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Abstract

The context of this thesis is the ZigBee wireless communication standard. The
intended market space of applications using the ZigBee standard is home con-
trol, building automation and industrial automation. With these applications
in mind the standard is optimized for low data rates, low power consumption,
security and reliability.

In our thesis we describe, analyze and implement a reduced ZigBee protocol
stack with a speci�c application in mind, namely the Light Sensor Monochro-
matic. Our objective is to implement the protocol stack and application on the
Freescale MC13192-EVB platform, in less than 32,768 bytes. Obtaining this
goal will cut current memory requirements in half, thus decreasing the cost of
deploying ZigBee products. To minimize the size of the protocol stack, we an-
alyze the required functionality of the light sensor application and implement
both the protocol stack and application in TinyOS.

We have succesfully implemented the protocol stack and application, keeping
the code size at 29,620 bytes�signi�cantly below the 32,768 bytes limit. The
implementation is not fully compliant with the ZigBee standard but it should
be possible to achieve this without exceeding a code size of 32,768 bytes.

Even though the implementation is specialized to the light sensor applica-
tion, the protocol stack in itself can be used to implement many other applica-
tions having similar requirements as the ones presented in this thesis.
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1 Introduction

When deploying sensor networks, the choice of communication protocol depends
on the context in which the network is used. The ZigBee protocol is designed
for sensor networks used to control home lighting, security systems, building
automation, etc.

In this thesis we will study the ZigBee protocol and implement a reduced
version of the protocol stack specialized for use by a ZigBee light sensor.

1.1 Sensor Networks

In a time where focus in the computing industry is on computational power,
the sensor networks paradigm takes a di�erent approach. Where the personal
computer is mostly about performing certain tasks in a controlled environment,
sensor networks are all about the physical world and the inherent uncertainties
that follow.

Sensor networks have already been deployed on wide scale and in a wide
range of applications: from monitoring Leach's Storm Petrels' occupancy of
small underground nesting burrows [1] to measuring sows in pig production
[2] or alerting authorities of a developing forest �re [15]. It has become clear
that the potential impact of sensor networks on our environment and daily lives
is greater than ever, making it one of the most promising technologies of the
decade [6].

Where personal computers are regarded as stable, inexpensive and computa-
tionally e�cient, they have several disadvantages that prevent them from being
deployed on a widespread scale in the physical world:

• energy � Without a permanent source of energy, the operating time of
personal computers are measured in hours. This is a problem in sensor
networks as a battery change in many cases would be infeasible, due to
both locality and size of the network.

• size � Although the size of personal computers have decreased over the
years, these cannot can be placed in a bird's nest, the collar of an animal
or on a battle�eld. Due to their sheer weight and physical dimensions, the
placement would severely disrupt the environment in which the computer
was placed.

• cost � While the cost of personal computers have decreased rapidly, sensor
networks are targeting an entirely di�erent price range. A cheap PC today
cost in the order of a few hundred dollars while the price of a sensor node
is about a tenth of this. This will allow sensor nodes to be deployed in
massive numbers in new places, where a PC would be too expensive.

The approach of sensor networks is based on having a large amount of simple
(often 8- or 16-bit processors and memory measured in kilobytes), small (down
to 1 mm3), inexpensive and computationally e�cient (but slow) �nodes�. Each
node senses some parameter in the physical world. These measurements can
be viewed in isolation or combined to solve a task that any one node could not
solve.

Working nodes with limited capabilities have already been produced at the
size of 1 mm3, and as the progress in performance of computers has followed
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Moore's Law the last decades, we can expect nodes living up to our expectations1

in the near future.

Figure 1: The Freescale Semiconductor MC13192-EVB node

1.2 Implementing ZigBee on Freescale nodes

The current physical size of nodes is the most apparent problem. We can im-
plicitly address this problem by optimizing the software, and thereby reduce
hardware requirements.

More speci�cally we will focus on utilization of the Freescale MC13192-
EVB2, con�gured with a temperature- and light sensor board. Our particular
interest is in the use of the light sensor, along with the functionalities for wireless
communication, using an IEEE 802.15.4 radio and the ZigBee protocol stack.

Size, cost and energy consumption are the main issues with regard to nodes,
and we can reduce all of these by minimizing the memory footprint of our
application. A smaller memory block means a smaller physical size, a cheaper
node and less energy to maintain the state of the memory. Energy consumption
can be reduced further by using duty cycling, i.e. only switching on components
of the node as they are needed.

The goal of this thesis is to implement a ZigBee protocol stack and a light
sensor application, which sends out light readings at speci�ed intervals. Current
implementations have a code size larger than 32KB, requiring FLASH memory
blocks of 64KB. By implementing the ZigBee protocol stack and light sensor in
less than 32KB, the cost of memory and the energy consumed by this can be
cut in half.

1Nodes will become smaller, but have the same computational power.
2A node with, among other things, a USB port, push buttons, leds and an antenna for

wireless communication.
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To limit the size of our implementation we focus on implementing the manda-
tory primitives of the ZigBee standard, leaving out optional functionality where
they are not needed in our application. Identifying necessary functionality will
be an essential part of our analysis.

1.3 Approach

Since optimal memory usage and e�cient code are our metric, we need a pro-
gramming language and operating system that enhance these features. For this
purpose we use the nesC programming language and the TinyOS operating
system.

TinyOS is an open source operating system, implemented using nesC and
designed for wireless embedded sensor networks. TinyOS and nesC are like two
sides of a coin: nesC provides the language constructs on which TinyOS relies
and TinyOS extends this model to a full operating system. The TinyOS core
has a code size of 300-400 bytes and is component based. This means that only
the necessary features of the operating system and application are included,
thus limiting the code size.

An implementation of the IEEE 802.15.4 MAC layer is already provided by
Freescale in a C library. To use this library in TinyOS our �rst task is to �nish
a nesC wrapper for the library. Work has already been made on this3, but much
is left to be implemented.

Having a working implementation of the IEEE 802.15.4 wrapper in nesC, we
can continue to implement the ZigBee protocol stack on top.

We start o� by analysing the requirements for our light sensor application
and identifying the parts of the ZigBee protocol stack we consider necessary to
support this. Afterwards we discuss how to implement these parts.

When implementing, we will take a bottom up approach. First we will
implement the protocol stack with required functionality, based on the ZigBee
speci�cations. When the protocol stack is complete, we implement the light
sensor application, based on the ZigBee Light Sensor Monochromatic (LSM)
device description [20].

1.4 Contribution

Given the context described up until now, our speci�c contributions to the �eld
of sensor networks are:

• To analyze the ZigBee standard and its memory requirements in the con-
text of a Light Sensor Monochromatic application.

• To implement a TinyOS wrapper for the IEEE 802.15.4 MAC layer pro-
vided by Freescale.

• To implement a minimal ZigBee protocol stack and Light Sensor
Monochromatic application in TinyOS.

We believe these are novel contributions to the sensor networks community and
will provide valuable insight into the use of ZigBee in sensor networks.

3By former Ph.D. student, Mads Bondo Dydensborg, at the Department of Computer
Science, University of Copenhagen.
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The rest of this thesis will be organized as follows:
In the �rst part we will provide an overview of the ZigBee standard. In the

next part we will analyze the ZigBee protocol stack and how to reduce it to the
needs of a light sensor. Before discussing the implementation, we will describe
TinyOS, nesC and the hardware on which the protocol stack is implemented.
We will then describe our implementation and �nally present an evaluation of
our protocol stack and light sensor with regard to functionality and code size.

Note, October 2005: At the time of writing the ZigBee speci�cation consisted
of several documents and was not openly available. Since then, the speci�ca-
tion has been made available to the general public and combined into a single
document, thus references to the speci�cation in this thesis do not correspond
to the combined ZigBee speci�cation as is available from the ZigBee Alliance.
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2 The ZigBee Standard

The ZigBee protocol is implemented on top of the IEEE 802.15.4 radio commu-
nication standard. The ZigBee speci�cation is managed by a non-pro�t indus-
try consortium of semiconductor manufacturers, technology providers and other
companies, all together designated the ZigBee Alliance. The alliance currently
numbers more than 150 members.

The ZigBee speci�cation is designed to utilize the features supported by
IEEE 802.15.4. In particular, the scope of ZigBee is applications with low
requirements for data transmission rates and devices with constrained energy
sources.

The intended market space for ZigBee products include home control and
building automation. Imagine the intelligent building: controlling the lighting
and temperature as needed, monitoring the building structure and performing
surveillance tasks with a minimum of user interaction. This is the potential of
ZigBee.

The overall ZigBee stack is illustrated in Figure 2.

Figure 2: The overall ZigBee protocol stack

A comparison of prevalent wireless technologies is presented in Table 1. The
use of Bluetooth in sensor networks is very limited [13], and the energy con-
sumption of Wi-Fi makes this technology infeasible as well. Compared to these
technologies, ZigBee is interesting and worth investigating further in the context
of sensor networks.

ZigBee Bluetooth Wi-Fi
Standard 802.15.4 802.15.1 802.11b
Memory requirements 4-32KB 250KB+ 1MB+
Battery life Years Days Hours
Nodes per master 65,000+ 7 32
Data rate 250Kb/s 1Mb/s 11Mb/s
Range 300m 10m 100m

Table 1: Comparison of wireless technologies [24, 9]
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Device Type Description Code Size
FFD Full-blown FFD. Contains all 802.15.4 37KB

features including security.
FFDNGTS Same as FFD but no GTS capability. 33KB
FFDNB Same as FFD but no beacon capability. 28KB
FFDNBNS Same as FFD but no beacon and no 21KB

security capability.
RFD Reduced function device. Contains 29KB

802.15.4 RFD features.
RFDNB Same as RFD but no beacon capability. 25KB
RFDNBNS Same as RFD but no beacon and no 18KB

security capability.

Table 2: MAC/PHY software device type functionality [4, p. 1-1]

2.1 IEEE 802.15.4

The current IEEE 802.15.4 standard [11] was approved in 2003 and is managed
by the Institute of Electrical and Electronics Engineers, IEEE. The standard
di�erentiates itself from the more widespread 802.11 standard in focusing on
lower data rates and lower power consumption [12].

In practise, this translates to data rates between 20 and 250 kbps depending
on which of the three di�erent radio frequencies that is used by the PHY layer4.

The power management facilities of the standard enable battery-powered
devices to operate for several months or years.

There are two overall types of devices de�ned by the standard: Reduced
Function Devices (RFD) and Full Function Devices (FFD). These device types
di�er in their use and how much of the standard they implement.

Freescale provides seven C pre-compiled IEEE 802.15.4 MAC libraries, with
varying degrees of functionality, cf. Table 2.

Our task is to implement an end device application (the light sensor) with
the smallest memory footprint and since end devices can optionally be FFDs,
cf. [17, p. 4], we can rule out the use of FFD-libraries. As our objective is to
implement the ZigBee protocol stack using less than 32KB, we �nd it infeasible
to use any other MAC library than the RFDNBNS, thus supporting neither
beacons5 nor security.

It should be noted that these design choices will not limit the use or com-
pliance of our �nal implementation, rather the choices are made on the basis of
requirements from the application we are implementing.

4868 MHz (20 kbps, mainly Europe), 915 MHz (40 kbps, mainly North America and
Australia) and 2.4 GHz (250 kbps, virtually anywhere).

5Beacons allow for synchronization in the network.
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2.2 Core Concepts

A ZigBee network is called a Personal Area Network (PAN) and consists of one
coordinator, one or more end devices and, optionally, one or more routers.

The coordinator is a Full Function Device (FFD), responsible for the in-
ner workings of the ZigBee network. A coordinator sets up a network with
a given PAN identi�er which end devices can join. End devices are typically
Reduced Function Devices (RFDs) to allow as cheap an implementation as pos-
sible. Routers can be used as mediators for the coordinator in the PAN, thus
allowing the network to expand beyond the radio range of the coordinator. A
router acts as a local coordinator for end devices joining the PAN, and must
implement most of the coordinator capabilities. Hence a router is also an FFD
device.

Commonly, coordinators and routers are mains powered and will in most
cases have their radios on at all times. End devices, on the other hand, can be
designed with very low duty cycling, allowing them long life expectancies, when
battery powered.

Applications
The ZigBee Alliance provides a number of pro�les that provide a framework
for related applications to work within. This way, end devices from di�erent
vendors can interoperate as long as they adhere to the given pro�le.

One of these pro�les is the Home Control, Lighting Pro�le [19]. This pro�le
focuses on sensing and controlling light levels in the home environment. The
pro�le de�nes di�erent device descriptions which belong to the pro�le, e.g. Light
Sensor Monochromatic, Switch Remote Control, Switching Load Controller and
Dimmer Remote Control.

A pro�le can consist of 216 device descriptors [18, p. 15] and can hold up to
256 clusters. Each cluster can contain up to 216 attributes [18, p. 15]. A device
description, contains a set of mandatory and optional input and output clusters
from the pro�le.

Input clusters consist of attributes that can be set by other devices, e.g. the
light sensor has an attribute called ReportTime, which controls the time interval
between light readings. Output clusters consist of attributes that supply data
to other devices, e.g. the Light Sensor Monochromatic (LSM) has one attribute
in its output cluster, named CurrentLevel, which holds the current light sensor
reading measured in lux6.

Mandatory clusters (including every attribute within these) must be imple-
mented by the appropriate end devices. Optional clusters may be implemented,
but if a device supports an optional cluster, it must implement every attribute
within that cluster.

Applications implement a device description. We will be focusing on the
LSM device [20] in this thesis. The applications are implemented on di�erent
endpoints on an end device and are called application objects. Endpoints can
be thought of as the port numbers used in TCP/IP.

To identify end devices, two address types exist. All end devices have a
unique 64-bit IEEE address, also referred to as the extended address. Upon
joining a PAN, an end device is assigned a 16-bit short address by the coor-

6lux: lumen per square meter.
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dinator which is used as a sub-addressing mode, minimizing the overhead of
addressing.

Application objects can send messages using direct addressing, also known as
unicast, indirect adressing using bindings, see below, and broadcast addressing.

Two message types are de�ned:

1. Key Value Pair (KVP) service which uses a standardized way of
representing messages using binary XML, or

2. Message (MSG) service which gives full control over the messages being
sent for application speci�c needs

These message types are shown in Figure 8 and described further in Section 3.1.1
and Section 3.6.1, respectively.

Binding
Application objects at di�erent end devices can initiate communication by a
process known as binding which creates a logical link between application ob-
jects. More speci�cally, an entry is made in the binding table of the coordinator,
identifying the endpoints of the application objects that requests a communi-
cation link. An application object can be bound with application objects at
multiple end devices, as illustrated in Figure 3. Here switch 1 controls lamp 1,
2 and 3, while switch 2 only controls lamp 4. The concept of binding is similar
to connecting two sockets in TCP/IP.

Figure 3: Binding several devices in the binding table



2 THE ZIGBEE STANDARD 9

When two devices bind, the output cluster of one device is connected with
the input cluster of another device. For example, the light sensor has one
output cluster (Output:LightLevelLSM), and the switching load controller has
the same cluster as input (Input:LightLevelLSM), thus the two devices can
bind, ensuring that the light sensor will supply the switching load controller
with periodical light sensor readings.

Binding can either be initiated by a coordinator/router directly, making the
binding entry, or by the end devices themselves. The latter approach is known
as simple binding, and is generally initiated by the press of a button on both of
the two end devices wishing to bind two application objects.

When two bound application objects communicate, they do so via indirect
addressing. The message is passed through the coordinator which identi�es the
recipient using the source address, source endpoint and cluster identi�er. This
way end devices need no knowledge of the addresses of the device(s) used in the
communication.

To minimize power consumption (using duty cycling), end devices turn o�
their radio when it is not needed, e.g. after having binded. As messages can be
sent to an end device at any time, the coordinator, with which the end device
is joined, receives messages on behalf of the sleeping end devices. When an end
device wakes up and is ready to receive a message, the end device polls the
coordinator for available messages.

Descriptors
To describe the capabilities of devices within a network, the ZigBee protocol
de�nes three mandatory descriptors: the node, power and simple descriptor.
A descriptor is a set of attributes that other devices can request in order to
obtain information about a device, e.g. the remaining power level or the services
provided.

The three descriptors are characterized by:

• Node Descriptor � A node has one node descriptor which describes the
type and capabilities of the node. The type of a node is either coordinator,
router or end device. The capabilities of a node are properties such as
frequency band, maximum bu�er size, whether the receiver is on at all
times or not, etc.

• Power Descriptor � A node has one power descriptor which describes
the current power source in use, current power source level, etc.

• Simple Descriptor � A node has one simple descriptor for each endpoint.
The simple descriptor holds information about the application residing on
an endpoint. This includes the pro�le identi�er, the number of input and
output clusters, etc.

2.3 Network Stack

The ZigBee protocol stack has its origin in the Open Systems Interconnect (OSI)
seven-layer model, initiated in the early 1980s by ISO and ITU-T7. A detailed

7International Organization for Standardization and International Telecommunication
Union-Telecommunication
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Figure 4: The detailed ZigBee protocol stack
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ZigBee protocol stack is illustrated in Figure 4. The two lower layers are de�ned
by the IEEE 802.15.4 standard while the remaining two layers are de�ned by
the ZigBee Alliance:

1. The Physical (PHY) Layer is the lowest layer and is de�ned in the
IEEE 802.15.4 standard [11]. It consists of two PHY-layers, operating in
two separate frequency ranges: 868/915 MHz and 2.4 GHz.

2. The Medium Access Control (MAC) Layer is de�ned in the IEEE
802.15.4 standard [11]. The responsibility of the MAC layer is to control
access to the radio channel using CSMA/CA8. The MAC layer provides
support for transmitting beacon frames, network synchronization and re-
liable transmission using CRC and retransmissions.

3. The Network (NWK) Layer de�ned by the ZigBee Alliance [17], sends
and receives data to and from the application layer. Furthermore, it per-
forms the task of associating to and disassociating from a network, apply-
ing security and (on ZigBee coordinators) starting networks and assigning
addresses. These services are provided through two interfaces�the Net-
work Layer Management Entity Service Access Point (NLME-SAP) and
the Network Layer Data Entity Service Access Point (NLDE-SAP).

4. The Application (APL) Layer is the top layer, and is de�ned by
the ZigBee Alliance. It consists of the Application Support Sublayer
(APS) [16], the ZigBee Device Object (ZDO) [22] and the Application
Objects implemented on the given device:

(a) The Application Support Sublayer (APS) provides two
interfaces�the APS Management Entity Service Access Point
(APSME-SAP) and the APS Data Entity Service Access Point
(APSDE-SAP). The former is used to implement security, and by
the ZDO of coordinators to retrieve information from the APS layer,
while the latter is used by the application objects and the ZDO to
send data.

(b) The ZigBee Device Object (ZDO) provides an interface to the
Application Objects used for discovering other devices and the ser-
vices provided by these. Furthermore the ZDO sends responses to
other devices requesting information about the device itself and the
services provided by it. To support this, the ZDO uses the APSDE-
SAP of the APS layer and the NLME-SAP of the NWK layer. The
ZDO is a special Application Object, implemented on endpoint 0.

(c) Application Objects are the actual manufacturer applications run-
ning on top of the ZigBee protocol stack. These adhere to a given
pro�le approved by the ZigBee alliance and reside on endpoints num-
bered from 1-240. Endpoints, in conjunction with the address of the
device, provide a uniform and unambiguous way of addressing indi-
vidual application objects in the ZigBee network.

8Carrier Sense Multiple Access with Collision Avoidance
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In addition to the above-mentioned layers, a Security Service Provider is
optionally supported. This provider is used by both the NWK layer and APL
layer. As we will not be implementing any security speci�c features, we will not
describe this further.

2.4 Network Topologies

The nodes in a ZigBee network can be arranged using three di�erent network
topologies: star, tree and mesh.

The simplest of the three topologies is the star topology, shown in Fig-
ure 5(a). Here the ZigBee network contains one coordinator , no routers

and a number of end devices . Each end device is within radio range of the
coordinator.

(a) Star topology (b) Tree topology (c) Mesh topology

Figure 5: The ZigBee network topologies

In the tree topology, the communication routes are organized in such a way
that there exists exactly one route from one device to another, see Figure 5(b).
End devices may either communicate directly with the coordinator or with ex-
actly one of a number of routers.

As with the tree topology, end devices in a mesh communicate either directly
with the coordinator or with a router. Unlike the tree topology, there may be
several routes between di�erent routers in a mesh topology. This redundant
routing is transparent to the end devices, and introduces some reliability in the
network, at the cost of added complexity. An example of a mesh network can
be seen in Figure 5(c).

As may be noticed, the star topology is a subset of the tree topology, which
again is a subset of the mesh topology.
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3 Analyzing the ZigBee Protocol Stack

The following sections describe the parts of the ZigBee protocol needed to imple-
ment a light sensor operating in a star network. We will �rst describe the Light
Sensor Monochromatic device and thereby identify the functionality needed to
implement this. Then we will consider how to provide this functionality, in-
cluding how to send and receive data. Finally we will discuss issues concerning
bu�er management, concurrency and duty cycling.

The primitives mentioned in the following sections and their placement in
the protocol stack are illustrated in Figure 6.

Figure 6: The primitives we will be needing
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Cluster Description
Output:LightLevelLSM Mandatory cluster, containing one at-

tribute, used for outputting the mea-
sured ambient light level to an external
device.

Input:ProgramLSM Optional cluster, containing eight at-
tributes, used for programming the
state of an LSM, allowing output be-
haviour and light level o�set to be
changed.

Table 3: Clusters de�ned in the LSM device description

3.1 Light Sensor Monochromatic

The device description for the Light Sensor Monochromatic [20] de�nes two
clusters: one mandatory and one optional, see Table 3.

We have chosen to implement both the mandatory and the optional cluster,
as:

1. It makes it possible to test whether our end device is capable of receiving
(and handling) packets, as well as sending them.

2. It makes it possible to test binding of several clusters on the same device.

3. Testing would have been very limited with an LSM that only supports the
mandatory output cluster.

To test our LSM, we will implement a simple programming device and a
simple consumer device (both without any reference to o�cial ZigBee pro�les).
These two devices are implemented with the sole purpose of testing our LSM
device; hence we will not describe them in this section, merely note that they
are implemented to send and receive data in the correct format and to utilize
the two clusters of the LSM. For implementation speci�c details, see Section
6.4.

In the following we will describe the overall functionality required of the
ZigBee procol stack, in order to implement the above mentioned clusters.

3.1.1 Required Functionality

Basically, there are three steps when deploying a light sensor:

• Joining a network.

• Binding devices.

• Operation (sending and receiving data).

For each of these, the application issues requests to the ZigBee protocol stack.
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Attribute ID Functionality

CurrentLevel Current ambient light level measured by light sensor.

Table 4: Attributes in the Output:LightLevelLSM cluster

Attribute ID Functionality

ReportTime Interval in seconds between the output of light read-
ings.

MinLevelChange Level change needed before outputting a new value.
MinThreshold Threshold to drop below before outputting a new

value.
MaxThreshold Threshold to exceed before outputting a new value.
O�set O�set to add/subtract in all light readings.
Override Disable all output.
Auto Enable output.
FactoryDefault Reset device to factory defaults.

Table 5: Attributes in the Input:ProgramLSM cluster

Joining a Network
After the device has been turned on and the radio and other components have
been initialized, the �rst thing the device must do is to scan for available net-
works and subsequently join one of them.

Since an end device can only join one network, joining is handled by the
ZDO and not by the individual application objects. Each application object
will be noti�ed by the ZDO when a network has been successfully joined.

Binding Devices
After a successful join, the application can issue a request to bind with other
matching devices on the network. To bind with another application, we will
need to send the identi�er of the pro�le and the supported input and output
clusters to the coordinator. This process is described further in Section 3.3.

When a device carries out a successful bind, it is ready to go into operation
mode. Binding can also be initiated at any time during operation mode.

Sending Data
In the case of the LSM device, we need to output the light level with a given
interval, speci�ed by a factory default. The transmission of light level readings
is the only mandatory part of the LSM, and also the only output speci�ed in
the device description (see Table 3 and Table 4).

The light reading will be sent in a message via the APSDE-DATA.request

primitive. The destination of the packet will be all consumers within the Home
Control Lighting (HCL) pro�le, that have bound with the LSM device's output
cluster. An example of a consumer could be the Switching Load Controller,
speci�ed in [21].

Receiving Data
As mentioned in Section 3.1, we have implemented the optional
Input:ProgramLSM cluster. The attributes de�ned in this cluster and the func-
tionality they implement, are described in Table 5. There are some ambiguities
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in the device description, concerning simultaneously enabled parameters. In the
following we will describe how we choose to interpret them.

By setting ReportTime it is possible to decide how often the light sensor is
read. If no other attributes are set, the light reading will also be outputted each
time the sensor is read.

Setting the MinLevelChange attribute will cause the LSM to only output a
reading if it has changed a certain percentage, since the last time a value was
outputted. The change can be either positive or negative.

MinThreshold and MaxThreshold de�ne two boundaries that must be
dropped below or exceeded, respectively, before outputting a new light read-
ing. Once the level drops below MinThreshold, it must exceed MaxThreshold
to output a new light level, and vice versa. This way it is possible to provide
hysteresis9 for the light level, and hence avoid unnecessary outputs, when the
light level is changing from one side of a boundary to another, see Figure 7.

Figure 7: Hysteresis for the threshold attributes

If both MinLevelChange and Min-/MaxThreshold are enabled, there are a
number of possible interpretations to choose from. The device description [20]
does not clearly specify how to handle this, but we have identi�ed these possible
solutions:

• If MinLevelChange and Min-/MaxThreshold are both set, then both con-
ditions must be satis�ed in order to output a new value.

• If they are both set, just one of them should be satis�ed before outputting
a new light reading.

We believe it to be more likely that a consumer would rather receive some
unnecessary light readings, than miss out on necessary ones. If an application
object does not need a reading, it is free to simply discard it. Therefore we opt
for the second choice. If life expectancy were the critical parameter, we might
had opted for the �rst choice.

Another ambiguity in the device description concerns the priority of the
ReportTime attribute, when it is enabled together with MinLevelChange or
Min/MaxThreshold. This can be handled with two di�erent approaches:

• The value of ReportTime should have precedence over other attributes,
hence ensuring that a light level is outputted at least with the given in-
terval.

9hysteresis: the lagging of an e�ect behind its cause.
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• The value of ReportTime is used to determine how often to poll
the light sensor and subsequently check the MinLevelChange and
Min/MaxThreshold attributes, hence outputting at most with the interval
speci�ed by ReportTime.

The disadvantage of the �rst option is quiet clear; the user has no control
over how often the attributes de�ned are checked. We expect the maximum
time allowed between examination of attributes to vary signi�cantly from one
application to another. With the �rst option the only way to change this is by
modifying the code for our LSM.

The problem with the second option is that the behavior of MinLevelChange
and Min/MaxThreshold depends on ReportTime. We might imagine a sensor
that only needs to output readings if radical changes occur, but should still
output a reading at least with some given interval. With the second option this
scenario is not possible.

Even though there are disadvantages of both options, we decide on the sec-
ond. The primary reason for this is that we consider it a great advantage to be
able to determine how often to examine the speci�ed attributes.

The O�set attribute is used to correct all readings by a given o�set. The
o�set can be either positive or negative, and it is taken into account before
checking any attributes with regard to output constraints.

Override is used to disable all output, but otherwise keep the state of the
device intact. Hence side e�ects of all functions will occur, even if Override
is set, however no output is produced. The Auto attribute is used to enable
output again.

The �nal attribute is FactoryDefault, which will reset everything to factory
defaults.

KVP Commands
When end devices communicate, they do so by sending an AF10 command frame.
The AF command frame can hold a number of either MSG or KVP messages,
known as transactions, see Figure 8. An AF command frame holding more than
one transaction is called an aggregated transaction.

The LSM device uses KVP commands exclusively, when sending and receiv-
ing messages.

The Transaction sequence number increases by one everytime a device sends
a transaction and is wrapped around when it reaches 255. This way it is pos-
sible to identify a given transaction, which can be necessary when handling
acknowledgements.

The second �eld, Command type identi�er, determines the type of trans-
actions we are dealing with11, and the Attribute data type speci�es one of the
ZigBee standard data types12 of the attribute data. This �eld is somewhat re-
dundant as the datatype is uniquely determined by the cluster and attribute
identi�er, see below, alone�but since it is de�ned in the KVP frame format, we
set the correct data type, corresponding to the data type de�ned in the cluster.

10Application Framework
11Set, Event, Get/Set/Event with Acknowledgement or Get/Set/Event response.
12No data, uint8, int8, uint16, int16, semi-precision, absolute time, relative time, character

string and octet string.



3 ANALYZING THE ZIGBEE PROTOCOL STACK 18

Figure 8: The Application Framework command frame

The Attribute identi�er tells us which attribute within the cluster we are
accessing. The optional Error code indicates the success or failure (and possible
reason) of a request to another device. And the �nal �eld, Attribute data, is the
payload of the package if there is any. The type of Attribute data, and thereby
the way it is handled, is determined by the Attribute data type �eld.

3.1.2 Omitted Functionality

The ZigBee speci�cations include some functionality which we have chosen not
to implement. The most important features that we have omitted, are described
in the following.

Application Level Acknowledgements
It is possible to send KVP commands, asking for an acknowledgement. Since
acknowledgements are supported in the APS layer, we have chosen not to sup-
port it in the application layer. Furthermore, all functions in our LSM device
are idempotent, i.e. calling the same function one or more times with the same
arguments, will not create invalid states or compromise the precision of our
device.

If we were to handle application level acknowledgements, it would, as men-
tioned, rely on the transaction sequence numbers. Basically all that is needed
is to send an acknowledgement to the sender of the original message, including
the received sequence number and appropriate Error code. If a sender never
receives an acknowledgement, it simply retransmits the lost message.

Semi-Precision Data Types
A deviation from the LSM device description is the absence of semi-precision
data types13. From an optimization perspective it is always favourable to avoid
�oating point data types when an integer will do. But more importantly, in
our case the readings returned from the light sensor are 10 bits and represent
integer lux values (in the range from 0-1024). Hence we can easily handle our
light levels as integers, without any loss of precision.

13A standard ZigBee data type, using two bytes to represent a �oating point number.
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This means that some devices may erroneously use the integer as a semi-
precision number. However, because of the Attribute data type �eld, this should
not happen.

Get on attributes
Besides setting an attribute in a given cluster, the standard also speci�es a
method to get the state of these attributes. This might be practical if, e.g. one
LSM were to be programmed by several devices. But in our case we only have
one programming device, which sets all the attributes. Therefore it should not
be necessary to ask the LSM for the state of any attributes.

3.2 Joining a Network

In order to join a PAN the ZDO must issue an
NLME-NETWORK-DISCOVERY.request to the NWK layer management en-
tity. A constant de�ned in the ZDO, :Config_NWK_Mode_and_Params, speci�es
which channels to scan. The discovery request shall be issued the number
of times speci�ed in :Config_NWK_Scan_Attempts each separated in time by
:Config_NWK_Time_btwn_Scans.

Scanning for PANs
The NLME-NETWORK-DISCOVERY.request will scan the speci�ed channels using
MLME-SCAN.request in the MAC layer management entity. There are two scan
modes: active and passive scan.

When performing an active scan, the end device transmits a beacon14 re-
quest and enables the receiver. Coordinators and routers, receiving the beacon
request, will send back a beacon with a PAN descriptor, describing the proper-
ties of their PAN. This will be repeated on each of the channels speci�ed. In
contrast, a passive scan merely enables the receiver and listens for the periodic
beacons that coordinators and routers send out. This scan mode will save some
energy (avoiding the transmission of a beacon15), but in most cases the receiver
will be enabled longer than in the active scan scenario.

The option to choose one over the other is a matter of weighing energy
e�ciency versus the time it takes to join a network. We have opted for the
active scan to make the join procedure as quick as possible.

Beacons from a coordinator or router are received via the
MLME-BEACON-NOTIFY.indication primitive. The PAN descriptor con-
tains, among other things, the PAN identi�er. The descriptor is saved in a
local network descriptor list and is later used to determine which network to
join. A neighbour table is also assembled as there could be multiple beacons
for the same PAN identi�er if there were routers within reach. The neighbour
table will be used later to join the coordinator/router with the lowest link cost
in the selected PAN.

The resulting NLME-NETWORK-DISCOVERY.confirm will supply the ZDO with
a network descriptor list containing the list of active PANs.

This process is illustrated in Figure 9.

14The beacons described here are not to be confused with the beacon used for synchroniza-
tion. These beacons are merely used to identify nearby coordinators and routers.

15To transmit a bit consumes more energy than receiving a bit.
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Figure 9: Scanning for PANs

Choosing a PAN to join
The ZDO will choose a PAN to join, based on whether the network accepts new
devices, the security level and other factors. When a PAN is chosen, the ZDO
performs an NLME-NETWORK-JOIN.request to the NWK layer, with the selected
PAN identi�er.

Here a link cost is calculated for each coordinator and router in the neighbour
table. The link cost can be estimated in numerous ways as described in [17, pp.
82-83]. We have chosen the simplest way possible, i.e. hard coding the link cost,
as we will only have one coordinator in our test set up.

After having selected a parent (coordinator or router) to join, the capabilities
of the joining end device are assembled. These include how the device is powered
(mains powered or by other means), whether the receiver is on when the end
device is idle, whether MAC security is available etc.

A request to join the parent, including the capability information, is sent
using the MLME-ASSOCIATE.request located in the MAC layer. Upon receipt
of the MLME-ASSOCIATE.confirm primitive in the NWK layer, the short ad-
dress assigned to the end device by the coordinator is saved and the relation-
ship �eld of the selected parent is set to �parent� in the neighbour table. The
NLME-JOIN.confirm primitive noti�es the ZDO that the PAN has been joined.

Con�rming join
To con�rm the join, the ZDO sends an End_Device_annce to the parent, using
the APS data entity with the short address and extended address of the end
device. On receipt of the End_Device_annce_rsp from the parent, the network
has been joined and all active endpoints are noti�ed.

If an endpoint application tries to issue commands before the join process is
completed, an error is returned.

Joining a PAN and con�rming this, is illustrated in Figure 10.

3.3 Device Binding

Binding in the context of an end device is performed using a process known as
simple binding. Typically two end devices bind in response to some user action,
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Figure 10: Choosing a PAN

e.g. the press of a button.
To bind, e.g. a Light Sensor Monochromatic device with a Switching

Load Controller device, the application object on each end device issues an
End_Device_Bind_req to the ZDO. When issuing the End_Device_Bind_req,
the application object supplies the ZDO with its pro�le identi�er and a list of
its input and output clusters. The ZDO of each end device then sends a bind
request to the coordinator.

When the coordinator receives the two bind requests, it compares the input
and output clusters of the two application objects wishing to bind. Binding can
only occur when a match between these is found, i.e. the input cluster(s) from
one application object match the output cluster(s) of the other. If a match is
found, an End_Device_Bind_rsp is sent to the two binding end devices with a
SUCCESS status, otherwise the status is NO_MATCH.

If the coordinator only receives one bind request within a pre-con�gured
time period, a TIMEOUT status is sent to the binding end device.

3.4 Data Transmisson

As mentioned in Section 2.2, the ZigBee protocol de�nes three addressing mech-
anisms: direct addressing, indirect addressing and broadcast addressing.

Direct addressing
Direct addressing, also known as normal unicast, is used to communicate from
one device to another. To use this addressing mechanism, the sending device
needs to know the short address or extended address of the recipient device.
These addresses can be obtained using the primitives mentioned in Section 3.5.

Even though the APS speci�cation speci�es that an application object should
have the option of using the extended address instead of the short address [16,
p. 10], the underlying NWK layer only supports short addresses when sending
data [17, p. 12]. Neither the NWK layer nor APS layer speci�cations specify
how to resolve this inconsistency, so we have chosen to base our implementation
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solely on the use of short addresses. A solution to this problem could be to
use the device discovery primitives to translate the extended addresses to short
addresses. However, we have chosen not to implement this.

Indirect addressing
Indirect addressing requires the sending and the receiving devices to have bound
through the coordinator. When two devices are bound, they do not need to know
the address of the other device, as the coordinator will orchestrate the delivery of
messages. This allows for one-to-many and many-to-one relationships between
participating end devices, cf. Figure 3.

Broadcast addressing
The ZigBee speci�cation is highly ambiguous with regard to broadcast address-
ing. In the following we will lay out the possible interpretations of the speci�-
cation.

In the NWK layer, a special network broadcast address is de�ned, namely
0xFFFF [17, p. 47]. When sending a message to this address, all devices in the
network will receive it [17, p. 96]. Furthermore [18, p. 15] de�nes a broadcast
endpoint, 0xFF16. When sending a message to this endpoint, the receiving device
shall deliver it to all active endpoints. Based on this it can be concluded, that:

1. It is possible to send a message to a speci�c endpoint on all devices in the
network.

2. It is possible to send a message to all endpoints on one device.

3. It is possible to send a message to all endpoints on all devices in the
network.

In [18, p. 13] an application broadcast is de�ned as option 3 stated above.
When issuing an application broadcast [18, p. 13] states that the destination
address must be set to 0xFFFF and the delivery mode of the APS header must
be set to broadcast, see Section 3.6.2.

The only way to specify broadcast addressing in the application layer, is to
set the destination address of a data request to 0xFFFF [16, p. 10]. This, in
turn, sets the delivery mode to broadcast. When setting the delivery mode to
broadcast, the receiving device should deliver the message to the active end-
points with the pro�le identi�er speci�ed in the message [16, p. 26]. This rules
out option 3, as a message cannot be issued to all active endpoints if they do
not have the same pro�le identi�er.

Furthermore, when setting the delivery mode to broadcast addressing, it is
not possible to specify a speci�c destination endpoint, given the above descrip-
tion, thus ruling out option 1 as well.

This leads us to the conclusion that application broadcast, as de�ned by
the ZigBee standard, is not possible. We could remedy this by setting the
destination endpoint of the broadcast message to 0xFF, and on delivery let
this take precedence over the delivery mode in the APS header. However, this
approach is not described in the ZigBee standard.

Given the above analysis, we have chosen to implement broadcast as follows:

16In [18, p. 6] endpoint 31 is said to be the broadcast endpoint, but this is not used anywhere
else, thus we consider it an error in the speci�cation.
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• If the destination address is set to 0xFFFF, we broadcast the message to
all devices. Upon receipt it is delivered to all active endpoints matching
the pro�le identi�er.

• If the destination endpoint is set to 0xFF, the unicast message is delivered
to all active endpoints without �ltering.

The ZigBee speci�cation also speci�es that upon receipt of a broadcast mes-
sage, this message should be retransmitted to all nearby devices using broadcast.
The device must then verify delivery of the broadcast message by keeping track
of whether all nearby devices have broadcast the message themselves after re-
ceiving it. If not the message is retransmitted a limited number of times.

We have chosen not to implement this last behaviour as we will only be
receiving message directly from the coordinator. Furthermore we question the
use of this practice, given that all end devices are associated with a coordinator
or router. These in turn must be in contact with each other to form the PAN,
thus ensuring that the broadcast message can propagate throughout the network
without the use of end devices. This makes the participation of end devices, in
this process, super�uous.

3.4.1 Sending Data

When an application object needs to send data, it issues a data request to the
APS layer through the APS data entity APSDE-DATA.request. The data is
prepended with headers from each of the underlying layers, as illustrated in
Figure 11. The format of each header is described in Section 3.6.

Figure 11: Constructing a data packet

3.4.2 Receiving Data

To receive data the ZDO layer sends a poll request to the coordinator, using
the NLME-SYNC.request in the NWK management entity. This, in turn, issues
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an MLME-POLL.request in the MAC layer.
If the coordinator has pending messages for the end device, it will send a

response indicating this. If the MAC layer receives a response, indicating that
there are pending messages, it will keep the radio receiver on. After sending the
indication, the coordinator will send the �rst of the pending messages. Next
time the coordinator is polled, it will send the next message and so forth.

If the coordinator indicates that it does not have any pending messages, the
radio receiver of the end device is turned o� immediately.

When the end device receives a message, the MCPS-DATA.indication is is-
sued from the MAC layer, and tells the NWK layer that data is available. The
NWK layer will issue an NLDE-DATA.indication to the APS layer. When the
APS layer receives the NLDE-DATA.indication, it needs to analyze the header,
to determine what kind of packet it is and what to do with it. Three kinds of
packets are de�ned:

• normal unicast,

• broadcast, and

• acknowledgement.

As stated earlier, an end device can send a message using indirect addressing;
messages sent this way go to the coordinator which in turn converts them to
unicast messages and sends them to the relevant end device(s). Thus, the APS
layer of an end device does not need to handle indirect packets, as they will be
received as unicast messages.

If the message received is a unicast message, the APS layer shall issue
an APSDE-DATA.indication to the relevant endpoint. If the message is ad-
dressed to endpoint 0xFF, the APSDE-DATA.indication primitive shall be is-
sued to all active endpoints. If the received message was broadcast, the
APSDE-DATA.indication primitive shall be issued to all endpoints that match
the pro�le identi�er in the packet.

If the received message is an acknowledgement, the APS layer should issue
an APSDE-DATA.confirm to the relevant endpoint.

3.4.3 Acknowledgements

When an application object requests an acknowledged transmission, the APS
layer shall set the acknowledge request bit in the APS header accordingly, see
Section 3.6.2.

To keep the code size of our implementation at a minimum, we have designed
a very simple solution for acknowledged transmissions. We do not allow data
transmission requests if we still have not received an acknowledgement for an
acknowledged transmission. This means that if an application object has just
requested the transfer of an acknowledged packet and immediately afterwards
requests another transmission, acknowledged or not, the APS layer will return
an APSDE-DATA.confirm with status set to DATA_REQUEST_BUSY. Note that this
status value is not de�ned in the ZigBee standard, but we found it necessary
to add it to our implementation, given the open interpretation of how multiple
packets are handled. Of course the application developer needs to be made
aware of this implementation speci�c detail.
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Furthermore, if we are waiting to send an acknowledgement, we do not
allow any data requests from application objects, thus prioritizing the acknowl-
edgement. This is done to minimize the number of duplicate packets received.

If the APS layer receives an acknowledgement with the same cluster identi�er
and a source endpoint matching the destination endpoint in the original message,
the transmission shall be assumed to be succesful, and an APSDE-DATA.confirm,
with status set to SUCCESS, shall be issued to the application object.

If the APS layer does not receive an appropriate acknowledgement within
apscAckWaitDuration seconds, it shall retransmit the original frame. This pro-
cedure is repeated apscMaxFrameRetries number of times. If all retransmis-
sions fail, an APSDE-DATA.confirm primitive, with status set to NO_ACK, shall
be issued to the requesting application object. Note that the use of retrans-
missions can lead to duplicate messages received in application objects. The
APS layer speci�cation explicitly states that a mechanism for handling dupli-
cate packets should not be implemented in the APS layer and is therefore left
to the application developer [16, p. 36].

3.5 Device and Service Discovery

To �nd other end devices and the services they o�er, the ZDO provides sev-
eral primitives. Issuing discovery requests is optional for end devices, whereas
responses to the following device and service discovery requests are mandatory:

NWK_addr_req
This primitive is used to retrieve the short address of an end device, based on its
extended address. The request is broadcast on the PAN and the end device with
the requested extended address shall send a unicast response, NWK_addr_rsp,
with its short address to the sender.

IEEE_addr_req
This primitive is used to retrieve the extended address of an end device based on
its short address. The request is sent as a unicast message to the appropriate
end device. The end device that receives this request should respond with a
unicast message, IEEE_addr_rsp, containing its extended address.

Node_Desc_req, Power_Desc_req and Simple_Desc_req
These primitives are used to retrieve the three descriptors mentioned in Sec-
tion 2.2 from an end device.

There is only one node descriptor and power descriptor per end device. There
is one simple descriptor per endpoint, thus Simple_Desc_req shall include a
speci�c endpoint to inquire about.

These requests are all unicast and upon receipt, the end device sends a
unicast response, containing the appropriate descriptor.

Active_EP_req
This primitive is used to retrieve a list of active endpoints from an end device.
The request is sent unicast, as is the response, Active_EP_rsp. The response
contains a list of active endpoints on the end device.
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Match_Desc_req
This primitive is used to �nd end devices implementing application objects
matching a supplied pro�le identi�er, input and output cluster list. The
request can be either unicast or broadcast. Upon receipt the end device shall
compare the pro�le identi�er and list of input and output clusters to the simple
descriptor of each active endpoint. If one or more endpoints match, a response,
Match_Desc_rsp, is unicast and includes a list of the matching endpoints.

Though very useful in a larger setup, these service primitives will not be
implemented as they are not needed for our LSM to bind, send and receive
data. For full compliance with the ZigBee standard these primitives should be
implemented.

3.6 Headers

The following sections describe the general frame format in the di�erent layers
of the protocol stack.

3.6.1 ZDO Header

The ZDO uses the MSG service to send messages. The MSG format only de�nes
one header �eld which is 8 bits in length and holds the number of bytes contained
in the rest of the packet. The contents of the rest of the packet depend on the
service primive used and is described in [23]. The MSG format is illustrated in
Figure 8.

3.6.2 APS

The general frame format of an APDU is illustrated in Figure 12.

Figure 12: APDU frame format

Figure 13: APS acknowledgement header format
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Frame control
The frame control �eld is always present, as it is used to identify the contents
of the rest of the header. The format of the frame control �eld is illustrated in
Figure 14, and described below.

Figure 14: APS frame control �eld

• Frame type
This �eld can have one of the following values: data, command or ac-
knowledgement. In our implementation we will only be using data and
acknowledgement, since command is used as part of the security services
[16, p. 29].

• Delivery mode
Delivery mode can be either unicast, indirect addressing or broadcast
transmission. We will be using all three.

• Source endpoint present
This �eld indicates whether the source endpoint is included in the header.
Since we always include the source endpoint, this �eld will always be set
to true.

• Security
This �eld indicates whether security is used or not. We have not imple-
mented any security services, so this �eld will always be set to false.

• Acknowledgement request
This �eld indicates whether an acknowledgement is requested or not. It is
not possible to request an acknowledgement to another acknowledgement
as this could lead to an in�nite loop of acknowledgements. It is also not
possible to request an acknowledgement to a broadcast message, since this
could lead to �ooding of the network.

Destination endpoint
The destination endpoint shall be included, unless the message is sent using
indirect addressing. When using indirect addressing, the coordinator uses its
binding table to �nd the destination endpoint.

Cluster identi�er
The cluster identi�er shall be included in data and acknowledgement frames.
Since we only use data and acknowledgement frames, it will always be present
in our implementation.

Pro�le identi�er
The pro�le identi�er shall only be included if broadcast addressing is used, since
it is used to decide which endpoints should receive the message.



3 ANALYZING THE ZIGBEE PROTOCOL STACK 28

Source endpoint
According to [16, p. 26], the source endpoint shall be present in all data frames
and should also be included in acknowledgement frames, see [16, p. 28], hence
it will always be present in our implementation.

An acknowledgement frame only consists of a header. The format of the
acknowlegement frame is illustrated in Figure 13

Frame control
The frame control is always present and has the same format as described above.

Destination endpoint
Destination endpoint shall only be omitted if indirect addressing is in use. As
we only receive messages sent using direct addressing this �eld will always be
present.

Cluster identi�er and Source endpoint
Cluster identi�er and source endpoint shall always be present.

3.6.3 NWK

The format of an NPDU is illustrated in Figure 15.

Figure 15: NPDU frame format

Frame control, Destination address and Source address
These values shall always be present. The frame control �eld is illustrated in
Figure 16, and described below.

Figure 16: NWK frame control �eld

• Frame type
Frame type can be either data or NWK command. In our implementation
this �eld will only be set to data since NWK command is used for routing
which is employed by routers and coordinators [17, p. 82].
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• Protocol version
Protocol version is set to 1.0.

• Discover route
This �eld is set to false since this is an end device and thus does not
employ routing.

• Security
This �eld is set to false since we do not employ security.

Broadcast radius
This �eld shall only be present if the packet is a broadcast packet. This is an
integer indicating how far in the network a packet should be broadcast, e.g. if set
to 1 the message will only be broadcast to the immediate neighbours. Broadcast
radius can be compared to the Time to Live (TTL) in TCP/IP.

Broadcast sequence number
This �eld is an integer and should be incremented by one for each broadcast.
It is used as part of broadcast retransmission and will not be discussed further,
cf.Section 3.4.

3.7 Bu�er Management

When implementing a network protocol stack, there is a need to address the
problem of sending and/or receiving multiple messages concurrently. There are
two options to take into consideration:

• Allowing only one message to be sent/received at a time, or

• Allowing multiple messages to be sent/received concurrently, using bu�er
management.

When the application object, using the ZigBee protocol stack, is not intended
to transmit concurrent messages, as in the case of the Light Sensor Monochro-
matic, it would be wasteful to implement a bu�er manager. Not implementing
a bu�er manager could lead to messages not being sent, which the application
programmer must be warned about.

In contrast, an application requiring concurrent message transmission or
burst transmissions, e.g. object detection and tracking, would bene�t from bu�er
management. Whether to use bu�er management or not, depends on the usage
of the protocol stack and network.

Generally speaking, the message throughput in a ZigBee network is kept at
a minimum to minimize energy consumption. Especially battery powered end
devices are optimized to send and receive few messages during normal operation,
compared to other wireless network standards.

With this in mind, the use of the LSM, and our goal of minimizing the
overall memory usage, we opt for the simpler option of only allowing a single
message transmission at a time. This choice places the following constraints on
our implementation:
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1. If a message is currently being sent or the transmission of a message has
not yet been con�rmed, we must reject data requests from application
objects and return an error.

2. If a message is currently being received, we cannot receive another message
and therefore must reject the message received from the MAC layer.

3. If a message requiring acknowledgement is received and we are currently
transmitting a message, we will bu�er the acknowledgement and send it
after the message has been transmitted.

As we have absolute control over the application object using our protocol
stack, we can avoid the use of sending more than one message concurrently.
If our implementation were to support either several application objects on
the same end device, or an application object with a requirement of sending
subsequent messages within a short time, a send bu�er would be needed.

As we can only receive one message at a time, due to the use of polling, see
Section 3.4.2, the lack of a receive bu�er is not a problem. This is a design
decision, based on the assumption that the end device is battery powered. If
our implementation were to run on mains power, the radio receiver could be
enabled at all times, which would increase the message throughput, but would
require some kind of receive bu�er manager, as messages could be received at
any time, cf. [14].

Bu�ering the acknowledgement is a design decision we make as this incurs
a smaller penalty than later having to receive a retransmission of the message
we neglected to acknowledge.

As mentioned in Section 4.1, the nesC paradigm discourages the use of dy-
namic memory management similar to the use of malloc. Even though our
implementation does not make use of bu�er management to send and receive
messages, there are several ways to implement the simpler solution we have
opted for:

• Statically allocating a receive bu�er in each layer, having the maximum
size of the payload in each layer, and copying data between each bu�er.

• Statically allocating a receive bu�er in the NWK layer and a send bu�er
in the APS layer, each having the maximum size of the MAC message
payload. A pointer can then be passed from layer to layer, minimizing the
need to have memory allocated separately in each layer.

To avoid sharing memory between protocol layers, we prefer the �rst option,
though this will consume more memory than needed. This is also the approach
used in [8].

3.8 Concurrency

We have identi�ed three main areas where concurrency issues can occur:

Receiving beacons when joining a network
As mentioned in Section 3.2, coordinators and routers send out beacons describ-
ing their given PAN, when an end device scans for networks. When scanning
a channel, if there are more than one coordinator/router in the vicinity of the
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joining end device, several beacons could be received simultaneously, thus in-
troducing a potential concurrency issue.

As our test setup is based on the star topology, i.e. only consisting of one
coordinator and several end devices, this will not be an issue to us, and we will
not consider this further. If used in either tree or mesh topologies this should
be addressed.

Sending messages
As mentioned, we limit the number of messages to be sent at a time to one.
This design ensures that no concurrency issues can arise when sending data, as
a request to send data when another request is pending, will be denied. This
does however, limit the throughput of messages, and could be optimized by
�pipelining� message data from layer to layer or by using a bu�er manager.

Receiving messages
Receiving messages are based on polling, as mentioned in Section 3.4.2. We
can therefore be certain that, as long as we can deliver a received message to
the application layer faster than the time of the next poll, we will not have any
issues of concurrency. Since we control the polling frequency, we do not consider
this an issue.

3.9 Duty Cycling

One of the goals of ZigBee is to ensure that the life time of battery powered end
devices is measurable in months or years. To reach this goal, the use of duty
cycling is central. Duty cycling is the concept of only turning on parts of the
end device as they are needed. In this way the radio and other parts of the end
device can be turned o� to reduce power consumption.

As mentioned in Section 3.4.2, polling is used by end devices to check for
messages. The frequency of the polls is dependant on the use of the end device,
and in the case of the LSM, the frequency of polls can be expected to be quite
low, as the primary task at hand is to send out periodic light readings, not to
be programmed (which requires messages to be received).

On the other hand if the device could expect messages to come in bursts, it
would be reasonable to argue that two polling frequencies could be employed.
When the coordinator indicates that no data is available the polling frequency
should be low, while a higher frequency is used when the coordinator indicates
that a message is available.
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4 TinyOS, nesC and the Freescale nodes

Implementing the ZigBee protocol stack in TinyOS and nesC requires us to
study the concepts and ideas behind both, in order to utilize them in our im-
plementation. The following will be a brief introduction to TinyOS and nesC.
Furthermore we will describe the Freescale MC13192-EVB platform and how
we have implemented support for the switches (buttons) on this.

An application implemented in TinyOS is based on a number of components,
e.g. Leds, Timers, ADCs (Analog-to-Digital Converter), etc. These components
are reusable from one application to another. Applications are formed by wiring
together components to suite the task at hand.

Components can be abstract concepts such as an implementation of directed
di�usion (consisting of many di�erent components) or a low level wrapper for a
hardware component, such as the UART.

The implementation of components is based on tasks, commands and events.
Long running computations should generally be deferred to tasks. Tasks are
posted to a task queue, after which control is immediately returned to the posting
component. The TinyOS task scheduler is based on simple FIFO task execution.
When no tasks are pending to be executed, the scheduler puts the processor to
sleep, until the next interrupt is received, cf. [10]. Tasks run to completion and
cannot preempt each other, essentially making them synchronous with respect
to other tasks. The use of tasks causes TinyOS to only have non-blocking
operations.

Commands are called to execute a given functionality in another component.
Components wrapping hardware signal events in response to hardware inter-

rupts. These events run to completion and can preempt tasks and other events.
When events occur in response to interrupts, they are marked with the async

keyword [7].
When long-latency operations are used, a technique of split-phase operation

is employed. Here commands are used to initiate the requested action, e.g. com-
ponent.request, essentially posting a task and returning immediately. Events
are then signaled in response to the completion of the split-phase operation, e.g.
typically using component.requestDone. These kinds of events do not preempt
as those caused by hardware interrupts.

4.1 nesC

nesC uses two concepts to represent components: modules and con�gurations.
Modules contain the code for a single component whereas a con�guration is used
to wire components together. An application can use a con�guration wiring one
or more components together as a component in itself. A top-level con�guration
wires all components in the application together.

A module implements one or more interfaces. Interfaces describe the com-
mands and events provided by a component. Con�gurations will wire modules
using a given interface to a component providing an implementation of this
interface.

To allow for runtime event dispatching, parameterized interfaces can be em-
ployed. The con�guration wires components to unique instances of a module,
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identi�ed by an integer. Events can then be signaled to components based on
values obtained at runtime.

The concurrency model of nesC allows for static compile time detection
of race conditions. These can be handled using atomic sections to turn o�
hardware interrupts in a block of code, or by converting the con�icting code
into tasks, reinstating atomicity.

The static analysis prohibits some of the features used in regular C-
programming, especially function pointers and dynamic memory allocation, i.e.
the use of malloc [8].

As TinyOS is implemented in nesC, it consists of numerous modules. These
are compiled with the application as needed, i.e. TinyOS allows for a timer
to be used, but code for this will only be included if it is actually used in the
application.

Our TinyOS based ZigBee protocol stack will be running on the Freescale
MC13192-EVB platform, which we will brie�y describe below.

4.2 Freescale MC13192-EVB

The Freescale MC13192-EVB is an evaluation board used to evaluate the plat-
form. The MC13192-EVB is built around the Freescale MC13192 2.4 GHz
transceiver which is controlled by the Freescale MC9S08GT60 microcontroller
unit (MCU). The MCU has the following components:

• A 40-MHz HCS08 CPU.

• 4 KB RAM.

• 60 KB on-chip programmable FLASH memory.

• Analog to digital converter used by e.g. the light sensor.

We will use the CodeWarrior C-compiler developed by Metrowerks and use the
USB port to transfer our compiled code to the unit.

The MC13192-EVB platform uses big endian, whereas IEEE 802.15.4 and
ZigBee use little endian [4, p. 46] [17, p. 46]. We will have this in mind when
implementing the protocol stack.

4.3 Implementing Switches

The Freescale MC13192-EVB has four switches which we have decided to im-
plement support for as these will be useful to initiate simple binding and other
functionalities, e.g. programming the LSM. The hardware speci�c details are
based on [3, pp. 145-150].

No TinyOS reference interface existed, so as a start we de�ned a simple
HPLKBI17 interface, providing one command to initialize the switches and one
event that is signaled when a switch is pressed.

Switches on the Freescale MC13192-EVB are implemented using direct pag-
ing registers assigned to setting up and using the keyboard interrupts (KBI).

17Hardware Presentation Layer, Keyboard Interrupt
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Initialization of the KBI is done in init(), enabling interrupts for all four
switches.

The keyboard interrupt handler is registered using the TinyOS TOSH_SIGNAL

macro and will be signaled when a switch is pressed. Jitter can occur when
pressing switches, which is due to the pressure on a switch �uctuating within a
short period of time, triggering multiple interrupts for the same �intended� push
on the switch. To prevent this, the value of PTAD, containing which switch is
pressed, is saved and busy waiting is employed for 500 microseconds. After this,
the value of PTAD is compared to the previously saved value. If these are the
same, we signal the switchDown() event with the number of the switch pressed.

When receiving an interrupt for the KBI, no more KBI interrupts can be
generated before an acknowledgement for the interrupt is registered. This is
done by setting KBISC_KBACK to 1. This also means that the body of the in-
terrupt handler does not need a surrounding atomic statement as we cannot
receive any KBI interrupts while we are already in the process of handling one.
This is very useful as we would otherwise have had to turn o� all hardware
interrupts, potentially missing interrupts from the radio or other components.
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5 ZigBee Protocol Stack Implementation

In this section we will describe the overall structure of our implementation and
the programming principles we follow. These principles are used extensively in
the implementation, and knowing the rationale behind their use will ease the
understanding of the implementation.

We have chosen to use the names of arguments and primitives as they are
written in the ZigBee standard to have a clear connection between the standard
and the implementation, cf. Figure 6.

The source code can be obtained by contacting the authors.

5.1 Overall Structure

We have chosen the approach of having a module per protocol stack layer.
This leads to the component graph for our implementation, illustrated in Fig-
ure 17. Here the Freescale802154C is the MAC wrapper for the Freescale IEEE
802.15.4 library.

Black arrows represent commands being called from the next higher layer
while white arrows represent events signaled to the next higher layer. A number
next to an arrow indicates the number of commands or events in the interface,
e.g. the Timer interface has eight commands and one event.

A single con�guration wires the layers together in a con�guration used by
the actual application objects. This con�guration is named ZigBeeEndDevice

and represents the actual protocol stack. Application objects are wired to the
protocol stack and each object �register� a simple descriptor used by the ZDO.

5.2 Call Depth

One of the problems when implementing the protocol stack was how to imple-
ment a series of subsequent events/commands, e.g. the indication of data in
the MAC, NWK and APS layers and subsequently in the recipient application
object(s).

Originally, we had considered a simple, blocking call �ow, e.g. having several
nested events. This approach turned out to be naïve as we experienced stack
over�ow on the Freescale MC13192-EVB when handling nested function calls.
The call depth could easily reach four-�ve levels, which depleted the stack18.

Following the guidelines in [8], we chose to redesign the functional �ow to
use tasks instead of nested calls. When a command is called or an event is
signalled, a task is posted to do the processing and control is returned to the
calling primitive, i.e. split-phase operation as described in Section 4.

The current version of nesC does not allow tasks to take arguments, it was
therefore necessary to save the arguments given to the commands and events
in global variables. These variables are set to the values of the command/event
arguments after which the corresponding task is posted, to perform further
processing and possibly call commands or signal events. In the next version of
nesC and TinyOS (version 2.0), support for arguments to tasks will be available.

18This has later been identi�ed to be a compiler issue.
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Figure 17: The ZigBee end device component graph
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5.3 Data Structures

Where possible unions have been used instead of structs to save memory.
Speci�cally, the saved arguments to the primitives used to join the network
share the same memory space as these follow in sequence and cannot occur
concurrently.

Another use of unions is when mapping headers to the message sent/re-
ceived. In this way, it is possible to have access to the particular elements
(short address, PAN identi�er, etc.) of the di�erent message headers in the
code, using the same overall message structure, regardless of whether sending is
to happen using unicast or broadcast addressing.

As ZigBee messages, including headers, are little endian we simplify our
implementation by representing all internal ZigBee information received and
sent using little endian, and requiring the application programmer to do this as
well. This is also the approach followed by Freescale in their MAC layer library
[4, p. 2-3].

5.4 Medium Access Control Layer

Before implementing the ZigBee protocol stack, a TinyOS wrapper for the
Freescale MAC library was needed. Work on a wrapper had already been started
as part of a sensor networks course at DIKU19, but it was far from �nished.

The interfaces provided by the TinyOS wrapper were originally de�ned by
Joe Polastre at the University of California, Berkeley. These interfaces are
direct translations of the primitives de�ned in [11] and form the basis for our
implementation of the wrapper.20

At the time of writing (June 2005) a discussion, headed by the Sensor
Networks group at DIKU, is taking place about the rede�nition of these
interfaces, making them more general and allowing for an easier way to only
use the primitives needed from the IEEE 802.15.4 standard. When these
interfaces have been �nalized, it would be sensible to adapt our wrapper to the
new interfaces.

The Freescale MC13192-EVB nodes we are using do not have an onboard
EEPROM containing initialization for the MAC layer, including the IEEE ex-
tended address, thus this has to be initialized, which is done in Control.init().
This gives us complete control over the extended address of a device, which
comes in handy when debugging.

The MAC library signals interrupts for the MLME-SAP and the MCPS-SAP
with MLME_NWK_SapHandler and MCPS_NWK_SapHandler, respectively. When
handling these interrupts, the message received is queued using mechanisms
provided by the library. This in essense provides dynamic memory allocation,
though it is intended for use in the MAC layer and thus we do not use it in
other modules. After queuing, the message a task is posted to handle it, i.e.
processMlmeNwk or processMcpsNwk.

19Department of Computer Science, University of Copenhagen
20We identi�ed a minor bug in the MAC constants header �le, IEEE802154.h, included in

the TinyOS distribution while analyzing these interfaces. The SuperframeSpec element of the
PANDescriptor_t was incorrectly declared as an 8 bit unsigned int (uint8_t), which should
have been a 16 bit unsigned int (uint16_t). This has been reported to Joe Polastre.
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In the tasks handling received messages, the message is de-queued and a
simple switch statement checks the message type and the associated function
is called in order to process the message. It should be noted that the use of
the switch statement, which we cannot avoid, makes it di�cult for the compile
time analysis of nesC to perform optimizations. This is caused by the design
of the library, and can only be avoided if the MAC library is re-implemented,
preferably in TinyOS. However, this type of design is not uncommon for higher
layer protocols in TinyOS, cf. [13].

Special care is needed with regard to beacon indications, as the Freescale
library returns PAN descriptors in a non-standard order [4, p. 3-9]. To ensure
compatibility between our implementation and other potential uses of the wrap-
per, we convert the Freescale PAN descriptor to follow the standard de�ned in
the IEEE 802.15.4 standard [11, pp. 76-77].

We have only implemented the MAC primitives illustrated in Figure 6. All
other primitives received will be discarded, as they are not needed in our im-
plementation.

5.5 Network Layer

The network layer provides two interfaces, NLME_SAP and NLDE_SAP, correspond-
ing to the service access points illustrated in Figure 6. The NWK module uses
all the interfaces provided by the MAC layer module, see Figure 17.

In our implementation of the network layer we deviate from the stan-
dard with regards to the NLME_GET_request and NLME_SET_request primitives.
These run synchronously and return the requested value, instead of signaling the
associated con�rm event. This is to avoid non-sequential program �ow and is
also the approach used by the Freescale library with regard to similar primitives
in the MAC layer [4, pp. 3-3, 3-4].

As mentioned in Section 5.3, the arguments when calling a command and
the subsequent posting of a task are shared in a union for:

• MLME_ASSOCIATE_request

• MLME_ASSOCIATE_confirm

• MLME_POLL_confirm

• MLME_SCAN_confirm

• NLME_JOIN_request

• NLME_NETWORK_DISCOVERY_request

• NLME_SYNC_request

These either occur in sequence or can in no way be used at the same time,
e.g. NLME_ASSOCIATE_request does not con�ict with NLME_SYNC_request, as
the former must have been completed before the latter can occur.

The network descriptor list and neighbor table have a �xed size of �ve en-
tries each, as this is the maximum number of PAN descriptors returned by the
MLME_SCAN.confirm primitive in the Freescale MAC library [4, p. 3-6]. We
have chosen to only scan for networks once. If we were to implement multiple
network scans on joining a network, as described in [22, p. 26], we would have
to extend these beyond �ve entries, thus consuming more memory.
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5.6 Application Support Sub-Layer

We have modelled the Application Support Sub-Layer (APS) after Figure 6,
thus providing the two interfaces APSME_SAP and APSDE_SAP, representing the
service access points in the protocol stack. The latter interface is parameterized
to allow for multiple application objects to request or receive data.

As described in Section 3.7, sending data using APSDE_DATA_request is lim-
ited to one message at a time, with constraints regarding pending acknowl-
edgements. To enforce this we use two �ags, apsdeDataRequestBusy and
ackResponsePending respectively.

When APSDE_DATA_request is called, we �rst check,
apsdeDataRequestBusy, to see whether we are already busy sending data or
waiting for an acknowledgement. Secondly, we check, ackResponsePending,
to see whether we are waiting to send an acknowledgement for a message
received. If either of these are true, we reject the request to send data,
by issuing APSDE_DATA_confirm with a status of DATA_REQUEST_BUSY, as
mentioned in Section 3.4.3, otherwise we grant the data request and set
apsdeDataRequestBusy to true.

The check of whether the data request is busy, is surrounded by an atomic

statement, as data requests could potentially occur simultaneously.

Retransmission
When sending a message requesting acknowledgements, the numFrameRetries

counter is initialized to 0, the ackDataRequestBusy is set to true and the
ackTimer, used to retransmit messages, is set to �re after 15 seconds.

If the timer �res, we increment numFrameRetries and check if the num-
ber of retries exceeds apscMaxFrameRetries (default value is 3). If so the
APSDE_DATA_confirm primitive is signaled to the requesting endpoint, with a
status set to NO_ACK. If we need to retransmit the message, we merely have to
post the apsdeDataRequest() task as the data will be stored in the arguments
from the original APSDE_DATA_request, due to our one-message-only policy.

Acknowledgements are received, as other messages, in the
APSDE_DATA_indication primitive. If the message received is an ac-
knowledgement of the original message, we stop the ackTimer and signal the
APSDE_DATA_confirm primitive to the endpoint requesting the original data
transfer. Otherwise we consider the message to have been lost and signal
APSDE_DATA_confirm with a status of NO_ACK [16, p. 36].

Acknowledgements
When receiving a message requesting acknowledgements through the
APSDE_DATA_indication primitive, we use the ackResponsePending �ag to
check whether we are already waiting to send an acknowledgement.

If we do not have a pending acknowledgement to send, we save the val-
ues needed to send the acknowledgement in ackFrameArguments and set
ackResponsePending to true. We then post the ackFrame() task which
checks whether apsdeDataRequestBusy is true, indicating that a data trans-
fer is taking place. If this is the case, the task will be reposted, otherwise
apsdeDataRequestArguments is set up to construct the acknowledgement frame
and the apsdeDataRequest() task is posted.
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On the other hand, if we have a pending acknowledgement, we ignore the
message. This is based on the assumption that the message will be retransmitted
and that we have presumably �nished sending the pending acknowledgement in
the meantime.

Broadcast
When receiving a broadcast message, we use the pro�le identi�er to check
whether the broadcast was intended for the ZDO. If so, we only signal the
APSDE_DATA_indication primitive to endpoint 0 as there can only be one ZDO.
Otherwise we loop through the list of active endpoints, signaling the data indi-
cation to each endpoint with a matching pro�le identi�er.

5.7 ZigBee Device Object

The ZigBee Device Object module provides a parameterized interface called
ZDO_SAP. This interface is used to provide access to public primitives in the
ZDO.

The only service primitive o�ered by the ZDO_SAP is the optional
End_Device_Bind_req primitive, as this is required by the Light Sensor
Monochromatic pro�le [20, p. 15]. In addition to the above mentioned service
primitive, the ZDO_SAP interface provides two events: End_Device_Bind_rsp

and Network_Joined, where the latter is not de�ned in the ZigBee standard,
but is used to indicate that application objects can begin normal operation
mode, including binding.

ZDO_SAP is parameterized as this simpli�es the process of signaling
End_Device_Bind_rsp to the respective endpoint and Network_Joined to all
active endpoints.

To poll the coordinator for data we use the syncTimer and set the timer to
�re every 10 seconds. The timer is started in the NLME_JOIN_confirm primitive
as the End_Device_annce we send out after having joined the network is sent
using the APSDE_DATA_indication primitive and hence the response must be
polled from the coordinator.

There can only be one pending End_Device_Bind_req which is controlled
using endDeviceBindReqBusy.
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6 Light Sensor Monochromatic Implementation

In our implementation the Application Framework, see Figure 6, consists of one
endpoint, namely the Light Sensor Monochromatic (LSM).

6.1 Device Con�guration

In addition to the ZigBeeEndDevice component we will use following compo-
nents:

TimerC To trigger time-�xed events.

Light To read the light sensor.

HPLKBIC To handle switches being pressed.

LedsC To indicate events on the node leds.

ConsoleC To output debug information to the console.

Our �nal LSM component will rely on the APSDE_SAP and ZDO_SAP inter-
faces, described in Sections 5.6 and 5.7, and will in turn provide a StdControl

interface, used for initializing the component.
The component graph for our light sensor is presented in Figure 18 and the

complete graph for the entire application can be found in Figure 19.

6.2 Initial Considerations

When implementing an application on an end device, it is necessary to provide
a simple descriptor, see Section 2.2. The contents of the LSM simple descriptor
is as follows [20, 19]:

Application pro�le identi�er 0x0001

Application device identi�er 0xFFFF

Application input clusters {0x07}

Application output clusters {0x06}

To interact with the device, we use the switches, e.g. to perform simple
binding, see Section 3.3.

6.3 Core Functionality

After these initial considerations we can proceed with a description of the light
sensor implementation.

Network Joining
Joining a network is initiated by the ZDO, afterwhich all endpoints, are noti�ed.
A succesful join is signaled by the ZDO_SAP.Network_Joined event. Besides
indicating a successful join, by turning on LED1, we do not carry out any
further actions.
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Figure 18: Light Sensor Monochromatic component graph
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Figure 19: Entire application con�guration

Device Binding
When the device has joined a network, device binding can be performed, using
the ZDO_SAP.End_Device_Bind_req. Binding is performed manually by press-
ing switch 1 on the devices that need to bind.

When binding to another end device is successful, we receive a
ZDO_SAP.End_Device_Bind_rsp event indicating SUCCESS. This is indicated by
turning on LED2.

Data Indication
Received data from the APS layer is signaled by APSDE_DATA_indication. First
our LSM checks if the speci�ed cluster is valid, and discards the message if this is
not the case. If we are not already handling a message, a task, HandleAFFrame,
handling the received data is posted.

When this task is activated, it ensures that it is a KVP frame, see Figure
8, checks the number of included transactions, extracts them one by one and
posts tasks handling each of the transactions. When all tasks have been posted
new messages are allowed to arrive.

A function handling a KVP transaction, HandleKVPTransaction, will �rst
check if the included attribute identi�er is valid, and then use a switch to
perform the appropiate action. Most of the attributes are straightforward to
handle, but there are a few things worth noting:

• The time between light level reports is handled by the timer component,
which will be described below.

• To determine if MinLevelChange or Min/MaxThreshold apply, we will
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need to save the last outputted value. We also have to account for this
when updates are made to the O�set.

• No guidelines about factory defaults are presented in the device description
so we have chosen not to output, until a ReportTime has been signaled
from a bound device.

Timer Events
The sensor readings are controlled by a timer component, Timer, which �res
events at a given rate. Setting the frequency of the timer can control how often
sensor readings occur. By simply stopping the timer we can ensure that no
output is created since the sensor will not be read. This practice is suitable for
implementing the Override-mode, speci�ed in Section 3.1.1. Enabling output
again (Auto-mode) is simply performed by starting the timer.

When the timer �res, we request a light level reading from the sensor using
Light.getData. The light reading will eventually be returned from the light
sensor.

Light Sensor Data Ready
When a light reading is done a Light.dataReady is signaled. Since this is an
asynchronous event, we save the light data in a global variable and post the
handleLightReading task to handle this.

When this task is activated, it checks whether the conditions for outputting
the reading are met. We correct the reading according to the O�set and check
whether the conditions for outputting are met. This is handled atomically to
avoid the LSM from being programmed during these checks. If the conditions
for output are satis�ed, we create the data for the LightLevelLSM attribute,
wrap it in a KVP message and send it using indirect addressing.

6.4 Test Applications

To test that our LSM device can bind, send and receive data, we implement two
test applications objects and put these on two other nodes:

LSMProgram Used for programming the LSM.

LSMConsumer Used for receiving the sensor readings and out-
putting using the Console component.

6.4.1 LSMProgram

The component graph for this device is almost the same as the one for our LSM,
since it basically performs the same actions, i.e. joining a network and binding
with another device.

After successful binding the device should be able to program the LSM, hav-
ing implemented the Output:LSMProgram cluster. By pressing one of switches
1-3 it is possible to send instructions to the LSM. The default values sent are:
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Switch Attribute Action
1 n/a Perform binding.

2 ReportTime Set report time to 20 seconds.

3 Min-/MaxThreshold 1st press, sets min and max thresh-
old to 150 and 750 (aggregated
transaction).

MinLevelChange 2nd press, sets min level change to
10%.

4 Override 1st press, stop transmission of read-
ings.

Auto 2nd press, start transmission of
readings.

6.4.2 LSMConsumer

After having programmed the LSM, it should output values according to our
initial intentions. To test this, we need a device that consumes the LSM
output. For this purpose we have the LSMConsumer, which implements the
Input:LightLevelLSM.

Like the LSMProgram device, the LSMConsumer is able to join a network
and bind with devices. After this is done, it will be able to accept incoming
light readings, verify the packet structure and output the received light level as
a decimal number.
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7 Evaluation

The evaluation of our implementation will focus on two areas:

• Testing of functionality, e.g. acknowledgements, retransmissions, broad-
cast messages, etc.

• Implementation size, i.e. memory usage and code size.

7.1 Testing Functionality

We will be testing our implementation using functional testing21, as we have
performed on-going tests for obvious issues during implementation.

In the following we will describe the test scenarios we have identi�ed during
the work of implementing the ZigBee protocol stack and light sensor applica-
tion object. These scenarios are based on the analysis and design described in
Section 3 and can be grouped into the following seven overall testing scenarios:

• Joining a network.

• Device binding.

• Sending data.

• Receiving data.

• Acknowledgements.

• Concurrency.

• Light Sensor Monochromatic.

The results of our evaluation are summarized in Table 6

Our test setup is a single ZigBee coordinator and one or more end devices. The
coordinator is compiled from beta code found on Freescale Semiconductor's
website during March 2005. The code was developed by �Figure 8 Wireless,
Inc.� and implements a beta version of ZigBee v. 0.92. This is the �nal
draft before the standard was approved on the 14th of December 2004. We
have not identi�ed any di�erences in the documentation for ZigBee v. 0.92 and
ZigBee v. 1.00, thus this should not be a problem22 Some bugs and non-ZigBee
standard behaviour have been observed in the coordinator, which we will note
in our test evaluation below.

To debug and test our implementation we have used a packet sni�er to
manually decode the messages sent. Regarding debugging our implementation,
we have not had access to a Metrowerks CodeWarrior IDE and a debugging
device, both of which are required to perform inline debugging. Instead we
have been forced to use the Console module to dump data and print debug
messages to the serial port, etc.

21Also known as black box testing.
22The code has later been removed from the Freescale website.
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Test scenario Result
Joining a PAN X
Binding between two end devices X
Sending a unicast message, direct addressing X
Sending a unicast message, indirect addressing X
Sending a unicast message, broadcast endpoint X
Sending a broadcast message X
Polling, no data available X
Polling, data available X
Sending a unicast message, requesting acknowledgement X
Retransmission of unacknowledged message X
Busy, already sending non-acknowledged message X
Busy, waiting for acknowledgement X
Busy, waiting to send acknowledgement X
LSM sends out light sensor readings X
LSM is programmable (start/stop, interval, thresholds, etc.) X

Table 6: Evaluation results of our implementation

7.1.1 Joining a Network

Description: To test the ability for one end device to join a PAN, we turn on
the coordinator and let it start the PAN. We then turn on the end device which
will automatically scan for a network and join it.

Result: The joining end device is informed of the PAN identi�er of the coordina-
tor, is assigned a unique short address and receives the End_Device_annce_rsp.
The status returned by the coordinator for the End_Device_annce_rsp primi-
tive is set to 0x01 which is not a valid ZigBee return value, cf. [23, p. 42]. We
believe this is a bug in the coordinator.

7.1.2 Device Binding

Description: To test the ability to perform a simple bind between two end
devices, we use two matching23 application objects, i.e. the LSM and LSMCon-
sumer mentioned in Section 6 and Section 6.4.2. An End_Device_Bind_req is
issued from both end devices.

Result: When performing the simple bind, we correctly receive an
End_Device_Bind_rsp primitive from the coordinator, with a status of
success.

7.1.3 Sending Data

Sending a unicast message, direct addressing
Description: To test the ability to send a unicast message from one end device
to another, we record the short addresses assigned to each end device and use
these to send a message from one end device to the other. We enable the
receiver to be on when idle, macRxOnWhenIdle [11, p. 137] as the message will

23With regard to input clusters and output clusters.
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not go through the coordinator.

Result: We correctly receive an indication of data at the endpoint meant
to receive the message.

Sending a unicast message, indirect addressing
Description: To test the ability to send a unicast message from one end device
to another using indirect addressing we bind two application objects and send
a message from one end device to the other. To receive the message we enable
polling as speci�ed in Section 3.4.2

Result: We correctly receive an indication of data at the endpoint meant
to receive the message.

Sending a unicast message, broadcast endpoint
Description: To test the ability to send a message to the broadcast endpoint,
we use direct addressing and send a message from one end device to another
with the destination endpoint set to 0xFF, cf. Section 3.4.

Result: We correctly receive the message at the application on the sec-
ond end device (only one was implemented, but it did obviously not have 0xFF
as its endpoint).

Sending a broadcast message
Description: To test the ability to send a broadcast message, we let two
end devices join the PAN having application objects with the same pro�le
identi�er. Then we send a message with the destination address set to 0xFFFF,
cf. Section 3.4.

Result: We correctly receive the message at the second end device. The
sending end device also receives the broadcast message, which is because we
have not implemented a �lter on the broadcast sequence number also used to
retransmit broadcasts, cf. Section 3.4.

7.1.4 Receiving Data

Polling, no data available
Description: To test polling, we let an end device join the network and start
polling the coordinator.

Result: We correctly receive a status of NO_DATA, cf. [11, p. 111].

Polling, data available
Description: This has already been tested in the above-mentioned scenario for
sending and receiving a message using indirect addressing. It should be noted
that the coordinator sometimes, seemingly at random, stops sending data to
end devices polling for data, though we can observe, using the packet sni�er,
that data is sent to the coordinator which is intended for another device (using
indirect addressing). We conclude that this is a bug in the coordinator, as there
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is no di�erence in the message we send to the coordinator over time, and there
is no pattern of when this happens.

7.1.5 Acknowledgements

Sending a unicast message, requesting acknowledgement
Description: To test the ability to send an acknowledgement we request the
transfer of a unicast acknowledged message from one end device to another.

Result: We correctly receive an acknowledgement for the message sent.

Retransmission of unacknowledged message
Description: To test the ability to retransmit a message when an acknowledge-
ment is not received we request the transfer of a unicast acknowledged message
from one end device to another, using direct addressing. The destination
address is set to an invalid short address.

Result: We correctly retransmit the message three times, afterwhich an
APSDE_SAP.APSDE_DATA_confirm is signaled with a status of NO_ACK at the
sending end device, cf. [11, p. 59].

7.1.6 Concurrency

Busy, already sending non-acknowledged message
Description: To test that the implementation only allows one message to be
sent at a time, we perform two consecutive APSDE_SAP.APSDE_DATA_requests.

Result: We correctly send the �rst request and return an
APSDE_SAP.APSDE_DATA_confirm with status set to DATA_REQUEST_BUSY

to the second request.

Busy, waiting for acknowledgement
Description: To test that the implementation disallows an
APSDE_SAP.APSDE_DATA_request when we have sent a message request-
ing acknowledgement that has not yet been con�rmed, we send a message
requesting acknowledgement to an invalid short address. We set up a timer to
try to send another message after a short delay.

Result: We correctly send the �rst request and return an
APSDE_SAP.APSDE_DATA_confirm with the status set to DATA_REQUEST_BUSY

to the second request.

Busy, waiting to send acknowledgement
Description: To test that the implementation disallows an
APSDE_SAP.APSDE_DATA_request if we are waiting to send an acknowl-
edgement we send a message requesting acknowledgements to an end device
on which we have disabled the actual sending of the acknowledgement. Upon
receipt of the message at the recipient device we try to send a message.
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Result: As expected the data request at the recipient device is followed by a
APSDE_SAP.APSDE_DATA_confirm with the status set to DATA_REQUEST_BUSY.

7.1.7 Light Sensor Monochromatic

LSM sends out light sensor readings
Description: To test that the LSM sends out light sensor readings, we bind the
LSM and LSMConsumer described in Section 6 and Section 6.4.2.

Result: We correctly receive light sensor messages on the LSMConsumer
end device.

LSM is programmable (start/stop, interval, thresholds, etc.)
Description: To test that the LSM is programmable, we deploy the testbed
described in Section 6.4, i.e. LSM, LSMConsumer and LSMProgram.

Result: We can correctly program the attributes in the LSM using the
LSMProgram end device. This is re�ected in the received light sensor readings
in LSMConsumer.

7.2 Implementation Size

To evaluate the code size of our implementation, we use the output given by the
compiler. This contains the data size (RAM), code size of our implementation
without inlining and the total code size including the Freescale MAC library.

We have compiled our implementation using TinyOS v. 1.1.11, nesC v. 1.2
and the CodeWarrior HC(S)08 compiler. We have set compile �ags to optimize
for code size.

The �nal numbers obtained are:

• The code size for our implementation alone, is reported as 10,752 bytes
including TinyOS, using 2,174 bytes RAM (including 200 bytes of bu�er
for the Console module and 229 bytes for application debug output).

• The total code size including, including the 18KB from the Freescale MAC
library, is 29,620 bytes�signi�cantly less than the 32,768 bytes goal.

The code size of the individual primitives and functions in the code can be
obtained from the compiler. The numbers give an idea of the relative memory
usage of each module, and are interesting in the context of future work. Ta-
ble 7 summarizes the code size of the individual modules in our implementation,
showing that the NWK layer has the largest code size. Also, as can be seen, we
can save quite a lot of redundant memory for the MAC wrapper, if we had a
TinyOS based implementation of IEEE 802.15.4.

We have looked into the code size for a Light Sensor Monochromatic end
device24, implemented by the authors of our coordinator, Figure 8 Wireless.
The code size of their implementation is 50,246 bytes. This �gure includes the
Freescale MAC FFD library and support for outputting characters to a small

24For reference, the compiled �le name is ZStack_LSM02080 End Device - EVB DIG528.abs
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Component Code size
Freescale802154 1,554 bytes
NWK 2,159 bytes
APS 1,730 bytes
ZDO 1,090 bytes
LSM 1,522 bytes
HPLKBI 47 bytes
Remaining (TinyOS) 2,650 bytes
MAC library 18,868 bytes
Total 29,620 bytes

Table 7: Code size of implemented modules

display, though this is no di�erent than our implementation having the Console
module in our implementation.

We consider our code size compared to the Figure 8 Wireless code to be proof
that TinyOS can be a viable solution when implementing ZigBee end devices.
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8 Conclusion

We have succesfully implemented a reduced ZigBee protocol stack and Light
Sensor Monochromatic device supporting, most mandatory service primitives
as well as optionals where needed. The implementation has a code size of
29,620 bytes thus meeting our goal of a code size less than 32KB.

The protocol stack and light sensor has been tested as shown in Section 7 and
we are convinced that it is fully functional.

Our protocol stack is not fully compliant with the ZigBee standard as it does
not support device and service discovery responses, retransmission of broadcasts
and further analysis needs to be done before it can be deployed in other network
topologies than a star topology. Furthermore the light sensor does not support
application level acknowledgements or semi-precision values. We believe that
it is possible to extend our implementation to be fully compliant and still keep
the code size below 32KB.

Our implementation is not only usable by light sensors but could be used by
many other ZigBee devices having similar requirements, e.g. temperature sen-
sors, pressure sensors etc. However in a commercial context this would require
that the implementation is made fully compliant with the ZigBee standard.

We believe that this thesis contains valuable information to other software de-
velopers implementing a ZigBee protocol stack. Not only have we analyzed and
described the functionality needed for the light sensor, we have also proposed
feasible interpretations of the ZigBee standard, cf. Section 3.4.

Furthermore, the use of IEEE 802.15.4 in the TinyOS community, is very limited
making this thesis an important contribution on the use and applicability of this.

8.1 Future Work

• Extending the implementation to be fully compliant with the ZigBee stan-
dard by implementing the above mentioned missing functionality. Given
the code size described in Section 7.2 it should be possible to implement
the remaining functionality in the remaining 3KB.

• The way we transfer a message from one layer to another is not very
e�cient. At present they are copied from one memory space to another.
This was a design decision which in retrospect seems unwarranted. This
could be solved by transfer of ownership or using a bu�er manager which
could be con�gured to the size needs of the given application. The use
of a bu�er manager would allow the implementation to send more than
one message at a time, including acknowledgements. This would make the
protocol stack more robust in terms of reliability.

• Currently, the components and interfaces used and provided in our imple-
mentation are based entirely on the IEEE 802.15.4 and ZigBee standards.
This is not necessarily the optimal way as can be seen by the discussions
on the TinyOS IEEE 802.15.4 interfaces mentioned in Section 5.4. An
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analysis of other ways to organize the protocol stack would be useful to
provide a reference interface usable for other platforms.

• It would be interesting to perform power measurements on the LSM to
see if the goal of battery life reaching years is within reach.

• Making a component to perform the handling of KVP messages in the
application objects could be shared among applications and would make
it easier to implement new pro�les from scratch, if no reference code was
available.

• Finally, implementing the IEEE 802.15.4 standard in TinyOS would allow
nesC to perform further optimizations, presumably reducing the overall
size of the implementation.
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