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Abstract
We present and illustrate Kleenex, a language for expressing gen-
eral nondeterministic finite transducers, and its novel compilation
to streaming string transducers with worst-case linear-time perfor-
mance and sustained high throughput. Its underlying theory is based
on transducer decomposition into oracle and action machines: the
oracle machine performs streaming greedy disambiguation of the
input; the action machine performs the output actions. In use cases
Kleenex achieves consistently high throughput rates around the 1
Gbps range on stock hardware. It performs well, especially in com-
plex use cases, in comparison to both specialized and related tools
such as AWK, sed, RE2, Ragel and regular-expression libraries.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics; D.3.2 [Language Classifications]: Spe-
cialized application languages; F.1.1 [Models of Computation]:
Automata

Keywords regular, automaton, nondeterministic, transducer, deter-
minization, streaming

1. Introduction
A Kleenex program consists of a context-free grammar, restricted to
guarantee regularity, with embedded side-effecting semantic actions.

We illustrate Kleenex by an example. Consider a large text file
containing unbounded numerals, which we want to make more
readable by inserting separators; e.g. “12742” is to be replaced
by “12,742”). In Kleenex, this transformation can be specified as
follows:

main := (num /[^0-9]/ | other)*

num := digit{1,3} ("," digit{3})*

digit := /[0-9]/

other := /./

This is the complete program. The program defines a set of nonter-
minals, with main being the start symbol. The constructs /[0-9]/,
/[^0-9]/ and /./ specify matching a single digit, any non-digit and
any symbol, respectively, and echoing the matched symbol to the

output. The construct "," reads nothing and outputs a single comma.
The star * performs the inner transformation zero or more times; the
repetition {1,3} performs it between 1 and 3 times. Finally, the |

operator denotes prioritized choice, with priority given to the left
alternative. An example of its execution is as follows:

Input read so far . . . and output produced so far
Surf Surf
Surface: Surface:
Surface: 14479 Surface:
Surface: 1447985 Surface:
Surface: 144798500 Surface: 144,798,500
Surface: 144798500 kmˆ2 Surface: 144,798,500 kmˆ2

The example highlights the following:

Ambiguity by design. Any string is accepted by this program,
since any string matching num /[^0-9]/ also matches (other)*.
Greedy disambiguation forces the num /[^0-9]/ transformation
to be tried first, however, and only if that fails do we fall back to
echoing the input verbatim to the output using other.

Streaming output. The program almost always detects the earliest
possible time an output action can be performed. Any non-digit
symbol is written to the output immediately, and as soon as
the first non-digit symbol after a sequence of digits is read, the
resulting numeral with separators is written to the output stream.
The first of a sequence of digits is not output right away, however.
Employing a strategy that always outputs as early as possible
would require solving a PSPACE-hard problem.

A Kleenex program is first compiled to a possibly ambiguous
(finite-state) transducer. Any transducer can be decomposed into
two transducers: an oracle machine, which maps an input string
to a bit-coded representation of the transducer paths accepting the
input, and a deterministic action machine, which translates such
a bit-code to the corresponding sequence of output actions in the
original transducer. The greedy leftmost path in the oracle machine
corresponds to the lexicographically least bit-code of paths accepting
a given input; consequently, disambiguation reduces to computing
this bit-code for a given input. To compute it, the oracle machine is
simulated in a streaming fashion. This generalizes NFA simulation
to not just yield a single-bit output—accept or reject—but also the
lexicographically least path witnessing acceptance. The simulation
algorithm maintains a path tree from the initial state to all the
oracle machine states reachable by the input prefix read so far.
A branching node represents both sides of an alternative where
both are still viable. The output actions on the (possibly empty)
path segment from the initial state to the first branching node can
be performed based on the input prefix processed so far without
knowing which of the presently reached states will eventually accept
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the rest of the input. This algorithm generalizes greedy regular
expression parsing [31, 32] to arbitrary right-regular grammars.
Regular expressions correspond to certain well-structured oracle
machines via their McNaughton-Yamada-Thompson construction.
The simulation algorithm automatically results in constant memory
space consumption for grammars that are deterministic modulo
finite lookahead, e.g. one-unambiguous regular expressions [19].
For arbitrary transducers the simulation requires linear space in the
size of the input in the worst case. No algorithm can guarantee
constant space consumption: the number of unique path trees
computed by the streaming algorithm is potentially unbounded
due to the possibility of arbitrarily much lookahead required to
determine which of two possible alternatives will eventually succeed.
Unbounded lookahead is the reason that not all unambiguous
transducers can be determinized to a finite state machine [13, 53].

By identifying path trees with the same ordered leaves and
underlying branching structure, we obtain an equivalence relation
with finite index. That is, a path tree can be seen as a rooted full
binary tree together with an association of output strings with tree
edges, and the set of reachable rooted full binary trees of an oracle
machine can can be precomputed analogous to the NFA state sets
reachable in an NFA. We can thus compile an oracle machine to
a streaming string transducer [4, 5, 9], a deterministic machine
model with (unbounded sized) string registers and affine (copy-free)
updates associated with each transition: a path tree is represented
as an abstract state and the contents of a finite set of registers, each
containing a bit sequence coding a path segment of the represented
path tree. Upon reading an input, the state is changed and the
registers are updated in-place to represent the subsequent path
tree. This yields a both asymptotically and practically very efficient
implementation: the example shown earlier compiles to an efficient
C program that operates with sustained high throughput in the 1
Gbps range on stock desktop hardware.

The semantic model of context-free grammars with unbridled
“regular” ambiguity and embedded semantic actions is flexible
and the above implementation technology is quite general. For
example, the action transducer is not constrained to producing
output in the string monoid, but can be extended to any monoid. By
considering the monoid of affine register updates, Kleenex can code
all nondeterministic streaming string transducers [6].

1.1 Contributions
This paper makes the following novel contributions:

• A streaming algorithm for nondeterministic finite state trans-
ducers (FST), which emits the lexicographically least output
sequence generated by all accepting paths of an input string
based on decomposition into an input-processing oracle ma-
chine and an output-effecting action machine. It runs in O(mn)
time for transducers of size m and inputs of size n.
• An effective determinization of FSTs into a subclass of stream-

ing string transducers (SST) [4], finite state machines with copy-
free updating of string registers when entering a new state upon
reading an input symbol.
• An expressive declarative language, Kleenex, for specifying

FSTs with full support for and clear semantics of unrestricted
nondeterminism by greedy disambiguation. A basic Kleenex
program is a context-free grammar with embedded semantic
output actions, but syntactically restricted to ensure that the
input is regular.1 Basic Kleenex programs can be functionally
composed into pipelines. The central technical aspect of Kleenex
is its semantic support for unbridled nondeterminism and its
effective determinization and compilation to SSTs, which both

1 This avoids the Ω(M(n)) lower bound for context-free grammar parsing,
where M(n) is the complexity of multiplying n× n matrices [40].

highlights and complements the significance of SSTs as a
deterministic machine model.
• An implementation, including empirically evaluated optimiza-

tions, of Kleenex that generates SSTs and deterministic finite-
state machines, each rendered as standard single-threaded C-
code that is eventually compiled to x86 machine code. The
optimizations illustrate the design and implementation flexibility
obtained by the underlying theories of FSTs and SSTs.
• Use cases that illustrate the expressive power of Kleenex, and a

performance comparison with related tools, including Ragel [65],
RE2 [62] and specialized string processing tools. These docu-
ment Kleenex’s consistently high performance (typically around
1 Gbps, single core, on stock hardware) even when compared to
less expressive tools with special-cased algorithms and to tools
with no or limited support for nondeterminism.

1.2 Overview of paper
In Section 2 we introduce normalized transducers with explicit
deterministic and nondeterministic ε-transitions. Kleenex and its
translation to such transducers is defined in Section 3. We then
devise an efficient streaming transducer simulation (Section 4) and
its determinization (Section 5) to streaming string transducers. In
Section 6 we briefly describe the compilation to C-code and some
optimizations, and we then empirically evaluate the implementation
on a number of simple benchmarks and more realistic use cases
(Section 7). We conclude with a discussion of related and possible
future work (Section 8).

We assume basic knowledge of automata [39], compilation [2],
and algorithms [21]. Basic results in these areas are not explicitly
cited.

2. Transducers
An alphabetA is a finite set; e.g. the binary alphabet 2 = {0, 1} and
the empty alphabet ∅ = {}. A∗ denotes the free monoid generated
by A, that is the strings over A with concatenation, expressed by
juxtaposition, and the empty string ε as neutral element. We write
A[x, . . .] for extending A with additional elements x, . . . not in A.

Definition 1 (Finite state transducer). A finite state transducer
(FST) T over Σ and Γ is a tuple (Σ,Γ, Q, q−, qf , E) where

• Σ and Γ are alphabets;
• Q is a finite set of states;
• q−, qf ∈ Q are the initial and final states, respectively;
• E : Q× Σ[ε]× Γ[ε]×Q is the transition relation.

Its size is the cardinality of its transition relation: |T | = |E|.
T is deterministic if for all q ∈ Q, a ∈ Σ[ε] we have

(q, a, b′, q′) ∈ E ∧ (q, a, b′′, q′′) ∈ E ⇒ b′ = b′′ ∧ q′ = q′′

(q, ε, b′, q′) ∈ E ∧ (q, a, b′′, q′′) ∈ E ⇒ ε = a

The support of a state is the set of symbols it has transitions on:

supp(q) = {a ∈ Σ[ε] | ∃q′, b. (q, a, b, q′) ∈ E}.
Deterministic FSTs with no ε-transitions and supp(q) = Σ for all q
are Mealy machines. Conversely, every deterministic FST is easily
turned into a Mealy machine by adding a failure state and transitions
to it.

We write q
a/b−−→ q′ whenever (q, a, b, q′) ∈ E, and E is

understood from the context. A path in T is a possibly empty
sequence of transitions

q0
a1/b1−−−−→ q1

a2/b2−−−−→ . . .
an/bn−−−−→ qn

It has input u = a1a2 . . . an and output v = b1b2 . . . bn. We write
q0

u/v−−→ qn if there exists such a path.
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Definition 2 (Relational semantics, input language). FST T denotes
the binary relation

R[[T ]] = {(u, v) | q− u/v−−→ qf}

where the ε-erasure · : Σ[ε]∗ → Σ∗ is ε = ε and a = a for all
a ∈ Σ, extended homomorphically to strings. Its input language is

L[[T ]] = {s | ∃t . (s, t) ∈ R[[T ]]}.

Two FSTs are equivalent if they have the same relational semantics.

The class of relations denotable by FSTs are the rational rela-
tions; their input languages are the regular languages [13].

Definition 3 (Normalized FST). A normalized finite state trans-
ducer over Σ and Γ is a deterministic FST over Σ[ε0, ε1] and Γ such
that for all q ∈ Q, q is:

• a choice state: supp(q) = {ε0, ε1} and q 6= qf , or
• a skip state: supp(q) = {ε} and q 6= qf , or
• a symbol state: supp(q) = {a} for some a ∈ Σ and q 6= qf , or
• the final state: supp(q) = {} and q = qf

We say that q is a resting state if q is either a symbol state or the
final state.

The relational semanticsR[[T ]] of a normalized FST is the same
as in Definition 2, where ε-erasure is extended by ε0 = ε1 = ε.

Proposition 1. For every FST of size m there exists an equivalent
normalized FST of size at most 3m. Conversely, for every normalized
FST of size m there exists an equivalent FST of the same size.

Proof. (Sketch) For each state q with k > 1 outgoing transitions,
add k new states q(1), . . . , q(k), replace the i-th outgoing transition
(q, a, b, q′) by (q(i), a, b, q′) and add a full binary tree of ε0- and ε1-
transitions for reaching each q(i) from q. In the converse direction,
replace ε0 and ε1 by ε.

Normalized FSTs are useful by limiting transition outdegree to 2,
having explicit ε-transitions and classifying them into deterministic
(ε) and ordered nondeterministic ones (ε0, ε1).

Proviso. Henceforth we will call normalized FSTs simply trans-
ducers.

Let |·| : Σ[ε0, ε1, ε]→ 2[ε] be defined by |ε0| = 0, |ε1| = 1 and
|a| = ε for all a ∈ Σ[ε].

Definition 4 (Oracle and action machines). Let T be a transducer.
The oracle machine T C is defined as T , but with each transition
(q, a, b, q′) replaced by (q, a, |a|, q′). Its action machine T A is T ,
but with each transition (q, a, b, q′) replaced by (q, |a|, b, q′).

The oracle machine is a transducer over Σ and 2; the action
machine a deterministic FST over 2 and Γ. Each transducer can be
canonically decomposed into its oracle and action machines:

Proposition 2. R[[T ]] = R[[T A]] ◦ R[[T C]]

where ◦ denotes relational composition. Note that the oracle machine
is independent of the outputs in the original transducer; in particular,
a transducer where only the outputs are changed has the same oracle
machine. Intuitively, the action machine starts at the initial state the
original transducer, automatically follows transitions from resting
and skip states, and uses the bit string from the oracle machine as an
oracle—hence the name—to choose which transition to take from a
choice state; in this process it emits the outputs it traverses.

Example 1. Figure 1 shows a Kleenex program (see Section 3), the
associated transducer and its decomposition into oracle and action
machines.

Observe that if there is a path q
u/v−−→ q′ then u uniquely identifies

the path from q to q′ in a transducer and, furthermore, in an oracle
machine so does v.

We write q
u/v−−→np q

′′ if the path q
u/v−−→ q′′ does not contain an

ε-loop, that is a subpath q′
u′
/v′−−−→ q′ where u′ = ε. Paths without

ε-loops are called nonproblematic paths [29].

Definition 5 (Greedy semantics). The greedy semantics of a trans-
ducer T is G[[T ]] = R[[T A]] ◦ G[[T C]] where

G[[T C]] = {(u, v) | q− u/v−−→np q
f ∧

∀u′, v′. q− u′
/v′−−−→np q

f ∧ u = u′ =⇒ v ≤ v′}

and ≤ denotes the lexicographic ordering on bit strings.

Given input string s, the greedy semantics chooses the lexico-
graphically least path in the transducer accepting s and outputs the
corresponding output symbols encountered along the path. The re-
striction to nonproblematic paths ensures that there are only finitely
many paths accepting s and thus the lexicographically least amongst
them exists, if s is accepted at all. We write q

u/v−−→min q
′ if q

u/v−−→ q′

is the lexicographically least nonproblematic path from q to q′.
A transducer T over Σ and Γ is single-valued if R[[T ]] is a

partial function from Σ∗ to Γ∗.

Proposition 3. Let T be a transducer over Σ and Γ.

• G[[T ]] is a partial function from Σ∗ to Γ∗.
• G[[T ]] = R[[T ]] if T is single-valued.

The greedy semantics can be thought of as a disambiguation
policy for transducers that conservatively extends the standard
semantics for single-valued transducers to a deterministic semantics
for arbitrary transducers.

3. Kleenex
Kleenex2 is a language for compactly and conveniently expressing
transducers.

3.1 Core Kleenex
Core Kleenex is a grammar for directly coding transducers.

Definition 6 (Core Kleenex syntax). A Core Kleenex program is a
nonempty list p = d0d1 . . . dn of definitions di, each of the form
N:= t, where N is an identifier and t is generated by the grammar

t ::= ε | N | a N ′ | "b" N ′ | N0|N1

where a ∈ Σ and b ∈ Γ for given alphabets Σ,Γ, e.g. some
character set. N ranges over some set of identifiers. The identifiers
occurring in p are called nonterminals. There must be at most
one definition of each nonterminal, and every occurrence of a
nonterminal must have a definition.

Definition 7 (Core Kleenex transducer semantics). The transducer
associated with Core Kleenex program p for nonterminal N ∈ N is

Tp(N) = (Σ,Γ,N [qf ], N, qf , E)

2 Kleenex is a contraction of Kleene and expression in recognition of the
fundamental contributions by Stephen Kleene to language theory.
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main := (num /\n/)*
num := digit{1,3}

("," digit{3})*

digit := /a/

1

start

2 3 4 5 6 7 8

9 10

11

12 13

ε0/ε ε0/ε ε0/ε ε0/ε

ε1/ε
ε1/ε ε1/ε

ε1/ε

a/a a/a a/a

a/a

a/a\n/\n

a/a

ε/,

1

start

2 3 4 5 6 7 8

9 10

11

12 13

ε0/0 ε0/0 ε0/0 ε0/0

ε1/1
ε1/1 ε1/1

ε1/1

a/ε a/ε a/ε

a/ε

a/ε\n/ε

a/ε

ε/ε

1

start

2 3 4 5 6 7 8

9 10

11

12 13

0/ε 0/ε 0/ε 0/ε

1/ε
1/ε 1/ε

1/ε

ε/a ε/a ε/a

ε/a

ε/aε/\n

ε/a

ε/,

Figure 1: Top: a Kleenex program and its associated transducer. The program accepts a list of newline-separated numbers (simplified to unary numbers with
digit a) and inserts thousands separators. Bottom: The corresponding oracle and action machines.

whereN is the set of nonterminals in p, andE consists of transitions
constructed from each production in p as follows:

N := ε N
ε/ε−−→ qf

N :=N ′ N
ε/ε−−→ N ′

N := a N ′ N
a/ε−−→ N ′

N := "b" N ′ N
ε/b−−→ N ′

N :=N ′|N ′′ N
ε0/ε−−−→ N ′ and

N
ε1/ε−−−→ N ′′

The semantics of p is the greedy semantics of its associated trans-
ducer: G[[p]] = G[[Tp]](N0) where N0 is a designated start nontermi-
nal. (By convention, this is main.)

3.2 Standard Kleenex
We extend the syntax of right-hand sides in Kleenex productions
with arbitrary concatenations of the form and N ′N ′′ and slightly
simplify the remaining rules as follows:

t ::= ε | N | a | "b" | N0|N1 | N ′N ′′

Let p be such a Standard Kleenex program. Its dependency graph
Gp = (N , D) consists of its nonterminalsN and the dependencies
D = {N → N ′ | N ′ occurs in the definition of N in p}. Define
the strict dependencies Ds = {N → N ′ | (N:=N ′N ′′) ∈ p}.

Definition 8 (Well-formedness). A Standard Kleenex program
p is well-formed if no strong component of Gp contains a strict
dependency.

Well-formedness ensures that the underlying grammar is non-
self-embedding [10], and thus its input language is regular.

Definition 9 (Kleenex syntax and semantics). Let p be a well-
formed Kleenex program with nonterminals N . Define the transi-
tions E ⊆ N ∗ × Σ[ε0, ε1, ε]× Γ[ε]×N ∗ as follows:

For rule d add these transitions for all X ∈ N ∗ to E

N := ε NX
ε/ε−−→ X

N :=N ′ NX
ε/ε−−→ N ′X

N := a NX
a/ε−−→ X

N := "b" NX
ε/b−−→ X

N :=N ′N ′′ NX
ε/ε−−→ N ′N ′′X

N :=N ′|N ′′ NX
ε0/ε−−−→ N ′X and

NX
ε1/ε−−−→ N ′′X

Let Reach(N) = { ~Nk | N
./.−→ . . .

./.−→ ~Nk} be the nonterminal
sequences reachable from N along transitions in E. The transducer
Tp associated with p is (Σ,Γ, R,N, ε, E|R) whereR = Reach(N)
for designated start symbol N and E|R is E restricted to R. The
(greedy) semantics of p is the greedy semantics of Tp: G[[p]] =
G[[Tp]].

The following proposition justifies calling Tp a transducer.

Proposition 4. Let p be a well-formed Standard Kleenex program,
with Tp as defined above. Then R is finite, and Tp is a transducer,
that is normalized FST.

Proof. (Sketch) Reach(N) consists of all the nonterminal suffixes
of sentential forms of left-most derivations of p considered as
a context-free grammar. In well-formed Kleenex programs, their
maximum length is bounded by |N |. It is easy to check that every
state in R is either a resting, skip, choice or final state.

Observe that the transducer associated with a Kleenex program can
be exponentially bigger than the program itself.

Since a transducer has a straightforward representation in Core
Kleenex, the construction of Tp provides a translation of a well-
formed Standard Kleenex program into Core Kleenex. For example,
the Kleenex program on the left translates into the Core Kleenex
program on the right:

M := M ′|N
M ′ := NNa
Na := a
N := N ′|Nε
N ′ := NbN
Nb := b
Nε := ε

=⇒

M := N ′|N
M ′ := N ′|Na
Na := aNε
N ′ := bM ′

N := N ′|Nε
Nε := ε

3.3 The Full Surface Language
The full surface syntax of Kleenex is obtained by extending Standard
Kleenex with the following term-level constructors, none of which
increase the expressive power:

t ::= . . . | "v" | /e/ | ~t | t0t1 | t0|t1 | t* | t+ | t?
| t{n} | t{n,} | t{,m} | t{n,m}

where v ∈ Γ∗, n,m ∈ N, and e is a regular expression. The
terms t0t1 and t0|t1 desugar into N0N1 and N0|N1, respectively,
with additional productions N0 := t0 and N1 := t1 for new
nonterminals N0, N1. The term "v" is shorthand for a sequence
of outputs.

Regular expressions are special versions of Kleenex terms with-
out nonterminals. They desugar to terms that output the matched
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input string, i.e. /e/ desugars by adding an output symbol "a"
after every input symbol a in e. For example, the regular expres-
sion /a*|b{n,m}|c?/ becomes (a"a")*|(b"b"){n,m}|(c"c")?,
which can then be further desugared.

A suppressed subterm ~t desugars into t with all output symbols
removed, including any that might have been added in t by the above
construction. For example, ~("b"/a/) desugars into ~("b" a "a"),
which further desugars into a.

The operators ·*, ·+ and ·? desugar to their usual meaning as
regular operators, as do the repetition operators ·{n}, ·{n,}, ·{,m},
and ·{n,m}. Note that they all desugar into their greedy variants
where matching a subexpression is preferred over skipping it. For
example:

M := (a "b")+ =⇒ M := (a "b")N ′

N ′ := a "b"N ′|ε

Lazy variants can be encoded by making ε the left rather than the
right choice of an alternative.

3.4 Register Update Actions
By viewing Γ as an alphabet of effects, we can extend the expres-
sivity of Kleenex beyond rational functions [13]. Let X be a com-
putable set, and assume that there is an effective partial action
Γ×X → X . It is simple to define a deterministic machine imple-
menting the function Γ∗ ×X → X by successively applying a list
of actions to some starting state X . Any Kleenex program then de-
notes a function Σ∗ ×X → X by composing its greedy semantics
with such a machine. If we can implement the pure transducer part
in a streaming fashion, then a state X can be maintained on-the-fly
by interpreting output actions as soon as they become available.

Let X = (Γ∗)+ × (Γ∗)n for some n, representing a non-empty
stack of output strings and n string registers. The transducer output
alphabet is extended to Γ[push, pop0, ..., popn,write0, ...,writen],
with actions defined by

(t ~w, v0, ..., vn) · a = ((ta)~w, v0, ..., vn) (a ∈ Γ)
(~w, v0, ..., vn) · push = ((ε)~w, v0, ..., vn)

(t ~w, v0, ..., vi, ..., vn) · popi = (~w, v0, ..., t, ..., vn) (|~w| > 0)
(t ~w, v0, ..., vn) · writei = ((tvi)~w, v0, ..., vn)

The bottom stack element can only be appended to and models a
designated output register—popping it is undefined. The stack and
the variables can be used to perform complex string interpolation.
To access the extended actions, we extend the surface language:

t ::= . . . | R @ t | !R
| [R <- (R | "v")? ] | [R += (R | "v")? ]

where R ranges over register names standing for indices.
The term R @ t desugars to "push" t "popR", and the term

!R desugars to "writeR". The term [R <- x1...xm ] desugars
to "push"t′1...t

′
m"popR", where t′i = writeRi if xi = Ri, and

t′i = xi otherwise. Finally, [R += ~x ] desugars to [R <- R ~x ].
Thus all streaming string transducers (see Section 5) can be

coded. As an example, the following program swaps two input lines
by storing them in registers a and b and outputting them in reverse
order:

main := a@line b@line !b !a
line := /[^\n]*\n/

where the first line above desugars to

main := "push" line "popa" "push" line "popb"

"writeb" "writea"

4. Streaming Simulation
As we have seen, every Kleenex program has an associated trans-
ducer, which can be split into oracle and action machines. The action
machine is a straightforwardly implemented deterministic FST. The
oracle machine is nondeterministic, however: The key challenge is
how to (deterministically) find and output the lexicographically least
path that accepts a given input string. In this section we develop an
efficient oracle machine simulation algorithm that inputs a stream
of symbols and streams the output bits almost as early as possible
during input processing.

4.1 Path Trees
Given an oracle machine T C as in Definition 4, consider input s
such that q−

u/v−−→min q
f where |u| = s. Recall that q

u/v−−→min q
′

uniquely identifies a path from q to q′ in T C, which is furthermore
asserted to be the lexicographically minimal amongst all nonprob-
lematic paths from q to q′.

Proposition 5 (Path decomposition). Assume q−
u/v−−→min q

f . For
every prefix s′ of |u| there exist unique u′, v′, u′′, v′′, q′ such that

q−
u′
/v′−−−→min q′

u′′
/v′′−−−−→min qf , q′ is a resting state, |u′| = s′,

u′u′′ = u and v′v′′ = v.

Proof. Let u′ be the longest prefix of u such that |u′| = s′ and let

q−
u′
/v′−−−→np q

′ be the path from q determined by u′. (Such a prefix
must exist.) Claim: This is the q′ in the proposition.

1. q′ is a resting state. If it were not, we could transition on ε, ε0 or
ε1 resulting in a longer prefix w with |w| = s′.

2. q−
u′
/v′−−−→min q

′ and q′
u′′

/v′′−−−−→min q
f . If any of these subpaths

were not lexicographically minimal, we could replace it with one
that is lexicographically less, resulting in a path from q− to qf

that is lexicographically less than q−
u/v−−→np q

f , contradicting
our assumption q−

u/v−−→min q
f .

After reading input prefix s′ we need to find the above

q−
u′
/v′−−−→min q

′ where |u′| = s′. Since we do not know the remain-

ing input yet, however, we maintain all paths q−
u′
/v′−−−→min q

′ for
any resting state q′ such that |u′| = s′.

Definition 10 (Path tree). Let T C be given. Its path tree P(s) for s
is the set of paths {q− u/v−−→min q

′ | |u| = s}.
Consider a transducer as a directed labeled graph where the

nodes are transducer states indexed by the strings reaching them,
{qs | ∃u, v. q−

u/v−−→ q ∧ |u| = s}, and the edges are the
corresponding transitions, {qs

a/b−−→ q′sa | q
a/b−−→ q′}. It can be

seen that P(s) is a subgraph that forms a non-full rooted edge-
labeled binary tree. The stem of P(s) is the longest path in this tree
from q−ε to some qs′ for a prefix s′ of s only involving nodes with
at most one child. The leaves of P(s) are the states q such that qs is
reachable, in lexicographic order of the paths reaching them from
q−ε .

Example 2. Recall the oracle machine for the decimal converter in
the lower left of Figure 1. Its path tree for input a is shown in the
upper left of Figure 2. The nodes are subscripted with the length of
the input prefix rather the input prefix itself. Note that the leaf states
are listed from top to bottom in lexicographic order of their paths
reaching them. This means that the top state is the prime candidate
for being q′ in Proposition 5. If the remainder of the input is not
accepted from it, though, the other leaf states take over in the given
order.
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Figure 2: Path trees for the decimal conversion oracle in Figure 1. Above left: path tree reading a. Subscripts denote the number of input symbols read when the
given state was visited. Above right: path tree reading aa. Failing paths are shown in gray. Below left: reduced register tree reading a, with register valuation.
Below middle: extension of register tree after reading an additional a. Note mix of registers and bits, and that bottom branch is now labeled by a sequence of
registers. Below right: the path tree and register update after reading aa. The registers r1, r11, and r110 are all on the same unary path and are concatenated.

4.2 Basic Simulation Algorithm
The basic streaming simulation algorithm works as follows:

Algorithm 1 (Basic streaming algorithm). Let s = a1 . . . an ∈ Σ∗

be the input string.
1: for i = 1 to n do
2: if P(a1...ai) = ∅ then
3: terminate with failure (input rejected)
4: if stem(P(a1...ai)) longer than stem(P(a1...ai−1)) then
5: emit the output bits on the stem extension
6: if P(a1...an) contains path to qf then
7: if path tree contains at least one branch, emit output bits on

path from highest binary ancestor to qf
8: terminate with success (input accepted)
9: else

10: terminate with failure (input rejected)

The critical step in the algorithm is incrementally computing the
path tree for s′a from the path tree for s′.

Algorithm 2 (Incremental path tree computation). Let P be P(s′)
for some prefix s′ of the input string, and let [q0, ..., qn] be its leaves
in lexicographic order of the paths reaching them. Upon reading a,
incrementally compute P(s′a) as follows.

1: for q = q0 to qn do
2: compute Pq(a), the path tree of lexicographically least

(u/v) paths with u = a from q to resting states, but
excluding resting states that have been reached in a previous
iteration

3: if Pq(a) is non-empty then
4: replace leaf node q in P by Pq(a)
5: else
6: prune branch from lowest binary ancestor to leaf node

q; if binary ancestor does not exist, then terminate with
failure (input rejected)

Example 3. The upper right in Figure 2 shows P(aa) for the
decimal converter. Observe how it arises from P(a) by extending
leaf states 4 and 9, which have an a-transition, and building the
ε-closure as a binary tree. It prunes branches either because they
reach a state already reached by a lexicographical lower path (state

6) or because the leaf does not have transition on a (state 13). The
algorithm outputs 0 after reading the first a since 0 is the sequence
of output bits on the stem of the path tree. It does not output anything
after reading the second a since P(aa) has the same stem as P(a).

Definition 11 (Optimal streaming). Let f be a partial function from
Σ∗ to Γ∗, s ∈ Σ∗. Let T (s) = {f(ss′) | s′ ∈ Σ∗ ∧ ss′ ∈ domf}.
The output f#(s) determined by f for s is the longest common
prefix of T (s) if T (s) is nonempty; otherwise it is undefined.
The partial function f# is called the optimally streaming version
of f . An optimally streaming algorithm for f is an algorithm
that implements f#: It emits output symbols as soon as they are
semantically determined by the input prefix read so far.

Let transducer T be given. Write L[[q]] for L[[T ′]] where T ′ is
T , but with q as initial state instead of q−. A state q is covered by
{q1, . . . , qk} if L[[q]] ⊆ L[[q1]]∪ . . .∪L[[qk]]. A path tree P(s) with
lexicographically ordered leaves [q1, . . . , qn] is cover-free if no qi
is covered by {q1, . . . , qi−1}. T is cover-free if P(s) is cover-free
for all s ∈ Σ∗.

Theorem 1. Let T be cover-free. Then Algorithm 1 with Algo-
rithm 2 for incremental path tree recomputation is an optimally
streaming algorithm for G[[T C]] that runs in time O(mn), where
m = |T C| and n is the length of the input string.

Proof. (Sketch) Algorithm 2 can be implemented to run in time
O(m) since it visits each transition in T C at most once and pruning
can be amortized: every deallocation of an edge can be charged to
its allocation. Algorithm 1 invokes Algorithm 2 n times. Optimal
streaming follows from a generalization of the proof of optimal
streaming for regular expression parsing [32].

The algorithm can be made optimally streaming for all oracle
transducers by also pruning leaf states that are covered by other leaf
states in Step 6 of Algorithm 2. Coverage is PSPACE-complete,
however. Eliding the coverage check does not seem to make much
of a difference to the streaming behavior in practice.

5. Determinization
NFA simulation maintains a set of NFA states. This is the basis
of compiling an NFA into a DFA: precompute and number the
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set of all NFA state sets reachable by any input from the initial
NFA state, observing that there are only finitely many such sets.
In the transducer simulation in Section 4 path trees play the role
of NFA state sets. The corresponding determinization idea does
not work for transducers, however: {P(s) | s ∈ Σ∗} is in general
infinite. For example, for the oracle machine in Figure 1, the trees
P(an) all have the same stem, but contain paths with bit strings
of length proportional to n. This is inherently so. A single-valued
transducer can be transformed effectively [12, 66] into a form of
deterministic finite-state transducer if its relational semantics is
subsequential [13, 53], but nondeterministic finite state transducers
in general are properly more expressive than their deterministic
counterparts. We can factor a path tree into its underlying full
binary tree and the labels associated with the edges, though. Since
there are only finitely many different such trees, we can achieve
determinization to transducers with registers storing the potentially
unbounded label data.

Definition 12 (Streaming String Transducer [4]). A deterministic
streaming string transducer (SST) over alphabets Σ,Γ is a tuple
S = (X,Q, q−, F, δ1, δ2) where

• X is a finite set of register variables;
• Q is is a finite set of states;
• F is a partial function Q→ (Γ ∪X)∗ mapping each final state
q ∈ dom(F ) to a word F (q) ∈ (Γ∪X)∗ such that each x ∈ X
occurs at most once in F (q);
• δ1 is a transition function Q× Σ→ Q;
• δ2 is a register update function Q × Σ → (X → (Γ ∪ X)∗)

such that for each q ∈ Q, a ∈ Σ and x ∈ X , there is at most one
occurrence of x in the multiset of strings {δ2(q, a)(y) | y ∈ X}.

A configuration of an SST S = (X,Q, q−, F, δ1, δ2) is a pair (q, ρ)
where q ∈ Q is a state, and ρ : X → Γ∗ is a valuation. A valuation
extends to a monoid homomorphism ρ̂ : (X ∪Γ)∗ → Γ∗ by setting
ρ(x) = x for x ∈ Γ. The initial configuration is (q−, ρ−) where
ρ−(x) = ε for all x ∈ X .

A configuration steps to a new configuration given an input sym-
bol: δ((q, ρ), a) = (δ1(q, a), ρ̂ ◦ δ2(q, a)). The transition function
extends to a transition function on words δ∗ by δ∗((q, ρ), ε) = (q, ρ)
and δ∗((q, ρ), au) = δ∗(δ((q, ρ), a), u).

Every SST S denotes a partial function F [[S]] : Σ∗ → Γ∗ where
for any u ∈ Σ∗ such that δ∗((q−, ρ−), u) = (q′, ρ′), we define

F [[S]](u) =

{
ρ̂′(F (q′)) if q′ ∈ dom(F )

undefined otherwise

In the following, let X = {rp | p ∈ 2∗} be a set of registers.

Definition 13 (Reduced register tree). Let P be a path tree. Its
reduced register tree R(P) is a pair (RP, ρP) where ρP is a
valuation X → 2∗ and RP is a full binary tree with state-labeled
leaves, obtained from P by first contracting all unary branches and
concatenating edge labels; then replacing each edge label (u/v) by
a single register symbol rp, where p denotes the unique path from
the root to the edge destination node, and setting ρP(rp) = v.

The set {RP(s) | s ∈ Σ∗} is finite: it is bounded by the number
of full binary trees with up to |Q| leaves times the number of possible
permutations of the leaves.

Let R be RP and a ∈ Σ a symbol, and apply Algorithm 2 to
R. The result is a non-full binary tree with edges labeled either
by a register or by a (u/v) pair. By reducing the tree again and
treating registers as output labels, we get a pair (Ra, κR,a) where
κR,a : X → (2 ∪X)∗ is a register update.

Example 4. Consider the bottom left tree in Figure 2. This is the
reduced register tree obtained from the path tree above it. The

evaluation map ρ can be seen below it, where register subscripts
denote their position in the register tree. In the middle is the result
of extending the register tree using Algorithm 2. Reducing this
again yields the tree on the right. The update map κ is shown below
it—note that the range of this map is mixed register/bit sequences.

Proposition 6. Let T C be given, and let P = P(s), P′ = P(sa),
(R, ρ) = R(P) and (R′, ρ′) = R(P′) for some s and a. Then
R′ = Ra and ρ′ = ρ̂ ◦ κR,a.

Theorem 2. Let T C be an oracle machine of size m. There is an
SST S with O(2m logm) states such that F [[S]] = G[[T ]].

Proof. Let QS = {RP(s) | s ∈ Σ∗} ∪ {R0} and q−S = R0, where
R0 is the single-leaf binary tree with leaf q−T . The set of registers
XS is the finite subset of register variables occurring in QS . The
transition maps are given by δ1S(R, a) = Ra and δ2S(R, a) = κR,a.
For any R ∈ QS − {R0}, define the final output FS(R) to be the
sequence of registers on the path from the root to the final state qfT in
R if R contains it as a leaf; otherwise let FS(R) be undefined. Let
FS(R0) = v if q−T

ε/v−−→min q
f for some v; otherwise let FS(R0)

be undefined.
Correctness follows by showing δ∗((R0, ρ

−), u) = R(P(u))
for all u ∈ Σ+. We prove this by induction, applying Proposition 6
in each step. For the case u = ε correctness follows by the definition
of FS(R0).

The upper bound follows from the fact that there are at most
Ck−1(k − 1)! = O(2m logm) full binary trees with k pairwise
distinct leaves where k is the number of resting states in T C and
Ck−1 is the (k − 1)-st Catalan number.

Example 5. The oracle machine in Figure 1 yields the SST in
Figure 3. The states 1 and 2 are identified by the left and right
reduced trees, respectively, in the bottom of Figure 2.

Corollary 1. The SST S for T C can be implemented to execute in
time O(mn) where m = |T C|.

Proof. (Sketch) Use a data structure for imperatively extending a
string register, r := rs, in amortized time O(n) where n is the size
of s, independent of the size of the string stored in r. The result
then follows from the fact that the steps in Algorithm 2 can be
implemented in the same amortized time.

In practice, the compiled version of the SST is much more
efficient—roughly one to two orders of magnitude faster—than
streaming simulation since it compiles away the interpretive over-
head of explicitly managing the binary trees underlying path trees
and employs machine word-level parallelism by operating on bit
strings in fewer registers rather than many edges each labeled by at
most one bit.

6. Implementation and Benchmarks
Our implementation3 compiles the action machine and the oracle
SST to machine code via C. We have implemented several optimiza-
tions which are orthogonal to the underlying principles behind our
compilation from Kleenex via transducers to SSTs:

Inlining of output actions The action machine and the oracle
SST need to be composed. We can do this at runtime by piping
the SST output to the action machine, or we can apply a form of
deforestation [70] to inline the output actions directly into the SST.
This is straightforward since the machines are deterministic.

3 Source code and benchmarks available at http://kleenexlang.org/
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Figure 3: SST constructed from the oracle machine in Figure 1.

Constant propagation The SSTs generated by the construction
underlying Theorem 2 typically contain many constant-valued
registers (e.g. most registers in Figure 3 are constant). We eliminate
these using constant propagation: compute reaching definitions by
solving a set of data-flow constraints.

Symbolic representation A more succinct SST representation is
obtained by using a symbolic representation of transitions where
input symbols are replaced by predicates and output symbols by
terms indexed by input symbols. This is a straightforward extension
of similar representations for automata [72] and transducers [66–
69]. Our implementation uses simple predicates in the form of byte
ranges, and simple output terms represented by byte-indexed lookup
tables. We refer the reader to the cited literature for the technical
details of symbolic transducers.

Finite lookahead Symbolic FSTs with bounded lookahead have
been shown to reduce the state space when representing string
encoders [22, 67, 69]. We have implemented a form of finite
lookahead in our SST representation. Opportunities for lookahead
is detected by the compiler, and arise in the case where the program
contains a string constant with length above one. In this case a
lookahead transition is used to check once and for all if the string
constant is matched by the input instead of creating an SST state
for each symbol. This may in some cases reduce the size of the
generated code since we avoid tabulating all states of the whole
program for every prefix of the string constant.

We have run comparisons with different combinations of the
following tools:

RE2, Google’s regular expression C++ library [62].
RE2J, a recent re-implementation of RE2 in Java [63].
GNU AWK and GNU sed, programming languages and tools for

text processing and extraction [60].
Oniglib, a regular expression library written in C++ with support

for different character encodings [38].
Ragel, a finite state machine compiler with multiple language

backends [65].

In addition, we implemented test programs using the standard
regular expression libraries in the scripting languages Perl [71],
Python [41], and Tcl [73].

The benchmark suite, Kleenex programs, and version numbers
of libraries used can be found at http://kleenexlang.org.

Meaning of plot labels Kleenex plot labels indicate the com-
pilation path, and follow the format [<0|3>[-la] | woACT]
[clang|gcc]. 0/3 indicates whether constant propagation was
disabled/enabled. la indicates whether lookahead was enabled.
clang/gcc indicates which C compiler was used. The last part
indicates that custom register updates are disabled, in which case

we generate a single fused SST as described in Section 6.3. These
are only run with constant propagation and lookahead enabled.

Experimental setup The benchmark machine runs Linux, has 32
GB RAM and an eight-core Intel Xeon E3-1276 3.6 GHz CPU with
256 KB L2 cache and 8 MB L3 cache. Each benchmark program
was run 15 times, after first doing two warm-up rounds. All C and
C++ files have been compiled with -O3.

Difference between Kleenex and the other implementations Un-
less otherwise stated, the structure of all the non-Kleenex implemen-
tations is a loop that reads input line by line and applies an action to
the line. Hence, in these implementations there is an interplay be-
tween the regular expression library used and the external language,
e.g., RE2 and C++. In Kleenex, line breaks do not carry any special
significance, so the multi-line programs can be formulated entirely
within Kleenex.

Ragel optimization levels Ragel is compiled with three different
optimization levels: T1, F1, and G2. “T1” and “F1” means that
the generated C code should be based on a lookup-table, and “G2”
means that it should be based on C goto statements.

Kleenex compilation timeout On some plots, some versions of the
Kleenex programs are not included. This is because the C compiler
times out (after 30 seconds). As we fully determinize the transducers,
the resulting C code can explode in some cases. The two worst-case
exponential blow-ups in generating transducers from Kleenex and
then generating SSTs implemented in C code from transducers are
inherent, though, and as such can be considered a feature of Kleenex:
tools based on finite machines with no or limited nondeterminism
support such as Ragel would require hand-coding a potentially huge
machine that Kleenex generates automatically.4

6.1 Baseline
The following two programs are intended to give a baseline impres-
sion of the performance of Kleenex programs.

flip ab The program flip ab swaps “a”s and “b”s on all its
input lines. In Kleenex it looks like this:

main := ("b" ~/a/ | "a" ~/b/ | /\n/)*

We made a corresponding implementation with Ragel, using
a while-loop in C to get each new input line and feed it to the
automaton code generated by Ragel.

Implementing this functionality with regular expression libraries
in the other tools would be an unnatural use of them, so we have not
measured those.

4 We have found it excessively difficult to employ Ragel in some use cases
with a natural nondeterministic specification.
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Figure 4: flip ab run on lines with average length 1000.
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Figure 5: patho2 run on lines with average length 1000.

The performance of the two implementations run on input with
an average line length of 1000 characters is shown in Figure 4.

patho2 The program patho2 forces Kleenex to wait until the
very last character of each line has been read before it can produce
any output:

main := ((~/[a-z]*a/ | /[a-z]*b/)? /\n/)+

In this benchmark, the constant propagation makes a big differ-
ence, as Figure 5 shows. Due to the high degree of interleaving and
the lack of keywords, in this program the lookahead optimization
has reduced overall performance.

This benchmark was not run with Ragel because Ragel requires
the programmer to do all disambiguation manually when writing the
program; the C code that Ragel generates does not handle ambiguity
in a for us predictable way.

6.2 Rewriting
Thousand separators The following Kleenex program inserts
thousand separators in a sequence of digits:

main := (num /\n/)*

num := digit{1,3} ("," digit{3})*

digit := /[0-9]/
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Figure 6: Inserting separators in random numbers of average length 1000.

We evaluated the Kleenex implementation along with two other
implementations using Perl and Python. The performance can be
seen in Figure 6. Both Perl and Python are significantly slower than
all of the Kleenex implementations; the problem is tricky to solve
with regular expressions unless one reads the input right-to-left.

IRC protocol handling The following Kleenex program parses
the IRC protocol as specified in RFC 2812.5 It follows roughly
the output style described in part 2.3.1 of the RFC. Note that the
Kleenex source code and the BNF grammar in the RFC are almost
identical. Figure 7 shows the throughput on 250 MiB data.

main := (message | "Malformed line: " /[^\r\n]*\r?\n/)*

message := (~/:/ "Prefix: " prefix "\n" ~/ /)?

"Command: " command "\n"

"Parameters: " params? "\n"
~crlf

command := letter+ | digit{3}
prefix := servername | nickname ((/!/ user)? /@/ host )?

user := /[^\n\r @]/+ // Missing \x00

middle := nospcrlfcl ( /:/ | nospcrlfcl )*

params := (~/ / middle ", "){,14} ( ~/ :/ trailing )?

| ( ~/ / middle ){14} ( / / /:/? trailing )?

trailing := (/:/ | / / | nospcrlfcl)*
nickname := (letter | special)

(letter | special | digit){,10}
host := hostname | hostaddr
servername := hostname
hostname := shortname ( /\./ shortname)*
hostaddr := ip4addr
shortname := (letter | digit) (letter | digit | /-/)*

(letter | digit)*
ip4addr := (digit{1,3} /\./ ){3} digit{1,3}

CSV rewriting The program csv project3 deletes all columns
but the 2nd and 5th from a CSV file:

main := (row /\n/)*

col := /[^,\n]*/

row := ~(col /,/) col "\t" ~/,/ ~(col /,/)
~(col /,/) col ~/,/ ~col

Various specialized tools that can handle this transformation are
included in Figure 8; GNU cut is a command that splits its input on
certain characters, and GNU AWK has built-in support for this type
of transformation.

5 https://tools.ietf.org/html/rfc2812
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Figure 7: Throughput when parsing 250 MiB random IRC data.
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Figure 8: csv project3 reads in a CSV file with six columns and outputs
columns two and five. “gawk” is GNU AWK that uses the native AWK way of
splitting up lines. “cut” is a tool from GNU coreutils that splits up lines.

Apart from cut, which is very fast for its own use case, a Kleenex
implementation is the fastest. The performance of Ragel is slightly
lower, but this is likely due to the way the implementation produces
output. In a Kleenex program, output strings are automatically put in
an output buffer which is flushed routinely, whereas a programmer
has to manually handle buffering when writing a Ragel program.

6.3 With or Without Action Separation
One can choose to use the machine resulting from fusing the oracle
and action machines when compiling Kleenex. Doing so results in
only one process performing both disambiguation and outputting,
which in some cases is faster and in other cases slower. Figures 8, 9,
and 11 illustrate both situations. It depends on the structure of the
problem whether it pays off to split up the work into two processes;
if all the work happens in the oracle machine and the action machine
does nearly nothing, then the added overhead incurred by the
process context switches becomes noticeable. On the other hand, in
cases where both machines perform much work, the fact that two
CPU cores can be utilized in parallel speeds up execution. This is
more likely once Kleenex has support for actions that can perform
arbitrary computations, e.g. in the form of embedded C code.
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Figure 9: The speeds of transforming JSON objects to SQL INSERT
statements using Ragel and Kleenex.

7. Use Cases
We briefly touch upon various use cases—natural application
scenarios—for Kleenex.

JSON logs to SQL We have implemented a Kleenex program
that transforms a JSON log file into an SQL insert statement. The
program works on the logs provided by Issuu.6

The Ragel version we implemented outperforms Kleenex by
about 50% (Figure 9), indicating that further optimizations of our
SST construction should be possible.

Apache CLF to JSON The Kleenex program below rewrites
Apache CLF7 log files into a list of JSON records:

main := "[" loglines? "]\n"

loglines := (logline "," /\n/)* logline /\n/

logline := "{" host ~sep ~userid ~sep ~authuser sep
timestamp sep request sep code sep
bytes sep referer sep useragent "}"

host := "\"host\":\"" ip "\""

userid := "\"user\":\"" /-/ "\""

authuser := "\"authuser\":\"" /[^ \n]+/ "\""

timestamp := "\"date\":\"" ~/\[/ /[^\n\]]+/ ~/]/ "\""

request := "\"request\":" quotedString

code := "\"status\":\"" integer "\""

bytes := "\"size\":\"" (integer | /-/) "\""

referer := "\"url\":" quotedString

useragent := "\"agent\":" quotedString

sep := "," ~/[\t ]+/

quotedString := /"([^"\n]|\\")*"/

integer := /[0-9]+/

ip := integer (/\./ integer){3}

This is a re-implementation of a Ragel program.8 Figure 10 shows
the benchmark results. The versions compiled with clang are not
included, as the compilation timed out after 30 seconds. Curiously,
the non-optimized Kleenex program is the fastest in this case.

ISO date/time objects to JSON Inspired by an example in [30],
the program iso datetime to json converts date and time

6 The line-based data set consists of 30 compressed parts; part one is available
from http://labs.issuu.com/anodataset/2014-03-1.json.xz
7 https://httpd.apache.org/docs/trunk/logs.html#common
8 https://engineering.emcien.com/2013/04/
5-building-tokenizers-with-ragel
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Figure 10: Speed of the conversion from the Apache Common Log Format
to JSON.
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Figure 11: The performance of the conversion of ISO time stamps into JSON
format.

stamps in an ISO standard format to a JSON object. Figure 11
shows the performance.

HTML comments The following Kleenex program finds HTML
comments with basic formatting commands and renders them in
HTML after the comment. For example, <!-- doc: *Hello*
world --> becomes <!-- doc: *Hello* world --><div>
<b>Hello</b> world </div>.

main := (comment | /./)*

comment := /<!-- doc:/ clear doc* !orig /-->/

"<div>" !render "</div>"

doc := ~/\*/ t@/[^*]*/ ~/\*/

[ orig += "*" t "*" ] [ render += "<b>" t "</b>" ]

| t@/./ [ orig += t ] [ render += t ]

clear := [ orig <- "" ] [ render <- "" ]

Syntax highlighting Kleenex can be used to write syntax high-
lighters; in fact, the Kleenex syntax in this paper was highlighted
using a Kleenex program.

8. Discussion
We discuss related and future work by building Kleenex conceptually
up from regular expression matching via regular expressions as types
for bit-coded parsing to transducers and eventually grammars with
embedded actions.

Regular Expression Matching. Regular expression matching has
different meanings in the literature.

For acceptance testing, the subject of automata theory where
only a single bit is output, NFA-simulation and DFA-construction
are classical techniques. Bille and Thorup [14] improve on Myers’
[46] log-factor improved classical NFA-simulation for regular ex-
pressions, based on tabling. They design an O(kn) algorithm [15]
with word-level parallelism, where k ≤ m is the number of strings
occurring in an RE. The tabling technique may be promising in
practice; the algorithms have not been implemented and evaluated
empirically, though.

In subgroup matching as in PCRE [34], an input is not only
classified as accepting or not, but a substring is returned for each
sub-RE of interest. Subgroup matching exposes ambiguity in the RE.
Subgroup matching is often implemented by backtracking over al-
ternatives, which implements greedy disambiguation.9 Backtracking
may result in exponential-time worst case behavior, however, even
in the absence of inherently hard matching with backreferences [1].
Considerable human effort is usually expended to engineer REs used
in practice to perform well anyway. More recently, REs designed to
force exponential run-time behavior are used in algorithmic attacks,
though [52, 56]. Some subgroup matching libraries have guaranteed
worst-case linear-time performance based on automata-theoretic
techniques, notably Google’s RE2 [62]. Intel’s Hyperscan [61] is
also described as employing automata-theoretic techniques. A key
point of Kleenex is implementing the natural backtracking seman-
tics without actually performing backtracking and without requiring
storage of the input.

Myers, Oliva and Guimaraes [44] and Okui, Suzuki [50] describe
a O(mn), respectively O(m2n) POSIX-disambiguated matching
algorithms. Sulzmann and Lu [57] use Brzozowski [20] and An-
timirov derivatives [11] for Perl-style subgroup matching for greedy
and POSIX disambiguation. Borsotti, Breveglieri, Reghizzi, and
Morzenti [16, 17] have devised a Berry-Sethi based parser generator
that can be configured for greedy or POSIX disambiguation.

Regular expression parsing. Full RE parsing, also called RE
matching [29], generalizes subgroup matching to return a full
parse tree. The set of parses are exactly the elements of a regular
expression read as a type [29, 35]: Kleene-star is the (finite) list type
constructor, concatenation the Cartesian product, alternation the
sum type and an individual character the singleton type containing
that character. A (McNaughton-Yamada-)Thompson NFA [42, 64]
represents an RE in a strong sense: the complete paths—paths from
initial to final state—are in one-to-one correspondence with the
parses [31, 33]. A Thompson NFA equipped with 0, 1 outputs [31]
is a certain kind of oracle machine. The bit-code it generates can
also be computed directly from the RE underlying the Thompson
automaton [35, 49]. The greedy RE parsing problem produces the
lexicographically least bit-code for a string matching a given RE.
Kearns [37], Frisch and Cardelli [29] devise 3-pass linear-time
greedy RE parsing; they require 2 passes over the input, the first
consisting of reversing the entire input, before generating output
in the third pass. Grathwohl, Henglein, Nielsen, Rasmussen devise
a two-pass [31] and an optimally streaming [32] greedy regular
expression parsing algorithm. The algorithm works for all NFAs,
indeed transducers, not just Thompson NFAs.

9 Committing to the left alternative before checking that the remainder of the
input is accepted is the essence of parsing expression grammars [28].
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Sulzman and Lu [58] remark that POSIX is notoriously difficult
to implement correctly and show how to use Brzozowski derivatives
[20] for POSIX RE parsing.

Regular expression implementation optimizations. There are
specialized RE matching tools and techniques too numerous to
review comprehensively. We mention a few employing automa-
ton optimization techniques potentially applicable to Kleenex, but
presently unexplored. Yang, Manadhata, Horne, Rao, Ganapathy
[75] propose an OBDD representation for subgroup matching and
apply it to intrusion detection REs; the cycle counts per byte appear
a bit high, but are reported to be competitive with RE2. Sidhu and
Prasanna [54] implement NFAs directly on an FPGA, essentially
performing NFA-simulation in parallel; it outperforms GNU grep.
Brodie, Taylor, Cytron [18] construct a multistride DFA, which
processes multiple input symbols in parallel, and devise a com-
pressed implementation on stock FPGA, also achieving very high
throughput rates. Likewise, Ziria employs tabled multistriding to
achieve high throughput [55]. Navarro and Raffinot [48] show how
to code DFAs compactly for efficient simulation.

Finite state transducers. From RE parsing it is a surprisingly
short distance to the implementation of arbitrary nondeterministic
finite state transducers (FSTs) [13, 43]. In contrast to the situation
for automata, nondeterministic transducers are strictly more pow-
erful than deterministic transducers; this, together with observable
ambiguity, highlights why RE parsing is more challenging than RE
acceptance testing.

As we have noted, efficient RE parsing algorithms operate on
arbitrary NFAs, not only those corresponding to REs. Indeed, REs
are not a particularly convenient or compact way of specifying
regular languages: they can be represented by certain small NFAs
with low tree width [36], but may be inherently quadratically bigger
than automata, even for DFAs [24, Theorem 23]. This is why
Kleenex employs well-formed context-free grammars, which are
much more compact than regular expressions.

Streaming string transducers. We have shown in this paper that
the greedy semantics of arbitrary FSTs can be compiled to a
subclass of streaming string transducers (SSTs). SSTs extensionally
correspond to regular transductions, functions implementable by
2-way deterministic finite-state transducers [4], MSO-definable
string transductions [25] and a combinator language analogous to
regular expressions [8]. The implementation techniques used in
Kleenex appear to be directly applicable to all SSTs, not just the
ones corresponding to FSTs.

DReX [9] is a combinatory functional language for expressing
all SST-definable transductions. Kleenex without register operations
is expressively more restrictive; with copy-less register operations it
appears to compactly code exactly the nondeterministic SSTs and
thus SSTs. Programs in DReX must be unambiguous by construction
while programs in Kleenex may be nondeterministic and ambiguous,
which is greedily disambiguated.

Symbolic transducers. Veanes, Molnar, Mytkowics [69] employ
symbolic transducers [23, 68] in the implementation of the Mi-
crosoft Research languages BEK10 and BEX11 for multicore execu-
tion. These techniques can be thought of as synthesizing code that
implements the transition function of a finite state machine not only
efficiently, but also compactly. Tabling in code form (switch state-
ment) or data form (lookup in array) is the standard implementation
technique for the transition function. It is efficient when applica-
ble, but not compact enough for large alphabets and multistrided
processing. Kleenex employs basic symbolic transition. Compact

10 http://research.microsoft.com/en-us/projects/bek
11 http://research.microsoft.com/en-us/projects/bex

coding of multistrided transitions is likely to be crucial for exploiting
word-level parallelism—processing 64 bits at a time—in practice.

Parallel transducer processing. Allender and Mertz [3] show that
the functions computable by cost register automata [7], which
generalize the string monoid used in SSTs to admit arbitrary
monoids and more general algebraic structures, are in NC and
thus inherently parallelizable. This appears to be achievable by
performing relational FST-composition by matrix multiplication on
the matrix representation of FSTs [13], which can be performed
by parallel reduction. This requires in principle running an FST
from all states, not just the input state, on input string fragments.
Mytkowicz, Musuvathi, Schulte [47] observe that there is often a
small set of cut states sufficient to run each FST. This promises to
be an interesting parallel harness for a suitably adapted Kleenex
implementation running on fragments of very large inputs.

Syntax-directed translation schemes. A Kleenex program is an
example of a syntax-directed translation scheme (SDTS) or a domain-
specific stream processing language such as PADS [26, 27] and Ziria
[55]. In these the underlying grammar is typically deterministic
modulo short lookahead so that semantic actions can be executed
immediately when encountered during parsing.

Kleenex is restricted to non-self-embedding grammars to avoid
the matrix-multiplication lower bound on general context-free
parsing [40]; it supports full nondeterminism without lookahead
restriction, though. A key contribution of Kleenex is that semantic
actions are scheduled no earlier than semantically permissible and
no later than necessary.

9. Conclusions
We have presented Kleenex, a convenient language for specifying
nondeterministic finite state transducers, and its compilation to
machine code implementing streaming string transducers.

Kleenex is comparatively expressive and performs consistently
well. For complex regular expressions with nontrivial amounts
of output it is almost always better than industrial-strength text
processing tools such as RE2, Ragel, AWK, sed and RE-libraries of
Perl, Python and Tcl in the evaluated use cases.

We believe Kleenex’s clean semantics, streaming optimality,
algorithmic generality, worst-case guarantees and absence of tricky
code and special casing provide a useful basis for

• extensions, specifically visibly push-down transducers [51, 59],
restricted versions of backreferences and approximate regular
expression matching[45, 74];
• known, but so far unexplored optimizations, such as multistrid-

ing, automata minimization and symbolic representation, hybrid
FST-simulation/SST-construction;
• massively parallel (log-depth, linear work) processing.
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