_OPENHAGEN Department of Campute

Faculty of Science

Monads in Action

Andrzej Filinski

Department of Computer Science (DIKU)
University of Copenhagen

Principles of Programming Languages
January 20-22, 2010, Madrid

UNIVERSITY OF COPENHAGEN Department of Computer Science

Background and overview

@ Two approaches to uniformly specifying computational effects:

@ Monad of computations + pure definitions of operators
o Translate client program using monad components, plug in
operator definitions, evaluate by core semantics
o Typically used in Haskell-like settings

@ Stylized evaluation contexts + context-rewriting operators
o Formalize context shapes, extend core semantics with new
rules for effectful operators
e Typically used in ML/Scheme-like settings

e Can we generically derive (2) from (1)
e ... without giving up the monadic equational theory?

@ In paper: details for full multimonadic metalanguage
e Here: for single effect only; expressed in Haskell subset
(slightly oversimplified)
o There is a complementary story for ML-like settings

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Monadic Haskell with /nt-exceptions

Core lang.
t == Int|ty — tp| Either t; to | Mc t
e = id|ex]|---
e = nlx|IAx—el|ee|Llefte \ Right e }Core Jang.
| case ey of {Left x — e1; Righty — e}

| return® e | do® x < e1; e, | raise e | try® e; with x — &

Typing judgment . Usual rules for core constructs +

[Fe:t Ne:M.tp IMyx:tikFe: Mot
[+ returnce: M.t NFdot x«—ej;e: M.t
NEe:Int MEer: Mt Mx:Intke: Mt
Fraise e: Mgt I trye e with x — e : M.t

Superscripts on return, do, try: from overloading resolution.

UNIVERSITY OF COPENHAGEN

Specifying exceptions with a monad

Transparent/concrete definition of exception monad:

type Tex a = Either a Int

UNitey i@ — Tex a

unitex a = Left a

bindex :: Texa— (a— Tex b) — Tex b

bindex t f = case t of {Lefta — f a; Right n — Right n}

Used to implement abstract effect of exceptions:

newtype M. a = Reflect. (T; a) Reflect, :: T.a— M, a

reifyc (Reflect. t) = t reify. = M.a— T.a
return® e = Reflect. (unit. €)
do® x «— eq; & = Reflect. (bind. (reify.- e1) (Ax — reify. €))

raise e = Reflectey (Right €) -- definitional abbrevs.
try® e; with x — e =
case reify e €1 of {Left a — return® a; Right x — e}

Department of Computer Science

UNIVERSITY OF COPENHAGEN Department of Computer Science

Standard (JIT-translational) operational semantics

e = (core) | return® e | do® x < ey; e | reify. e | Reflect. e
Reduction judgment for closed terms:
ep — €]
/
e1e — €] e (Ax — e1) & — er[ex/x]
e — €

case e of {---} — case g of {---}

case Left e of {Left x; — e1; Right xo — e} — e1[e/x] (+symm)

return® e — Reflect. (unit. €)

do® x — e;; & — Reflect. (bind, (reify. e1) (Ax — reifye €2))

e—¢€

reify. e — reify. e’ reify (Reflect.) — e

Note: tags on return®, do® play essential role in behavior.
5 Note: code for unit., bind. traversed on every return®, do®. o

UNIVERSITY OF COPENHAGEN

Equational theory

Department of Computer Science

If (T, unite, bind.) satisfy monad laws, get additional valid
reasoning principles for observational equivalence:

()\X — 6‘1) (S9)

AX — ex

do® x «— return® e;; &

do® x < e; return® x

do® y — (do® x — e1; &); €3
reify. (return® e)

reifye (do® x — e1; &)

reify. (Reflect. e)

Reflect. (reify. €)

Can we operationalize these equations in a different way?

el[ez/x]
e (x¢FV(e))

ezer/x]

do® x < e1;do® y «— ;€3 (xZFV(e3))

unite e
bind. (reify. e1) (Ax — reify. e3)
e

e

UNIVERSITY OF COPENHAGEN Department of Computer Science

New (effectful) operational semantics

e = (core) | return e | do x < ey; &2 | reify. e | do x < Reflect. e1; &2

reflect, e = do x < Reflect. e; return x

(Unmodified rules for core constructs)
e1 — €

do x —ej;e — do x—e]; &

do x — return eg; &2 — exfe1/x]

do y «— (do x « Reflect. e1; &2); €3)

— do x «— Reflect. e;;do y «— e; e3

e—¢€

reify. e — reify. e reify. (return e) — unit. e

()
)

reifye (do x < Reflect. e1; e2) — bind. e1 (Ax — reify. e

7 Marked rules: match up Reflect, with nearest enclosing reify.. ®

UNIVERSITY OF COPENHAGEN Department of Computer Science

Properties of reduction semantics
e Sound: if e — ¢, then e = €’ in equational theory.

o Deterministic: if e — ¢’ and e — €, then €’ = €”.

o Type-preserving: if --e:tand e — €, then - ¢’ : t.

o Progressing: if - - e : t, then either e canonical, or e — ¢’.
Canonical forms are:

Int t1—to Either t; t» Mct
A

—N - ~
n | Ax—e| Lefte| Righte | returne | do x < Reflect. e1; &2

Note: an M-computation is either finished, or an effect
invocation.

@ In particular, a closed term of type Int (but using monadic
effects internally) must reduce to an n, or diverge.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Evaluation-context formulation of new semantics

General and restricted evaluation contexts:

E = [||Eel|case Eof {---}|do x— E;e| reify. E
F = |[]|do x<F;e (in particular, no reify. F)
Bigger-step judgment :
e—»é

Ele] — E[¢] (A —ea)e — ale/X]

case Left e of {Left x; — e1; Right xo — e} — e1[e/x] (+symm)

do x — return e;; &2 —» ex[e1/x] reify. (return e) —» unit. e

reifye (F|reflect. €]) — bind. e (Ax — reify. (F[return x])))

Sound: if e —» €’ then e —7T €.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Example: exceptions

Texa = Either a Int; uniteca = Left a; bindeg, = + -+
raise e = reflectes (Right €)
try e with x — o =
case reify e €1 of {Left a — return a; Right x — ey}

Derivable typing and reduction rules:

NEe:Int [Fe: Met Mx:Intke: Mt
Fraise e : Mg t IFtry e with x — e : M.t
e1 — ¢

try e; with x — e — try e} with x — e

try return eg with x — e — return gy

o try Flraise] with x — e —7 ex[ep/x]

UNIVERSITY OF COPENHAGEN Department of Computer Science

11

Example: state

Tsea = Int— (a,Int); unitss a = As — (a, s); bindgy = - - -
withst e do e = let (a,5") = (reifyss &) €1 in a
getst = reflects (As — (s,s))
setst e = reflectst (As — ((), €))

Derived typing and reduction rules:

e :Int ThHe: Mgt N=e:Int
I withst e; do e : t I+ getst : M, Int It setst e : Mg ()
& — &
withst e; do e; — withst ¢; do &} withst ¢; do return e, —7 &

withst e do F[getst] —* withst e do F[return €]

withst e do F[setst /] —* withst ¢’ do F[return ()]

UNIVERSITY OF COPENHAGEN Department of Computer Science

Conclusions

@ Monadic definitions of effects can be given direct operational
interpretation; Curry-style type system.

@ Independent reconstruction of evaluation-context semantics.
o Related construction: taking implementation type M to be a
delimited-continuations monad =- embedding arbitrary
monadic effects in Scheme.

@ In paper:
o Full core language with product, sum, function, recursive, and
generalized-effect types; effect-subtyping.
o Explicit syntax for effect definitions with layering.
o Precise formulation of semantics (explicit and context-based),
type system, type soundness (all formalized in Twelf).

o Current work: correspondence between (domain-theoretic)
denotational and operational semantics for monadic effects.

1 ®

