instance requires us to increase the size of every component, which is
contrary to the requirements of localized control. Therefore, the method
has distributed control.

Generates all solutions. Bactoputing (as understood here) generates all pos-
sible solution candidates.

WHIPLASH PCR

A whiplash PCR-based computer consists of a library of all candidate solutions,
encoded as DFAs. Those DFAs that can reach their final states represent correct
solutions. Consequently, the components of the computer are the DFAs and
the enzymes catalyzing the whiplash PCR reaction.

Assembler function. Designing a whiplash PCR-based computer relies on
the generation of the entire solution space, and searching it by exploring
which ones allow for transitions to the accepting state. Simulating a
Turing machine using this method would require the machine’s memory to
be represented in the state set, as well as the generation of every possible
tape configuration for the machine. As the possible number of tape
configurations of a Turing machine is infinite, this cannot be done. Thus,
we conclude that whiplash PCR does not have any assembler function.

Programming function. No configuration that can be altered exists, because
the computer is the sum of all the parts that each represents an attempt
at a solution, combined with the machinery that filters away the incorrect
ones. Therefore, when changing the problem that the computer works on,
one changes the computer itself. Consequently, no programming function
exists.

Mechanically universal. Because there is no assembler function, whiplash
PCR-based computers are not mechanically universal.

Linguistically universal. Likewise, due to the lack of a programming func-
tion, whiplash PCR-based computers are not linguistically universal.

Localized control. A computer constructed using this approach does not
possess localized control; the “control mechanism” and the “tape” are both
present in the DFAs, as they encode their own transition table as well as
their current position.
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Generates all solutions. The approach generates all possible solution candi-
dates prior to filtrating away the wrong ones.

FokI RESTRICTION

A Fokl restriction-based computer uses as its components the transition mole-
cules that repeatedly chop off parts of the input DNA strands, and the Fokl
restriction enzyme itself. The method could in principle also be used with other
types of restriction enzymes, as long as they cut the DNA strands asymmetrically,
leaving sticky ends.

Assembler function. An assembler function for Fokl-based computers exists,
contrary to the previously discussed DFA method. This is due to the
fact that the method does not rely on the generation of all possible
solution candidates, rather, a set of transition molecules is created and the
input strings are mixed with them. In conclusion, the assembler function
constructs the set of transition molecules required to recognize the desired
input strings, represented as DNA strands.

Programming function. The method’s authors use the term “programmable”

in a different sense than what is meant in this context. Their notion of

programming is to construct an entirely new DFA capable of performing
one computation, or state change sequence, which corresponds to what
we would here call the assembler function.

It is not clear whether a programming function is possible on a Fokl-based
computer. If it was possible, however, it would be rather restricted:
Because the Fokl-computer is a DFA, we would have to encode a universal
Turing machine as a DFA, at the expense of an explosion of the state count.
This is impossible for a truly universal Turing machine, but possible for a
fixed-size approximation. That Turing machine would then only be able
to simulate Turing machines with encoding lengths up to some constant
n.

Mechanically universal. The technique is mechanically universal, as any
state transition table of a Turing machine can be encoded as transition
molecules in a Fokl-computer, and a finite subset of the Turing machine
tape can be represented as an increase in the number of states.

Linguistically universal. Given a programming function, as discussed above,
a FokI-based computer might be linguistically universal with strength n.

Localized control. The technique has distributed control, as the only way
to increase the amount of memory of an automaton is to alter all states,
that is, all the components with the exception of the restriction and ligase
enzymes.

Generates all solutions. A Fokl-based computer does not generate the entire
solution space.
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DEGREES OF AUTOMATION

Some of the computing techniques mentioned here have automated methods
of assembly. This does not mean that every implementation of the techniques
actually used an automaton which carried out the work of assembling the
components of the computer, rather, it is possible to build such a device.

Some of the authors of the techniques mentioned above use the quantity
“laboratory steps” to describe the difficulty or complexity of setting up or
executing a computation. The notion of a laboratory step is intuitively defined
as the basic actions that a laboratory assistant needs to do in order to perform
the method.

Even though the quantity “laboratory step” is not exactly defined, it does
provide some impression of the complexity of a method. When building a
machine capable of assembling biological components, it must also perform
the laboratory steps that were previously performed by humans, for instance
as a “lab-on-a-chip” implementation. Hence, it does make sense to consider
laboratory steps, but the focus must be wider than only on the somewhat vague
notion of a “step,” as other factors are relevant too. We attempt to consider
some of these “steps” from three different perspectives: The amount of material
required, the amount of time required, and the scalability of the steps.

e Adleman notes in his 1994 paper that the number of laboratory steps grows
linearly in the problem size [3]. However, a laboratory step can in this
case be the performing of PCR, a process which takes time measurable in
minutes or hours. The entire solution space is generated, which required an
impractical amount of material for larger problem instances, as previously
mentioned.

e Sakamoto et al. note that several transition steps of a whiplash PCR-based
DFA can be considered as one laboratory step, thereby making the required
amount of laboratory steps independent of the problem instance size
[0g9]. However, like the Adleman—Lipton method, this method relies on
the generation of the entire solution candidate space. This material
requirement turns problematic for larger problem instances, both in the
sense that too much DNA is required, but also on the time scale: generating
solution candidates takes time.

e Qian and Winfree report that for their implementation of a circuit comput-
ing the square root of a four-bit number [88] they required: Approximately
one week of preparation time, wherein different DNA complexes of the
construction were annealed and purified; one hour to assemble the circuit;
five minutes to input data (mixing input strands in the test tube); and
finally up to 10 hours waiting until the results could be read out using
fluorescent molecules. In total, it took about eight days to compute the
square root using that method.

4.8 MAIN PROBLEM

We conclude the discussion of the blob model with an explicit formulation of
the main problem related to the blob model, viz., that of its implementability:
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o Which implementation substrate is best suited to implement the blob model?

— Which implementation substrates can implement a programming
function?

— Which implementation substrates can construct a linguistically uni-
versal computer?

From the preceding discussion and Table we get the impression that, of
the techniques discussed here, biological Boolean circuits, DNA self-assembly,
and FokI restriction stand the best chance of becoming an implementation
substrate for the blob model, as these techniques may be able to possess the
characteristics that are special for the blob model, which the Adleman-Lipton
method, for instance, cannot.
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5.1.1

IMPLEMENTATION SUBSTRATES

In this chapter we present the implementation substrates from the previous
chapter as a basis for an implementation of the blob model, and discuss the fea-
sibility of such an implementation. The treatment considers the approaches that
Table indicates are possible implementation substrates: DNA self-assembly,
biological Boolean circuits, and Fokl restriction.

REQUIREMENTS IMPOSED BY THE BLOB MODEL

In order to be able to implement the blob model, there are some basic “core”
operations that an implementation substrate must be able to do. The viability
or realizability of the blob model given a specific substrate will be discussed
based on the dimensions listed below.

INSTRUCTION LABORIOUSNESS HIERARCHY

When attempting to assess whether a given substrate or technique is usable
for implementation purposes or not, it is convenient to have some sort of
“laboriousness hierarchy” of the blob instructions. Thus, if we can build the
“difficult,” or more laborious, operations, we should also be able to build the “easy”
ones. Due to the experimental nature of the blob model, such a hierarchy is
necessarily informally described. The ordering of the instructions in a hierarchy
is new; the original article does not operate with such a distinction.

We classify the blob model instructions into six distinct classes of laborious-
ness. In the order of easy to more difficult:

1. The instruction EXT is the easiest instruction, as it does not perform any
actions.

2. The next level contains the instruction FIN. As it only serves a structural
purpose, allowing multiple fan-ins to blobs, it is deemed “easy.”

3. The instruction CHD.
4. Instruction SCG.
5. Instructions SWL, SBS, SWP1, SWP3, and JN.

6. The jump instructions JCG and JB along with the instructions DBS and
INS.

We see that the easiest instruction which also performs some interesting task
(that is, something else than propagating control flow or halting the program)
is the SCG instruction. This instruction is therefore used as a “litmus test” of
the viability of an implementation substrate in the forthcoming analysis.
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REQUIREMENTS

Figuring out whether an implementation substrate is realistic must involve
discussions of how to do the following;:

Move the APB-ADB bond It must be possible to move the bond between
the ADB and APB, i.e., change which implementation substrate compo-
nents represent the APD and ADB.

Cargo storage. The substrate representing a blob must be able to store the
cargo bits described in the blob model.

Instructions. Naturally, every instruction in the blob instruction set should
be supported by an implementation, but the demonstration of how to
implement just one of them is a necessary first step. After the problems
outlined above have been addressed, the next step is to show how to
perform one of the basic instructions. As discussed above, we pick the
SCG instruction, specifically SCG 1 5.

Finally, the considerations outlined in Section [3-3] on page [3§] also apply
for the blob model, although some of them are implied by the considerations
outlined here: Memory I/O is implied by the cargo bits, signal propagation
is implied by the movement of bonds, and extendability is present given the
complete blob instruction set due to the existence of a self-interpreter capable
of “grabbing” new blobs. Moreover, some of the considerations on page [38] are
only meaningfully solvable given solutions to the “core” requirements of the blob
model enumerated here.

DNA SELF-ASSEMBLY

At a first glance, DNA tiles and blobs seem related. Both have four connections
with other elements: sticky ends on the DNA tiles and bond sites on the blobs.

However, techniques relying on properties intrinsic to the DNA structure
are poorly matched to the blob model because of the inherently distributed,
probabilistic nature of the computation steps utilized in DNA based models.
Specifically, the dependance on hybridization and denaturation processes are
problematic from the blob perspective.

LocAL HYBRIDIZATION AND DENATURATION

Mapping a blob to a DNA tile would require a fine-grained control over the
breaking and forming of hydrogen bonds between DNA strands. Specifically, if
the Watson—Crick pairing between, e.g., two 20-mers represent a bonding site
between two blobs, we need to ensure that only the bonding sites relevant for
the currently active program and data blob are changed during program flow.
As the forming and breaking of this type of bond are accomplished through
cooling and heating the DNA solution, respectively, this turns out to be difficult.
The problem is that we are breaking all bonds if we simply heat the solution.
Figure is an attempt to provide an impression of just how small an area
that must be heated, and whose surroundings must be unaffected (meaning
that they will not be affected more than a certain threshold). Based on the
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Figure 5.1: Let d be the diameter of a blob and s the length of a bond. The
area A with the size s-d must be treated such that the bond inside the rectangle is
broken or created by denaturation or hybridization, respectively, and everything
outside it remains unaffected. In [12g], the reported sizes are roughly d = 15 nm
and s = 5 nm. That gives an area with the size A ~ 75 nm?. Note that this is
under the assumption that the blobs are laid out in a two-dimensional layout. If
we instead consider the three-dimensional box between the two blobs containing
just the bond between them, we get a volume of roughly d? - s = 1125 nm?>.

dimensions reported in [12g], we assume that a blob has the diameter 15 nm
and that the length of a bond is 5 nm, necessitating an area of about 75 nm? to
be treated. This is assuming that the blobs are organized in a two-dimensional
structure. If that is not the case, we have to take into account all three spatial
dimensions, and we consider a volume of 1125 nm? instead.

Concept 5.1 (Local thermal change.) By a local thermal change of a volume
V' we mean the following: V contains two spheres, S and S’, such that S’
is entirely contained in S, and everything inside sphere S’ reaches a specified
temperature, while everything outside sphere S is unaffected.

The use of the sphere in the above definition is due to its being simple to
imagine; in any real-world application the “sphere” can be any other topologically
equivalent shape.

As we see, the size approximations of Figure depict local thermal where
the size of the outer sphere is about 1125 nm3, and the size of the inner sphere
is smaller but just big enough to engulf the entire bond structure. Of course,
the thermal change required in the scenario of Figure corresponds to that
required for the breaking or mending of one bond: Some instructions will require
local thermal changes of sizes larger than this, as more than one bond must
be broken and mended. Still, this just represents multiple applications of the
depicted thermal change.

This is probably the greatest obstacle posed by the DNA tile model. Relying
on the repeated heating and cooling seems unlikely to provide a passable way
to tile-based blob computers, because of the “bulk” approach inherent in the
method. Furthermore, an introduction of some kind of “local heating” capability
is improbable, as the heat will dissipate to the surroundings that contain other
bonds due to the small size.

One way this could be resolved, though, would be to adopt some kind of
“color coding,” coloring every bond between tiles/blobs uniquely by choosing
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N
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Figure 5.2: Illustration of the development of the execution of a simple blob
program implemented with DNA tiles, utilizing colorings to control the flow. All
bonds are marked with a crossing of the color codes, and the long light blue bond
is the APB-ADB bond. At timet =1, the APB has changed, but the ADB is
the same. The ADB has changed at t = 2, where the APB is unchanged.

different sticky end sequences. This would not change the fact that every single
bond would be broken and hybridized repeatedly, but it would (in theory at
least) cause the bonds to always be hybridized with the correct partner after
a heating process, that is, a bond that is not the APB-ADB bond remains
the same after a heating or a cooling process. An obvious limitation of this
solution is that a unique sticky end is needed for each blob, of which there
can be many (50.000 in the self-interpreter, for instance). Furthermore, the
test-tube environment in which the computer is likely to live is noisy, opening
up the risk for partly hybridized sticky ends between “unmatched” tiles.

Another way of “closing” the sticky end representing the site for the APB-ADB
bond for all tiles except the two correct ones could be to let the sticky end
representing bond site “0” be folded up to a hairpin structure. That way, all
bond site “0” representations that do not belong to the tile for the active pro-
gram blob would hybridize with themselves, thereby not forming any “wrong”
APB-ADB bonds. This, however, raises the question of how to unfold the sticky
end that is to take part in the next APB-ADB formation, something which
raises the original question of localized denaturation and hybridization once
again. Additionally, if we rely on denaturation we have yet to address the issue
with the bond sites “1”—‘g”; even though bond site “0” is a hairpin structure,
and therefore presumably safe from unwanted pairings, we must still ensure
that the rest of the bonds stay in place.

Apparently, the solutions sketched here still rely crucially on the ability to
have full, fine-grained control over the forming and breaking of the hydrogen
bonds between DNA strands.

5.2.2 MOoOVING THE APB-ADB BOND

In order to support moving the APB-ADB bond, the model has to be extended
to allow the sticky ends to “change color,” that is, change the sequence of
nucleotides. Figure illustrates the principle of color changing DNA tiles. It
is not clear how to do this, as problems regarding localization arises.

One possible method could be to use some approach based on restriction
enzymes, cutting the sticky ends in a specific way. This is a similar idea as
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Figure 5.3: Two DNA strands that are connected through their matching sticky
ends, represented as the green color. The cargo bits are carried in the blue and
red colors. The color schemes for the sticky ends and the cargo bit part must be
disjunct, in order to avoid overlaps that cause undesired connections.

in the Fokl-based automaton. Still, we must make sure that only the correct
strands are being cut. That is, the recognition site for the restriction enzyme
must be present only on the strands connecting the APB and ADB, and it must
be moved according to the program flow. Furthermore, relying on the repeated
shortening of the sticky ends is undesirable, as some blobs may be activated,
viz., become the APB, several times during an execution, and because data
blobs need to accessible multiple times, for instance when representing a counter
value.

CARGO STORAGE

A blob’s behavior is determined by its cargo bit value: The eight bits can encode
the instructions SCG, CHD, etc., each of which gives rise to different types of
behavior of the blob. The cargo bit value can also be interpreted simply as
an integer in the range o—255, under which construal the blob’s behavior is
constant: a data blob containing the integer 55 behaves no differently from a
data blob containing the integer 200.

Consequently, we need a way to store the blob’s cargo bits that sometimes
alters the behavior and other times does not. To this end, attaching a “module”
to a DNA tile does not suffice, as the behavior of the DNA tile is determined by
the colors on the four sides of it, which would not be affected by the attachment
of a module carrying eight bits.

Storing the cargo bits directly in the coloring seemingly allows the desired
coupling between the behavior of blobs and the behavior of DNA tiles. As there
exists 256 different cargo values, we require 256 different colors for the sides; the
different colors elicit different actions. Still, we must also address the scenario
wherein a DNA tile contains raw data, i.e., when the cargo bits are interpreted
as a number and not as an instruction. In that case, different kinds of tiles
may interact with it, forcing us to provide some common “connector” between
the tiles. Consequently, the sticky ends contain a part that is an encoding
of an eight-bit integer and another part that works as a more general sticky
end, allowing different kinds of instruction blobs to attach to data blobs with
different payloads. Figure [5.3]is an attempt to illustrate this notion of divided
sticky ends.

IMPLEMENTING SCG 1 5

Recall that the instruction SCG 1 5 sets the cargo bit number five of the ADB
to the value 1, and passes the control to the program blob at bond site “2” of
the APB, while letting the ADB stay the same. We enumerate a high-level
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view of some of the subtasks present in the execution of this instruction in a
hypothetical tile-based blob computer implementation:

1. Alter cargo bit number five of the ADB. If we adopt the idea that cargo
bits are encoded in specific DNA strands, as briefly discussed above, we

require a method to change the ordering of base pairs in substrands of
DNA.

2. Alter the cargo of the APB to reflect the fact that it is not active anymore.
This requires changing the high-order bit from 1 to o, and it imposes
similar problems as the changing of the cargo value of the ADB. However,
this could be remedied by limiting the cargo to be seven bits instead of
eight, and representing the active/inactive state of the APB in some other
way.

3. Release the APB-ADB bond. As discussed previously, this poses a serious
problem, due to the non-local nature of the available techniques for
breaking the bonds between tiles.

4. Form a new bond between APB’ (the blob at the end of bond site “2” of
the APB) and ADB. Again, this requires the ability to locally hybridize
DNA.

Hence, if the following three requirements were met:

e a method for localized hybridization and denaturation, capable of local
thermal change of volumes with sizes comparable to 1125 nm3;

e a method that permutes nucleotides in some controllable way, enabling us
to “change colors” on the sticky ends;

e some way to control the execution of the two techniques above through
the cargo bit configurations;

we would be able to implement at least the SCG 1 5 instruction and the CHD,
FIN, and EXT instructions due to the hierarchy introduced earlier.

EFFECTIVENESS

If we managed to solve the problem of how to do local hybridizations, we
would face another one: performance issues. Given that hybridization and
denaturation occurs on the gamut between approximately 40°C to 90°C, and
the change in temperature must be “slow” [, Chapter 10, p. 332|, an amount of
time unacceptable for any practical use would be required even for smaller pro-
grams, as denaturation and hybridization would be repeated for each performed
instruction. This is a general problem that applies to all techniques relying on
the massive parallelism inherent in the “melting” of DNA. Consequently, any
solution to the problem of local hybridization must also rely on some other
method than just heating and cooling to break and mend the bondings between
DNA strands.
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input output

Logic gate

Same type

Figure 5.4: A gate must be able to take as input the output of other gates if
large-scale circuits are to be built.

FEASIBILITY

As should be evident from the the above discussions, the DNA tiles approach
poses several challenging problems as an implementation substrate for the blob
model, causing it to be unlikely as a realistic candidate for implementation.
Specifically, the list of requirements formulated above seems unlikely to be
implementable, due to their localized nature.

BIOLOGICAL BOOLEAN CIRCUITS

In evaluating biological Boolean circuits as an implementation substrate for the
blob model, we choose those variants of circuits from the literature that have
the following properties:

1. a circuit should compute “unmanaged,” not requiring any interaction with
humans throughout its computation process, thus fulfilling the require-
ments of an automaton from Concept

2. the gates are “composable,” such that gates can be combined to represent
increasingly more complicated functions — illustrated with Figure [5.4}

3. the technique represents an attempt at designing a computer, thus having
focus on the computational aspects instead of the biomolecular aspects of
its uses;

4. an implementation has been demonstrated.

Based on these specifications, we choose: seesaw gates [88] [87], the gates pre-
sented by Seelig et al. [100], deoxyribozyme-based gates [106], and enzyme-based
gates [111 [78]. In the case with deoxyribozyme-based gates, specification two is
ignored.

Although other implementations of Boolean gates have been presented, we
have chosen to focus only on those presented here, as the other methods have
not been in accordance with the requirements formulated above, summarized
by Table

The gates are evaluated in the context of an assumed implementation of
the blob model in Boolean circuits, assessing the feasibility of using them as
components in the hypothetical implementation.
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Gate type Conflicts with

DNA-based [81] 182, ] Requirement one, due to the required interaction
with a laboratory assistant.

Surface-based [Tog] Requirement two: Two circuits cannot be com-

bined easily.
RNA-based [62, 35, 110, | Requirement three: Focus is on gene expression in

041, [126] in vivo cells, the natures of the methods “happen”
to mimic Boolean logic as a by-product.

Protein-based [114] Requirement four; no report of an implementation
is given.

Table 5.1: The gate types that are left out of the treatment, owing to their
conflicting with the requirements that have been specified.

SEESAW GATES

The seesaw gates by Qian and Winfree rely on the hybridization of “wire”-DNA
with special DNA strands, designed such that they can implement logic gates
when combined. Each gate is represented as a concentration of DNA strands
with specific sticky ends, where each strand that represents a particular gate
has the same “identifier” sticky end. Connections between gates are modeled
by the potential signals attached to the gate strands, such that gate A upon
activation releases a DNA strand that matches the identifier sticky end for gate
B, giving rise to a chain reaction. Thus, modeling connections is a question
of letting gates release signal strands that interact with the gates that they
should be connected to. In Figure [5.5] this can be seen in part B, where gate
“S2” connects to gate “S5.” Thereby the reaction is controlled, and the different
levels of the circuit are activated in the correct order.

The design of the seesaw gates results in a use-once restriction on the gates:
When a signal is emitted from a gate, it is “used” and hence unable to repeat
the process. Another consequence of the design is that gates are reversible:
Signaling strands between gates A and B can detach from gate A to attach to
gate B only to detach from B and reattach to A.

The fact that a circuit destroys itself upon use severely limits the seesaw
gates as an implementation substrate candidate. Even when given a hypothetical
mapping between seesaw gates and blobs, in which a blob is implemented by a
certain group of gates, and each gate have a unique marker, we are forced to
let the blobs be use-once as well, thereby eliminating any possibility for, e.g.,
looping structures. Consequently, such an implementation of the blob model
would not be as computationally strong as the “real,” theoretical blob model.

Another problem with the seesaw gates is that each gate requires a significant
amount of time to react and produce an output. Part C of Figure [5.5] shows
that an OR and an AND gate require three and six hours, respectively, before
the output is produced, assuming that “on” is defined as between 0.8 and 1.0
(which it is in [88]). The authors remark that the reaction times grow linearly in
the depth of the circuit. As our hypothetical blob implementation would most
likely consist of several gates for each blob, the time required to execute one
instruction would be impractical: Minimum six hours, under the assumption
that only a single-layered circuit with at least one AND gate is used.
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Figure 5.5: Seesaw gate implementation of either an AND or an OR gate, de-
pending on the threshold values chosen (denoted by th in part A). Part A shows
a schematic view of the gate. Inputs x1 and x4 enter gate 2, if they surpass
the threshold th gate 5 will propagate signals releasing the fluorophore ROX,
causing a molecule to fluoresce. Part B is a diagrammatical overview of the DNA
implementation where shared colors indicate Watson—Crick complementarity.
The connections shown in part A are represented by Watson—Crick complemen-
tarity. The strand labelled Thy 5.5 s a “threshold gate”; being more reactive
than the other seesaw gates it takes precedence in the reaction. This enables the
controlled reaction of gate 5, requiring a presence of signaling molecules beyond
the threshold concentration of Thos.5: A low threshold value causes gate 5 to be
activated upon the presence of only one of the inputs, whereas a higher threshold
value necessitates the presence of both inputs. Part C shows the required amount
of time for the reaction. Taken from [88, Figure 2].

SEELIG ET AL.’S GATES

The biological Boolean gates presented by Seelig et al. in [100] also rely on DNA
hybridization. In their implementation, a gate is a DNA strand with an exposed
single-strand, called a toe-hold, that hybridizes with the input, implemented
as a single stranded piece of DNA or RNA. This initiates a branch migration,
possibly exposing a new toe-hold that matches another input signal (Figure
part A). The final result of a gate is a single stranded piece of DNA that can
react further down the layers of the circuit.
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Figure 5.6: The DNA-based implementation of an AND gate by Seelig et
al. [too]. In part A, the DNA structure is represented diagrammatically, re-
vealing the toe-hold domains. Equally colored strands represent Watson—Crick
complementary strands, one of them drawn with a bold line and one with a
light line. The AND gate requires the presence of Gy, to expose the purple
toe-hold, after which the presence of F;, exposes the output Eo:. Part B is a
truth table, and lanes 1-4 of part D corresponds to rows 1-4 in the table. The
gel electrophoresis shown in part D confirms that the gate does perform as the
truth table indicates, producing Eo.: only in case 4. The illustration is taken

from [1o0, Figure 1].

The fact that a gate works by “dissolving” itself results in gates being
single-use entities. The restrictions regarding the seesaw gates therefore also
apply to this kind of gate, again making a hypothetical implementation of the
blob model using this type of gate severely limited in its expressiveness.

The time consumption per gate represents a less severe problem with this
gate type than with the seesaw gates, although more complex circuits still
require several hours to react [1o0, Figure 3]. In part C of Figure the
time required for any observable reaction in an AND gate is showed. Only
approximately a quarter of an hour passes from the addition of the inputs to a
clear fluorescence to be observable, clearly better than the six hours required
for the seesaw AND gate (Figure part C). The authors note that by using
shorter strands throughout the process, faster reaction times should be possible.
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identity function.

Figure 5.7: Deoxyribozyme-based gates. The loop structure blocks a certain
DNA strand, containing a detectable fluorophore, from attaching itself to the
stem of the gate. The input molecule, I 4 or Ig, causes the loop to open, revealing
a spot for the fluorophore-containing DNA strand. For the AND gate, both
input strands have to be present, such that both loops are opened. Illustrations
from [106, Figures g, 5].

DEOXYRIBOZYME GATES

Stojanovic et al.’s deoxyribozyme-based logic gates consist of specially crafted de-
oxyribozymes — DNA structures folded into shapes with looped structures [106].
A signal is represented as single stranded DNA, and signal recognition happens
when a loop in the gate is unfolded by the signal. The loops contain strands
that are Watson—Crick complementary to the inputs, so the presence of an input
will unfold a loop.

Using this type of gate it is only possible to create single-layer circuits,
due to the fact that input and output signals are different. The output signal
is always a specific oligonucleotide containing a fluorophore (labelled “F” in
Figure , making it impossible to discern the output of two different gates.
Consequently, one test tube can only contain functions that return a single bit.
By using mechanical means such as DNA wells to separate different parts of the
circuit from each other, this limitation can be circumvented, as demonstrated
for the tic-tac-toe-circuit in [107].

Due to the fact that no means of communication between gates exists, the
deoxyribozyme-based gates are impractical for larger circuits with, e.g., 100
components, as the connectivity of the components must be represented by
attaching more loops on a deoxyribozyme. This is also the approach taken
in [to7]. Therefore, this gate is not well-suited for a blob model implementation.
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A @id @ @D @D
Acetylcholine, Butyryicholine Choline 0, Hz0 NAD* Glucose
Acetate, Butyrate Betaine H20; NADH Gluconic

acid

OR AND

Figure 5.8: Figure from [78] demonstrating a circuit composed of four different
enzymes. The enzyme AChE reacts with either of the two inputs (acetylcholine
or butyrylcholine), producing choline. Thus, the presence of the product of the
reaction can be construed as a logical OR of the two original inputs. This output
reacts with the enzyme ChOx if a third input, oxygen, is present. Hence, the
product of the reaction catalyzed by ChOx is a logical AND of the reactants.
Finally, the two enzymes MP-11 and GDH together implement an XOR function:
On the absence of input D (glucose) and presence of the output of the AND
gate (HyOz) MP-11 catalyzes an ozidation of NADH to NAD™; when glucose
s present and H2Os is absent, GDH catalyzes the reverse reaction, turning
NAD™ into NADH. On the presence of both inputs, the reactions cancel each
other out, and on the absence of both inputs no reactions occurs. Therefore one
can read the output of the XOR function by studying the ratio of NAD™ to
NADH.

ENZYME GATES

The gates introduced in [11] work by exploiting the intrinsic properties of
different enzymes, creating an artificial counterpart to what is known as a
“pathway” in the cell. The technique is further explored in [78], demonstrating
the ability to create layered circuits, see Figure [5.8]

A major problem with this approach is its scalability. No systematic design
of signaling molecules is used, as is the case with DNA-based signals. Rather,
when designing a circuit using these gates, one is forced to find a set of enzymes
that are “compatible” with each other, meaning that the end product of the
reaction catalyzed by A is used as the start product of the reaction of enzyme
B. In other words, an enzyme type may only be used once in a circuit, assuming
that no physical compartments like membranes are used.

Constructing large-scale circuits will quickly deplete the reservoir of available
enzymes. The Comprehensive Enzyme Information System [27] lists 5,373
different enzymes (August 2011), so even with the generous assumption that
we are able to find a pathway utilizing every enzyme we cannot create a circuit
containing more than 5,373 gates. Of course, if all we want is to implement a
specific subset, which is to be enclosed in a membrane, the potential size of an
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enzymatic circuit grows, as multiple uses of each enzyme would be facilitate by
the compartmentalization.

One interesting property of the enzyme-based gates is that they can be
made to produce output in electrical form, possibly making it easier to mix
traditional circuits with enzyme circuits [135, [66].

MovVING THE APB-ADB BonND

Three of the gate implementations (the seesaw gates, the Seelig gates, and the
deoxyribozyme gates) have the property that a gate is dissolved upon use, making
a circuit constructed using them a single-use entity. A circuit representation of
the blob model must be able to perform the same computations several times,
for instance those associated with the APB-ADB bond. As that is impossible,
we cannot change the representation of the bond in a way that emulates the
“movement” of the blob model.

The fourth gate implementation, the enzyme-based approach, does not suffer
from this limitation.

CARGO STORAGE

Regarding cargo storage, problems related to the single-use nature of some
of the gates makes an implementation of a memory-circuit impossible, as a
memory that disappears upon use is rather impractical. The enzymatic gates
do not suffer from this problem, and could therefore in principle be used as
gates in, e.g., a flip-flop, although we would still face the problem that several
unique enzymes have to be used in the implementation.

IMPLEMENTING SCG 1 5

In a hypothetical implementation of the blob model with one of the gate
types described here, the subtasks involved in performing one execution of the
instruction SCG 1 5 are as follows:

e The coupling between a blob and a circuit must be made clear. A blob
will likely be some sort of membrane enclosing a circuit.

e The APB emits a signal indicating the action that the APB must perform.
This signal must only be intercepted by the APB, which is why the
implementation relies on some sort of encoding.

o After having received the signal, the APB alters its internal memory state.

e Control is propagated to the next program blob.

Each of these subtasks presents substantial problems in a circuit context.
Disregarding the single-use issues, we need a way to implement a memory, a
systematic method for encoding signals (which is problematic with the enzymatic
gates), and a method for controlling the execution by propagating the “activation
bit.”
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Type Multi-use  Multilayered Systematic encoding
Seesaw gates [88], [87] No Yes Yes
Seelig et al. [100] No Yes Yes
Deoxyribozyme [106] No No Yes
Enzyme [113 [78] Yes Yes No

Table 5.2: Overview of the problems with the different biomolecular Boolean
gates.

FEASIBILITY

The different versions of biological Boolean gates described here present some
rather unfortunate obstacles as implementation substrates:

e Some of the gates can only be used once, leading to single-use circuits that
cannot implement a blob (but, as noted in Section could conceivably
be cryptographically interesting).

e Others still are unable to describe layered circuits.

e The only gate type that is capable of both implementing circuits with
several layers and being used more than once (the enzyme gates) has the
property that no systematic signal encoding is used.

Based on these constraints (outlined in Table , biological Boolean gates
by themselves are not a feasible implementation substrate for the blob model.
This observation does not preclude the possibility that biological gates may play
a role in an implementation based on other principles as well; the conclusion
only concerns “pure” biological Boolean circuits.

FOKI RESTRICTION

Benenson et al.’s DNA automaton based on repeated use of the restriction
enzyme Fokl has computational power equivalent to that of a DFA. Hence,
for every regular language one can construct a Fokl-based DFA recognizing it
(in principle, barring physical considerations). As it is not a Turing-universal
form of computation, it cannot be used to implement the blob model directly.
However, that does not mean that the underlying mechanism in the Fokl-DFA
cannot be used in an implementation of the blob model.

MovING THE APB-ADB BonND

It is not clear how to move bonds in a Fokl implementation of the blob model.
Initially, we must attempt to clarify how the implementation is made, if a
discussion of bond movement is to be sensible.

Given a method to implement a single blob as a FokI-DFA, we still face the
problem of how to attach multiple blobs together, not to mention the issue of
how to alter these bonds. Simply mixing several DNA strands, each representing
an automaton, together in a large pot is likely to introduce a host of problems,
due to the inability of the transition molecules to discern between different
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[ {AB-3, AC-2, A1-0, 12-2} ] [ {AB-3, AC-2, C1-0, 12-2} ]

[ {AB-3, AC-2, B1-0, 12-2} ] [ {AB-3, AC-2, B2-0, 12-2} J

[ {AB-3, AC-2, C2-0, 12-2} ] [ {AB-1, AC-2, A2-0, 12-2} ]

3 2

0010

(a) (b) (c)
Figure 5.9: A blob program and two different types of bond automata, encoding
the bond state changes. The automaton in (b) encodes only the possible bond
transitions, thereby saving space, but it requires one to know the possible program
flow in advance. In (c) the automaton encodes all possible bond configurations,
i.e., all bonds in the program, giving rise to too many states (only a few are
shown). The states inside the grey box correspond to the states in (b). Transition
arrows are omitted because they go from any state to any other.

[ {AB-2, AC-1, A1-0, 12-2} ] [ {AB-2, AC-1, A2-0, 12-2} J

blobs. A problem similar to that of the localized hybridization of the DNA
tiles arises, again stemming from the requirement that only one bond may be
active. Thus, we require a method to restrict the execution of our imaginary
blob implementation.

A BOND AUTOMATON

Maintaining some special automaton, whose sole job is to control the position
of the APB-ADB bond, might solve the problem. Each blob pair would be
represented as a state of an automaton, and the current state of that automaton
controls which blob should be activated. The blobs are each assumed imple-
mented as some larger automaton that are not physically interconnected. Figure
[5.9] shows two rough sketches of two different bond automata.

A blob program has an astronomically large number of possible orderings
of its bonds. In the most extreme case, where self-bonds are allowed (thus
introducing the risk of disjoint parts of a program), the number of possibilities
for bond orderings are H?ZSz (4"2_j) . % for a program with n blobs. This is
observable when thinking about the the bonds as follows: Given n unconnected
blobs, we pick two bond sites of the 4n possible and add a bond. As a bond
has no direction, we have (42”) . % possibilities. The next bond must then be
placed between two of the 4n — 2 remaining bond sites, ultimately leading
to the product stated above. Of course, this is assuming that every possible
bond will be exhausted, so it is a quite loose upper bound. Still, the size of it
is discouraging; although a realistic program will never have exhausted every
possible bond site, it may still realistically use three out of four bond sites on
almost every blob for a heavily-branching program.

The upper bound translates into an astronomically large number for a
reasonably sized blob program. For instance, for 200 blobs the number of
possible combinations are in the order of 103719, Clearly, encoding the entire
space of possible bond combinations is infeasible; a DNA strand of length
approximately log,(10) - 3710 =~ 6100 base pairs would be required for each
possibility. Part (c) of Figure is an illustration of this situation, with only a
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(very) small subset of the possible bond combinations drawn.

Instead of encoding elements of the space containing all possible blob config-
uration vectors, we turn to the encoding scheme in which we equip each blob
with a unique identifier and use these to encode bonds. Each bond encoding
consists of two blob identifiers and one integer in the range from one to four
that indicates the bond site. For a 200-blob program, this encoding requires
g base pairs on a DNA strand, as the blobs require four base pairs each to
uniquely identify them and the integer requires one base pair. Again assuming
that we have some implementation of the blobs present, we could implement
the bond change using transition molecules that matches a bond-encoding DNA
strand and releases a new DNA strand that encodes an altered bond. In part
(b) of Figure this approach is sketched.

With this bond encoding, we require the presence of (i) the correct transition
molecules, and (ii) the knowledge that only the correct one will be applied in
order to direct the program flow.

For the former requirement, the implementation must be able to synthesize
the transitions dynamically, as the generation of all possible transitions at
“compile time” requires a prohibitively large number of different molecules:
Representing a bond as described above, we have (n- (n—1)-42?)? ~ n* different
possible transitions, as there are n - (n — 1) - 42 possible bonds, from each of
which a transition to another bond can be made. Naturally, the large majority
of these transitions will never be used, as the active program and data blob
change in a restricted way, but because bonds can be altered programmatically,
we cannot know beforehand which bond transitions will be used. Moreover,
adding relative transition molecules like “go to the blob immediately below the
APB” does not alleviate the need for a unique representation of the APB. We
therefore need the entire set of transition molecules from the beginning.

For the latter requirement, we face the familiar problem of how to control
the reaction between the restriction enzyme and the DNA strands, such that it
does not run amok. As can be seen, none of the two requirements stated above
have straight-forward solutions.

PHysicaL BONDS

Moving the focus to an implementation in which blobs are physically adjacent,
connected by chemical bonds between DNA strands, we enter problems regarding
the distributed nature of DNA reactions in general. If the connection is physical,
we are basically in the same situation as we were with the DNA tiles, and
solutions must therefore be found to the same set of problems: We must
perform some form of local hybridization and a way to permute nucleotides in
some way must be present. Furthermore, we also require some form of control
over the Fokl enzymes, such that they only cleave DNA strands were they are
supposed to.

CARGO STORAGE

If we ignore the fact that blobs communicate and that they perform certain
operations based on their cargo bit value, instead looking only at the way the
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Figure 5.10: State diagram for an automaton implementing a four-bit memory,
which can only be manipulated one bit at a time. Every edge between S and S’
represents transitions S — S’ and S’ — S (arrow heads omitted for clarity).
The edge coloring represents the different transition symbols: Red swaps bit 1,
green bit 2, blue bit 3, and orange bit 4.

seven™ cargo bits are stored and manipulated, we obtain a state transition graph
in which each vertex represents a bit configuration and each edge represents
the flipping of one bit. In Figure such a graph is illustrated for a four-bit
memory. With n bits, the graph contains 2" vertices and Y, 1(7;) edges.
Hence, for seven bits we need 128 vertices and 448 edges, giving 128 states
and, because the transitions have directionality, 2 - 448 = 896 transitions in the
automaton.

A transition is associated with two states and a symbol, representable as
the tuple (S, 5", c). The transition graph of the automaton is regular,’ whence
we need n distinct symbols to disambiguate the transition table for an n-bit
memory. Consequently, the minimum number of bits required to represent a
transition molecule is 2-log,(128) 4 [log,(7)] = 17. A DNA strand with n bases
can represent 4" = 22" different strings, that is, it carries 2n bits. The length
of the transition molecules must therefore be at least 9. The recognition site
for FoklI is five bases long [17], making the transition molecules 14 base pairs
long. Note that this number is the information-theoretical minimum amount
required to represent the states and symbols. In reality, auxiliary base pairs
will be needed, due to spurious matches between DNA strands. For instance,
the implementation of a two-state two-symbol automaton demonstrated in [17]
employed transition molecules of length 10, 12, and 14 bases.

The automaton from [17] is only capable of accepting or rejecting an input
string. Once in an accepting state, the automaton is “used” and cannot perform
more transitions. A DFA that represents memory as described here does not
take a whole string as input, rather, it awaits symbols one at a time, each

*The high-order bit indicating the APB is ignored for now.
TEach vertex has the same degree.
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Figure 5.11: Sketch of a transition from state A to state B upon receiving
the symbol c. Bold letters indicate the Watson—Crick complementary strands.
Because the Fokl enzyme cuts the DNA double heliz asymmetrically, a spacer,
denoted “s,” is needed. Contrary to the original approach, illustrated on Figure
this DFA does not rely on an input string given at the start of computation.

causing it to do a transition to a new state. None of the states are accepting
states, and the automaton must be able to run indefinitely. For instance, the
instruction SCG 1 5 would cause the symbol that sets cargo bit five to the value
1 to be emitted and read by a memory automaton.

As the blob emitting the “set cargo bit n to 1”-command does not know
the value of the data blobs memory, the transition symbols must be associated
with each bit position. So, the state S having seven incoming and seven
outgoing edges in the transition graph would uniquely associate with each
symbol a specific transition, and, crucially, the same symbol modifies the same
bit position regardless of the contents of the memory. It may be needed, though,
to introduce two symbols for each transition edge, such that SCG 1 5 does
not accidentally set bit five to o if it is already on. Figure illustrates the
different symbols with differently colored edges, albeit with the same symbol
for both directions of each edge.

A MEMORY AUTOMATON

A potential implementation scheme for the cargo bits is sketched on Figure
The current state is represented as a DNA oligonucleotide. After the symbol is
added, both state and symbol molecule hybridize with the transition molecule
which matches that particular state/symbol combination, whereafter the re-
striction enzyme cuts the DNA strand and a new state molecule is released.
FokI cuts the helix nine and 13 base pairs removed from the recognition site,
so the combined length of the state molecule and the symbol molecule is nine
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base pairs, equivalent to 18 bits. This exceeds the number of bits required to
represent one state and one symbol in the equations above, so it is enough.
However, it might be beneficial to reduce the cargo size to, e.g., six bits, to
allow for better encodings that can eliminate spurious DNA matches.

PROBLEMS

The cargo storage method suggested here is only a sketch. Several issues have
to be addressed before it can be ready for an actual test.

e First of all, a problem arises when the DFA has to choose the correct

transition molecule: Each molecule is associated with a state/symbol
combination, but the state is contained in the DFA prior to the addition
of the symbol. Thereby we risk that the state molecule partly hybridizes
with some other transition from the same state. If it did so, the correct
transition molecule would not be activated.

To avoid running the risk of hybridizations between memory state DNA
strands, we must choose an encoding scheme that minimizes the amount of
Watson—Crick complementarity between the states, lowering the number
of bits that can be packed into each state molecule. A simple way of
doing it is to let every second base be fixed to the same nucleotide and
encode the state in the other half of the bases. As all the state molecules
would have the same fixed bases, the states would be non-Watson—Crick
complement in at least half of their length.

After a successful transition, the transition molecule is spent and cannot
be reused as it is. Accordingly, we either need a method to remove
the spent transition molecules to reduce clutter, or we must be able to
make them usable again. If the former solution is used, there could lie
a problem in that all the transition molecules must be present in “large
enough” quantities. Alternatively, new transition molecules could be added
manually during the lifetime of the memory automaton.

The suggested implementation described above focuses only on how to
adapt a Fokl-based DFA to function as a seven-bit memory device. Hence,
it does not take into account how to differentiate between different blobs. If
each blob is made entirely like this (assuming that a method for controlling
the behavior of each blob is found), and if they all exist in the same sphere
(test tube, e.g.), they must necessarily either be physically separated in
some way, or use unique encodings for states and symbols. The latter is
infeasible, as the number of blobs would cause an explosion in the number
of bits required to encode the states, far exceeding the 18 bits theoretically
possible with the transition molecules.

IMPLEMENTING SCG 1 5

We continue the pattern laid out, using the SCG 1 5 as a test object of imple-
mentation.

1. Acquire the ADB somehow. If the first one of the two discussed methods

to manage the APB-ADB bond is used, we either require a reliable method
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to let blobs synthesize transition molecules online, or we synthesize all of
them a priori, thus requiring a way to ensure that not all of them react
simultaneously. If instead the latter of the two mentioned methods is
used, a physical bond between the blobs is established, presenting the
previously discussed problems related to that.

2. Having established the contact between APB and ADB, the APB sends
the signal “5,” to the active data blob’s memory automaton, either using
an encoding scheme dictated by the transitions responsible for the bond
propagation, or relying on the physical connection between the blobs.

3. The ADB performs the appropriate transition in its memory automaton.

4. The next blob to be the APB is the one connected at bond site “2” of the
previous APB. Either we update the state of a bond automaton, or we
move a physical bond. None of these are easily done, as reflected in the
preceding discussions.

In summary, the issues that face a Fokl-based implementation can be listed
as follows:

e Controlled FokI-reactions, so the correct transition molecules are chosen.
e Separation between different blobs.

e Proper handling of spent transition molecules.

FEASIBILITY

Using a Fokl-based DFA to implement the complete blob model is not likely
to be possible, due to the problems illustrated in the preceding discussions.
Although, an implementation of the memory part of a blob does seem to hold
more promise, as the implementation sketch should illustrate. Further looking
at FokI-based approaches is therefore not entirely discouraged, as it may be
able to play a part in conjunction with other methods.

Finally, it must be noted that while we have focused here entirely on the
enzyme Fokl, several other restriction enzymes with similar capabilities exists.
Recall, for instance, that Shoshani et al. used the enzymes Ncol and Pstl to
produce phenotypic output in their DFA implementation [102].
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As none of the three established methods examined in the previous chapter
appears to present a viable implementation substrate for the complete blob
model, we turn now to a discussion about a theoretical implementation scheme,
one that appears “biological,” but without any experimental track record.

In the sketch of this implementation, the blob model is slightly altered, as
the three constraints mentioned in the beginning of Chapter [f] are unfulfilled.

ARTIFICIAL CELLS

Handcrafting artificial cells that represent blobs more directly could be a possible
implementation strategy. Such artificial cells would consist of a membrane
encapsulating the machinery that makes the blob work. The machinery could
contain elements from the previously implemented methods.

MAKING BLoOBS PHYSICAL

The intuitive interpretation of the blob model, in which blobs are physically
connected, need not be the only one. In the following, we will depart from this
understanding of the model.

The main idea is to look at the blobs as nodes in a tiny mesh network,
in which bonds are represented by signals emitted from each blob. Without
violating that analogy, we may add the additional requirements that some of the
nodes are “data nodes,” representing the data blobs. It is important that they
are not implemented differently than the nodes representing the instruction
blobs if we are to maintain the hallmark of the blob model: the equivalence of
software and hardware.

In such a setup, two different molecule families are present: The signaling
molecules that play the role of the the signals described above, and the blob
molecules, that implement the blobs.

Each blob molecule in the network described above must be capable of
several different things:

e Receive a signal, i.e., the molecule released by one of the surrounding
nodes, and perform some action only if the node matches the signal.

e Store cargo bits in some structure.

e Implement molecular machinery capable of reacting based on the contents
of the cargo bits. In other words, something capable of 128 different
instructions must be present (the high-order bit is unused in the instruction

set).

e Let the behavior of the machinery create a new batch of signal molecules
that are introduced to the surroundings.

83
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(a) Blob A releases a signal. (b) Blob C reacts. (¢) C is altered to C’, and
releases a signal receivable by
B.

Figure 6.1: Signaling between blobs. The physical bonds are absent, and are
instead implicitly contained in the synthesis of the diamond-shaped signaling
molecules. Blob A does something with blob C, turning it into C’. Subsequently,
blob C' tells blob B that it has become the APB, an information that may be
contained in message AC. This process is repeated over and over, causing B to
receive BC' and release BD, which again causes D to receive BD and release,
e.g., D'E.

PrOXIMITY

In order for the signal molecules to be able to propagate properly, the blobs have
to maintain some maximum-proximity invariant. If the blobs are distanced too
far apart in the solution, there is a risk that the signal molecules either cannot
reach their targets, or that they do so too slow. Any blob can communicate
with any other blob by properly rearranging their bond information, so all blobs
must be packed together closely. Making the blobs stick to each other could
solve the problem, as any blob program would clot and form a ball-like structure.
The method for gluing together blobs must allow for signaling molecules to pass
unhindered between the blobs.

MovING THE APB-ADB BonND

The APB-ADB bond cannot be moved explicitly, as it is not physically present
in the implementation. Rather, it is a result of the combined behavior of the
released signaling molecules. The “movement” of the bond is accomplished by
controlling the released signaling molecules such that the correct blob reacts on
an released signal.

A strategy for this is to follow a “call-response” pattern, illustrated with
Figure in which one instruction blob releases a signal at time %, followed
by a new signal released by the affected data blob at time ¢;, which in turn
affects the next program blob that releases a new signal at time ¢5, and so on.
Thus, every signal is either released by an instruction blob and received by a
data blob, or released by a data blob and received by an instruction blob, fitting
well with the notion that data and instruction blobs are equal.

The call-response signaling strategy introduces the problem of how to discard

“used” signals, i.e., signals that have been received and acted upon properly.



6.1.3.1

6.1.4

6.1.5

6.1. ARTIFICIAL CELLS 85

The problem is that of n signaling molecules, the n — 1 that did not reach
their target cannot suddenly self-destruct because one signal was successful in
reaching its destination. Assuming that signals always either cause no action,
or causes some action at the desired target blob, one could implement a “fence”
around the blob program, consisting of reactants that neutralize any signaling
molecule. Thereby all signals would be discarded automatically when they got
too far away from the program itself.

MAINTAINING A SINGLE APB-ADB BOND

One must be able to guarantee with some reasonable probability that only one
blob is reacting at any time, causing no more than one APB-ADB bond to be
present. As the activation bit is interpreted as a kind of baton, contained in the
signals being passed between blobs, we can reduce the problem to guaranteeing
that no more than one blob possesses a baton.

Due to the presence of more than one signaling molecule, a blob will have
to wait some amount of time before emitting a new set of signals, to allow
for the unused signaling molecules to be removed, or to let them be distanced
adequately far away.

If the signaling molecules were designed such that they carry electrical
charge, we could force them through the blobs using a technique similar to a
gel electrophoresis: After emission, all signaling molecules are led from side to
side of the solution using an electrical field in which the anode and cathode
are repeatedly interchanged. During this movement, every blob is visited,
and the target blob has received its signal. Thus, after the last movement
of signaling molecules they can be destroyed. The idea relies upon the blobs
being non-charged, or at least that they move sufficiently slow during the
electrophoresis.

CARGO STORAGE

As it was the case with the DNA tile-based solution discussed previously,
the cargo bits must be stored in a way that allows the blob behavior to be
conditioned on their values.

The cargo can take 128 different values (the activation bit is unused), and a
slightly smaller number of instructions must be supported. If each instruction is
encoded as a specific biological Boolean circuit, we require 128 circuits. Naturally,
this requires the problems listed in the previous discussion of biological Boolean
circuits to have been addressed. Hence, 128 distinct molecules are present in
each blob, and the blob’s cargo value is determined by an “on” marker that
resides on exactly one of 128 different molecules.

Another possibility would be to use a Fokl-based memory automaton,
designed in the manner outlined earlier.

IMPLEMENT SCG 1 5

Like before, we study the requirements to implement the SCG 1 5 instruction,
as it is the least complex instruction that performs moderately complicated
work. As noted earlier, although the EXT instruction is the simplest in the
previously described hierarchy described, it does not perform any “real” actions,
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as its only role is to halt the entire process.

To implement SCG 1 5 the following is needed:

1. The blob for SCG 1 5 releases a number of signaling molecules containing

the identifier for the ADB, the identifier for the subsequent APB, and the
instruction code.

. All blobs except the ADB ignores the signal. The ADB consumes it and

alters its payload, i.e., moves the “on” marker to another cargo value
molecule, or fires a signal to its FokI-based memory.

. The ADB releases a new signaling molecule, targeting the subsequent

APB that was obtained from the previous signal.

Accomplishing these tasks poses several challenges to the implementation.

The following is an enumeration of some of the problems that would have to be
solved, if an implementation of the blob model should be realizable:

Every blob needs a unique marker that is used in the signaling molecules to
target the blob. For large programs, this could be a problem. Furthermore,
the number of different markers required also grows in the input size,
because the data blobs also need markers.

Some kind of representation of the action to be performed must be
transmitted in the signal molecule.

Each blob must be encapsulated in a membrane-like structure, allowing
only signal molecules with a specific marker to pass through. This resem-
bles the way molecules interact with “real” cells, although we are presented
with the problem that each blob is uniquely addressable.

A set of “memory molecules” must be designed, some of which encodes
actions, like setting a bit.

Synthesis of new signal molecules, conditioned on the output of the acting
memory molecule, has to be performed in the blob, and the synthesis
must produce an adequate amount of signaling molecules, to ensure that
the target blob is hit by one of them.

The benefit of this method is that the reliance on forming and breaking

of physical bonds has been removed, causing instructions such as swap to be
easier implemented, given that the requirements mentioned above have been
met: Swapping bond sites is now a question of equipping blobs with new marker
molecules that they attach to their emitted signaling molecules, a situation that
is arguably less complicated than the controlled physical displacement of blobs
and bonds.
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MARKER MOLECULES

Every blob molecule is associated with a unique marker molecule, e.g., a DNA
strand containing a unique base pair sequence. However, every blob need not
know the markers of all the other blobs, due to the adjacency criteria in the
design of the blob model. For any blob, it is enough to only know the markers
of the blobs connected to it. For the swap instructions a few more are needed,
but still not the entire set of blobs. The set of markers known to a blob must
be changeable, as the bond sites may be altered.

New blobs must be associated with markers that are not present in any
of the existing blobs. The probability of randomly generating a new, unique
DNA strand rises with the length of the strand, so we must choose signaling
molecules of sufficient size.

Recall that a DNA strand with n base pairs can store 2n bits. Choosing
DNA strands with a length of 25 base pairs should therefore give 2°° differ-
ent combinations. Therefore, assuming that marker molecules are recognized
perfectly, a blob self-interpreter consisting of 50,000 blobs is able to use (i.e.,
address) 2°0 — 50,000 ~ 2°° blobs, equivalent to a memory of 2°° - 7 ~ 896 TiB.
Due to the fact that spurious recognitions, situations where a DNA strand is
interpreted as another strand, may appear, some restrictions on the encoding
of the DNA strand must be present.

EFFECTIVENESS

We make the somewhat strong assumption that a blob is circular, all signaling
molecules from a blob are emitted at the same time, and that they travel radially
outwards with equal speed, such that they form increasingly larger concentric
circles as time passes. Furthermore, we limit ourselves to an argument in only
two dimensions.

Let the number of blobs be n and let the diameter of a blob be d. For the
sake of the argument we pick one specific blob at random from an imaginary
collection of blobs. The maximum distance to another blob is denoted Q. At
emission time, the signaling molecules are on a circle with the circumference
7 - d, and the average space between each molecule is b ~ ”T'd. When the circle
containing the molecules reaches the farthest blob, the average distance between
each signal is A ~ w. If the signaling molecules are to reach any of the
blobs, the spacing between them must be consequently smaller than A.

Now, if we arbitrarily assume that a blob is ten times larger across in
this implementation than in the DNA tile-based one, we have d = 150 nm.
Furthermore, assuming that a blob program consisting of 1000 blobs is con-
tained in a circular area of 1000 - (7 - 802 nm) ~ 2 - 10° nm?, with the radius
r= (@)% ~ 2-10% nm, we have that the maximum distance between two
blobs is @ = 4 - 103 nm. Hence, if 100 signaling molecules are emitted, the
average distance between each blob must be smaller than approximately 67 nm.
Our previous assumption, placing the blobs in a circular area, gave us a spacing
of 10 nm.

However, the signaling molecules may not be able to freely penetrate any
blob, but rather be forced to route around them. If we for the sake of simplicity
imagine that the blobs are arranged in a quadratic lattice, we obtain a sort of
taxicab geometry, in which every route from A to B is equally long, assuming
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Figure 6.2: Two-dimensional jellyputer. The blobs (circles) are fixated in a
grid, and the signaling molecules can move freely between the blobs. The ADB
(dark blue circle) has emitted a set of signaling molecules (light blue diamonds).

that it does not leave the bounding box defined by A and B, and that it does
only move forward. This gives rise to the notion of a “jellyputer,” containing the
blobs fixated in a gel but letting the signaling molecules move freely. Figure
is an illustration of such a jellyputer, limited to two dimensions. The idea of
fixating larger elements in a grid-like structure is not unfamiliar, as it is also
part of the underlying idea in agarose gels used for electrophoresis, although in
them the molecules (DNA strands) do move because of the current.

FEASIBILITY

Accurately assessing the feasibility of the approach suggested here is by its
imagined nature impossible.



CONCLUSION

The blob model was described as a “biologically plausible” computational model
upon its introduction. After having studied the literature on biomolecular
computers, created a formal definition of the “natural programmability” that
was the raison d’étre of the blob model, and chosen six concrete biomolecular
methods based on that classification, we are forced to conclude that the biological
realizability of the blob model is considerably more difficult than indicated in
the description of the model. Hence, an answer to the question formulated
at the top of page [ixl must be in the negative: No, the blob model cannot be
realized using the techniques so far used for biomolecular computation.

Based on the classification of computers into either linguistic universality or
mechanical universality, three established biomolecular computing techniques
were chosen as possible implementation substrates, one of which consisted of
four subtypes.

DNA self-assembly. Using self-assembling DNA tiles required us to be able
to do the following, none of which is currently possible with the techniques
found in biomolecular computing literature:

e perform localized hybridization and denaturation of DNA strands;
e permute nucleotides in a controlled way;
e control the behavior of a DNA tile through cargo bits.

Boolean circuits. The four biological Boolean circuits inspected presented
various combinations of the following limitations:

e the gates could be used only once, making it impossible to construct,
e.g., a looping structure;

e the gates were unable to be composed into a multilayered circuit;

e the signaling between gates was unsystematic, presenting no simple

way to increase the number of gates.

FoklI restriction. We described a rudimentary sketch of a way to implement
a memory device, but going from there to a blob implementation remains
problematic, as we need at least the following:

e signaling, i.e., transition molecules must be constrained to only one
DFA, lest different blobs interfere in undesirable ways;

e localized control, ensuring that only one specific DFA acts at any
time;

e removal of spent transition molecules;

e description of more than just the memory part.

This result naturally leads us to consider what to do with the blob model.
The choice is between:

1. designing an entirely new model, in the hope that it will fare better with
respect to implementability;
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2. continue searching for a viable implementation substrate for the current
incarnation of the blob model;

3. alter the blob model by identifying the weak spots related to its imple-
mentation and attempt to remove them.

By altering the blob model we run the risk of removing its Turing-universality
entirely, thereby violating a premier design criterion of the model. Nonetheless,
we find that option three is the most desirable route to take, as it provides a
platform to continue from, instead of throwing everything aboard like in option
one. Moreover, if prudence is taken in changing the model, Turing-universality
need not disappear from it. Besides, a weaker computational model possessing
some of the desirable features of the blob model, like programmability, but
implementable, could very well be of use. Option two is not a good route to take:
Even though we have not treated every single possibility from the literature, the
ones we have treated have revealed problems that are highly likely to reappear
in the context of other implementation substrates.



FUTURE WORK

Seeing that we probably cannot construct the blob model in any realistic
biomolecular substrate, we turn to the question of what to do next. The
fundamental question is, whether it is at all possible to achieve what the blob
model set out to do, namely the creation of a linguistically universal computer
using biomolecular substrates. An answer to this determines the main principal
component in the course to take from here on: Firstly, we focus on a situation
where the answer is in the negative; secondly, we focus on the situation with a
positive answer.

DISCARDING UNIVERSALITY

Accepting the loss of Turing-universality in the sense aimed at with the blob
model, i.e., linguistic universality, leads us to consider weaker computational
models and whether there would be any point in exploring them.

Weaken the model. The drug-delivering Fokl-based DFAs demonstrate an
application of weaker computational models. Inspired by this, a next step would
be to alter the blob model, weakening its computational power, until a more
implementable version of it can be constructed.

e An interesting route is to construct a non-universal domain specific lan-
guage (DSL) for medicinal purposes, capable of being used as a targeting
component for medicine by both specifying and indicating the required
preconditions necessary for the medicine’s proper usage. Of course, a
Turing-complete DSL would be even more interesting, but likely also to
be more difficult to build. Specifically, exploration of the relative ben-
efits of regular languages, context-free languages, and context-sensitive
languages in a medicinal usage scenario would be required; how strong a
computational model do we need in order to be able to do “interesting’
things in relation to medicine?

)

e Leaving the medicinal applications, more knowledge about how “natural”
the various language classes are would help in further developments. For
instance, is the class of regular languages somehow “more natural” than the
context-free languages, in the sense that existing processes in Nature can
be said to belong to the class, and if so, why? Including space complexity
would be an obvious way to further that discussion.

Focus on mechanical universality. It is possible that we can obtain inter-
esting properties by looking at a version of the blob model that is mechanically
universal only. That entails altering the blob model to remove the traits that
enable it to be programmable. Given a cheap, systematic method to synthesize
these “blob circuits,” a shortcut to programming them would be to program the
process that synthesizes the blob construction. Doing so would remove the blob
model’s ability to perform interpretation of programs in the most literal sense,
but as that is unnecessary for many applications, it would not be a great loss.
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Altering the model to remove programmability from it requires an under-
standing of which parts of the model it is that provides this feature. As discussed
earlier in this thesis, part of the reason appears to be the straight-forward addi-
tion of extra computational power, viz., more memory to the system.

KEEPING UNIVERSALITY

If we refuse to give up on the original goal of the blob model, we must create a
new “biomolecularly plausible” model, only more plausible than the original.

Which “instructions” are required? To program a computer, a series of
instructions must be authored somehow. The format of these vary, and each
of them represent one “basic” operation of the machine, assuming a reasonable
level of abstraction. The ability to perform more than one basic operation is not
unique to computers. A simple mechanical contraption with two levers, each
one opening a different door with one of them hiding a lion, has at least two
basic operations, namely the opening of one or the other door. The operations
have hugely different consequences, but obviously this contraption cannot be
programmed. There appears to be some sort of “critical mass” of basic operations
that must be present in a system before it can be said to be programmable in
an intuitive sense.

However, the nature of operations vary considerably, whence it would be
desirable to formulate some minimum requirements of operations. Having
such a list of requirements would likely also make it easier to study natural
processes and determine whether they can be used in a computational scheme.
Unfortunately, making such an axiomatization of computability would entail
formulating the Church—Turing Thesis in a mathematically rigorous way; a
feat that has not been done in the history of computer science. We could limit
the admittedly ambitious scope, seeking a formalization of specific types of
processes. This is akin to the various formalizations of DNA strand operations
that has been done previously, but with a slightly more advanced ambition.

Concrete implementation problems. Regarding the plausibility of a new
blob model, we note that two problems recur in the discussion of the blob
model’s implementability:

e As a consequence of the fact that signals are “floating” around instead of
moving in discrete copper lanes, much higher requirements to the sending
and receiving of signals exists. Every signal has to encode its receiver,
and every possible receiver must be able to discard every signal but the
one appointed to it. Furthermore, to ensure that a signal actually reaches
its destination, some minimal concentration must be present. We are thus
presented with two main problems:

— a sender has to be able to synthesize signals in large quantities with
unique labels that specify their destination;
— a receiver must be able to quickly sift through a bombardment of

signals to find a specific one.

These two appear to be fundamental problems with most biomolecular
computational models, and solving either one would consequently be a



FUTURE WORK 93

great improvement. There are fundamentally two approaches one could
take in an attempt to address the problems:

— minimize the amount of signal processing required to recognize a
message, either by minimizing the number of signals sent or by
designing effective ways to discern signals;

— change the signaling such that it is fixed, thereby eliminating the
need for differentiated signaling.

e Cargo bits as they are defined in the blob model appear to fit poorly with
the available biomolecular techniques. Of course, the notion of storing bits
in some biological material is not at all strange; the genetic code should
be sufficient proof thereof. However, the problem with the cargo bits in
the blob model seems to be their ability to determine the behavior of the
blob itself, thereby serving both as the memory storage and the actor.
We do need a memory of some sort, and a memory that can be read from
and written to repeatedly to boot, but it could also be contained in the
ordering of the bond sites on the blobs instead of in an explicit cargo bit
“module” inside each blob.

Exploring a version of the blob model in which the “cargo” of a blob was
an inherent, immutable property of it would remove the problem of how
to implement a memory device, at the cost of introducing the problem
of how to effectively represent memory change by alteration of the bond
configuration.

Simplify the instruction set. In the treatment of the various implemen-
tation substrate candidates, we have limited the discussion to the instruction
SCG 1 5, based on the reasoning that it is one of the simplest instructions,
and the successful implementation of which the realizability of the more com-
plex instructions rely. Noting that the prospects for implementing SCG 1 5
were rather poor, we must conclude that the situation for the more complex
instructions is worse. Even though the authors of the blob model claim that
the proposed instruction set is parsimonious, further research into reducing the
number of “weird” instructions would improve the chances for the model being
implementable in a biomolecular substrate. Especially the various versions of
the “swap” appear to be able to cause problems regarding implementability,
as they perform rather complicated operations. Removing those instructions,
we risk the breakage the blob model’s Turing-universality, and we are sure to
break the self-interpreter that has been constructed, due to its reliance on swap
instructions. However, it is not clear whether it is possible to construct another
version of a self-interpreter that does not utilize swap instructions.

BEYOND THE BLOB MODEL

Strand-Based computing. In the biomolecular world, strand-like structures
are found in many contexts: Polysaccharides, fatty acids, DNA/RNA, and
proteins are all examples. Being different, they still share the property that they
are all composed of simpler molecules attached in a chain-like fashion, albeit the
chain may be twisted (DNA) or folded in a variety of shapes (proteins). Seeing
this, a fitting question to ponder is whether this abundance of strands could
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be utilized in a new biologically plausible computational model. Additionally,
designing a grammar of strands such that a special family of strand combinations
has a well-defined catalytic property while the substrands themselves also encode
data would be interesting. Enabling computations by harnessing primitive
folding patterns in, e.g., chains of amino acids would be very interesting, not
least because the extension for a “natural interface” in relation to medicine
would be obvious, as the result of a computation would basically be a protein.

Promising routes. Lastly, we present a short, fuzzy list of possible routes to
take in future research and areas that we imagine will benefit from a biological
computing paradigm. The list is descendingly sorted on a (very) loose estimation
of the expenses associated with each item. The estimates are based around the
idea that the “wetter” routes are the more expensive.

@ For the majority of people, one of the most interesting application areas of
biological computing techniques is probably the development of medicine.
Even without Turing-universality there are likely to be exciting possibil-
ities: The use of DFAs to control drug release is a prominent example
of this.

@ “Smart materials,” like computing concrete,* able to alter internal prop-
erties as a result of decisions stemming from minuscule computational
elements embedded in it, could be very useful. A wild example: Imagine
that concrete had the ability change shape dynamically, altering its fun-
damental structure based on radio signals emitted by a central controller.
The computing devices in the concrete react to the radio signals and
performs a transformation of the molecular structure of the concrete as a
response, ultimately deforming the concrete.

@ Supposing one had a viable and implemented biological computational
paradigm in conjunction with an efficient method of letting that device
communicate with a classic computer, one would get the best from both
worlds: the “natural interface” of the biological device and the speed of the
electronic computer. The construction of research equipment for areas like
biotechnological and medical research would be an obvious use for this.

@ The development of biological models for computation need not be used
solely for the purpose of actually constructing such a computer. The ability
to make a clear connection between data and program in the manner
aimed at with the blob model could be useful in non-biological contexts.
For example, scenarios in which no single point of failure may exist could
possibly benefit from a blob-based approach, perhaps in concert with
distributed computing mechanisms.

@ Finally, introducing programmability in a biological implementation re-
quires the study of the relationship between programs, data, and the
“executing” machines. Determining these relationships exactly is interest-
ing by itself, as it is both a difficult problem as well as being fundamental
to computers in general — biological implementation or not.

*Hereby baptized “comprete.”
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