
PROGRAMMING NETWORKED
EMBEDDED SYSTEMS

Networked Embedded Programming 2006 – Lecture 2

Overview

• Toolchain
– Program loading
– Program execution

• Embedded programs
– HW initialization
– Interrupts

• OS Services
– Ressource management
– Tasking and Scheduling

PC Programming 101

PC: 32/64 bits CPU, hard
drive, screen, RAM, IO
ports, Networking cards
(+Li-ion batteries)

• BIOS
– Basic Input/Output for boot

• OS: Linux/Windows services
– Memory management

– Processes management

– I/O

– File system

• Shell or GUI to execute system
calls

• Programming environment
– editor, compiler, linker

– Programing languages

Networked Embedded System
Programming

• Mote: MCU, RAM, flash,
led, serial/USB ports,
radio, batteries.

• Programming a collection
of motes

• How to load a
program?

• How to execute a
program?

• How to write a
program?
– What OS abstractions?

– What programming
model?

Program Loading (on 1 node)

Compiler Linker

Linker scripts
- memory mapping

Flash, RAM, registers
- placement

program, data, stack

bootloader 1

2
bootloader

program

programming
mode

execution
mode

Host

Mote

Flash

Assembly code
Object file

Executable file

HLL
source

High-Level Code (C)

• Predictability is key
– Code size, Speed

– What does the optimizer do?
• Check out: Freescale TF slides (home page)

– Data types (one byte is best)

– NEAR variables

– Pointers to functions

Object file

• Multiple sections
– Code

– Data

– BSS (uninitialized
variables)

• Relocation information

• Symbolic information

Description code bss data
Support & TinyOS core 1180
UART 0 & Interrupts 346 4

UART1 & Interrupts 292 5

hciPacket0 604 155

hciPacket1 588 155

hciCore0 1624 159

hciCore1 1590 159

Assembly Component 4796 1021 16

Total 11020 1658 16

TinyOS Btstack code analysis

Linker Script

SECTIONS
RAM = READ_WRITE 0x0080 TO 0x0FFF;
STACK = READ_WRITE 0x1000 TO 0x107F;
ROMLOW = READ_ONLY 0x1080 TO 0x17FF;
ROM = READ_ONLY 0x182C TO 0xFEFF;

END

PLACEMENT
.text INTO ROM;
.data INTO RAM;
.stack INTO STACK;

END

STACKSIZE 0x080

// reset vector: this is the default entry point
// for a C/C++ application.
VECTOR 0 _TinyOSStartup

Executable file (s19)
• S19 file records are a text representation of Hexadecimal coded binary data.
• Each line in a Motorola S19 file is called a 'record'. Records always begin with

a the letter 'S', followed by a '1' if the record contains data, or a '9' if this is the
last record in the file.

• The next byte represents the number of bytes in this record, including the
starting address, data bytes, and the checksum.

• The next pair of numbers represent the 16-bit starting address of the data in
the record. This is the absolute location in the EPROM.

• Following the address are the hex representations of the data to be stored.
• The last byte is an eight-bit one's-complement checksum of all of the bytes in

the record (not including the S1). Note that this value is derived from the
binary values of the bytes, not the ASCII representation.

• A standard CR/LF pair (carriage return/linefeed, $0D $0A) terminates each
line.

S00A00006170702E65786544
S123182C8B899EFE05F6AF019EFF05888A81A7FCC618B14C95E701C618B04CF73218B22020
S123184C1F898BF687E6024C9EE706E603EE018A4C20037FAF014BFB9E6B05F78A88AF04F9
S123186C9E6B02DD9E6B01D93218B4898BADB1974C9EE703ADAA4C9EE7044A2603510018AA
S123188CAD9E878AAD9A972005AD95F7AF019E6B04F79E6B03F320D5A7068145108094ADB4
S12318AC8DCC1CE8000118B62F80008000C7A673C718026E404D6E024CCC18A7A7FEA10F65
S12318CC2208CD2AFFA60195F765957FF6A70281A7F895F76F01CD199E95E704C600B226CF
S12318EC43C600B1CB00AF87C600B0C900AE8795E601AE329EE7028A86CD258C8C979EE691

http://www.x-ways.net/winhex/kb/ff/Motorola-S3.txt

Program Loading in Practise

1 node at a time
• Programming board

– Binary file uploaded by
prog. board onto 1 mote
flash via a serial connection
from host to prog. board
and from prog. board to
sensor node

• Embedded bootloader
– Binary file uploaded

USB/serial connection from
host directly to 1 sensor
node

Many nodes at a time

• Network program loading
– Binary file transmitted over

the network to possibly
many sensor nodes

– Mechanism to deal with
multiple programs

Program Execution

• Once a program is loaded
it is executed on reset
– Hardware reset (power on

/ timer / reset button)

– Software reset

• If a program crashes then
hardware reboot is the
only solution
– Hardware watchdog to

detect a crash

Overview

• Toolchain
– Program loading
– Program execution

• Embedded programs
– HW initialization
– Interrupts

• OS Services
– Ressource management
– Tasking and Scheduling

What is an Embedded Program?

A program embedded on a mote:
– Initializes the hardware
– Sleeps
– Processes events (radio, sensor or serial/USB)

Hardware Initialization (SPI Example)

#define HC08_REGISTER(type,addr) (*((type*)(addr)))

enum { SPIC1_Addr = 0x28 };

typedef struct
{

uint8_t LSBFE : 1;
uint8_t SSOE : 1;
uint8_t CPHA : 1;
uint8_t CPOL : 1;
uint8_t MSTR : 1;
uint8_t SPTIE : 1;
uint8_t SPE : 1;
uint8_t SPIE : 1;

} SPIC1_t;

#define SPIC1 HC08_REGISTER(uint8_t,SPIC1_Addr)

hcs08reg.h

// SPIC1
// bit 7: SPI Interrupt Enable (0)
// bit 6: SPI System Enable (1)
// bit 5: SPI Transmit Interrupt Enable (0)
// bit 4: Master/Slave Mode Select (1 = Master)
// bit 3: Clock Polarity (0 = Active-high SPI clock)
// bit 2: Clock Phase (0)
// bit 1: Slave Select Output Enable (0)
// bit 0: LSB First (0 = MSB first)

SPIC1 = 0x50; // Init SPI WAS:0x50

Spi driver excerpt

Interrupt Service Routine

• Save the CPU registers on the stack
• Set the I bit in the CCR to mask further

interrupts
• Fetch the interrupt vector for the highest-

priority interrupt that is currently
pending

• Fill the instruction queue with the
first three bytes of program
information starting from the
address fetched from the interrupt
vector locations (interrupt handler)

Interrupt Handler

• Disable interrupts
• Determine cause of interrupt
• Hardware service

– Clear error condition
• Non reentrant code

– Alter global variables
• Enable interrupts
• Reentrant code

– Run a task (see OS services)
• Return from interrupt

Issues with Interrupts

• Latency
– How is an interrupt presented to the processor?

– Minimize time when interrupts are disabled

• Completion
– How do you manipulate a global 16 bit variable?

• Stack corruption

• Reentrancy
– Use static variables with care (vs. automatic)

Debugging an Embedded Program

• Simulation
– Discrete Event simulations

• Generic (NS2), dedicated to a specific system (TOSSIM)
• Possibly coupled with actual nodes (Emstar)

– Generating network topology and physical world events

• Instrumentation
– In simulation or on actual nodes
– Console
– Packet sniffer (dedicated nodes or specific hardware)
– Generating a timestamped execution trace

• Power estimation

Overview

• Toolchain
– Program loading
– Program execution

• Embedded programs
– HW initialization
– Interrupts

• OS Services
– Ressource management
– Tasking and Scheduling

OS Services

• Ressource management
– Wrapper around HW initialization

– HW independant abstractions
• Memory and flash

• UART, SPI, I2C

• Timer

• Execution model
– Tasking and scheduling

Memory Management

• No virtual memory
• No secondary storage
• CPU can read/write from RAM

– Static vs. dynamic memory allocation: Static memory allocation is less
complex (no heap management, memory usage known when loading a
program). It is up to the application to manage the statically allocated buffers.

• CPU can read/write from Flash
– Reading is straightforward
– Writing is a bit more complex

• The unit of data written to flash is a page (e.g., 128 bytes)
• Need for simple form of buffer management
• Each page can only be written a limited number of times (~10000): wear levelling

techniques needed to distributed the writes throughout the flash
• Need for simple form of garbage collection

Timer

• SW abstractions for:
– Counters with multiple witdth / precision /

accuracy

– Compare registers for each counter, which can
trigger interrupts, changes to output pins and
changes to the counter value

– Capture of the time of input pin changes

Execution Model

• Hardware interfaces are asynchronous
– Split-phase commands (e.g., serial I/O)

• Command is sent

• Interrupt raised when command is executed

– Event notification through hardware interrupts

• Tasks
– Logically complete program

– Calls services from other tasks

– Calls OS services

– Tasks run concurrently and compete for CPU time

Execution Model

• Managing Concurrency
– Stack based context switches vs. Event-based transitions in a

finite state machine
– Synchronization primitives

• Semaphore, monitor, locks

• CPU Scheduling
– Interrupts can by definition happen at any time
– Preemptive vs. Non preemptive scheduling
– Scheduling algorithms

• First come, first serve
• Static (RMS) vs dynamic (EDF) algorithms to integrate real time

constraints

Summary

• Toolchain
– From source code to executable file

– Predicatability is key

• Embedded programs
– Interrupt handlers

• Reentrancy and latency are of the essence

• OS services
– Tasking and scheduling to manage concurrency

