
1

INDEXING
Based on slides from Shasha et al, Kifer et al.

2

Agenda

• Access Path
– Type of queries
– Heap vs. indexes
– Clustered vs. Unclustered
– Dense vs. Sparse

• Data Structures
– ISAM
– B+-Tree
– Hash

• Tuning

3

Access Path

• Refers to the algorithm + data structure
(e.g., an index) used for retrieving and
storing data in a table

• The choice of an access path to use in the
execution of an SQL statement has no effect
on the semantics of the statement

• This choice can have a major effect on the
execution time of the statement

© Dennis Shasha, Philippe Bonnet
2001

Types of Queries

1. Point Query

SELECT balance
FROM accounts
WHERE number = 1023;

2. Multipoint Query

SELECT balance
FROM accounts
WHERE branchnum = 100;

3. Range Query

SELECT number
FROM accounts
WHERE balance > 10000;

4. Prefix Match Query

SELECT *
FROM employees
W H E R E nam e = „Jensen‟

and firstnam e = „C arl‟
and age < 30;

© Dennis Shasha, Philippe Bonnet
2001

Types of Queries

5. Extremal Query

SELECT *
FROM accounts
WHERE balance =

max(select balance from accounts)

6. Ordering Query

SELECT *
FROM accounts
ORDER BY balance;

7. Grouping Query

SELECT branchnum, avg(balance)
FROM accounts
GROUP BY branchnum;

8. Join Query

SELECT distinct branch.adresse
FROM accounts, branch
WHERE

accounts.branchnum =
branch.number

and accounts.balance > 10000;

6

Storage Structure

• Structure of file containing a table
– Heap file (no index, not integrated)
– Integrated file containing index and rows

(index entries contain rows in this case)
• ISAM
• B+ tree
• Hash

7

Heap Files

• Rows appended to end of file as they are
inserted
– Hence the file is unordered

• Deleted rows create gaps in file
– File must be periodically compacted to recover

space

8

Transcript Stored as a Heap File
666666 MGT123 F1994 4.0
123456 CS305 S1996 4.0 page 0
987654 CS305 F1995 2.0

717171 CS315 S1997 4.0
666666 EE101 S1998 3.0 page 1
765432 MAT123 S1996 2.0
515151 EE101 F1995 3.0

234567 CS305 S1999 4.0
page 2

878787 MGT123 S1996 3.0

9

Heap File - Performance
• Assume file contains F pages
• Inserting a row:

– Access path is scan
– Avg. F/2 page transfers if row already exists
– F+1 page transfers if row does not already exist

10

Heap File - Performance
• Query

– Access path is scan
– Organization efficient if query returns all rows and

order of access is not important
SELECT * FROM TranscriptTranscript

– Organization inefficient if a few rows are requested
• Average F/2 pages read to get get a single row

SELECT T.Grade
FROM TranscriptTranscript T
WHERE T.StudId=12345 AND T.CrsCode = „C S 305‟

AND T.Semester = „S 2000‟

11

Heap File - Performance

– Organization inefficient when a subset of rows
is requested: F pages must be read

SELECT T.Course, T.Grade
FROM TranscriptTranscript T -- point query
WHERE T.StudId = 123456

SELECT T.StudId, T.CrsCode
FROM TranscriptTranscript T -- range query
WHERE T.Grade BETWEEN 2.0 AND 4.0

12

Index

• Mechanism for efficiently locating row(s) without
having to scan entire table

• Based on a search key: rows having a particular
value for the search key attributes can be quickly
located

• D on‟t confuse candidate key with search key:
– Candidate key: set of attributes; guarantees uniqueness
– Search key: sequence of attributes; does not guarantee

uniqueness – just used for search

13

Index Structure
• Contains:

– Index entries
• Can contain the data tuple itself (index and table are integrated in

this case); or
• Search key value and a pointer to a row having that value; table

stored separately in this case – unintegrated index
– Location mechanism

• Algorithm + data structure for locating an index entry with a given
search key value

– Index entries are stored in accordance with the search key
value
• Entries with the same search key value are stored together (hash, B-

tree)
• Entries may be sorted on search key value (B-tree)

14

Index Structure

Location Mechanism

Index entries

S
Search key
value

Location mechanism
facilitates finding
index entry for S

S

S , … … .
Once index entry is
found, the row can
be directly accessed

15

Integrated Storage Structure
Contains table
and (main) index

16

Index File With Separate Storage
Structure

In this case, the storage
structure might be a heap or
sorted file, but often is an
integrated file with another
index (on a different search key
– typically the primary key)

Storage
structure
for table

Location mechanism

Index entriesIn
de

x
fil

e

17

Indices: The Down Side
• Additional I/O to access index pages (except if index is

small enough to fit in main memory)
• Index must be updated when table is modified.
• SQL-92 does not provide for creation or deletion of

indices
– Index on primary key generally created automatically
– Vendor specific statements:

• CREATE INDEX ind ON TranscriptTranscript (CrsCode)
• DROP INDEX ind

© Dennis Shasha, Philippe Bonnet
2001

Clustered / Non clustered index

• Clustered index
(primary index)
– A clustered index on

attribute X co-locates
records whose X values are
near to one another.

• Non-clustered index
(secondary index)
– A non clustered index does

not constrain table
organization.

– There might be several non-
clustered indexes per table.

Records Records

19

Clustered Index

• Good for range searches when a range of search
key values is requested
– Use location mechanism to locate index entry at start of

range
• This locates first row.

– Subsequent rows are stored in successive locations if
index is clustered (not so if unclustered)

– Minimizes page transfers and maximizes likelihood of
cache hits

20

Example – Cost of Range Search
• Data file has 10,000 pages, 100 rows in search range
• Page transfers for table rows (assume 20 rows/page):

– Heap: 10,000 (entire file must be scanned)
– File sorted on search key: log2 10000 + (5 or 6)  19
– Unclustered index:  100
– Clustered index: 5 or 6

• Page transfers for index entries (assume 200
entries/page)
– Heap and sorted: 0
– Unclustered secondary index: 1 or 2 (all index entries for the

rows in the range must be read)
– Clustered secondary index: 1 (only first entry must be read)

© Dennis Shasha, Philippe Bonnet
2001

Dense / Sparse Index

• Sparse index
– Pointers are associated to

pages

• Dense index
– Pointers are associated to

records
– Non clustered indexes are

dense

P1 PiP2 record

record record

22

Agenda

• Access Path
– Type of queries
– Heap vs. indexes
– Clustered vs. Unclustered
– Dense vs. Sparse

• Data Structures
– ISAM
– B+-Tree
– Hash

• Tuning

23

Index Sequential Access Method (ISAM)
• Generally an integrated storage structure

– Clustered, index entries contain rows
• Separator entry = (ki , pi); ki is a search key

value; pi is a pointer to a lower level page
• ki separates set of search key values in the

two subtrees pointed at by pi-1 and pi.

24

Index Sequential Access Method
Lo

ca
tio

n
m

ec
ha

ni
sm

25

Index Sequential Access Method
• The index is static:

– Once the separator levels have been constructed, they never
change

– Number and position of leaf pages in file stays fixed
• Good for equality and range searches

– Leaf pages stored sequentially in file when storage structure
is created to support range searches
• if, in addition, pages are positioned on disk to support a scan, a range

search can be very fast (static nature of index makes this possible)

• Supports multiple attribute search keys and partial key
searches

26

Overflow Chains
- Contents of leaf pages change
– Row deletion yields empty slot

in leaf page
– Row insertion can result in

overflow leaf page and
ultimately overflow chain
– Chains can be long, unsorted,

scattered on disk
– Thus ISAM can be inefficient

if table is dynamic

27

B+ Tree

• Supports equality and range searches,
multiple attribute keys and partial key
searches

• Either a secondary index (in a separate file)
or the basis for an integrated storage
structure
Responds to dynamic changes in the table

28

B+ Tree Structure

– Leaf level is a (sorted) linked list of index entries
– Sibling pointers support range searches in spite of
allocation and deallocation of leaf pages (but leaf
pages might not be physically contiguous on disk)

29

Insertion and Deletion in B+ Tree

• Structure of tree changes to handle row
insertion and deletion – no overflow chains

• Tree remains balanced: all paths from root
to index entries have same length

• Algorithm guarantees that the number of
separator entries in an index page is
between  /2 and  ( is the fanout of a
non leaf node)
– Hence the maximum search cost is log /2Q + 1

(with ISAM search cost depends on length of
overflow chain)

30

Handling Insertions - Example
- Insert “vince”

31

H andling Insertions (cont‟d)
– Insert “vera”: S ince there is no room in leaf page:

1. Create new leaf page, C
2. Split index entries between B and C (but maintain

sorted order)
3. Add separator entry at parent level

32

H andling Insertions (con‟t)
– Insert “rob”. S ince there is no room in leaf page A :

1. Split A into A1 and A2 and divide index entries
between the two (but maintain sorted order)

2. Split D into D1 and D2 to make room for additional
pointer

3. T hree separators are needed: “sol”, “tom ” and “vince”

33

H andling Insertions (cont‟d)
– When splitting a separator page, push a separator up
– Repeat process at next level
– Height of tree increases by one

34

Handling Deletions

• Deletion can cause page to have fewer than  /2
entries
– Entries can be redistributed over adjacent pages to

maintain minimum occupancy requirement
– Ultimately, adjacent pages must be merged, and if

merge propagates up the tree, height might be reduced
– See book

• In practice, tables generally grow, and merge
algorithm is often not implemented
– Reconstruct tree to compact it

35

Index Locks, Predicate Locks,
and Key-Range Locking

• If a WHERE clause refers to a predicate name =
mary and if there is an index on name, then an
index lock on the index entries for name = mary
is like a predicate lock on that predicate

• If a WHERE clause refers to a predicate such as
50000< salary < 70000 and if there is an index on
salary, then a key-range index lock can be used
to get the equivalent of a predicate lock on the
predicate 50000<salary<70000

36

Key-Range Locking

• Instead of locking index pages, index entries at the
leaf level are locked
– Each such lock is interpreted as a lock on a range

• Suppose the domain of an attribute is A … Z and
suppose at some time the entries in the index are

C G P R X
• A lock on G is interpreted as a lock on the half-

open interval
[G P)
• Which includes G but not P

37

Key-Range Locking (cont)

• Recall the index entries are: C G P R X
• Two special cases

– A lock on X locks everything greater than X
– A new lock must be provided for [A C)

• Then for example to lock the interval
H < K < Q, we would lock G and P

38

Key-Range Locking (cont)

• Recall the index entries are: C G P R X
• To insert a new key, J, in the index

– Lock G thus locking the interval [G P)
– Insert J thus splitting the interval into [G J) [J P)
– Lock J thus locking [J P)
– Release the lock on G

• If a SELECT statement had a lock on G as part of
a key-range, then the first step of the insert
protocol could not be done
– Thus phantoms are prevented and the key-range lock is

equivalent to a predicate lock

39

Locking a B-Tree Index

• Many operations need to access an index structure
concurrently
– This would be a bottleneck if conventional two-phase

locking mechanisms were used
• Because we understand the semantics of the index,

we can develop a more efficient locking algorithm
– The goal is to maintain isolation amount different

operations that are concurrently accessing the index
– The short term locks on the index structure are called

latches
• The long term locks on leaf entries we have been discussing

are still obtained

40

Locking a B-Tree Index (cont)

• Read Locks
– Obtain a read lock on the root, and work your way

down the tree locking each entry as it is reached
– When a new entry is locked, the lock on the previous

entry (its parent) can be released
• This operation will never revisit the parent
• No write operation of a concurrent transaction can pass this

operation as it goes down the tree
• Called lock coupling or crabbing

41

Locking a B-Tree Index (cont)

• Write Locks
– Obtain a write lock on the root, and work your way

down the tree locking each entry as it is reached
– When a new entry, n, is locked, if that entry is not full,

the locks on all its parents can be released
• An insert operation might have to go back up the tree,

revisiting and perhaps splitting some nodes
• Even if that occurs, because n is not full, it will not have to

split n and therefore will not have to go further up the tree
• Thus it can release locks further up in the tree.

42

Hash Index
• Index entries partitioned into buckets in

accordance with a hash function, h(v), where v
ranges over search key values
– Each bucket is identified by an address, a
– Bucket at address a contains all index entries

with search key v such that h(v) = a
• Each bucket is stored in a page (with possible

overflow chain)
• If index entries contain rows, set of buckets forms

an integrated storage structure; else set of buckets
forms an (unclustered) secondary index

43

Equality Search with Hash Index

Given v:
1. Compute h(v)
2. Fetch bucket at h(v)
3. Search bucket

Cost = number of pages
in bucket (cheaper than
B+ tree, if no overflow
chains)

Location
mechanism

44

Hash Indices – Problems
• Does not support range search

– Since adjacent elements in range might hash to
different buckets, there is no efficient way to
scan buckets to locate all search key values v
between v1 and v2

• Although it supports multi-attribute keys, it
does not support partial key search
– Entire value of v must be provided to h

• Dynamically growing files produce
overflow chains, which negate the efficiency
of the algorithm

45

Agenda

• Access Path
– Type of queries
– Heap vs. indexes
– Clustered vs. Unclustered
– Dense vs. Sparse

• Data Structures
– ISAM
– B+-Tree
– Hash

• Tuning

© Dennis Shasha, Philippe Bonnet
2001

Index Tuning Knobs

• Index data structure
• Search key
• Size of key
• Clustered/Non-clustered/No index
• Covering
• Maintenance

3 - Index Tuning 47© Dennis Shasha, Philippe Bonnet
2001

Multipoint query: B-Tree, Hash
Tree

• There is an overflow
chain in a hash index

• In a clustered B-Tree
index records are on
contiguous pages.

0

5

10

15

20

25

B-Tree Hash index Bitmap index

Th
ro

ug
hp

ut
 (q

ue
rie

s/
se

c)

Multipoint Queries

3 - Index Tuning 48© Dennis Shasha, Philippe Bonnet
2001

• H ash indexes don‟t
help when evaluating
range queries

• Hash index
outperforms B-tree on
point queries

0

0,1

0,2

0,3

0,4

0,5

B-Tree Hash index Bitmap index

Th
ro

ug
hp

ut
 (q

ue
rie

s/
se

c)

Range Queries

B-Tree, Hash Tree

0

10

20

30

40

50

60

B-Tree hash index

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)

Point Queries

© Dennis Shasha, Philippe Bonnet
2001

Key Compression

• Use key compression
– If you are using a B-tree
– Compressing the key will reduce the number of

levels in the tree
– The system is not CPU-bound
– Updates are relatively rare

© Dennis Shasha, Philippe Bonnet
2001

Clustered Index

• Because there is only one clustered index
per table, it might be a good idea to
replicate a table in order to use a clustered
index on two different attributes
• Yellow and white pages in a paper telephone

book
• Low insertion/update rate

3 - Index Tuning 51© Dennis Shasha, Philippe Bonnet
2001

Clustered Index

• Multipoint query that
returns 100 records
out of 1000000.

• Cold buffer
• Clustered index is

twice as fast as non-
clustered index and
orders of magnitude
faster than a scan.

0

0,2

0,4

0,6

0,8

1

SQLServer Oracle DB2

Th
ro

ug
hp

ut
 ra

tio

clustered nonclustered no index

© Dennis Shasha, Philippe Bonnet
2001

Non-Clustered Index

Benefits of non-clustered
indexes

1. A dense index can
eliminate the need to
access the underlying
table through covering.

• It might be worth
creating several indexes
to increase the likelihood
that the optimizer can
find a covering index

2. A non-clustered index is
good if each query retrieves
significantly fewer records
than there are pages in the
table.
• Point queries
• Multipoint queries:
number of distinct key values >

c * number of records per page
Where c is the number of pages

retrieved in each prefetch

3 - Index Tuning 53© Dennis Shasha, Philippe Bonnet
2001

Scan Can Sometimes Win
• IBM DB2 v7.1 on

Windows 2000
• Range Query
• If a query retrieves 10% of

the records or more,
scanning is often better
than using a non-
clustering non-covering
index. Crossover > 10%
when records are large or
table is fragmented on
disk – scan cost increases.

0 5 10 15 20 25

Th
ro

ug
hp

ut
 (q

ue
rie

s/
se

c)

% of selected records

scan

non clustering

54

Multiple Attribute Search Key
• CREATE INDEX Inx ON TblTbl (Att1, Att2)
• Search key is a sequence of attributes; index entries are

lexically ordered
• Supports finer granularity equality search:

– “F ind row w ith value (A 1, A 2) ”
• Supports range search (tree index only):

– “F ind row s w ith values betw een (A 1, A 2) and (A 1, A2) ”
• Supports partial key searches (tree index only):

– Find rows with values of Att1 between A1 and A1
– B ut not “F ind row s w ith values of A tt2 between A2 and A2”

3 - Index Tuning 55© Dennis Shasha, Philippe Bonnet
2001

Covering Index - defined

• Select name from employee where
departm ent = “m arketing”

• Good covering index would be on
(department, name)

• Index on (name, department) less useful.
• Index on department alone moderately

useful.

3 - Index Tuning 56© Dennis Shasha, Philippe Bonnet
2001

Covering Index - impact

• Covering index performs
better than clustering
index when first attributes
of index are in the where
clause and last attributes
in the select.

• When attributes are not in
order then performance is
much worse.

0

10

20

30

40

50

60

70

SQLServer

Th
ro

ug
hp

ut
 (q

ue
rie

s/
se

c)

covering

covering - not
ordered

non clustering

clustering

3 - Index Tuning 57© Dennis Shasha, Philippe Bonnet
2001

Index “F ace L ifts”
• Index is created with

fillfactor = 100.
• Insertions cause page splits

and extra I/O for each query
• Maintenance consists in

dropping and recreating the
index

• With maintenance
performance is constant
while performance degrades
significantly if no
maintenance is performed.

0 20 40 60 80 100

Th
ro

ug
hp

ut

(q
ue

rie
s/

se
c)

% Increase in Table Size

SQLServer

No maintenance
Maintenance

© Dennis Shasha, Philippe Bonnet
2001

Index “F ace L ifts”
• Index is created with

pctfree = 0
• Insertions cause records to

be appended at the end of
the table

• Each query thus traverses
the index structure and
scans the tail of the table.

• Performances degrade
slowly when no
maintenance is performed.

0

10

20

30

40

50

0 20 40 60 80 100

Th
ro

ug
hp

ut

(q
ue

rie
s/

se
c)

% Increase in Table Size

DB2

No maintenance

Maintenance

3 - Index Tuning 59© Dennis Shasha, Philippe Bonnet
2001

Index “F ace lifts”

• In Oracle, clustered index are
approximated by an index
defined on a clustered table

• No automatic physical
reorganization

• Index defined with pctfree = 0
• Overflow pages cause

performance degradation
0 20 40 60 80 100

Th
ro

ug
hp

ut

(q
ue

rie
s/

se
c)

% Increase in Table Size

Oracle

No maintenance

© Dennis Shasha, Philippe Bonnet
2001

Index on Small Tables

• Tuning manuals suggest to avoid indexes on
small tables
– If all data from a relation fits in one page then

an index page adds an I/O
– If each record fits in a page then an index helps

performance

© Dennis Shasha, Philippe Bonnet
2001

Index on Small Tables
• Small table: 100 records
• Two concurrent processes

perform updates (each
process works for 10ms
before it commits)

• No index: the table is
scanned for each update.
No concurrent updates.

• A clustered index allow to
take advantage of row
locking.

0
2
4
6
8

10
12
14
16
18

no index index

Th
ro

ug
hp

ut
 (u

pd
at

es
/s

ec
)

© Dennis Shasha, Philippe Bonnet
2001

Summary

1. Use a hash index for point queries only. Use a
B-tree if multipoint queries or range queries are
used

2. Use clustering
• if your queries need all or most of the fields of each

records returned
• if multipoint or range queries are asked

3. Use a dense index to cover critical queries
4. D on‟t use an index if the tim e lost w hen

inserting and updating overwhelms the time
saved when querying

