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INDEXING
Based on slides from Shasha et al, Kifer et al.
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Agenda

• Access Path
– Type of  queries
– Heap vs. indexes
– Clustered vs. Unclustered
– Dense vs. Sparse

• Data Structures
– ISAM
– B+-Tree
– Hash

• Tuning
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Access Path

• Refers to the algorithm + data structure 
(e.g., an index) used for retrieving and 
storing data in a table

• The choice of an access path to use in the 
execution of an SQL statement has no effect 
on the semantics of the statement

• This choice can have a major effect on the 
execution time of the statement
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Types of Queries

1. Point Query

SELECT balance
FROM accounts
WHERE number = 1023;

2. Multipoint Query

SELECT balance
FROM accounts
WHERE branchnum = 100;

3. Range Query

SELECT number
FROM accounts
WHERE balance > 10000;

4. Prefix Match Query

SELECT *
FROM employees
W H E R E   nam e =  „Jensen‟ 

and firstnam e =  „C arl‟ 
and age < 30;
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Types of Queries

5. Extremal Query

SELECT *
FROM accounts
WHERE balance = 

max(select balance from accounts)

6. Ordering Query

SELECT *
FROM accounts
ORDER BY balance;

7. Grouping Query

SELECT branchnum, avg(balance)
FROM accounts
GROUP BY branchnum;

8. Join Query

SELECT distinct branch.adresse
FROM accounts, branch
WHERE    

accounts.branchnum = 
branch.number

and accounts.balance > 10000;
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Storage Structure

• Structure of file containing a table
– Heap file (no index, not integrated)
– Integrated file containing index and rows 

(index entries contain rows in this case)
• ISAM
• B+ tree
• Hash
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Heap Files

• Rows appended to end of file as they are 
inserted  
– Hence the file is unordered

• Deleted rows create gaps in file
– File must be periodically compacted to recover 

space
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Transcript Stored as a Heap File
666666      MGT123    F1994    4.0
123456      CS305        S1996    4.0         page 0
987654      CS305        F1995    2.0

717171      CS315        S1997    4.0
666666      EE101        S1998    3.0         page 1
765432      MAT123    S1996    2.0
515151      EE101        F1995    3.0

234567      CS305        S1999    4.0
page 2

878787      MGT123    S1996    3.0
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Heap File - Performance
• Assume file contains F pages
• Inserting a row:

– Access path is scan
– Avg. F/2 page transfers if row already exists
– F+1 page transfers if row does not already exist
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Heap File - Performance
• Query

– Access path is scan 
– Organization efficient if query returns all rows and 

order of access is not important
SELECT * FROM TranscriptTranscript

– Organization inefficient if a few rows are requested
• Average F/2 pages read to get get a single row

SELECT T.Grade
FROM TranscriptTranscript T
WHERE T.StudId=12345 AND T.CrsCode = „C S 305‟

AND T.Semester =  „S 2000‟
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Heap File - Performance

– Organization inefficient when a subset of rows 
is requested:  F pages must be read

SELECT T.Course, T.Grade
FROM TranscriptTranscript T                             -- point query
WHERE T.StudId = 123456

SELECT  T.StudId, T.CrsCode
FROM TranscriptTranscript T                              -- range query
WHERE T.Grade BETWEEN 2.0 AND 4.0
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Index

• Mechanism for efficiently locating row(s) without 
having to scan entire table

• Based on a search key: rows having a particular 
value for the search key attributes can be quickly 
located

• D on‟t confuse candidate key with search key:
– Candidate key: set of attributes; guarantees uniqueness
– Search key: sequence of attributes; does not guarantee

uniqueness – just used for search
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Index Structure
• Contains:

– Index entries
• Can contain the data tuple itself (index and table are integrated in 

this case); or
• Search key value and a pointer to a row having that value; table 

stored separately in this case – unintegrated index
– Location mechanism

• Algorithm + data structure for locating an index entry with a given 
search key value

– Index entries are stored in accordance with the search key 
value
• Entries with the same search key value are stored together (hash, B-

tree)
• Entries may be sorted on search key value (B-tree)
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Index Structure

Location Mechanism

Index entries

S
Search key
value

Location mechanism
facilitates finding
index entry for S

S

S , … … .
Once index entry is 
found, the row can 
be directly accessed
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Integrated Storage Structure
Contains table
and (main) index
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Index File With Separate Storage 
Structure

In this case, the storage 
structure might be a heap or 
sorted file, but often is an 
integrated file with another 
index (on a different search key 
– typically the primary key)

Storage
structure
for table

Location mechanism

Index entriesIn
de

x 
fil

e 
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Indices: The Down Side
• Additional I/O to access index pages (except if index is 

small enough to fit in main memory)
• Index must be updated when table is modified.
• SQL-92 does not provide for creation or deletion of 

indices
– Index on primary key generally  created automatically
– Vendor specific statements:

• CREATE INDEX ind ON TranscriptTranscript (CrsCode)
• DROP INDEX ind
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Clustered / Non clustered index

• Clustered index 
(primary index)
– A clustered index on 

attribute X co-locates 
records whose X values are 
near to one another. 

• Non-clustered index 
(secondary index)
– A non clustered index does 

not constrain table 
organization.

– There might be several non-
clustered indexes per table.

Records Records
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Clustered Index

• Good for range searches when a range of search 
key values is requested
– Use location mechanism to locate index entry at start of 

range
• This locates first row.

– Subsequent rows are stored in successive locations if 
index is clustered (not so if unclustered)

– Minimizes page transfers and maximizes likelihood of 
cache hits
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Example – Cost of Range Search
• Data file has 10,000 pages, 100 rows in search range
• Page transfers for table rows (assume 20 rows/page):

– Heap:  10,000 (entire file must be scanned)
– File sorted on search key: log2 10000 + (5 or 6)  19
– Unclustered index:   100
– Clustered index:  5 or 6

• Page transfers for index entries (assume 200 
entries/page)
– Heap and sorted: 0
– Unclustered secondary index:  1 or 2 (all index entries for the 

rows in the range must be read) 
– Clustered secondary index:  1 (only first entry must be read)
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Dense / Sparse Index

• Sparse index
– Pointers are associated to 

pages

• Dense index
– Pointers are associated to 

records
– Non clustered indexes are 

dense

P1 PiP2 record

record record
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Agenda

• Access Path
– Type of  queries
– Heap vs. indexes
– Clustered vs. Unclustered
– Dense vs. Sparse

• Data Structures
– ISAM
– B+-Tree
– Hash

• Tuning
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Index Sequential Access Method (ISAM)
• Generally an integrated storage structure

– Clustered, index entries contain rows
• Separator entry = (ki , pi); ki is a search key 

value; pi is a pointer to a lower level page
• ki separates set of search key values in the 

two subtrees pointed at by pi-1 and pi.
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Index Sequential Access Method
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Index Sequential Access Method
• The index is static:  

– Once the separator levels have been constructed, they never 
change

– Number and position of leaf pages in file stays fixed
• Good for equality and range searches

– Leaf pages stored sequentially in file when storage structure 
is created to support range searches 
• if, in addition, pages are positioned on disk to support a scan, a range 

search can be very fast (static nature of index makes this possible)

• Supports multiple attribute search keys and partial key 
searches
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Overflow Chains
- Contents of leaf pages change 
– Row deletion yields empty slot   

in leaf page
– Row insertion can result in  

overflow leaf page and  
ultimately overflow chain
– Chains can be long, unsorted,

scattered on disk
– Thus ISAM can be inefficient 

if table is dynamic
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B+ Tree

• Supports equality and range searches, 
multiple attribute keys and partial key 
searches

• Either a secondary index (in a separate file) 
or the basis for an integrated storage 
structure
Responds to dynamic changes in the table
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B+ Tree Structure

– Leaf level is a (sorted) linked list of index entries
– Sibling pointers support range searches in spite of
allocation and deallocation of leaf pages (but leaf 
pages might not be physically contiguous on disk)
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Insertion and Deletion in B+ Tree

• Structure of tree changes to handle row 
insertion and deletion – no overflow chains

• Tree remains balanced:  all paths from root 
to index entries have same length

• Algorithm guarantees that the number of 
separator entries in an index page is 
between  /2 and  ( is the fanout of a 
non leaf node)
– Hence the maximum search cost is log /2Q + 1

(with ISAM search cost depends on length of 
overflow chain)
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Handling Insertions - Example
- Insert “vince”
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H andling Insertions (cont‟d)
– Insert “vera”:  S ince there is no room  in leaf page:

1. Create new leaf page, C
2. Split index entries between B and C (but maintain

sorted order)
3. Add separator entry at parent level
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H andling Insertions (con‟t)
– Insert “rob”. S ince there is no room  in leaf page A :

1. Split A into A1 and A2 and divide index entries
between the two (but maintain sorted order)

2. Split D into D1 and D2 to make room for additional
pointer

3. T hree separators are needed: “sol”, “tom ” and “vince”
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H andling Insertions (cont‟d)
– When splitting a separator page, push a separator up
– Repeat process at next level
– Height of tree increases by one



34

Handling Deletions

• Deletion can cause page to have fewer than  /2
entries
– Entries can be redistributed over adjacent pages to 

maintain minimum occupancy requirement
– Ultimately, adjacent pages must be merged, and if 

merge propagates up the tree, height might be reduced
– See book

• In practice, tables generally grow, and merge 
algorithm is often not implemented
– Reconstruct tree to compact it
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Index Locks, Predicate Locks, 
and Key-Range Locking

• If a WHERE clause refers to a predicate name = 
mary and if there is an index on name, then an 
index lock on the index entries for name = mary
is like a predicate lock on that predicate

• If a WHERE clause refers to a predicate such as 
50000< salary < 70000 and if there is an index on 
salary, then a key-range index lock can be used 
to get the equivalent of a predicate lock on the 
predicate 50000<salary<70000
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Key-Range Locking

• Instead of locking index pages, index entries at the 
leaf level are locked
– Each such lock is interpreted as a lock on a range

• Suppose the domain of an attribute is A … Z and 
suppose at  some time the entries in the index are

C  G  P R X
• A lock on G is interpreted as a lock on the half-

open interval
[G P)
• Which includes G but not P
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Key-Range Locking (cont)

• Recall the index entries are:  C G P R X
• Two special cases

– A lock on X locks everything greater than X
– A new lock must be provided for [A C)

• Then for example to lock the interval                 
H < K < Q, we would lock G and P



38

Key-Range Locking (cont)

• Recall the index entries are:  C G P R X
• To insert a new key, J, in the index

– Lock G thus locking the interval [G P)
– Insert J thus splitting the interval into [G J)  [J P)
– Lock J thus locking [J P)
– Release the lock on G

• If a SELECT statement had a lock on G as part of 
a key-range, then the first step of the insert 
protocol could not be done
– Thus phantoms are prevented and the key-range lock is 

equivalent to a predicate lock
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Locking a B-Tree Index

• Many operations need to access an index structure 
concurrently
– This would be a bottleneck if conventional two-phase 

locking mechanisms were used
• Because we understand the semantics of the index, 

we can develop a more efficient locking algorithm
– The goal is to maintain isolation amount different 

operations that are concurrently accessing the index
– The short term locks on the index structure are called 

latches
• The long term locks on leaf entries we have been discussing 

are still obtained



40

Locking a B-Tree Index (cont)

• Read Locks
– Obtain a read lock on the root, and work your way 

down the tree locking each entry as it is reached
– When a new entry is locked, the lock on the previous 

entry (its parent) can be released
• This operation will never revisit the parent
• No write operation of a concurrent transaction can pass this 

operation as it goes down the tree
• Called lock coupling or crabbing
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Locking a B-Tree Index (cont)

• Write Locks
– Obtain a write lock on the root, and work your way 

down the tree locking each entry as it is reached
– When a new entry, n, is locked,  if that entry is not full, 

the locks on all its parents can be released
• An insert operation might have to go back up the tree, 

revisiting and perhaps splitting some nodes
• Even if that occurs, because n is not full, it will not have to 

split n and therefore will not have to go further up the tree
• Thus it can release locks further up in the tree.
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Hash Index
• Index entries partitioned into buckets in 

accordance with a hash function,  h(v), where v
ranges over search key values
– Each bucket is identified by an address, a 
– Bucket at address a contains all index entries 

with search key v such that h(v) = a
• Each bucket is stored in a page (with possible 

overflow chain)
• If index entries contain rows, set of buckets forms 

an integrated storage structure; else set of buckets 
forms an (unclustered) secondary index
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Equality Search with Hash Index

Given v:
1. Compute h(v)
2. Fetch bucket at h(v)
3. Search bucket

Cost = number of pages
in bucket (cheaper than
B+ tree, if no overflow 
chains)

Location
mechanism
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Hash Indices – Problems
• Does not support range search

– Since adjacent elements in range might hash to 
different buckets, there is no efficient way to 
scan buckets to locate all search key values v 
between v1 and v2

• Although it supports multi-attribute keys, it 
does not support partial key search
– Entire value of v must be provided to h

• Dynamically growing files produce 
overflow chains, which negate the efficiency 
of the algorithm
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Agenda

• Access Path
– Type of  queries
– Heap vs. indexes
– Clustered vs. Unclustered
– Dense vs. Sparse

• Data Structures
– ISAM
– B+-Tree
– Hash

• Tuning
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Index Tuning Knobs

• Index data structure
• Search key
• Size of key
• Clustered/Non-clustered/No index
• Covering
• Maintenance
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Multipoint query: B-Tree, Hash 
Tree

• There is an overflow 
chain in a hash index

• In a clustered B-Tree 
index records are on 
contiguous pages.
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• H ash indexes don‟t 
help when evaluating 
range queries

• Hash index 
outperforms B-tree on 
point queries
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Key Compression

• Use key compression
– If you are using a B-tree
– Compressing the key will reduce the number of 

levels in the tree
– The system is not CPU-bound
– Updates are relatively rare
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Clustered Index

• Because there is only one clustered index 
per table, it might be a good idea to 
replicate a table in order to use a clustered 
index on two different attributes
• Yellow and white pages in a paper telephone 

book
• Low insertion/update rate



3 - Index Tuning 51© Dennis Shasha, Philippe Bonnet 
2001

Clustered Index

• Multipoint query that 
returns 100 records 
out of 1000000.

• Cold buffer
• Clustered index is 

twice as fast as non-
clustered index and 
orders of magnitude 
faster than a scan.
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Non-Clustered Index

Benefits of non-clustered 
indexes

1. A dense index can 
eliminate the need to 
access the underlying 
table through covering.

• It might be worth 
creating several indexes 
to increase the likelihood 
that the optimizer can 
find a covering index

2. A non-clustered index is 
good if each query retrieves 
significantly fewer records 
than there are pages in the 
table.
• Point queries
• Multipoint queries:
number of distinct key values > 

c * number of records per page
Where c is the number of pages 

retrieved in each prefetch
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Scan Can Sometimes Win
• IBM DB2 v7.1 on 

Windows 2000
• Range Query
• If a query retrieves 10% of 

the records or more, 
scanning is often better 
than using a non-
clustering non-covering 
index. Crossover > 10% 
when records are large or 
table is fragmented on 
disk – scan cost increases.
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Multiple Attribute Search Key
• CREATE INDEX Inx ON TblTbl (Att1, Att2)
• Search key is a sequence of attributes; index entries are 

lexically ordered
• Supports finer granularity equality search: 

– “F ind row  w ith value (A 1, A 2) ”
• Supports range search (tree index only):

– “F ind row s w ith values betw een (A 1, A 2) and (A 1, A2) ”
• Supports partial key searches (tree index only):

– Find rows with values of Att1 between A1 and A1
– B ut not “F ind row s w ith values of A tt2 between A2 and A2” 
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Covering Index - defined

• Select name from employee where 
departm ent =  “m arketing”

• Good covering index would be on 
(department, name)

• Index on (name, department) less useful.
• Index on department alone moderately 

useful.
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Covering Index - impact

• Covering index performs 
better than clustering 
index when first attributes 
of  index are in the where 
clause and last attributes 
in the select.

• When attributes are not in 
order then performance is 
much worse.
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Index “F ace L ifts”
• Index is created with 

fillfactor = 100.
• Insertions cause page splits 

and extra I/O for each query
• Maintenance consists in 

dropping and recreating the 
index

• With maintenance 
performance is constant 
while performance degrades 
significantly if no 
maintenance is performed.
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Index “F ace L ifts”
• Index is created with 

pctfree = 0
• Insertions cause records to 

be appended at the end of 
the table

• Each query thus traverses 
the index structure and 
scans the tail of the table.

• Performances degrade 
slowly when no 
maintenance is performed.
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Index “F ace lifts”

• In Oracle, clustered index are 
approximated by an index 
defined on a clustered table

• No automatic physical 
reorganization

• Index defined with pctfree = 0
• Overflow pages cause 

performance degradation
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Index on Small Tables

• Tuning manuals suggest to avoid indexes on 
small tables
– If all data from a relation fits in one page then 

an index page adds an I/O
– If each record fits in a page then an index helps 

performance
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Index on Small Tables
• Small table: 100 records
• Two concurrent processes 

perform updates (each 
process works for 10ms 
before it commits)

• No index: the table is 
scanned for each update. 
No concurrent updates.

• A clustered index allow to 
take advantage of row 
locking. 
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Summary

1. Use a hash index for point queries only. Use a 
B-tree if multipoint queries or range queries are 
used

2. Use clustering
• if your queries need all or most of the fields of each 

records returned
• if multipoint or range queries are asked

3. Use a dense index to cover critical queries
4. D on‟t use an index if the tim e lost w hen 

inserting and updating overwhelms the time 
saved when querying


