
Hacking on the Futhark Compiler for your
Bachelors Project

Troels Henriksen (athas@sigkill.dk)

Computer Science
University of Copenhagen

8. February 2016

A Computer Scientist is a person who gets his hands on a
nice new graphics card, not to look at this:

But at this:

clGetPlatformIDs(1, &platform, &platforms);
clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1,

&device, &devices);
cl_context_properties properties[]= {0};
cl_context context =
clCreateContext(properties, 1, &device,

NULL, NULL, &error);
cl_command_queue cq =
clCreateCommandQueue(context, device,

0, &error);

cl_program prog =
clCreateProgramWithSource(context, 1,

&transpose_cl,
NULL, &error);

clBuildProgram(prog, 0, NULL, "", NULL, NULL);

Context

Graphics cards (GPUs) provide massive amounts of
computational power, but they are hard to program. It gets
even harder (impossible) if you want both reusable and fast
code.
Still, GPGPU (using GPUs for non-graphics workloads) has
been increasing in popularity for the past ten years, as the
potential performance improvements are significant.
GPUs are extremely parallel processors capable of keeping
tens of thousands of threads in flight. But these threads have
to access memory in certain patterns, and do roughly the
same, or they will run very slowly.
This calls for a language that makes it easier to deal with.

GPU programming
GPUs function as extremely fast data-parallel co-processors. They
are not independent, but are controlled by an ordinary CPU
process that sends code and data.

For strange historical reasons, GPU programs are often called
kernels. The CPU code is called host code.
At runtime, a CPU program will send a GPU program (often
specified in a dialect of C) to the device driver for the GPU,
and get back some GPU-specific machine code.
This GPU-code is then sent to the GPU along with data in
order to perform computation.

Sequential CPU
program

Parallel GPU
program

Futhark overview

We have created a programming language, Futhark, intended for
writing parallel programs that can be compiled to run on GPUs.
Futhark is a data-parallel purely functional language. Looks a bit
like a simplified combination of SML and Haskell.

fun [i n t , n] sumPairs ([i n t , n] a , [i n t , n] b) =
zipWith (+ , a , b)

fun i n t product ([i n t] a) =
reduce (* , 0 , a)

fun i n t dotProd ([i n t , n] a , [i n t , n] b) =
product (sumPairs (a , b))

So what do we want to do with this language?

Futhark Details

The primary purpose of Futhark is to be fast
Functional programming is merely a means to an end. We
aim for being within a factor of 2 of hand-optimised
hand-written GPU code.
Uses a heavily optimising ahead-of-time compiler
The compiler performs heavy optimisation, extracts parallel
sections of code and translates these to GPU code, and
generates host code for controlling the GPU.
Generated code interfaces with the GPU through the OpenCL
API
This is an open standard for interacting with “accelerators”
(mostly GPUs, but also FPGAs, multicore CPUs, and even
clusters).
Free software:
https://github.com/HIPERFIT/futhark.git

https://github.com/HIPERFIT/futhark.git

Projects Overview

Most of the projects involve modifying parts of the Futhark
compiler, which is written in simple Haskell. If you know SML,
you can quickly pick up enough Haskell to be dangerous.
Some projects also require low-level programming effort in C
or C++.
All projects require significant practical implementation work.
No projects are a waste of time - they are all worthwhile
things we want or need for research.
I strongly suggest you work in groups - compiler work is more
time-consuming than it looks.

Some projects have more details at

http://hiperfit.dk/studentprojects.html

http://hiperfit.dk/studentprojects.html

The Unit of Difficulty

I rate the difficulty project proposals from one to five broken
keyboards.
Not just a measure of workload, but based on whether I
believe I understand every issue related to implementation
of the project.
Higher difficulty implies more “unexpected” problems that I
cannot immediately give you an answer to.

Project: New Host Language Backends

Idea The host code could be generated in any language
with OpenCL bindings. Since most of the runtime is
ideally spent in the GPU code, performance of the
host language should not matter. We already have
code generators for Python and C - one could
improve these, or add Ruby, Java, C#, F#, C++, Haskell,
or whatever happens to be your favorite language!

Challenges Mapping Futhark IL constructs and types to the
target language; generating a nice API.

Difficulty

We have basically done this before - but it’s still fun
and rewarding work.

Project: Javascript Backend

Idea Javascript does not have any OpenCL binding
(WebCL is dead). Instead, we could use compute
shaders from the OpenGL binding - WebGL.

Challenges I have no WebGL experience; our kernel code
generator only generates OpenCL kernels (although
GLSL shaders look fairly similar); requires significant
amounts of research, design and implementation
work. This is definitely a tough one.

Difficulty

Do not assume that you can finish this completely in
one project - think proof of concept. I believe this
project constitutes novel research.

Project: Benchmark Infrastructure

Idea Create an automatic system that can run our
benchmark suite, collect performance statistics,
store them in a database (or just data files), and
produce online graphs of changes as we work on the
compiler. Should run automatically every now and
then.

Challenges Involves a bit of independent problem analysis to
figure out what we need, as well as some UI design
and visualisation work. You can probably look at
established compiler projects for inspiration.

Difficulty

Feasible even for a single student - and you can pick
whichever language, infrastructure and tools you
want.

Project: CUDA Backend

Idea Currently, the Futhark compiler generates code
using the OpenCL library, but some interesting
platforms support only NVIDIAs CUDA. It would be
useful to add a CUDA backend to Futhark.

Challenges There are three different CUDA layers that could be
targed by the code generator: language, runtime,
and driver level. I have no idea which one is best.
Will possible some minor modification of kernel
code generator (the CUDA and OpenCL kernel
languages are similar but not identical).

Difficulty

Project: Compile-Time Memory Allocation

Idea Late in compilation, the Futhark compiler assigns
each array to a memory block. Currently, each array
gets a unique memory block, but several arrays
could use the same block, as long as the arrays are
not live at the same time. This project is about
implementing liveness analysis and an algorithm
similar to register allocation to do this in the Futhark
compiler.

Challenges Need to grok the Futhark memory representation.
The immediate goal (lowered memory usage)
probably easy to reach; but reducing amount of
copies may be harder.

Difficulty

Project: Loop-Scan Loop Fusion

Idea Efficient parallel execution typically involves every
thread computing a chunk sequentially, followed by
the threads combining their results. Good
performance depends on taking advantage of this
sequential stage, for exampl by fusing map and
scan operations (which is not valid in the parallel
stage).
We already do this for map and reduce, where it
works well.

Challenges You have to modify the loop fusion pass in the
Futhark compiler, which is a bit gnarly. This is still a
gentle introduction to high-level loop optimisations.

Difficulty

Project: Function-Level Shape Invariants

Idea This project is about allowing the user to annotate,
at function level, algebraic invariants between
integer parameters, which for example, may allow
the compiler to make optimisation decisions and
bounds check removal. For example:
fun int myFun(int N, [[real, k4],M] arr)

where (k1 < k2,
k3 in k2*k1 + N ... M,
k4 < M + N,
M >= max(2*N,1),
arr in N ... M-1) =

body of function

Challenges Involves language design; not clear which invariants
are the most useful.

Difficulty

Project: Bounds Checking on GPU

Idea The Futhark compiler makes an effort to remove
array bounds checks, but it is not always succesful.
Currently, the GPU code generator cannot deal with
bounds checks, so if any are left, the compiler will
fail. The workaround is to globally disable bounds
checking for some programs, but this is not very
satisfactory. This project is about finding a way to
efficiently do bounds checking on the GPU.

Challenges Need to find a way to abort a GPU thread without
deadlocking the entire kernel (or catch the deadlock,
or kill the entire kernel somehow). Bounds checking
errors need not be fast, but passing checks should
be efficient.

Difficulty

Project: Multicore Backend (OpenMP)

Idea Futhark development has mostly focused on GPUs,
but modern multicore CPUs are also a good fit for
data-parallel code. We already have a good
sequential code generator, and it should be doable
to use something like OpenMP to generate parallel
CPU code.

Challenges Some parts of the compilation pipeline make
performance assumptions that are only valid on
GPUs. This project will require small changes in all
steps of the compiler, which means you need to
understand a largish code base.

Difficulty

Other Projects

If you have an idea of your own, come by and we can have a chat
about it. Inspiration:

Futhark Interpreter with a focus on debugging Futhark
programs (breakpoints, single-stepping, variable inspection,
etc).
Translating benchmark programs to Futhark, with a focus on
looking for new language features that would be useful
when writing high-performance code.
Syntax improvements, such as permitting expressions like
map(map(f), a) – currently the Futhark parser is quite
crude, and does not permit currying of control flow structures.
Compiling some other language to Futhark, for example
some domain-specific language. We already had one (very
nice) bachelor’s project about compiling APL to Futhark.

Compiler hacking is hard work, but rewarding

“At arbejde med Futhark var både spændende og lærerigt.”
-Maya Saietz

“Hvis du laver et Futhark-projekt, kommer du aldrig til at sove”
-Niels G. W. Serup

“Et ambitiøst projekt med en hårdt arbejdende kerne af folk! Hvad
mere kan man ønske sig?” -Hjalte Abelskov

“Efter at havde arbejdet med Futhark føles alt andet i mit liv
meningsløst.” -Daniel Gavin

Contact

If you think any of this is interesting, come talk to me...
...in the office I share with my advisor, Cosmin: 01-0-017 at
HCØ.
...via email: athas@sigkill.dk
. . .or on IRC: #diku on Freenode
(http://ucph.dk/#tabs1-chat)

http://ucph.dk/#tabs1-chat

