
Monads in Action

Andrzej Filinski
DIKU, University of Copenhagen

andrzej@diku.dk

Abstract
In functional programming, monadic characterizations of computa-
tional effects are normally understood denotationally: they describe
how an effectful program can be systematically expanded or trans-
lated into a larger, pure program, which can then be evaluated ac-
cording to an effect-free semantics. Any effect-specific operations
expressible in the monad are also given purely functional defini-
tions, but these definitions are only directly executable in the con-
text of an already translated program. This approach thus takes an
inherently Church-style view of effects: the nominal meaning of
every effectful term in the program depends crucially on its type.

We present here a complementary, operational view of monadic
effects, in which an effect definition directly induces an imper-
ative behavior of the new operations expressible in the monad.
This behavior is formalized as additional operational rules for only
the new constructs; it does not require any structural changes to
the evaluation judgment. Specifically, we give a small-step opera-
tional semantics of a prototypical functional language supporting
programmer-definable, layered effects, and show how this seman-
tics naturally supports reasoning by familiar syntactic techniques,
such as showing soundness of a Curry-style effect-type system by
the progress+preservation method.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Operational
semantics; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—Control primitives, Type structure

General Terms Languages, Theory

Keywords Monads, Computational Effects, Modular Semantics

1. Introduction
Since their introduction by Moggi [12] and popularization by
Wadler [20], monads have become an important tool for structuring
pure functional programs. Conceptually imperative computations,
using features such as exceptions or mutable state, can be uniformly
expressed by splitting the program into a main program written in
“monadic style”, and a prelude of effect definitions, each given by
a monad and some associated operations.

Conceptually, the effect definitions are then inlined into the
main program, giving a purely functional program that can be eval-
uated using a standard, pure semantics. This approach takes an in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’10, January 17–23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-479-9/10/01. . . $10.00

herently Church-style view of effects: the meaning of a term de-
pends fundamentally on its monadic type, since that type (possibly
reconstructed using overloading resolution or similar) is used to
guide the expansion.

In ML-like languages, one can of course use such an approach
as well, but it seems less natural. Rather, programmers tend to think
of a fixed collection of computational effects as being built into the
language, but possibly being used in restricted ways. That is, rather
than building up new behaviors, effect-type systems aim to clas-
sify patterns of existing behavior, such as whether a subterm may
raise a particular exception, or access part of the store. In particular,
the view is Curry-style: types form a (necessarily conservative) ap-
proximation of the intrinsic operational behavior of untyped terms.

Monadic reflection [4] attempts to bridge these two views: from
a translational specification of a collection of effects in terms of lay-
ered monads, it constructs an efficient imperative implementation
based on native effects in the language, namely low-level primi-
tives for control and state manipulation. That is, the program can
be thought of and analyzed in terms of its definitional expansion
into a pure one, but the actual execution happens by an embedding
into a language with a fixed collection of effects and associated op-
erational semantics.

For example, consider the prototypical effect of exceptions.
Given a type exn of exception names, even in the absence of
dedicated syntax, we can make available the essential exception-
behaviors in the form of two procedures:

raise : exn
ex→ α

try : (1
ex→ α) → (exn

ε→ α)
ε→ α ε ∈ { , ex}

(Ignore for the moment the annotations on the arrows.)
Operationally, raise e signals the exception e, while try t h

evaluates the protected thunk t with handler h: if t () returns a
normal, α-typed result a, that a will also be the result of the try;
but if evaluation of the thunk causes an exception e to be signaled,
then evaluation of t () is abandoned, h e is evaluated instead, and its
result (possibly another raised exception) becomes the final result
of the try.

The effect annotations summarize this behavior. An annotated
arrow type τ

ε→ τ ′ represents a function from τ to τ ′ with poten-
tial ε-effects. Here indicates a pure computation, i.e., with at most
divergence as an effect, while ex indicates a computation that may
raise exceptions in addition to diverging. Unannotated function ar-
rows represent manifestly total functions, with no effects at all. In
the example, raise evidently has ex-effects, whereas the type of try
says that, even though the protected expression may signal excep-
tions, the whole try-expression will not, unless they are signaled by
the handler.

How can we formalize this intuitive description of the semantics
of exceptions? In the monadic approach, we model a computation
with exception-effects using a monad type Tα, defined by

Tα ≡ 1 → (α + exn)

That is, an ex-computation of a value of type α is a -computation
returning either α or exn. The associated term components can be
defined as follows:

unit : α→ Tα

unit ≡ λa.λ(). ′inl a

bind : Tα→ (α→ Tβ)→ Tβ

bind ≡ λt.λf.λ(). let s = t () in
case s of

inl a. f a ()
inr e. ′inr e

(We write ′M to emphasize the normally implicit coercion of a
trivial computation M into a potentially effectful one.)

A monadic reflection is then a pair of functions witnessing the
isomorphism between the original opaque, “imperative” view of
exceptions, and the above transparent, “declarative” one:

reflectex : Tα→ (1
ex→ α)

reifyex : (1
ex→ α)→ Tα

(We write reflect as a total function returning a thunk, to emphasize
the symmetry with reify.) Using those, we can define the actual
exception operations as follows:

raise ≡ λe. reflectex(λ(). ′inr e) ()

try ≡ λt.λh. let s = (reifyex t) () in
case s of

inl a. ′a
inr e. h e

That is, raise e constructs a transparent representation of a raised
exception, and reflects it as an ex-computation, while try reifies the
protected ex-computation into a sum-returning pure one, runs it,
and splits into cases on the result.

For example, if exn = string, we can then write a program like

try (λ().3 + raise "foo")
(λe. if e = "foo" then 4 else 5)

or, with explicit computation-sequencing:

try (λ(). let r = raise "foo" in ′(3 + r))
(λe. if e = "foo" then ′4 else ′5)

To compute the meaning of such a program according to the defined
semantics of exceptions, we can expand the definitions of raise/try
from above, monad-translate the entire program (i.e.. transform
relevant lets into binds and ′-s into units), and finally replace
reflect and reify by identity functions. Then the resulting program
would be well typed, and evaluate to 4, using only -computations.

Note, however, that the monad translation needs the type infor-
mation: the let and ′ in the first line of the main program should
be transformed, but the ones in unit, bind, and raise should not,
because they only sequence -computations. Even more subtly,
whether the ′ in try should be transformed or not depends on which
type instance we are using try at: in the sample program, the han-
dler h itself was pure, so the result from try should not be tagged;
but if we had replaced the ′5 with raise e (i.e., taking ε = ex in
the type of try), the successful result a from try would need to be
explicitly tagged as non-exceptional.

Monadic reflection and reification are thus easy to understand
from the Church perspective: as part of the conceptual expansion
of the effectful program into a pure, monadic-style one, they actu-
ally disappear entirely; their function is merely to mark the bound-
aries between parts of the program being translated using different
monads.

A natural question arises, however: could we instead give the re-
flection operators a direct, effectful operational semantics, so that
the raise and try defined in terms of them would behave in the ex-
pected way? More generally can we derive such a semantics purely
mechanically, using only the definitions of the monad components,
for an arbitrary monadic effect? And finally, can we assign mean-
ings even to terms without effect-annotations, rather than requiring
a potentially complex type inference/reconstruction phase before
execution?

In the following, we answer these questions affirmatively. We
show how a simple, small-step operational semantics of a proto-
typical functional language (conceptually situated somewhere in
the middle between Haskell and ML on the purity spectrum) can
be incrementally extended with programmer-defined monadic ef-
fects, in the form of additional reduction rules for the new op-
erations, but not requiring modifications or extensions of exist-
ing ones. Moreover, for several familiar examples, those automati-
cally constructed rules correspond very directly to a Felleisen-style
evaluation-context semantics of the effectful operations.

Finally, the construction can be carried out entirely in Curry
style: all syntactically correct programs are assigned inherent oper-
ational meanings, independent of any type information. However, a
descriptive type system can subsequently be imposed on them, with
soundness (absence of stuck states) shown by the usual syntactic
methods. We consider a particular such type system here, though
more advanced ones are certainly possible – either allowing more
programs to be typed, or giving more informative types to already
typable ones.

2. Metalanguage
Though our account could be given in the context of an ML-like
CBV language, the development runs significantly smoother in the
slightly more abstract setting of a computational metalanguage
with explicit sequencing of computations using let and value-
inclusion, as illustrated in the Introduction. It is hoped that this
presentation style will also provide a neutral ground, familiar to
both ML programmers (who can think of it as merely a systematic
convention of naming the results of all subexpressions, akin to A-
normal forms), and to Haskell programmers (who can think of it
as a variant of do-notation, although with an unusual operational
semantics).

The metalanguage is essentially the MultiMonadic Metalan-
guage (M3L) of [5], with a slightly restricted term syntax, better
suited for operational interpretations. The language is stratified into
a term level, in which all the computations are expressed, and a
program level, used to also express effect definitions. In this sec-
tion, we introduce the syntax and typing of both levels; in the next
one, we will look at the operational semantics. Throughout the pa-
per, we will use the convention that shaded constructs, judgments,
and rules represent the extensions specifically needed to work with
programmer-defined effects and monadic reflection, while the un-
shaded ones are essentially independent of how effects are added
to the metalanguage.

2.1 Effects
The fundamental concept of the metalanguage is that of an effect
e, representing a collection of possible computational behaviors.
The simplest effect is that of potential nontermination, written .
However, it is often more appropriate to think of as simply the
underlying computational fabric of the language. In other words,
possible divergence of programs is merely the price we must pay
for allowing general recursive computations, rather than something
we explicitly set out to encompass. (Explicit partiality of a function
is often better represented using some variant of the exception
monad.) All effects in the language will be built on top of , to

Syntax

e ::= | ε

τ ::= α | 1 | τ1 × τ2 | τ1 + τ0 | µα.τ | σ
σ ::= 〈e〉τ | τ → σ | > | σ1 & σ2

Σ ::= · | Σ, ε∼ α.σ, e≺ ε

Subeffecting `Σ e ≤ e′

`Σ e ≤ e
(SE-REFL)

`Σ e ≤ e′′ `Σ e′′ ≤ e′

`Σ e ≤ e′
(SE-TRANS)

`Σ ≤ e
(SE-BOT)

(e≺ ε) ∈ Σ
`Σ e ≤ ε

(SE-DEF)

Effect basing `Σ e � σ

`Σ e � 〈e〉τ (EB-EFF)
`Σ e � σ

`Σ e � τ → σ
(EB-FUN)

`Σ e � > (EB-UNIT)
`Σ e � σ1 `Σ e � σ2

`Σ e � σ1 & σ2
(EB-PROD)

`Σ e ≤ e′ `Σ e′ � σ

`Σ e � σ
(EB-SUB)

Effect signature ` Σ

` · (D-EMPTY) ` Σ `Σ e � σ
` Σ, ε∼ α.σ, e≺ ε

(D-EFF)

Figure 1. Effects and types

allow a simple treatment of especially type-level recursion. Indeed,
we can think of as representing the effect of performing any non-
trivial computations at all, even ones that could relatively easily be
seen to be terminating.

We could have parameterized the language by a larger collection
of base effects, but to keep the operational semantics concise, we
require all other effects to be explicitly defined at the program level.
Since the language for expressing effects includes the syntactic
counterparts of the main domain-theoretic primitives (though not
powerdomains), most conventional monadic effects can be indeed
defined in this way. An effect is thus either the single primitive
effect , or a defined effect ε.

The second fundamental notion is that of subeffecting. Infor-
mally, an effect e is a subeffect of e′, written e ≤ e′, if all behaviors
modeled by e are also valid behaviors of e′. In general, this covers
qualitative notions of behavior inclusion (such as exceptions be-
ing a subeffect of exceptions-and-state), but also quantitative ones,
such as the exact set of exceptions that a computation may signal.
Subeffecting is naturally reflexive and transitive, with as the least
element. (Denotationally, a subeffecting e ≤ e′ corresponds to a
monad morphism between the monads representing e and e′, but
we will not pursue the category-theoretic ramifications here.)

For our purposes, the only source of proper subeffecting will
be when a new effect ε is explicitly defined as an immediate
supereffect of some existing e, written e ≺ ε . The effect structure
is summarized in Figure 1.

2.2 Types
Although the proposed operational semantics will not depend on
type information, we present the language here together with a sim-
ple type system, since most of the terms can be better understood
in such a setting.

In the syntax of types, we distinguish between general, or value,
types τ , and a subclass of computation types σ. Only terms of
computation type will be given an operational interpretation; value
types represent inert data. (When appropriate, suspended computa-
tions can also be treated as data, though.)

The grammar of types is also given in Figure 1. Again, since
most conventional base types can be built up from the general
constructs, there are no type constants. For example, we will later
define the natural numbers as nat ≡ µα.1 + α. (Throughout the
paper, we use a sans-serif font for notational abbreviations.)

The general types include products, sums, and recursion, as
well as computation types. The latter include function, product,
and effect types. To avoid confusion between the two notion of
products, we use & and > for the computation variant (inspired
by the linear-logic notation, though with no formal connection
implied). The effect type 〈e〉τ classifies computations producing
τ -typed results, with potential e-behaviors. Note that the codomain
of a function type must always be computational (though possibly
itself another function space). Thus, nat→nat→〈 〉nat is a well-
formed type (isomorphic to nat × nat → 〈 〉nat), but nat → nat
is not. This is a slight relaxation of Moggi’s metalanguage, in
which function codomains can only be effect-types directly. The
extension is mainly for syntactic convenience: as suggested above,
it allows curried notation for functions that would otherwise have
to be written in uncurried style.

The intuition behind general computation-types is that they
classify parameterized effectful computations. In the case of effect-
types, there is no parametrization; function-typed computations are
parameterized by the argument value, and product-typed computa-
tions are parameterized by whether their first or second argument
is needed. (In particular, σ & σ is thus isomorphic to (1 + 1)→ σ.)

Formalizing this intuition, we say that a computation type σ
is based on an effect e, written `Σ e � σ, when σ can be seen
as a parameterized e-computation. We refer to computations of
type 〈e〉τ as simple e-computations; others (including 〈e′〉τ when
e < e′) are called generalized. (Denotationally, when `Σ e � σ, σ
can be interpreted as an algebra for the monad representing effect e
[11, VI.2]. In a domain-theoretic setting, computation types denote
pointed cpos, i.e., algebras for the lifting monad that models .)

We finally define the notion of an effect signature Σ, containing
declarations of all effects introduced in a program, each with their
immediate subeffect, and a conceptual realization as an already
well-formed computation type (i.e., only the type-constructor part
of the formal monad defining the effect). For example, the effect of
exceptions might be declared as ex ∼ α.〈 〉(α + nat), saying that
a computation with exception-effects can be understood as a pure
computation returning either the expected result, or an error code. If
a notion of state-effects st had been declared earlier in the signature,
we could also have declared exceptions as ex ∼ 〈st〉(α + nat),
signifying that this notion of an ex-computation may also perform
state access, in addition to potentially raising an exception.

For an immediate-subeffect declaration e ≺ ε in a signature to
be valid, the computation-type realizing ε must be based (possibly
indirectly) on e; this is checked by rule D-EFF.

2.3 Terms
Let us look now at the level of terms. We consider first the generic
parts, and then the reflection/reification operators specifically.

2.3.1 Generic fragment
The syntax and typing rules are given in Figure 2. We generally
use N for terms of computation type, and M for unrestricted ones,
but there is no formal distinction between value- and computation-
terms in the syntax. (In particular, variables can denote either kind.)
The rules of the operational semantics will specify exactly when a

Syntax

M, N ::= x | val M | glet x ⇐ N1. N2 | λx.N | N M | 〈〉 | 〈N1, N2〉 | prji N | () | (M1, M2) | split(M, x1.x2.N)

| inji M | case(M, x1.N1, x2.N2) | roll M | unroll (M, x.N) | fix x.N | [N]ε | glet x ⇐ µε(N1). N2

P ::= run N | leteffect ε � e be (α.σε, Nu, Nb) in P

Typing environment `Σ Γ

Γ ::= · | Γ, x: τ (where `Σ τ)

Term typing Γ `Σ M : τ

(x: τ) ∈ Γ

Γ `Σ x : τ
(TV-VAR)

Γ `Σ M : τ

Γ `Σ val M : 〈e〉τ (TC-VAL)
Γ `Σ N1 : 〈e〉τ Γ, x: τ `Σ N2 : σ `Σ e � σ

Γ `Σ glet x ⇐ N1. N2 : σ
(TC-GLET)

Γ, x: τ `Σ N : σ

Γ `Σ λx.N : τ → σ
(TC-LAM)

Γ `Σ N : τ → σ Γ `Σ M : τ

Γ `Σ N M : σ
(TC-APP)

Γ `Σ 〈〉 : > (TC-UNIT)
Γ `Σ N1 : σ1 Γ `Σ N2 : σ2

Γ `Σ 〈N1, N2〉 : σ1 & σ2
(TC-PAIR)

Γ `Σ N : σ1 & σ2

Γ `Σ prji N : σi
(TC-PRJ)

Γ `Σ () : 1
(TV-UNIT)

Γ `Σ M1 : τ1 Γ `Σ M2 : τ2

Γ `Σ (M1, M2) : τ1 × τ2
(TV-PAIR)

Γ `Σ M : τ1 × τ2 Γ, x1: τ1, x2: τ2 `Σ N : σ

Γ `Σ split(M, x1.x2.N) : σ
(TC-SPLIT)

Γ `Σ M : τi

Γ `Σ inji M : τ1 + τ2
(TV-INJ)

Γ `Σ M : τ1 + τ2 Γ, x: τ1 `Σ N1 : σ Γ, x: τ2 `Σ N2 : σ

Γ `Σ case(M, x.N1, x.N2) : σ
(TC-CASE)

Γ `Σ M : τ [µα.τ /α]

Γ `Σ roll M : µα.τ
(TV-ROLL)

Γ `Σ roll M : µα.τ Γ, x: τ [µα.τ /α] `Σ N : σ

Γ `Σ unroll (M, x.N) : σ
(TC-UNROLL)

Γ, x: σ `Σ N : σ

Γ `Σ fix x.N : σ
(TC-REC)

Γ `Σ N : 〈ε〉τ (ε∼ α.σε) ∈ Σ
Γ `Σ [N]

ε : σε[τ/α]
(TC-REIF)

Γ `Σ N1 : σε[τ/α] Γ, x: τ `Σ N2 : σ `Σ ε � σ (ε∼ α.σε) ∈ Σ
Γ `Σ glet x ⇐ µε(N1). N2 : σ

(TC-GLET-REFL)

Program typing `Σ P :

· `Σ N : 〈 〉nat

`Σ run N
(PT-RUN)

`Σ e � σε · `Σ Nu : α1 → σε[α1/α] · `Σ Nb : σε[α1/α]→ (α1 → σε[α2/α])→ σε[α2/α] `Σ,ε∼α.σε,e≺ε P
`Σ leteffect ε � e be (α.σε, Nu, Nb) in P

(PT-LETEFF)

Figure 2. Term and program syntax and typing

term of computation type should be evaluated, and when it should
be treated as a passive datum.

The term syntax is largely conventional, corresponding to the
usual introduction and elimination principles for the available type
constructors. We note that all elimination has to happen in the
context of a computation, i.e., the type of the result in split, case,
or unroll must be computational, and thus ultimately based on

. This restriction significantly simplifies the reduction semantics,
while not presenting any major problems in elaborating common
object languages into the metalanguage. With that proviso, all the
unshaded typing rules except TC-VAL and TC-GLET should be
self-explanatory.

The rule for val is also straightforward: val M represents an
effect-free computation, that merely returns M ; it corresponds to
the ′M notation of the Introduction, or return M in Haskell. Glet
represents computation sequencing; informally, glet x ⇐ N1. N2

first evaluates N1 (performing its effects), and then evaluates N2

with x bound to the result of N1. The rule TC-GLET is a gen-
eralization of the usual monadic let-typing rule (or Haskell’s do-
notation), however: as usual, N1 must have an effect-type 〈e〉τ , but
the body N2 can be of any computation-type based on e, not neces-
sarily exactly of the form 〈e〉τ ′. This includes function spaces into
e-computations, and notably also computations with supereffects

(immediate or otherwise) of e. In particular, the idiom

glet x ⇐ N.val x

can lift a term N : 〈e〉τ to the type 〈e′〉τ , when e ≤ e′. (Later we
shall introduce a subtyping system, allowing us to write N directly,
without such an explicit effect-inclusion.) Note that, when N2 is
a non-trivially parameterized computation, then so is glet x ⇐
N1. N2; that is, the computation in N1 is not performed until the
entire computation has been supplied with the parameter value.

Summarizing, the language defined so far is thus essentially
FPC [7], with explicit sequencing of -effects. As previously men-
tioned, we can define natural numbers with the usual operations:

nat ≡ µα.1 + α

z ≡ roll inj1 ()

s M ≡ roll inj2 M

ncase(M, Nz, x.Ns) ≡ unroll (M, m.case(m, .Nz, x.Ns))

plus ≡
fix f.λn.λm.ncase(n,val m, n′.glet r ⇐ f n′ m.val (s r))

(The function plus could also have been coded tail recursively,
but the above variant is more representative of the sequentialized
style.) We can derive the following typing rules for the above

abbreviations:

Γ `Σ z : nat

Γ `Σ M : nat

Γ `Σ s M : nat

Γ `Σ M : nat Γ `Σ Nz : σ Γ, x: nat `Σ Ns : σ
--

Γ `Σ ncase(M, Nz, x.Ns) : σ

Γ `Σ plus : nat→ nat→ 〈e〉nat

(We write derived rules with dashed lines.) The type of plus can be
derived for any e, not only . Again, it does not mean that plus is
intended to be partial, only that it involves non-trivial computation.

With general µ-types, we can define other inductive types such
as lists, but also datatypes with embedded computations, such as
infinite streams or search trees, or even properly reflexive ones such
as µα.nat + (α→ 〈 〉α).

2.3.2 Monadic reflection
The last two term constructs enable actual programming with de-
fined computational effects. The first, monadic reification [N]ε,
represents an unsealing of an effect ε in terms of its declared com-
putational realization. Continuing the exception example from be-
fore, a term N : 〈ex〉bool is an opaque boolean-returning com-
putation, which can only be sequenced before or after another ex-
computation using glet. But its reification, [N]ex : 〈 〉(bool+nat)
can be explicitly evaluated, assuming it terminates, to a sum-typed
value, which can then be the subject of a case. In particular, the
reification can be used to halt the propagation of a raised exception:
by reifying a computation, we get to exercise non-standard control
over its behavior. We could, of course, work with the reified repre-
sentation all the time, but this is likely to be both less efficient and
more verbose.

The other operation, lending its name to the whole pair, is
monadic reflection. It seals an explicit computation in the realiza-
tion type into an opaque computation in the defined effect-type. For
technical convenience in the operational semantics later, we have
integrated it as a variant of the glet construct, but it can be under-
stood independently. In particular, we can introduce an “isolated”
reflect as an abbreviation,

µ̂ε(N) ≡ glet x ⇐ µε(N).val x

with a derived typing rule exactly opposite to TC-REIF:

Γ `Σ N : σε[τ/α] (ε∼ α.σε) ∈ Σ
--

Γ `Σ µ̂ε(N) : 〈ε〉τ

Reflection provides the only means for introducing non-trivial
behaviors of an effect-type; otherwise, only pure computations (in-
cluding divergence) would be expressible. In the exception exam-
ple, reflection can be used to create an 〈ex〉bool-computation from
the explicit error-returning computation val inj2 (s z) : 〈 〉(bool+
nat). As long as the generic rules for glet properly propagate such
an exceptional result until it is reified again, reification and reflec-
tion together allow us to define a conventional exception facility,
as sketched in the Introduction. We will return to this example in
Section 4.1, as well as other examples of defined effects.

2.4 Subtyping
The type system as presented so far requires effects in types to
match up exactly: if a term with a given effect is needed somewhere
(e.g., as a function argument), we cannot simply supply a term with
a lesser effect. Instead, we must explicitly include an effect into its
supereffect, using the glet–val idiom from above.

However, since the operational semantics of effects does not
use the type information, the extra glet and val play no material
role at runtime, other than adding an extra reduction step. To free

Subtyping `Σ τ ≤ τ ′

`Σ τ ≤ τ
(STV-REFL)

`Σ e ≤ e′ `Σ τ ≤ τ ′

`Σ 〈e〉τ ≤ 〈e′〉τ ′
(STC-EFF)

`Σ τ ′ ≤ τ `Σ σ ≤ σ′

`Σ τ → σ ≤ τ ′→ σ′
(STC-FUN)

`Σ > ≤ > (STC-UNIT)
`Σ σ1 ≤ σ′1 `Σ σ2 ≤ σ′2
`Σ σ1 & σ2 ≤ σ′1 & σ′2

(STC-PROD)

Additional rule for Γ `Σ M : τ :

Γ `Σ M : τ `Σ τ ≤ τ ′

Γ `Σ M : τ ′
(T-SUB)

Figure 3. Subtyping

the producer (human or automated) of metalanguage code from
inserting such eta-like redexes explicitly, just in order to make the
program typecheck, we extend the type system with a simple notion
of inclusive subtyping, as detailed in Figure 3.

We define notions of subtyping for general and computation
types (where only the latter is non-trivial), as well as a subsumption
rule allowing a term with a given type to be used directly where
a supertype is needed. Note that for two types to be related by
subtyping, they must have exactly the same shape, differing only
in the effects occurring inside 〈·〉s.

Although the subtyping relation does not include a transitivity
rule, such a rule is evidently admissible:

LEMMA 2.1 (Transitivity of subtyping). If τ ≤ τ ′ and τ ′ ≤ τ ′′

then τ ≤ τ ′′

Proof. Easy induction on the total size of the two derivations (since
they must be swapped in the rule STC-FUN), ultimately relying on
transitivity of the subeffect relation `Σ e ≤ e′.

2.5 Programs
The grammar and typing of programs are shown in the last part of
Figure 2. The level of programs contains the actual definitions of
any effects used in a computation. We refer to the definitions as the
program’s prelude, and the final effectful computation as its body.
Since general effects will not be uniformly observable, we require
the program body run N to not have any top-level behaviors other
than potential divergence. All behaviors introduced by reflection
thus have to be eliminated by reification, before the final program
result can be observed. The type system straightforwardly enforces
this requirement. Also, to allow final results to be observed atomi-
cally, we require the result (if any) to contain no embedded compu-
tations, not even with only -behavior; for concreteness, we specify
that it must be exactly of type 〈 〉nat.

The leteffect construct introduces a new effect in terms of its
monadic specification. That is, in addition to the realization of the
effect as a computation type based on a simpler one (and ultimately
just on), we must supply a unit function, expressing how values
are turned into computations with val, and a bind function for
sequencing computations in the effect with let. Note that we need
only define sequencing of simple computations; the framework
will induce the appropriate behavior for the generalized instances
of glet. At the time an effect is defined, we must also declare
which effect it is to be considered an immediate supereffect of,
for the purpose of creating the effect signature. The unit and bind
functions must be typable with the given top-level polymorphic
type schemas; this ensures that they can be soundly instantiated
at arbitrary types during execution.

To be precise, we call the triple of type constructor and unit/bind
terms a syntactic monad. We expect them to obey the monad laws
and layering condition (see [5]), but of course cannot check those
in the type system. For the purpose of the operational semantics,
it doesn’t actually matter whether the laws hold; but the programs
may behave in very counterintuitive, and hard-to-predict, ways if
they do not.

In principle, the definitions of the unit and bind functions may
use reification and reflection for previously defined effects. In prac-
tice, it seems that this generality is rarely useful, and it might be
reasonable to require Nu and Nb to be typable in an empty effect-
signature.

Effects with subeffecting evidently form a tree, with at the
root. This is more general than what was considered for layered
monadic reflection in earlier work [4], where effects were required
to be linearly ordered, but we expect the continuation/state-based
implementation methodology to generalize relatively straightfor-
wardly to this more general setting.

3. Operational semantics
We now consider how to assign an executable semantics to pro-

grams in the language. Like for typing, we start with the straight-
forward constructs in the base language.

3.1 Generic fragment
The semantics is expressed in conventional small-step style, and is
shown in Figure 4. The effect-free fragment is inspired by Levy’s
Call-By-Push-Value formalism [10], though without a syntactic
distinction between values and computations; instead, whether
computations are performed or treated as data depends on where
they occur. The judgment for term reduction, `Φ N → N ′, spec-
ifies when a closed term reduces to another; it is parameterized
by an effect-definition environment Φ, which keeps track of the
unit/bind functions of all defined effects, and will only come into
play in the next section.

The unshaded rules fall into two classes. The RC-rules enu-
merate the contexts in which reductions are permitted, while RR-
axioms represent proper reductions. Note that computations elimi-
nating value-type terms involve only proper reductions. This is be-
cause a closed term of type τ1 × τ2 must necessarily already be
a syntactic pair (M1, M2); a sum-typed term must be an inji M ;
and a µ-typed one must be of the shape roll M , so there are no
context-reduction variants of split, case, or unroll.

For the computation types, the context rules specify CBN eval-
uation in the case where a function argument is of a computa-
tion type (and hence potentially effectful). CBV evaluation can be
forced either at the call site, writing glet x ⇐ N2. N1 (val x)
instead of N1 N2; or as part of the function definition, e.g.,
λt.glet x ⇐ t. · · ·. If the function’s domain type is a proper value
type, the argument will already have been evaluated by the time the
function is called.

We note that the semantics specifies a PCF-style CBN variant:
there is no way to force evaluation of a function-typed term, without
actually applying the function. In particular, for Ω = fix x.x, there
is no observable difference between Ω : τ → σ and λx.Ω : τ → σ:
both are functions that diverge when applied to anything.

The rule RR-GLET-VAL handles the case where the first part
of a sequential composition has no effects. Note that no unit/bind
functions are involved here: defining a potential effect does not
impose any overhead on the parts of the program that happen not to
use it, even if their type allows them to; for example, a successfully
returning function of declared type nat → 〈ex〉bool goes through
exactly the same steps as one of type nat→ 〈 〉bool.

3.2 Monadic reflection
Consider now the rules involving reflection and reification, exem-
plified by the particular case of exceptions. Note first that the inte-
rior of a reification is also a reduction context (rule RC-REIF): to
reduce a term [N]ex of type 〈 〉(bool + nat), we reduce its body
N : 〈ex〉bool, for as long as this is possible. N may reduce for-
ever, in which case so will [N]ex. Or N may eventually reduce to
val M , where M is either true or false), in which case RR-REIF-
VAL will return the transparent representation of a trivial computa-
tion, as specified by the Nu for exceptions, i.e., val inj1 M .

The rule RR-REIF-GLET-REFL covers the case when the body
of a reification is a glet whose binder is a reflection. In this case,
N1 is a transparent representation of the ε-computation that is just
about to happen, and thus we can directly use the bind function of
the monad to sequence N1 before the still-to-be-reified N2. Note
that, in a well-typed program, the body N2 will be exactly of type
〈e〉τ ′, rather than a general e-computation, thus requiring only a
non-generalized bind function.

The role of RP-GLET is to propagate an active reflection to meet
a matching reflection. It does so by using the general flattening rule
for monadic glets,

glet y ⇐ (glet x ⇐ N1. N2). N3

→ glet x ⇐ N1.glet y ⇐ N2. N3

to rotate a reflect in position N1 to the head of the term. While this
reduction is meaning-preserving even when N1 is not a reflection,
using it only when truly needed, keeps the reduction relation deter-
ministic.

The three other RP-rules propagate reflections out of the other
kinds of evaluation contexts: RP-APP and RP-PRJ do so from
applications and projections respectively. (Again, in a denotational
semantics of the metalanguage [5], these are valid equivalences
even with an arbitrary term in place of µε(N1), essentially because
application and projections are morphisms of the monad algebras
interpreting the computation types in question.)

Finally, RP-REIF propagates ε-reflections destined for some
matching reification out of a reification-context for a proper super-
effect ε′. For example, assuming ex = α.〈st〉(α+nat) where st is a
state-effect, if a st-reflect (essentially a read/write-request; see Sec-
tion 4.2) meets an ex-reification (typically an exception handler),
the reflect should propagate through the reification, but remember
it when resuming the computation with the result of the reflection.

The condition `Φ ε < ε′ in the RP-REIFY rule is a bit subtle.
Note first that it uses a separate operational judgment to check at
runtime that ε is a proper ancestor of ε′ in the effect tree. But in a
well-typed program, the typing rules actually ensure that `Σ ε ≤
ε′, so it would in principle suffice to merely check that ε 6= ε′,
to prevent an overlap with RR-REIF-GLET-REFL. (Such a check
for inequality would allow us to omit the immediate-subeffect
assumptions in Φ entirely.) The only role of the stronger condition
is thus to make some terms get stuck, that would otherwise have
kept on reducing, at least for a while.

We keep the explicit check to emphasize that, in the absence of
static type checking (or checking with only an effect-oblivious type
system), encountering an reflection from a part of the effect tree not
below the reification-effect is considered a runtime type error that
should be caught and reported, even if the computation is not stuck
hard at this stage. (We will return to this issue in Section 4.3.)

The reduction rules for programs are straightforward: The rule
PRC-LETEFF merely makes the monad definition available to its
body by extending Φ, while PRR-LETEFF-VAL says that, once a
program body has terminated, the effect declaration around it can
be removed.

Effect definitions

Φ ::= · | Φ, ε = (Nu, Nb), e≺ ε

Effect layering `Φ e < ε , `Φ e ≤ e′

`Φ e ≤ e′ (e′ ≺ ε) ∈ Φ
`Φ e < ε

(RLT-DECL) `Φ e ≤ e
(RLE-EQ) `Φ e < ε

`Φ e ≤ ε
(RLE-LESS)

Term reduction `Φ N → N ′

`Φ N1 → N ′
1

`Φ glet x ⇐ N1. N2 → glet x ⇐ N ′
1. N2

(RC-GLET) `Φ glet x ⇐ val M. N → N [M/x]
(RR-GLET-VAL)

`Φ glet y ⇐ (glet x ⇐ µε(N1). N2). N3 → glet x ⇐ µε(N1).glet y ⇐ N2. N3
(RP-GLET)

`Φ N → N ′

`Φ N M → N ′ M
(RC-APP) `Φ (λx.N) M → N [M/x]

(RR-APP-LAM)

`Φ (glet x ⇐ µε(N1). N2) M → glet x ⇐ µε(N1). N2 M
(RP-APP)

`Φ N → N ′

`Φ prji N → prji N ′ (RC-PRJ) `Φ prji 〈N1, N2〉 → Ni
(RR-PRJ-PAIR)

`Φ prji (glet x ⇐ µε(N1). N2) → glet x ⇐ µε(N1).prji N2
(RP-PRJ)

`Φ N → N ′

`Φ [N]
ε → [N ′

]
ε (RC-REIF)

(ε = (Nu, Nb)) ∈ Φ
`Φ [val M]

ε → Nu M
(RR-REIF-VAL)

(ε = (Nu, Nb)) ∈ Φ
`Φ [glet x ⇐ µε(N1). N2]

ε → Nb N1 (λx.[N2]
ε)

(RR-REIF-GLET-REFL)

`Φ ε < ε′

`Φ [glet x ⇐ µε(N1). N2]
ε′
→ glet x ⇐ µε(N1). [N2]

ε′ (RP-REIF)

`Φ split((M1, M2), x1.x2.N) → N [M1/x1, M2/x2]
(RR-SPLIT-PAIR) `Φ case(inji M, x1.N1, x2.N2) → Ni[M/xi]

(RR-CASE-INJ)

`Φ unroll (roll M, x.N) → N [M/x]
(RR-UNROLL-ROLL) `Φ fix x.N → N [(fix x.N)/x]

(RR-FIX)

Program reduction `Φ P → P ′

`Φ N → N ′

`Φ run N → run N ′ (PRC-RUN)

`Φ,ε=(Nu,Nb),e≺ε P → P ′

`Φ leteffect ε � e be (α.σε, Nu, Nb) in P → leteffect ε � e be (α.σε, Nu, Nb) in P ′ (PRC-LETEFF)

`Φ leteffect ε � e be (α.σε, Nu, Nb) in run val M → run val M
(PRR-LETEFF-VAL)

Figure 4. Reduction rules (explicit formulation)

3.3 Properties of the reduction system
We can show a number of desirable results of the reduction system.
All of these have been fully formalized and verified using the
Twelf proof assistant [16]. (The formalization is available from
http://www.diku.dk/~andrzej/papers/.)

DEFINITION 3.1. A closed, computation-typed term is said to be
canonical if it is of one of the forms val M , λx.N , 〈〉, 〈N1, N2〉,
or glet x ⇐ µε(N1). N2. A complete program is finished when of
the form run val M .

THEOREM 3.2 (Determinacy). Term and programs reduce uniquely:

1. If `Φ N → N ′ and `Φ N → N ′′ then N ′ = N ′′

2. If `Φ P → P ′ and `Φ P → P ′′ then P ′ = P ′′

Proof. Straightforward induction on derivations, using that canon-
ical terms as defined above are irreducible, and that strict subeffect-
ing `Φ e < e′ is irreflexive (thus preventing an overlap between
RR-REIF-GLET-REFL and RP-REIF).

We can also show soundness of the type system, using the
well-established method of progress and preservation lemmas [17,
21]. We first define the judgment ` Φ : Σ , expressing that a
set of monad definitions in the operational semantics matches the
corresponding declarations in the type system:

` · : · (DT-EMPTY)

` Φ : Σ `Σ Nu : α1 → σε[α1/α] `Σ Nb : · · ·
` (Φ, ε = (Nu, Nb), e≺ ε) : (Σ, ε∼ α.σε, e≺ ε)

(DT-EFF)

A closed term (or program) is said to be stuck if it is not
canonical (or finished), but cannot be further reduced by any rule.
The progress theorem says that well-typed terms and programs are
never stuck:

THEOREM 3.3 (Progress). Suppose ` Φ : Σ. Then

1. If · `Σ N : σ, then either N is canonical or there exists an N ′

such that `Φ N → N ′.
2. If `Σ P , then either P is finished or there exists a P ′ such that
`Φ P → P ′.

Proof. Part 1 follows by induction on the typing derivation.
The reasoning is somewhat complicated by subtyping: we need
canonical-forms lemmas to the effect that, even in the presence
of subtyping, an irreducible term of functional type is indeed a
lambda-abstraction, etc. Otherwise, the proof is uneventful. We
note that the typing rule TC-GLET-REFL ensures that one of the
reduction rules RR-REIF-GLET-REFL or RP-REIFY will apply.

Part 2 follows from part 1 by a simple induction on the deriva-
tion of `Σ P .

We can also show that typability is preserved by reduction:

THEOREM 3.4 (Preservation). Suppose ` Φ : Σ. Then

1. If · `Σ N : σ and `Φ N → N ′ then · `Σ N ′ : σ
2. If `Σ P and `Φ P → P ′ then `Σ P ′.

(The theorem also holds for the system without subtyping, i.e., if the
typing of N does not need T-SUB, then neither does N ′.)

Proof. Part 1 is by induction on the derivation of the reduction rela-
tion, with an inner induction on the typing relation. (The other way
around is also possible, and involves exactly the same arguments in
a different order.) Again most cases are straightforward; the only
complications arise from subtyping: for each canonical-form typ-
ing rule (TC-LAM, TC-VAL, etc.), we need an inversion lemma to
the effect that if the conclusion of the rule is derivable (possibly
using subsumption), then so are the premises.

For program-typing preservation we note that PR-LETEFF-VAL
preserves typability, because an M of type nat cannot contain any
occurrences of the effect ε.

Preservation and progress together give us:

COROLLARY 3.5 (Type soundness). Any well-typed complete pro-
gram either runs forever, or eventually reduces to a (unique) num-
ber.

3.4 A context formulation
The reduction system in Figure 4 is convenient for formal reason-
ing, but often does not quite reflect the operational intuition behind
the effects. We thus introduce an alternative presentation, which by
collapsing certain sequences of reduction steps, captures the con-
nection between syntactically distant effect-invoking and effect-
delimiting operations in a single rule.

The reformulated system is shown in Figure 5. The main change
is that we have introduced an explicit syntactic class of evaluation
contexts E (using curly braces for holes and filling, purely to avoid
yet another overloading of square brackets); this allows us to merge
all the individual RR-X and RP-X rules into a few more general
ones. Note also that the central new reduction rule CR-REIF-CTX-
REFL is formulated only in terms of the isolated-reflection operator
from Section 2.3.2.

As suggested by the notation, each reduction by→→ corresponds
to one or more reduction steps in the original system:

LEMMA 3.6. If `Φ N →→ N ′ then `Φ N +→ N ′

Proof. For all of the CR-X rules without premises, we use the
analogous RR-X rule in the original formulation. The new CR-
REIF-VAL also corresponds to RR-REIF-VAL, and the general con-
text rule CR-CTX corresponds to nested uses of the RC-X rules
according to the structure of E.

For CR-REIF-CTX-REFL, we use a straightforward induction
on the derivation of `Φ ε < E to show first that

`Φ E{µ̂ε(N)} ∗→ glet x ⇐ µε(N). E{val x}
(In the base case, where E = {}, the two sides are already equal
by definition.) From this, the result follows immediately using the
RC-REIF and RR-REIF-GLET-REFL rules.

4. Examples
In this section we consider a number of familiar examples of
monadic effects, to see how they fit into the framework.

4.1 Exceptions
Let us return to the exception example from the Introduction, now
in a more formal setting. Let exn be some arbitrarily defined type
of exception names (e.g., simply exn = nat). We then construct
metalanguage definitions for the syntactic monad components:

Tex(e, τ) ≡ 〈e〉(τ + exn)

unitex ≡ λa.val inj1 a

bindex ≡ λt.λf.glet s ⇐ t. case(s, a.f a, x.val inj2 x)

Note that this is really defining a monad transformer, not just a
single monad, because the base effect e can be chosen arbitrarily.
Fixing this base effect to some e0, possibly just , we can then
introduce the effect ex as follows:

leteffect ex � e0 be (α.Tex(e0, α), unitex, bindex) in . . .

The effect definition sets up the infrastructure for working with
exceptions. The next step is to define the effect operations them-
selves:

raise M ≡ µ̂ex(val inj2 M)

try N1 with N2 ≡ glet s ⇐ [N1]
ex. case(s, a.val a, x.N2 x)

(The M in raise is a value, not a computation; to determine the
exception name itself as the result of a computation, we would write
glet n ⇐ N. raise n.)

Again, raise constructs the monadic representation of a raised
exception as the trivial computation of a right-tagged exception
name, and reflects it. Conversely, try reifies the opaque representa-
tion of the protected expression, evaluates it (thus performing any
e0-effects it might have), and inspects the result: if it is left-tagged,
the value is just returned, and N2 is ignored; otherwise, we apply
the handler function N2 to the exception name.

For these abbreviations, the system of Figure 2 lets us derive the
following sound typing rules:

Γ `Σ M : exn

Γ `Σ raise M : 〈ex〉τ

Γ `Σ N1 : 〈ex〉τ Γ `Σ N2 : exn→ 〈e〉τ `Σ e0 ≤ e

Γ `Σ try N1 with N2 : 〈e〉τ
The underlying value type τ of the protected expression and the
handler must be the same (possibly achieved through subsump-
tion), but they may have different effects. In particular, if the han-
dler only has e0-effects, so will the whole try-expression.

Looking at the dynamic semantics, we see that try {} with N2

is an evaluation context, so we have the derived rule:

`Φ N1 → N ′
1--`Φ try N1 with N2 → try N ′

1 with N2

Evaluation contexts

E ::= {} | glet x ⇐ E. N | E M | prji E | [E]ε

e-evaluation contexts `Φ e < E

`Φ e < {} (E-HOLE)
`Φ e < E

`Φ e < glet x ⇐ E. N
(E-GLET)

`Φ e < E

`Φ e < E M
(E-APP)

`Φ e < E

`Φ e < prji E
(E-PRJ) `Φ e < E `Φ e < ε

`Φ e < [E]
ε (E-REIF)

Contextual reduction `Φ N →→ N ′

`Φ glet x ⇐ val M. N →→ N [M/x]
(CR-GLET-VAL) `Φ (λx.N) M →→ N [M/x]

(CR-APP-LAM)

`Φ prji 〈N1, N2〉 →→ Ni
(CR-PRJ-PAIR) `Φ split((M1, M2), x1.x2.N) →→ N [M1/x1, M2/x2]

(CR-SPLIT-PAIR)

`Φ case(inji M, x1.N1, x2.N2) →→ Ni[M/xi]
(CR-CASE-INJ) `Φ unroll (roll M, x.N) →→ N [M/x]

(CR-UNROLL-ROLL)

`Φ fix x.N →→ N [(fix x.N)/x]
(CR-FIX)

(ε = (Nu, Nb)) ∈ Φ
`Φ [val M]

ε →→ Nu M
(CR-REIF-VAL)

(ε = (Nu, Nb)) ∈ Φ `Φ ε < E
`Φ [E{µ̂ε(N)}]ε →→ Nb N (λx.[E{val x}]ε)

(CR-REIF-CTX-REFL)

`Φ N →→ N ′

`Φ E{N} →→ E{N ′}
(CR-CTX)

Figure 5. Reduction rules (context formulation)

Further,

try val M with N2

= glet s ⇐ [val M]ex. case(s, a.val a, x.N2 x)
→ glet s ⇐ unitex M. case(s, a.val a, x.N2 x)
→ glet s ⇐ val inj1 M. case(s, a.val a, x.N2 x)
→ case(inj1 M, a.val a, x.N2 x)
→ val M

That is, we have a derived rule:

--
`Φ try val M with N2

+→ val M

Now, suppose `Φ ex < E, so that in particular E does not itself
include an inner try as part of the evaluation context. Then,

try E{raise M} with N2

= glet s ⇐ [E{µ̂ex(val inj2 M)}]ex.
case(s, a.val a, x.N2 x)

→→ glet s ⇐ bindex (val inj2 M) (λr.[E{val r}]ex).
case(s, a.val a, x.N2 x)

2→ glet s ⇐ (glet s ⇐ val inj2 M.
case(s, a.(λr.[E{val r}]ex) a, x.val inj2 x)).

case(s, a.val a, x.N2 x)
→ glet s ⇐ case(inj2 M, a.(λr.[E{val r}]ex) a, x.val inj2 x).

case(s, a.val a, x.N2 x)
→ glet s ⇐ val inj2 M. case(s, a.val a, x.N2 x)
→ case(inj2 M, a.val a, x.N2 x)
→ N2 M

Here E represents the local evaluation context of the raise. Note
that it gets discarded already by the bind that occurs as part of
the semantics of reification, not by the definition of try. Indeed,
with the chosen definition of the monad, there is no way to express
an exception-handling construct that can access the local context
of the raise (for example to resume it). This is exactly what we
would expect from the realization type: if the reified meaning of
a computation is just a right-tagged exception name, there is no

context available to be inspected or resumed. In summary,

`Φ ex < E

`Φ try E{raise M} with N2

+→ N2 M

Note that raise M only reduces meaningfully in the context of a
try. And in fact the typing rules enforce this: the top-level effect
must be , so in a well-typed program, there can be no unguarded
exception-computations.

Although we do not typically expose the general reflect and
reify operations for exceptions directly to the programmer, it is
instructive to consider one particular instance: what if we apply
µ̂ex(·) to the transparent representation of an effect-free computa-
tion returning M , i.e., val inj1 M? We calculate:

[E{µ̂ex(val inj1 M)}]ex

→→ bindex (val inj1 M) (λx.[E{val x}]ex)
2→ glet s ⇐ val inj1 M.

case(s, a.(λx.[E{val x}]ex) a, e.val inj2 e)
→ case(inj1 M, a.(λx.[E{val x}]ex) a, e.val inj2 e)
2→ [E{val M}]ex

That is, in any evaluation context anchored by [·]ex, an occurrence
of µ̂ex(unitex M) behaves same as just val M . This is no accident,
of course; it follows from the fact that the exception monad sat-
isfies the monad laws (specifically, bind (unit M)N = N M . In
other words, though the operational semantics is well defined for
“effects” determined by any pair of terms Nu and Nb of the right
types, we must require them to satisfy the monad laws as at least
observational equivalences, if we want an agreement between the
translational and the operational views of the effect.

4.2 State
In the exception monad, the local context at the point of reflection
played no role. For most monadic effects, though, that context is
meant to be resumed with the result of the effectful operation. The
prime example of such an effect is state.

Consider the components of the state monad: Let state be some
type and take

Tst(e, τ) ≡ state→ 〈e〉(τ × state)

unitst ≡ λa.λs.val (a, s)

bindst ≡ λt.λf.λs.glet (a, s′) ⇐ t s. f a s′

We write glet (x, y) ⇐ N. N ′ as a straightforward abbrevia-
tion for glet p ⇐ N. split(p, x.y.N ′), where p 6∈ FV (N ′).

Again, we introduce the effect,

leteffect st � e0 be (α.Tst(e0, α), unitst, bindst) in ...

with companion abbreviations:

withst M do N ≡ glet (a, s) ⇐ [N]st M.val a

getst ≡ µ̂st(λs.val (s, s))

setst M ≡ µ̂st(λs.val ((), M)) (s 6∈FV (M))

We derive the following type rules for the constructs:

Γ `Σ M : state Γ `Σ N : 〈st〉τ
--

withst M do N : 〈e0〉τ

Γ `Σ getst : 〈st〉state

Γ `Σ M : state

Γ `Σ setst M : 〈st〉1

Operationally, we see that withst M do {} is an evaluation context,
so we obtain the following derived reduction rule:

`Φ N → N ′
--`Φ withst M do N → withst M do N ′

We also have,

withst M1 do val M2

= glet (a, s) ⇐ [val M2]
st M1.val a

→ glet (a, s) ⇐ unitst (val M2) M1.val a
2→ glet (a, s) ⇐ val (M2, M1).val a
2→ val M2

which we summarize as:

`Φ withst M1 do val M2

+→ val M2

Consider now what happens when getst occurs dynamically
within a withst. Again, let `Φ st < E, so that E does not contain
an inner withst; then,

withst M do E{getst}
= glet (a, s) ⇐ [E{µ̂st(λs.val (s, s))}]st M.val a
→→ glet (a, s) ⇐ bindst (λs.val (s, s)) (λx.[E{val x}]st) M.

val a
3→ glet (a, s) ⇐ (glet (a, s′) ⇐ (λs.val (s, s)) M.

(λx.[E{val x}]st) a s′).
val a

→ glet (a, s) ⇐ (glet (a, s′) ⇐ val (M, M).
(λx.[E{val x}]st) a s′).

val a
2→ glet (a, s) ⇐ (λx.[E{val x}]st) M M.val a
→ glet (a, s) ⇐ [E{val M}]st M.val a
= withst M do E{val M}

That is, the call to getst gets replaced by the value representing the
current state, but the evaluation context remains unchanged.

Completely analogously, for setst we calculate:

withst M do E{setst M ′}
= glet (a, s) ⇐ [E{µ̂st(λs.val ((), M ′))}]st M.val a
→→ glet (a, s) ⇐ bindst (λs.val ((), M ′)) (λx.[E{val x}]st) M.

val a
3→ glet (a, s) ⇐ (glet (a, s′) ⇐ (λs.val ((), M ′)) M.

(λx.[E{val x}]st) a s′).
val a

→ glet (a, s) ⇐ (glet (a, s′) ⇐ val ((), M ′).
(λx.[E{val x}]st) a s′).

val a
2→ glet (a, s) ⇐ (λx.[E{val x}]st) () M ′.val a
→ glet (a, s) ⇐ [E{val ()}]st M ′.val a
= withst M ′ do E{val ()}

Here, the call to setst M ′ gets replaced by simply val (), but the
surrounding context gets modified to now report the state as M ′

for any future calls to getst, very much like in a specialized theory
for state [3]. Summarizing, we can complete our derived reduction
rules with

`Φ st < E

`Φ withst M do E{getst} +→ withst M do E{val M}

`Φ st < E
--
`Φ withst M do E{setst M ′} +→ withst M ′ do E{val ()}

4.3 Exceptions and state
If we want to write programs with both exceptions and state, we can
simply use the above two effect-definitions together; in particular,
the derived reduction rules remain valid. We must still make a
choice, however, about how to order the effects.

We specify an ML-like semantics, with state persisting across
raised exceptions, as follows:

leteffect st � be (α.Tst(, α), unitst, bindst) in
leteffect ex � st be (α.Tex(st, α), unitex, bindex) in . . .

In this ordering, the program will typically contain a single, out-
ermost withst, representing the global state, and serving as an an-
chor for all st-reflections. Such reflections propagate freely through
try-terms (ex-reifications), as we would expect. However, in a type-
correct program, any raised exceptions must be caught before they
can reach the withst, if only by a catch-all handler that reports a
top-level uncaught exception. Expanding the effect definitions, we
see that the constructor associated with exceptions-and-state com-
putations is given by Tα = state→ 〈 〉((α + exn)× state).

Had we instead introduced the effects in the opposite order,
with st layered above ex, we would get a “transactional” semantics,
where the current state is lost when an exception is signaled. That
is, the combined type constructor modeling computations would
become Tα = state → 〈 〉((α × state) + exn). In this variant,
raised exceptions can freely propagate out of withst, but the se-
mantics no longer prescribes a behavior for when a state access
occurs directly within a try.

It may be tempting to relax the condition ε < ε′ in RP-REIF
to ε 6= ε′, allowing all reflections to commute with other reifica-
tions. This often happens to give a sensible operational behavior.
However, the price we pay for such an “anarchic” combination of
individually specified monadic effects is that we can no longer ex-
plain the combination of exceptions and state translationally using
either of the two above versions of T, and so we lose the equiv-
alence principle between opaque and transparent representations,
making sound reasoning about the system significantly harder (cf.
[13]).

4.4 Continuations
As a final example, let us consider first-class continuations. Let ans
be a suitable type of final answers. The monad components can
then be taken as

Tct(e, α) ≡ (α→ 〈e〉ans)→ 〈e〉ans

unitct ≡ λa.λk.k a

bindct ≡ λt.λf.λk.t (λa.f a k)

For any base effect e0, we then introduce the effect of ans-
continuations with e0-effects:

leteffect ct � e0 be (α.Tct(e0, α), unitct, bindct) in ...

In the scope of this declaration, we can introduce abbreviations

cont(τ) ≡ τ → 〈e0〉ans

#N ≡ [N]ct (λr.val r)

letcc k.N ≡ µ̂ct(λk.[N]ct k)

throw M to K ≡ µ̂ct(λk′.K M) (k′ 6∈FV (K)∪FV (M))

Note that, erasing the reify/reflect operations, the above is exactly
how we could define prompts, letcc, and throw in a continuation-
passing translation. Their derivable typing rules are:

Γ `Σ N : 〈ct〉ans

Γ `Σ #N : 〈e0〉ans

Γ, k: cont(τ) `Σ N : 〈ct〉τ

Γ `Σ letcc k.N : 〈ct〉τ
Γ `Σ K : cont(τ) Γ `Σ M : τ

Γ `Σ throw M to K : 〈ct〉τ ′

We immediately see that body of a prompt is an evaluation
context, and easily derive the usual cleanup rule:

`Φ #val M +→ val M

We also have:
#E{throw M to K}

= [E{µ̂ct(λk′.K M)}]ct (λr.val r)

→→ bindct (λk.K M) (λx.[E{val x}]ct) (λr.val r)
3→ (λk′.K M) (λa.(λx.[E{val x}]ct) a (λr.val r))
→ K M

That is, a throw replaces the entire current evaluation context
(including the anchoring prompt) with the one obtained from K.

Conversely, for letcc we get:

#E{letcc k.N}
= [E{µ̂ct(λk.[N]ct k)}]ct (λr.val r)

→→ bindct (λk.[N]ct k) (λx.[E{val x}]ct) (λr.val r)
3→ (λk′.[N]ct k) (λa.(λx.[E{val x}]ct) a (λr.val r))
∼→ (λk.[N]ct k) (λa.[E{val a}]ct (λr.val r))

= (λk.[N]ct k) (λa.#E{val a})
→ [N [(λa.#E{val a})/k]]ct (λa.#E{val a})

In the transition marked with a ∼, we have cheated slightly, by
eagerly contracting a trivial beta-redex, which in reality would only
happen once the continuation was actually applied. Even so, the
reduced term is evidently no longer in the fragment spanned by our
specialized continuation primitives, because it uses reification with
a non-empty continuation. We can certainly continue reducing it
further using the general rules for µ̂ct() and []ct, so the semantics
remains correct. However, in this particular case, we could instead
have defined the abbreviation letcc slightly more verbosely:

letcc k.N ≡ µ̂ct(λk.[glet x ⇐ N. k x]ct (λr.val r)) (x6=k)

This is denotationally equivalent to the original one (in the
sense that their monadic translations are βη-equivalent in the base
language), but has a shape that is closed under reduction. We get

#E{letcc k.N} +→

#glet x ⇐ N [((λx.#E{val x}))/k]. #E{val x}

Incidentally, using another denotationally valid equation,

#glet x ⇐ N ′. #E{val x} = #E{N ′}
the result of the reduction is equivalent to

#E{N [(λx.#E{val x})/k]}
which one would probably have written as the intended reduct of
#E{letcc k.N}, if defining the operational semantics directly.

5. Related work
The metalanguage used to host the monadic reflection operators
was first introduced in a purely denotational setting for relating
monadic semantics [5], although its roots go back to at least [4].
The single-effect fragment is very close to Levy’s Call-By-Push-
Value metalanguage [10], at least with respect to the operational
and denotational semantics (the syntaxes are less similar). How-
ever, CBPV primarily uses the notion of computation types to faith-
fully encode PCF- or Algol-like call-by-name semantics, whereas
our focus is on incremental definition of effects. In particular, the
syntax and semantics of CBPV include nothing like the generic
monadic reflection operators; instead, the semantics of a language
with any fixed notion of effects is defined in terms of a customized
reduction relation, with specialized rules for the effect-operations.

There has been a fair amount of work on generic operational
semantics for effects and related constructs. Some, like ours, is
based on assigning operational interpretations to denotational or
categorical constructions. In particular, there is long line of research
by Plotkin and Power (e.g., [18]) on relating the operational and
categorical formulations of so-called algebraic effect operations –
roughly, the reflect-like ones in our terminology. This work has re-
cently been extended to also account for some effect-delimiting op-
erations – i.e., reify-like ones – such as exception handlers [19], but
it does not yet cover the full range of monadic effects familiar from
functional programming. On the other hand, it seems well suited
for modeling several important effects that are not even conceptu-
ally definable within the language, such as true nondeterminism, as
interpreted using a powerdomain.

Other investigations start directly with an operational view, and
propose systems apparently general enough to model most effects
of common interest. This includes in particular Mosses’s Modular
SOS [14], based on labelled transition systems. Another interest-
ing approach is Pfenning’s destination-passing style [15]. Both give
several examples of how common effects can be represented, but it
seems hard to delimit the exact spectrum of computations express-
ible in those frameworks, or to relate the encodings to the otherwise
very successful denotational/monadic models of the same effects.

There is also a successful tradition of modeling a variety of
computational effects in primarily functional languages, in terms
of evaluation-context manipulation [3], either by custom reduction
rules for particular effect-operations, or by exposing the context-
manipulating power to the programmer through sufficiently pow-
erful general control operators (e.g., [8, 9]). For several individual
effects, the resulting operational rules end up quite similar to our
monad-based ones, but a significant conceptual difference is that
our model is ultimately based on a hierarchical composition of ef-
fects, whereas most continuation-based ones take a more liberal,
“flat” approach, imposing no particular ordering on the components
being combined, as outlined in Section 4.3.

A particularly intriguing example of such a flat composition of
effects is the early work by Cartwright and Felleisen on extensi-
ble denotational semantics [1]. Though the pattern of splitting the
semantics of effect-like language features into “handlers” and “re-
quests” is very similar to ours, their presentation is ultimately about
a domain-theoretic presentation of an operational idea – whereas
we give an operational account of language constructs originally
motivated by a denotational/categorical semantics.

While notions of effects based directly on continuations or eval-
uation contexts are evidently at least as expressive as the one
proposed here (indeed, the representation of layered monads in
terms of delimited continuations [4] uses a particularly restricted
continuation-manipulating operator), this expressivity comes at a
price: there is in general no simple way of characterizing the extent
to which a term does not exploit the full power of context manip-
ulation, and therefore can be reasoned about in ways that are un-
sound for terms with unrestricted effects. We propose the monadic-
reflection abstraction as precisely such a characterization.

6. Conclusions and future work
Though monadic effects are usually thought of in denotational
terms, and in an inherently typed, Church-style setting, our results
show that, somewhat surprisingly, they can also be given a purely
Curry-style semantics. That is, the generic operations for invoking
and delimiting effects have an intrinsic operational meaning, given
by an simple, effect-independent notion of reduction, and defined
by a small, fixed collection of rules. Yet, in concrete examples,
these fixed rules closely agree with how one would define the effect
“by hand”. It is hoped that the results, and natural extensions of
them, can be used to strengthen the interplay of operational and
denotational techniques for reasoning about programs with effects.

The framework presented here allows us to understand a
monadic effect in two complementary ways: either we fix the mean-
ings of the effectful operations to be their monad-based definitions,
and translate the program around them to fit those meanings; or
we fix the semantics of programs, and transform the monad-based
definitions of the operations into specialized operational rules that
can be merged directly into the fixed evaluation judgment. Work
certainly remains to be done in formally relating the two views, but
already the results and examples presented here should illustrate
the viability and utility of the basic principle.

Further topics to explore include practical effect-type inference
for the system, as well as extensions with various notions of poly-
morphism. In particular, one might consider finer notions of subef-
fecting, such as letting the exception monad be parametrized by
an explicit set of exception names, to keep precise track of which
exceptions are raised or handled where. Another useful addition
would be a notion of typed dynamic allocation as a primitive base
effect, to allow sound modeling of dynamically created ref-cells of
arbitrary types. The operational semantics, being type-free, should
not need any significant changes or extensions, but the transla-
tional/denotational account would need a refinement to possible-
world or functor-category semantics.

Finally, it is a little disconcerting that, though the operational
semantics itself is reduction-based, its ultimate justification is still
denotational, in that the monad laws (and their extensions to monad
morphisms, algebras, etc.) all talk about equality, not reduction.
This dependence may not be easy to eliminate: for more interesting
monads, involving type-level recursion (such as streams or search
trees), the easiest way to prove the monad laws is apparently by
domain-theoretic methods, such as rigid induction [6], which ulti-
mately reduce to reasoning about minimal invariants. Ultimately,
however, such principles could probably also be ported to an oper-
ational setting [2], making the whole treatment self-contained.

References
[1] Robert Cartwright and Matthias Felleisen. Extensible denotational

language specifications. In Masami Hagiya and John C. Mitchell,
editors, Symposium on Theoretical Aspects of Computer Software,
volume 789 of Lecture Notes in Computer Science, pages 244–272,
Sendai, Japan, April 1994.

[2] Karl Crary and Robert Harper. Syntactic logical relations for polymor-
phic and recursive types. Electronic Notes in Theoretical Computer
Science, 172, 2007.

[3] Matthias Felleisen and Robert Hieb. The revised report on the syn-
tactic theories of sequential control and state. Theoretical Computer
Science, 103(2):235–271, September 1992.

[4] Andrzej Filinski. Representing layered monads. In Proceedings of the
26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 175–188, San Antonio, Texas, January 1999.

[5] Andrzej Filinski. On the relations between monadic semantics. Theo-
retical Computer Science, 375(1-3):41–75, 2007.

[6] Andrzej Filinski and Kristian Støvring. Inductive reasoning about ef-
fectful data types. In ICFP’07: Proceedings of the 2007 ACM SIG-
PLAN International Conference on Functional Programming, pages
97–110. ACM Press, October 2007.

[7] Marcelo Fiore and Gordon D. Plotkin. An axiomatisation of compu-
tationally adequate domain theoretic models of FPC. In Proceedings
of the Ninth Symposium on Logic in Computer Science, pages 92–102,
Paris, France, 1994.

[8] Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of
exceptions and control in ML-like languages. In Functional Program-
ming and Computer Architecture, pages 12–23, 1995.

[9] Oleg Kiselyov, Chung chieh Shan, and Amr Sabry. Delimited dynamic
binding. In ICFP’06: Proceedings of the 11th International Confer-
ence on Functional Programming, pages 26–37, 2006.

[10] Paul Blain Levy. Call-by-push-value: Decomposing call-by-value and
call-by-name. Higher-Order and Symbolic Computation, 19(4):377–
414, 2006.

[11] Saunders Mac Lane. Categories for the Working Mathematician,
volume 5 of Graduate Texts in Mathematics. Springer-Verlag, 1971.

[12] Eugenio Moggi. Computational lambda-calculus and monads. In
Proceedings of the Fourth Annual Symposium on Logic in Computer
Science, pages 14–23, Pacific Grove, California, June 1989. IEEE.

[13] Luc Moreau. A syntactic theory of dynamic binding. Higher-Order
and Symbolic Computation, 11(3):233–279, 1998.

[14] Peter D. Mosses. Modular structural operational semantics. Journal
of Logic and Algebraic Programming, 60-61:195–228, 2004.

[15] Frank Pfenning. Substructural operational semantics and linear
destination-passing style (abstract). In Proceedings of the 2nd Asian
Symposium on Programming Languages and Systems (APLAS’04),
volume 3302 of Lecture Notes in Computer Science, page 196, 2004.

[16] Frank Pfenning and Carsten Schürmann. System description: Twelf –
a meta-logical framework for deductive systems. In 16th International
Conference on Automated Deduction, volume 1632 of Lecture Notes
in Computer Science, pages 202–206, 1999.

[17] Benjamin Pierce. Types and Programming Languages. MIT Press,
2002.

[18] Gordon D. Plotkin and John Power. Algebraic operations and generic
effects. Applied Categorical Structures, 11(1):69–94, 2003.

[19] Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic effects. In
18th European Symposium on Programming, volume 5502 of Lecture
Notes in Computer Science, pages 80–94, March 2009.

[20] Philip Wadler. Comprehending monads. In Proceedings of the 1990
ACM Conference on Lisp and Functional Programming, pages 61–78,
Nice, France, June 1990.

[21] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness. Information and Computation, 115(1):38–94, 1994.

