
Normalization and Partial Evaluation

Peter Dybjer1 and Andrzej Filinski2,�

1 Department of Computing Science
Chalmers University of Technology, Göteborg, Sweden

peterd@cs.chalmers.se
2 Department of Computer Science
University of Copenhagen, Denmark

andrzej@diku.dk

Abstract. We give an introduction to normalization by evaluation and
type-directed partial evaluation. We first present normalization by eval-
uation for a combinatory version of Gödel System T. Then we show
normalization by evaluation for typed lambda calculus with β and η con-
version. Finally, we introduce the notion of binding time, and explain the
method of type-directed partial evaluation for a small PCF-style func-
tional programming language. We give algorithms for both call-by-name
and call-by-value versions of this language.

Table of Contents

1 Introduction . 138
2 Normalization by Evaluation for Combinators . 144

2.1 Combinatory System T . 144
2.2 Standard Semantics . 145
2.3 Normalization Algorithm . 146
2.4 Weak Normalization and Church-Rosser . 148
2.5 The Normalization Algorithm in Standard ML 149
2.6 Exercises . 152

3 Normalization by Evaluation for the λβη-Calculus 152
3.1 The Setting: Simply Typed Lambda Calculus 154
3.2 An Informal Normalization Function . 155
3.3 Formalizing Unique Name Generation . 157
3.4 Implementation . 159

4 Type-Directed Partial Evaluation for Call-by-Name 159
4.1 The Setting: A Domain-Theoretic Semantics of PCF 161
4.2 Binding-Time Separation and Static Normal Forms 163
4.3 A Residualizing Interpretation . 165
4.4 A Normalization Algorithm . 168

� Part of this work was carried out at BRICS (Basic Research in Computer Science,
www.brics.dk), funded by the Danish National Research Foundation.

G. Barthe et al. (Eds.): Applied Semantics, LNCS 2395, pp. 137–192, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

138 Peter Dybjer and Andrzej Filinski

5 TDPE for Call-by-Value and Computational Effects 171
5.1 A Call-by-Value Language Framework . 172
5.2 Binding Times and Static Normalization . 174
5.3 A Residualizing Interpretation for CBV . 176
5.4 A CBV Normalization Algorithm . 180
5.5 Complete Code for CBV Normalization . 183
5.6 Exercises . 183

6 Summary and Conclusions . 188

1 Introduction

Normalization. By “normalization” we mean the process known from proof the-
ory and lambda calculus of simplifying proofs or terms in logical systems. Nor-
malization is typically specified as a stepwise simplification process. Formally,
one introduces a relation red1 of step-wise reduction: E red1 E′ means that E
reduces to E′ in one step, where E and E′ are terms or proof trees.

A “normalization proof” is a proof that a term E can be step-wise reduced
to a normal form E′ where no further reductions are possible. One distinguishes
between “weak” normalization, where one only requires that there exists a reduc-
tion to normal form, and “strong” normalization where all reduction sequences
must terminate with a normal form.

Partial Evaluation. By “partial evaluation” we refer to the process known from
computer science of simplifying a program where some of the inputs are known
(or “static”). The simplified (or “residual”) program is typically obtained by
executing operations which only depend on known inputs. More precisely, given
a program � P : τs × τd → τr of two arguments, and a fixed static argument
s : τs, we wish to produce a specialized program � Ps : τd → τr such that for
all remaining “dynamic” arguments d : τd, eval

(
Ps d

)
= eval

(
P (s, d)

)
. Hence,

running the specialized program Ps on an arbitrary dynamic argument is equiv-
alent to running the original program on both the static and the dynamic ones.
In general we may have several static and several dynamic arguments. Writing
a partial evaluator is therefore like proving an Sm

n -theorem for the programming
language: given a program with m + n inputs, m of which are static (given in
advance) and n are dynamic, the partial evaluator constructs another program
with n inputs which computes the same function of these dynamic inputs as the
original one does (with the static inputs fixed). Of course, the goal is not to
construct any such program but an efficient one!

In a functional language, it is easy to come up with a specialized program Ps:
just take Ps = λd.P (s, d). That is, we simply invoke the original program with
a constant first argument. But this Ps is likely to be suboptimal: the knowledge
of s may already allow us to perform some simplifications that are independent
of d. For example, consider the power function:

power (n, x) rec= if n = 0 then 1 else x × power(n − 1, x)

Normalization and Partial Evaluation 139

Suppose we want to compute the third power of several numbers. We can achieve
this by using the trivially specialized program:

power3 = λx.power(3, x)

But using a few simple rules derived from the semantics of the language, we can
safely transform power3 to the much more efficient

power ′
3 = λx.x × (x × (x × 1))

Using further arithmetic identities, we can easily eliminate the multiplication by
1. On the other hand, if only the argument x were known, we could not simplify
much: the specialized program would in general still need to contain a recursive
definition and a conditional test in addition to the multiplication. (Note that,
even when x is 0 or 1, the function should diverge for negative values of n.)

Partial Evaluation as Normalization. Clearly partial evaluation and normaliza-
tion are related processes. In partial evaluation, one tries to simplify the original
program by executing those operations that only depend on the static inputs.
Such a simplification is similar to what happens in normalization. In a functional
language, in particular, we can view specialization as a general-purpose simpli-
fication of the trivially specialized program λd.P (s, d): contracting β-redexes
and eliminating static operations as their inputs become known. For example,
power 3 is transformed into power ′

3 by normalizing power 3 according to the re-
duction rules mentioned above.

In these lecture notes, we address the question of whether one can apply
methods developed for theoretical purposes in proof theory and lambda cal-
culus to achieve partial evaluation of programs. Specifically, we show how the
relatively recent idea of normalization by evaluation, originally developed by
proof-theorists, provides a new approach to the partial evaluation of functional
programs, yielding type-directed partial evaluation.

Evaluation. By “evaluation” we mean the process of computing the output of
a program when given all its inputs. In lambda calculus “evaluation” means
normalization of a closed term, usually of base type.

It is important here to contrast (a) normalization and partial evaluation
and (b) the evaluation of a complete program. In (a) there are still unknown
(dynamic) inputs, whereas in (b) all the inputs are known.

Normalization by Evaluation (NBE). Normalization by evaluation is based on
the idea that one can obtain a normal form by first interpreting the term in a
suitable model, possibly a non-standard one, and then write a function “reify”
which maps an object in this model to a normal form representing it. The nor-
malization function is obtained by composing reify with the non-standard inter-
pretation function [[−]]:

norm E = reify [[E]]

140 Peter Dybjer and Andrzej Filinski

We want a term to be convertible (provably equal, in some formal system) to its
normal form

� E = norm E

and therefore we require that reify is a left inverse of [[−]]. The other key property
is that the interpretation function should map convertible terms to equal objects
in the model

if � E = E′ then [[E]] = [[E′]]

because then the normalization function maps convertible terms to syntactically
equal terms

if � E = E′ then norm E = norm E′

It follows that the normalization function picks a representative from each equiv-
alence class of convertible terms

� E = E′ iff norm E = norm E′

If the norm-function is computable, we can thus decide whether two terms are
convertible by computing their normal forms and comparing them.

This approach bypasses the traditional notion of reduction formalized as a
binary relation, and is therefore sometimes referred to as “reduction-free nor-
malization”.

Normalization by evaluation was invented by Martin-Löf [ML75b]. In the
original presentation it just appears as a special way of presenting an ordinary
normalization proof. Instead of proving that every term has a normal form,
one writes a function which returns the normal form, together with a proof
that it actually is a normal form. This way of writing a normalization proof is
particularly natural from a constructive point of view: to prove that there exists
a normal form of an arbitrary term, means to actually be able to compute this
normal form from the term.

Martin-Löf viewed this kind of normalization proof as a kind of normaliza-
tion by intuitionistic model construction: he pointed out that equality (con-
vertibility) in the object-language is modelled by “definitional equality” in the
meta-language [ML75a]. Thus the method of normalization works because the
simplification according to this definitional equality is carried out by the evalua-
tor of the intuitionistic (!) meta-language: hence “normalization by evaluation”.
If instead we work in a classical meta-language, then some extra work would be
needed to implement the meta-language function in a programming language.

Martin-Löf’s early work on NBE dealt with normalization for intuitionistic
type theory [ML75b]. This version of type theory had a weak notion of reduction,
where no reduction under the λ-sign was allowed. This kind of reduction is closely
related to reduction of terms in combinatory logic, and we shall present this case
in Section 2.

Normalization by evaluation for typed lambda calculus with β and η conver-
sion was invented by Berger and Schwichtenberg [BS91]. Initially, they needed a
normalization algorithm for their proof system MINLOG, and normalization by

Normalization and Partial Evaluation 141

evaluation provided a simple solution. Berger then noticed that the NBE pro-
gram could be extracted from a normalization proof using Tait’s method [Ber93].
The method has been refined using categorical methods [AHS95,ČDS98], and
also extended to System F [AHS96] and to include strong sums [ADHS01].

Type-Directed Partial Evaluation (TDPE). Type-directed partial evaluation
stems from the study of “two-level η-expansions”, a technique for making pro-
grams specialize better [DMP95]. This technique had already been put to use to
write a “one-pass” CPS transformation [DF90] and it turned out to be one of
the paths leading to the discovery of NBE [DD98].

Because of its utilization of a standard evaluator for a functional language to
achieve normalization, TDPE at first also appeared as a radical departure from
traditional, “syntax-directed” partial-evaluation techniques. It only gradually
became apparent that the core of TDPE could in fact be seen as a general-
ization of earlier work on λ-MIX [Gom91], a prototypical partial evaluator for
lambda-terms. In particular, the semantic justifications for the two algorithms
are structurally very similar. In these notes we present such a semantic recon-
struction of the TDPE algorithm as an instance of NBE, based on work by
Filinski [Fil99b,Fil01].

Meta-Languages for Normalization by Evaluation and Type-Directed Partial
Evaluation. NBE is based on the idea that normalization is achieved by inter-
preting an object-language term as a meta language term and then evaluating
the latter. For this purpose one can use different meta languages, and we make
use of several such in these notes.

In Section 2 we follow Martin-Löf [ML75b] and Coquand and Dybjer [CD93b]
who used an intuitionistic meta-language, which is both a mathematical language
and a programming language. Martin-Löf worked in an informal intuitionistic
meta-language, where one uses that a function is a function in the intuitionistic
sense, that is, an algorithm. Coquand and Dybjer [CD93b] implemented a for-
mal construction similar to Martin-Löf’s in the meta-language of Martin-Löf’s
intuitionistic type theory using the proof assistant ALF [MN93]. This NBE-
algorithm makes essential use of the dependent type structure of that language.
It is important to point out that the development in Section 2 can be directly
understood as a mathematical description of a normalization function also from
a classical, set-theoretic point of view. The reason is that Martin-Löf type theory
has a direct set-theoretic semantics, where a function space is interpreted classi-
cally as the set of all functions in the set-theoretic sense. However, if read with
classical eyes, nothing guarantees a priori that the constructed normalization
function is computable, so some further reasoning to prove this property would
be needed.

We also show how to program NBE-algorithms using a more standard func-
tional language such as Standard ML. Without dependent types we collect all
object-language terms into one type and all semantic objects needed for the in-

142 Peter Dybjer and Andrzej Filinski

terpretation into another. With dependent types we can index both the syntactic
sets of terms T(τ) and the semantic sets [[τ]] by object-language types τ .

Another possibility, not pursued here, is to use an untyped functional lan-
guage as a meta-language. For example, Berger and Schwichtenberg’s first im-
plementation of NBE in the MINLOG system was written in Scheme.

In type-directed partial evaluation one wishes to write NBE-functions which
do not necessarily terminate. Therefore one cannot use Martin-Löf type theory,
since it only permits terminating functions. Nevertheless, the dependent type
structure would be useful here too, and one might want to use a version of
dependent type theory, such as the programming language Cayenne [Aug98],
which allows non-terminating functions. We do not pursue this idea further here
either.

Notation. NBE-algorithms use the interpretation of an object language in a
meta-language. Since our object- and meta-languages are similar (combinatory
and lambda calculi), we choose notations which clearly distinguish object- and
meta-level but at the same time enhance their correspondence. To this end we
use the following conventions.

– Alphabetic object-language constants are written in sans serif and meta-
language constants in roman. For example, SUCC denotes the syntactic suc-
cessor combinator in the language of Section 2 and succ denotes the semantic
successor function in the meta-language.

– For symbolic constants, we put a dot above a meta-language symbol to
get the corresponding object-language symbol. For example, .→ is object-
language function space whereas → is meta-language function space; λ· is
lambda abstraction in the object-language whereas λ is lambda abstraction
in the meta-language.

– We also use some special notations. For example, syntactic application is
denoted by a dot (F ·E) whereas semantic application is denoted by juxta-
position (f e) as usual. Syntactic pairing uses round brackets (E, E′) whereas
semantic pairing uses angular ones 〈e, e′〉.

Plan. The remainder of the chapter is organized as follows.
In Section 2 we introduce a combinatory version of Gödel System T, that is,

typed combinatory logic with natural numbers and primitive recursive function-
als. We show how to write an NBE-algorithm for this language by interpreting it
in a non-standard “glueing” model. The algorithm is written in the dependently
typed functional language of Martin-Löf type theory, and a correctness proof
is given directly inside this language. Furthermore, we show how to modify the
proof of the correctness of the NBE-algorithm to a proof of weak normalization
and Church-Rosser for the usual notion of reduction for typed combinatory logic.
Finally, we show how to implement this NBE-algorithm in Standard ML.

We begin Section 3 by discussing the suitability of the combinatory NBE-
algorithm for the purpose of partial evaluation. We identify some of its short-
comings, such as the need for extensionality. Then we present the pure NBE

Normalization and Partial Evaluation 143

algorithm for the typed lambda calculus with β and η conversion. This algo-
rithm employs a non-standard interpretation of base types as term families.

In Section 4 we turn to type-directed partial evaluation, by which we mean
the application of NBE to partial evaluation in more realistic programming lan-
guages. To this end we extend the pure typed lambda calculus with constants
for arithmetic operations, conditionals, and fixed point computations yielding a
version of the functional language PCF. In order to perform partial evaluation
for this language we need to combine the pure NBE algorithm with the idea of
off-line partial evaluation. We therefore introduce a notion of binding times, that
allows us to separate occurrences of constant symbols in source programs into
“static” and “dynamic” ones: the former are eliminated by the partial-evaluation
process, while the latter remain in the residual code.

Finally, in Section 5, we show how the normalization technique is adapted
from a semantic notion of equivalence based on βη-equality to one based on
equality in the computational λ-calculus, which is the appropriate setting for
call-by-value languages with computational effects.

Background Reading. The reader of these notes is assumed to have some prior
knowledge about lambda calculus and combinators, partial evaluation, functional
programming, and semantics of programming languages, and we therefore list
some links and reference works which are suitable for background reading.

For sections 2 and 3 we assume a reader familiar with combinatory logic and
lambda calculus, including their relationship, type systems, models, and the no-
tions of reduction and conversion. We recommend the following reference books
as background reading. Note of course, that only a few of the basic concepts
described in these books will be needed.

– Lecture notes on functional programming by Paulson [Pau00].
– Several reference articles by Barendregt on lambda calculi and functional

programming [Bar77,Bar90,Bar92].

We use both dependent type theory and Standard ML (SML) as implementation
languages, and assume that the reader is familiar with these languages. Knowl-
edge of other typed functional languages such as OCAML or Haskell is of course
also useful.

– Tutorials on Standard ML can be found at http://cm.bell-labs.com/cm/
cs/what/smlnj/doc/literature.html#tutorials.

– For background reading about OCAML, see the chapter on Objective CAML
by Didier Remy in this volume.

– For background reading about Haskell, see references in the chapter on Mon-
ads and Effects by Nick Benton, John Hughes, and Eugenio Moggi in this
volume.

– For background reading about dependent types, see the chapter on Depen-
dent Types in Programming by Gilles Barthe and Thierry Coquand in this
volume.

144 Peter Dybjer and Andrzej Filinski

For Sections 4 and 5, we also assume some knowledge of domains and continuous
functions, monads, and continuations.

– A good introduction to domains and their use in denotational semantics is
Winskel’s textbook [Win93].

– For background reading about monads, see the chapter on Monads and Ef-
fects by Nick Benton, John Hughes, and Eugenio Moggi in this volume.

– Three classic articles on continuations are by Reynolds [Rey72], Strachey
and Wadsworth [SW74], and Plotkin [Plo75], although we will not make use
of any specific results presented in those references.

Previous knowledge of some of the basic ideas from partial evaluation, including
the notion of binding time is also useful. Some references:

– The standard textbook by Jones, Gomard, and Sestoft [JGS93].
– Tutorial notes on partial evaluation by Consel and Danvy [CD93a].
– Lecture notes on type-directed partial evaluation by Danvy [Dan98].

Acknowledgments. We gratefully acknowledge the contributions of our APPSEM
2000 co-lecturer Olivier Danvy to these notes, as well as the feedback and sug-
gestions from the other lecturers and students at the meeting.

2 Normalization by Evaluation for Combinators

2.1 Combinatory System T

In this section we use a combinatory version of Gödel System T of primitive
recursive functionals. In addition to the combinators K and S, this language has
combinators ZERO for the number 0, SUCC for the successor function, and REC
for primitive recursion.

The set of types is defined by

� nat type
� τ1 type � τ2 type

� τ1
.→ τ2 type

The typing rules for terms are

�CL E : τ1
.→ τ2 �CL E′ : τ1

�CL E·E′ : τ2

�CL Kτ1τ2 : τ1
.→ τ2

.→ τ1

�CL Sτ1τ2τ3 : (τ1
.→ τ2

.→ τ3) .→ (τ1
.→ τ2) .→ τ1

.→ τ3

�CL ZERO : nat

�CL SUCC : nat .→ nat

�CL RECτ : τ .→ (nat .→ τ .→ τ) .→ nat .→ τ

Normalization and Partial Evaluation 145

We will often drop the subscripts of K, S, and REC, when they are clear from the
context. Furthermore, we let T(τ) = {E | �CL E : τ}.

We now introduce the relation conv of convertibility of combinatory terms.
We usually write �CL E = E′ for E convE′. It is the least equivalence relation
closed under the following rules

�CL F = F ′ �CL E = E′

�CL F ·E = F ′·E′

�CL Kτ1τ2 ·E·E′ = E

�CL Sτ1τ2τ3 ·G·F ·E = G·E·(F ·E)

�CL RECτ ·E·F ·ZERO = E

�CL RECτ ·E·F ·(SUCC·N) = F ·N ·(RECτ ·E·F ·N)

2.2 Standard Semantics

In the standard semantics we interpret a type τ as a set [[τ]]:

[[τ1
.→ τ2]] = [[τ1]] → [[τ2]]

[[nat]] = N

where N is the set of natural numbers in the meta-language.
The interpretation [[E]] ∈ [[τ]] of an object E ∈ T(τ) is defined by induction

on E:

[[Kτ1τ2]] = λx[[τ1]]. λy[[τ2]]. x

[[Sτ1τ2τ3]] = λg[[τ1]]. λf [[τ2]]. λx[[τ3]]. g x (f x)

[[F ·E]] = [[F]] [[E]]

[[ZERO]] = 0

[[SUCC]] = succ

[[RECτ]] = rec[[τ]]

where succ ∈ N → N is the meta-language successor function

succ n = n + 1

and recC ∈ C → (N→C →C)→N→C is the meta-language primitive recursion
operator defined by

recC e f 0 = e

recC e f (succ n) = f n (recC e f n)

Theorem 1. If �CL E = E′ then [[E]] = [[E′]].

Proof. By induction on the proof that �CL E = E′.

146 Peter Dybjer and Andrzej Filinski

2.3 Normalization Algorithm

The interpretation function into the standard model is not injective and hence
cannot be inverted. For example, both S·K·K and S·K·(S·K·K) denote identity
functions. They are however not convertible, since they are distinct normal forms.
(This follows from the normalization theorem below.)

We can construct a non-standard interpretation where the functions are in-
terpreted as pairs of syntactic and semantic functions:

[[nat]]Gl = N

[[τ1
.→ τ2]]Gl = T(τ1

.→ τ2) × ([[τ1]]Gl → [[τ2]]Gl)

We say that the model is constructed by “glueing” a syntactic and a semantic
component, hence the notation [[−]]Gl. (The glueing technique is also used in
some approaches to partial evaluation [Asa02,Ruf93,SK01].)

Now we can write a function reifyτ ∈ [[τ]]Gl → T(τ) defined by

reifynat 0 = ZERO

reifynat (succ n) = SUCC·(reifynat n)

reifyτ1
.→τ2

〈F, f〉 = F

and which inverts the interpretation function [[−]]Gl
τ ∈ T(τ) → [[τ]]Gl:

[[K]]Gl = 〈K, λp. 〈K·(reify p), λq. p〉〉
[[S]]Gl = 〈S, λp. 〈S·(reify p), λq. 〈S·(reify p)·(reify q),

λr. appsem (appsem p r)(appsem q r)〉〉〉
[[F ·E]]Gl = appsem [[F]]Gl [[E]]Gl

[[ZERO]]Gl = 0

[[SUCC]]Gl = 〈SUCC, succ〉
[[REC]]Gl = 〈REC, λp. 〈REC·(reify p), λq. 〈REC·(reify p)·(reify q),

rec p (λnr. appsem (appsem q n) r)〉〉〉

We have here omitted type labels in lambda abstractions, and used the following
application operator in the model:

appsem 〈F, f〉 q = f q

It follows that the conversion rules are satisfied in this model, for example

[[K·E·E′]]Gl = [[E]]Gl

Theorem 2. If �CL E = E′ then [[E]]Gl = [[E′]]Gl.

The normal form function can now be defined by

norm E = reify [[E]]Gl

Normalization and Partial Evaluation 147

Corollary 1. If �CL E = E′ then norm E = norm E′.

Theorem 3. �CL E = norm E, that is, reify is a left inverse of [[−]]Gl.

Proof. We use initial algebra semantics to structure our proof. A model of Gödel
System T is a typed combinatory algebra extended with operations for interpret-
ing ZERO, SUCC, and REC, such that the two equations for primitive recursion
are satisfied. The syntactic algebra T(τ)/conv of terms under convertibility is
an initial model. The glueing model here is another model. The interpretation
function [[−]]Gl

τ ∈ T(τ)/conv → [[τ]]Gl is the unique homomorphism from the
initial model: if we could prove that reifyτ ∈ [[τ]]Gl → T(τ)/conv also is a ho-
momorphism, then it would follow that normτ ∈ T(τ)/conv → T(τ)/conv, the
composition of [[]]Gl

τ and reifyτ , is also a homomorphism. Hence it must be equal
to the identity homomorphism, and hence �CL E = norm E.

But reify does not preserve application. However, we can construct a sub-
model of the non-standard model, such that the restriction of reifyτ to this
submodel is a homomorphism. We call this the glued submodel; this construc-
tion is closely related to the glueing construction in category theory, see Lafont
[Laf88, Appendix A].

In the submodel we require that a value p ∈ [[τ]]Gl satisfies the property Glτ p
defined by induction on the type τ :

– Glnat n holds for all n ∈ N.
– Glτ1

.→τ2 q holds iff for all p ∈ [[τ1]]Gl if Glτ1 p then Glτ2(appsem q p) and
�CL (reify q)·(reify p) = reify (appsem q p)

Notice that this construction can be made from any model, and not only the
term model. In this way we can define the normalization function abstractly over
any initial algebra for our combinatory system T.

Lemma 1. The glued values {p ∈ [[τ1]]Gl | Glτ1p} form a model of Gödel System
T.

Proof. We show the case of K, and leave the other cases to the reader.
Case K. We wish to prove

Glτ1
.→τ2

.→τ1 〈K, λp. 〈K·(reify p), λq. p〉〉

But this property follows immediately by unfolding the definition of Glτ1
.→τ2

.→τ1

and using
�CL K·(reify p)·(reify q) = reify p

Lemma 2. reify is a homomorphism from the algebra of glued values to the
term algebra.

The definition of glued value is such that reify commutes with syntactic
application. The other cases are immediate from the definition.

It now follows that norm is an identity homomorphism as explained above.

148 Peter Dybjer and Andrzej Filinski

Corollary 2. �CL E = E′ iff norm E = norm E′.

Proof. If norm E = norm E′ then �CL E = E′, by theorem 4. The reverse
implication is theorem 3.

2.4 Weak Normalization and Church-Rosser

We end this section by relating the “reduction-free” approach and the standard,
reduction-based approach to normalization. We thus need to introduce the bi-
nary relation red of reduction (in zero or more steps) for our combinatory version
of Gödel System T. This relation is inductively generated by exactly the same
rules as convertibility, except that the rule of symmetry is omitted.

We now prove weak normalization by modifying the glueing model and re-
placing �CL − = − in the definition of Gl by red:

– Glnat n holds for all n ∈ N.
– Glτ1

.→τ2 q holds iff for all p ∈ [[τ1]]Gl if Glτ1 p then Glτ2(appsem q p) and
(reify q)·(reify p) red (reify (appsem q p))

Theorem 4. Weak normalization: E red norm E and norm E is irreducible.

Proof. The proof of �CL E = norm E is easily modified to a proof that
E red norm E.

It remains to prove that norm E is a normal form (an irreducible term).
A normal natural number is built up by SUCC and ZERO. Normal function
terms are combinators standing alone or applied to insufficiently many normal
arguments. If we let �nf

CL E : τ mean that E is a normal form of type τ we can
inductively define it by the following rules:

�nf
CL ZERO : nat

�nf
CL SUCC : nat .→ nat

�nf
CL E : nat

�nf
CL SUCC·E : nat

�nf
CL K : τ1

.→ τ2
.→ τ1

�nf
CL E : τ1

�nf
CL K·E : τ2

.→ τ1

�nf
CL S : (τ1

.→ τ2
.→ τ3) .→ (τ1

.→ τ2) .→ τ1
.→ τ3

�nf
CL G : τ1

.→ τ2
.→ τ3

�nf
CL S·G : (τ1

.→ τ2) .→ τ1
.→ τ3

�nf
CL G : τ1

.→ τ2
.→ τ3 �nf

CL F : τ1
.→ τ2

�nf
CL S·G·F : τ1

.→ τ3

�nf
CL REC : τ .→ (nat .→ τ .→ τ) .→ nat .→ τ

�nf
CL E : τ

�nf
CL REC·E : (nat .→ τ .→ τ) .→ nat .→ τ

Normalization and Partial Evaluation 149

�nf
CL E : τ �nf

CL F : nat .→ τ .→ τ

�nf
CL REC·E·F : nat .→ τ

Let Tnf(τ) = {E | �nf
CL E : τ} be the set of normal forms of type τ . If we redefine

[[τ1
.→ τ2]]Gl = Tnf(τ1

.→ τ2) × ([[τ1]]Gl → [[τ2]]Gl)

then we can verify that reify and norm have the following types

reifyτ ∈ [[τ]]Gl → Tnf(τ)

normτ ∈ T(τ) → Tnf(τ)

and hence normτE ∈ Tnf(τ) for E ∈ T(τ).

Corollary 3. Church-Rosser: if E red E′ and E red E′′ then there exists an
E′′′ such that E′ red E′′′ and E′′ red E′′′.

Proof. It follows that �CL E′ = E′′ and hence by theorem 3 that norm E′ =
norm E′′. Let E′′′ = norm E′ = norm E′′ and hence E′ red E′′′ and E′′ red E′′′.

2.5 The Normalization Algorithm in Standard ML

We now show a sample implementation of the above algorithm in a conventional
functional language1. We begin by defining the datatype syn of untyped terms:

datatypedatatypedatatype syn = S
| K
| APP ofofof syn * syn
| ZERO
| SUCC
| REC

We don’t have dependent types in Standard ML so we have to collect all terms
into this one type syn.

We implement the semantic natural numbers using SML’s built-in type int
of integers. The primitive recursion combinator can thus be defined as follows:

(* primrec : ’a * (int -> ’a -> ’a) -> int -> ’a *)

funfunfun primrec (z, s)
= letletlet funfunfun walk 0

= z
| walk n
= letletlet valvalval p = n-1
ininin s p (walk p)
endendend

ininin walk
endendend

1 All the code in these notes is available electronically at http://www.diku.dk/
˜andrzej/papers/NaPE-code.tar.gz

150 Peter Dybjer and Andrzej Filinski

In order to build the non-standard interpretation needed for the normal-
ization function, we introduce the following reflexive datatype sem of semantic
values:

datatypedatatypedatatype sem = FUN ofofof syn * (sem -> sem)
| NAT ofofof int

The function reify is implemented by

(* reify : sem -> syn *)

funfunfun reify (FUN (syn, _))
= syn

| reify (NAT n)
= letletlet funfunfun reify_nat 0

= ZERO
| reify_nat n
= APP (SUCC, reify_nat (n-1))

ininin reify_nat n
endendend

Before writing the non-standard interpretation function we need some auxiliary
semantic functions:

(* appsem : sem * sem -> sem
succsem : sem -> sem
recsem : ’a * (int -> ’a -> ’a) -> sem -> ’a *)

exceptionexceptionexception NOT_A_FUN

funfunfun appsem (FUN (_, f), arg)
= f arg

| appsem (NAT _, arg)
= raiseraiseraise NOT_A_FUN

exceptionexceptionexception NOT_A_NAT

funfunfun succsem (FUN _)
= raiseraiseraise NOT_A_NAT

| succsem (NAT n)
= NAT (n+1)

funfunfun recsem (z, s) (FUN _)
= raiseraiseraise NOT_A_NAT

| recsem (z, s) (NAT n)
= primrec (z, s) n

And thus we can write the non-standard interpretation function:

(* eval : syn -> sem *)

funfunfun eval S
= FUN (S,

fnfnfn f => letletlet valvalval Sf = APP (S, reify f)
ininin FUN (Sf,

Normalization and Partial Evaluation 151

fnfnfn g => letletlet valvalval Sfg = APP (Sf, reify g)
ininin FUN (Sfg,

fnfnfn x
=> appsem (appsem (f, x),

appsem (g, x)))
endendend)

endendend)
| eval K
= FUN (K,

fnfnfn x => letletlet valvalval Kx = APP (K, reify x)
ininin FUN (Kx,

fnfnfn _ => x)
endendend)

| eval (APP (e0, e1))
= appsem (eval e0, eval e1)

| eval ZERO
= NAT 0

| eval SUCC
= FUN (SUCC,

succsem)
| eval REC
= FUN (REC,

fnfnfn z
=> letletlet valvalval RECz = APP (REC, reify z)

ininin FUN (RECz,
fnfnfn s
=> letletlet valvalval RECzs = APP (RECz, reify s)

ininin FUN (RECzs,
recsem (z,

fnfnfn n
=> fnfnfn c

=> appsem (appsem (s,
NAT n),

c)))
endendend)

endendend)

Finally, the normalization function is

(* norm : syn -> syn *)

funfunfun norm e
= reify (eval e)

How do we know that the SML program is a correct implementation of the
dependently typed (or “mathematical”) normalization function? This is a non-
trivial problem, since we are working in a language where we can write non-
terminating well-typed programs. So, unlike before we cannot use the direct
mathematical normalization proof, but have to resort to the operational or de-
notational semantics of SML. Note in particular the potential semantic compli-
cations of using the reflexive type sem.

Nevertheless, we claim that for any two terms E, E’ : syn which represent
elements of T(τ), norm E and norm E’ both terminate with identical values of
syn iff E and E’ represent convertible terms.

152 Peter Dybjer and Andrzej Filinski

2.6 Exercises

Exercise 1. Extend NBE and its implementation to some or all of the following
combinators:

I x = x C f x y = f y x
B f g x = f (g x) W f x = f x x

Exercise 2. Extend the datatype sem to have a double (that is, syntactic and
semantic) representation of natural numbers, and modify NBE to cater for this
double representation. Is either the simple representation or the double repre-
sentation more efficient, and why?

Exercise 3. Because ML follows call by value, a syntactic witness is constructed
for each intermediate value, even though only the witness of the final result is
needed. How would you remedy that?

Exercise 4. Where else does ML’s call by value penalize the implementation of
NBE? How would you remedy that?

Exercise 5. Program a rewriting-based lambda calculus reducer and compare it
to NBE in efficiency.

Exercise 6. Implement NBE in a language with dependent types such as
Cayenne.

3 Normalization by Evaluation for the λβη-Calculus

In the next section, we shall see how normalization by evaluation can be exploited
for the practical task of type-directed partial evaluation (TDPE) [Dan98]. TDPE
is not based on the NBE-algorithm for combinators given in the previous section,
but on the NBE-algorithm returning long βη-normal forms first presented by
Berger and Schwichtenberg [BS91]. There are several reasons for this change:

Syntax. Most obviously, SK-combinators are far from a practical programming
language. Although the algorithm extends directly to a more comprehensive
set (e.g., SKBCI-combinators), we still want to express source programs in a
more conventional lambda-syntax with variables. To use any combinator-based
normalization algorithm, we would thus need to convert original programs to
combinator form using bracket abstraction, and then either somehow evaluate
combinator code directly, or convert it back to lambda-syntax (without undoing
normality in the process – simply replacing the combinators with their definitions
would not work!).

Thus, we prefer an algorithm that works on lambda-terms directly. As a
consequence, however, we need to keep track of bound-variable names, and in
particular avoid inadvertent clashes. While this is simple enough to do informally,
we must be careful to express the process precisely enough to be analyzed, while
keeping the implementation efficient.

Normalization and Partial Evaluation 153

Extensionality. As shown by Martin-Löf [ML75b] and by Coquand and Dybjer
[CD93b], the glueing technique from the previous section can also be used for
normalizing terms in a version of lambda-syntax. A problem with both vari-
ants, however, is the lack of extensionality. As we already mentioned, S·K·K and
S·K·(S·K·K) are both normal forms representing the identity function, which is
somewhat unsatisfactory.

Even more problematically, these algorithms only compute weak normal
forms. That is, the notion of conversion does not include (the combinatory analog
of) the ξ-rule, which allows normalization under lambdas. Being able to reduce
terms with free variables is a key requirement for partial evaluation. Consider,
for example, the addition function in pseudo-lambda-syntax (with λ∗ denoting
bracket abstraction),

add = λ∗m.λ∗n.REC·m·(λ∗a.λ∗x.SUCC·x)·n
= λ∗m.REC·m·(K·SUCC)

= S·REC·(K·(K·SUCC))

add·m·n applies the successor function n times to m. Given the reduction equa-
tions REC·b·f ·ZERO = b and REC·b·f ·(SUCC·n) = f ·n·(REC·b·f ·n), we would
hope that a partially applied function such as

λ∗m.add·m·(SUCC·(SUCC·ZERO)) = S·add·(K·(SUCC·(SUCC·ZERO)))

could be normalized into λ∗m.SUCC·(SUCC·m), i.e., eliminating the primitive
recursion. But unfortunately, the combinatory term above is already in normal
form with respect to the rewriting rules for S, K and REC, because all the combi-
nators are unsaturated (i.e., applied to fewer arguments than their rewrite rules
expect). Thus, we cannot unfold computations based on statically known data
when the computation is also parameterized over unknown data.

It is fairly simple to extend the glueing-based normalization algorithms with
top-level free variables; effectively, we just treat unknown inputs as additional,
uninterpreted constants. With this extension the addition example goes through.
However, the problem is not completely solved since we still do not simplify under
internal lambdas in the program. For example, with

mul = λ∗m.λ∗n.REC·ZERO·(λ∗a.λ∗x.add·x·n)·m ,

we would want the open term mul·m·(SUCC·(SUCC·ZERO)) to normalize to
something like

REC·ZERO·(λ∗a.λ∗x.SUCC·(SUCC·x))·m ,

i.e., to eliminate at least the primitive recursion inside add; but again the nec-
essary reductions will be blocked.

Native implementation. A final problem with the glueing-based algorithm is that
the non-standard interpretation of terms differs significantly from the standard

154 Peter Dybjer and Andrzej Filinski

one for function spaces. This means that we have to construct a special-purpose
evaluator; even if we already had an efficient standard evaluator for combinatory
System T, we would not be able to use it directly for the task of normalization.
The same problem appears for lambda-terms: we do have very efficient standard
evaluators for functional programs, but we may not be able to use them if the
interpretation of lambda-abstraction and application is seriously non-standard.

In this section, we present a variant of the Berger and Schwichtenberg NBE
algorithm. (The main difference to the original is that we use a somewhat simpler
scheme for avoiding variable clashes.) Again, we stress that the dimensions of
syntax and convertibility are largely independent: one can also devise NBE-like
algorithms for lambda-syntax terms based on β-conversion only [Mog92]. Like-
wise, it is also perfectly possible to consider βη-convertibility in a combinatory
setting, especially for a different basis, such as categorical combinators [AHS95].
The following (obviously incomplete) table summarizes the situation:

notion of conversion
syntax weak β strong β βη

combinators [CD97] [AHS95]
lambda-terms [ML75b,CD93b] [Mog92] [BS91]

We should also mention that a main advantage with the glueing technique
is that it extends smoothly to datatypes. We showed only how to treat natural
numbers in the previous section, but the approach extends smoothly to arbitrary
strictly positive datatypes such as the datatype of Brouwer ordinals [CD97].
For TDPE it is of course essential to deal with functions on datatypes, and
in Section 4 we show how to deal with this problem by combining the idea of
binding-time separation with normalization by evaluation.

3.1 The Setting: Simply Typed Lambda Calculus

For the purpose of presenting the algorithm, let us ignore for the moment con-
stant symbols and concentrate on pure lambda-terms only. Accordingly, consider
a fixed collection of base types b; the simple types τ are then generated from
those by the rules

� b type

� τ1 type � τ2 type

� τ1
.→ τ2 type

For a typing context ∆, assigning simple types to variables, the well-typed
lambda-terms over ∆, ∆ � E : τ , are inductively generated by the usual rules:

∆(x) = τ

∆ � x : τ

∆, x : τ1 � E : τ2

∆ � λ·xτ1.E : τ1
.→ τ2

∆ � E1 : τ1
.→ τ2 ∆ � E2 : τ1

∆ � E1·E2 : τ2

We write E =α E′ if E′ can be obtained from E by a consistent, capture-avoiding
renaming of bound variables. We introduce the notion of βη-convertibility as a

Normalization and Partial Evaluation 155

judgment � E =βη E′, generated by the following rules, together with reflexivity,
transitivity, symmetry, and α-conversion:

� E1 =βη E′
1 � E2 =βη E′

2

� E1·E2 =βη E′
1·E′

2

� E =βη E′

� λ·x.E =βη λ·x.E′

� (λ·x.E1)·E2 =βη E1[E2/x] � λ·x.E·x =βη E
(x�∈FV (E))

Here E1[E2/x] denotes the capture-avoiding substitution of E2 for free occur-
rences of x in E1 (which in general may require an initial α-conversion of E1;
the details are standard).

Let us also recall the usual notion of βη-long normal form for lambda-terms.
In the typed setting, it is usually expressed using two mutually recursive judg-
ments enumerating terms in normal and atomic (also known as neutral) forms:

∆ �at E : b

∆ �nf E : b

∆, x : τ1 �nf E : τ2

∆ �nf λ·xτ1.E : τ1
.→ τ2

∆(x) = τ

∆ �at x : τ

∆ �at E1 : τ1
.→ τ2 ∆ �nf E2 : τ1

∆ �at E1·E2 : τ2

One can show that any well-typed lambda-term ∆ � E : τ is βη-convertible
to exactly one (up to α-conversion) term Ẽ such that ∆ �nf Ẽ : τ .

3.2 An Informal Normalization Function

The usual way of computing long βη-normal forms is to repeatedly perform β-
reduction steps until no β-redexes remain, and then η-expand the result until
all variables are applied to as many arguments as their type suggests. We now
present an alternative way of computing such normal forms.

Let V be a set of variable names and E be some set of elements suitable for
representing lambda-terms. More precisely, we assume that there exist injective
functions with disjoint ranges,

VAR ∈ V → E LAM ∈ V × E → E APP ∈ E × E → E

Perhaps the simplest choice is to take E as the set of (open, untyped) syn-
tactic lambda-terms. But we could also take V = E = N with some form of
Gödel-coding. More practically, we could take V = E as the set of ASCII strings
or the set of Lisp/Scheme S-expressions. In particular, we do not require that E
does not contain elements other than the representation of lambda-terms.

Remark 1. It would be possible to let E be an object-type-indexed set family,
as in the previous section, rather than a single set. We will not pursue such an
approach for two reasons, though. First, for practical applications, it is impor-
tant that correctness of the algorithm can be established in a straightforward
way even when it is expressed in a non-dependently typed functional language.

156 Peter Dybjer and Andrzej Filinski

And second, there are additional complications in expressing the normalization
algorithm for the call-by-value setting in the next section in a dependent-typed
setting. The problems have to do with the interaction between computational
effects such as continuations with a dependent type structure; at the time of
writing, we do not have a viable dependently-typed algorithm for that case.

In any case, we can define a representation function �− � from well-formed
lambda-terms with variables from V to elements of E by

�x� = VARx �λ·xτ.E� = LAM〈x, �E�〉 �E1·E2
� = APP〈�E1

�, �E2
�〉

(Note that we do not include the type tags for variables in representations of
lambda-abstraction; the extension to do this is completely straightforward. See
Exercise 7.) Because of the injectivity and disjointness requirements, for any
e ∈ E, there is then at most one E such that �E� = e.

We now want to construct a residualizing interpretation, such that from the
residualizing meaning of a term, we can extract its normal form, like before.
Moreover, we want to interpret function types as ordinary function spaces. A
natural first try at such an interpretation would thus be to assign to every type
τ a set [[τ]]r as follows:

[[b]]r = E

[[τ1
.→ τ2]]r = [[τ1]]r → [[τ2]]r

The interpretation of terms is then completely standard: let ρ be a ∆-
environment, that is, a function assigning an element of [[τ]]r to every x with
∆(x) = τ . Then we define the residualizing meaning of a well-typed term
∆ � E : τ as an element [[E]]rρ ∈ [[τ]]r by structural induction:

[[x]]rρ = ρ (x)

[[λ·xτ.E]]rρ = λa[[τ]]r. [[E]]rρ[x�→a]

[[E1·E2]]rρ = [[E1]]rρ [[E2]]rρ

This turns out to be a good attempt: for any type τ , it allows us to construct
the following pair of functions, conventionally called reification and reflection:

↓τ ∈ [[τ]]r → E

↓b = λtE. t

↓τ1
.→τ2 = λf [[τ1]]r→[[τ2]]r.LAM〈v, ↓τ2 (f (↑τ1 (VARv)))〉 (v ∈ V, “fresh”)

↑τ ∈ E → [[τ]]r

↑b = λeE.e

↑τ1
.→τ2 = λeE.λa[[τ1]]r.↑τ2 (APP〈e, ↓τ1 a〉)

Reification extracts a syntactic representation of a term from its residualizing
semantics (as in the combinatory logic algorithm). Conversely, reflection wraps

Normalization and Partial Evaluation 157

up a piece of syntax to make it act as an element of the corresponding type
interpretation.

Together, these functions allow us to extract syntactic representations of
closed lambda-terms from their denotations in the residualizing interpretation.
For example,

↓(b .→b) .→b
.→b [[λ·s.λ·z.s·(s·z)]]r∅ = ↓(b .→b) .→b

.→b (λφ.λa.φ(φa))
= LAM〈x1, ↓b

.→b ((λφ.λa.φ(φa))(↑b
.→b (VARx1)))〉

= LAM〈x1, ↓b
.→b ((λφ.λa.φ(φa))(λa.APP〈VARx1, a〉))〉

= LAM〈x1, ↓b
.→b (λa.APP〈VARx1, APP〈VARx1, a〉〉)〉

= LAM〈x1, LAM〈x2, (λa.APP〈VARx1, APP〈VARx1, a〉〉)(VARx2)〉〉
= LAM〈x1, LAM〈x2, APP〈VARx1, APP〈VARx1, VARx2〉〉〉〉

where we have arbitrarily chosen the fresh variable names x1, x2 ∈ V in the
definition of reification at function types. Note that all the equalities in this
derivation express definitional properties of functional abstraction and applica-
tion in our set-theoretic metalanguage, as distinct from formal convertibility in
the object language.

Given this extraction property for normal forms, it is now easy to see that
↓τ [[−]]r must be a normalization function, because βη-convertible terms have the
same semantic denotation. Thus, for example, we would have obtained the same
syntactic result if we had started instead with ↓ [[λ·s.(λ·r.λ·z.r·(s·z))·(λ·x.s·x)]]r∅.

3.3 Formalizing Unique Name Generation

On closer inspection, our definition of reification above is mathematically unsat-
isfactory. The problem is the “v fresh” condition: what exactly does it mean?
Unlike such conditions as “x does not occur free in E”, it is not even locally
checkable whether a variable is fresh; freshness is a global property, defined with
respect to a term that may not even be fully constructed yet.

Needless to say, having such a vague notion at the core of an algorithm is
a serious impediment to any formal analysis; we need a more precise way of
talking about freshness. The concept can in fact be characterized rigorously
in a framework such as Fraenkel-Mostowski sets, and even made accessible to
the programmer as a language construct [GP99]. However, such an approach
removes us a level from a direct implementation in a traditional, widely available
functional language.

Instead, we explicitly generate non-clashing variable names. It turns out that
we can do so fairly simply, if instead of working with individual term represen-
tations, we work with families of α-equivalent representations. The families will
have the property that it is easy to control which variable names may occur
bound in any particular member of the family. (This numbering scheme was
also used by Berger [Ber93] and is significantly simpler than that in the original
presentation of the algorithm [BS91].)

158 Peter Dybjer and Andrzej Filinski

Definition 1. Let {g0, g1, g2, . . . } ⊆ V be a countably infinite set of variable
names. We then define the set of term families,

Ê = N → E

together with the wrapper functions

V̂AR ∈ V → Ê = λv.λi.VARv

L̂AM ∈ (V → Ê) → Ê = λf.λi.LAM〈gi, f gi (i + 1)〉

ÂPP ∈ Ê × Ê → Ê = λ〈e1, e2〉.λi.APP〈e1 i, e2 i〉

We can construct term families using only these wrappers, then apply the
result to a starting index i0 and obtain a concrete representative not using any
gi’s with i < i0 as bound variables. For example,

(L̂AM(λv1. L̂AM(λv2.ÂPP(V̂ARv2, ÂPP(V̂ARv2, V̂ARv1))))7 = · · ·
= LAM〈g7, LAM〈g8, APP〈VARg7, APP〈VARg7, VARg8〉〉〉〉

In general, each bound variable will be named gi where i is the sum of the
starting index and the number of lambdas enclosing the binding location. (This
naming scheme is sometimes known as de Bruijn levels – not to be confused with
de Bruijn indices, which assign numbers to individual uses of variables, not to
their introductions.)

We now take for the residualizing interpretation,

[[b]]r = Ê

[[τ1
.→ τ2]]r = [[τ1]]r → [[τ2]]r

and define corresponding reification and reflection functions:

↓τ ∈ [[τ]]r → Ê

↓b = λtÊ. t

↓τ1
.→τ2 = λf [[τ1]]r→[[τ2]]r. L̂AM(λvV.↓τ2 (f (↑τ1 (V̂ARv))))

↑τ ∈ Ê → [[τ]]r

↑b = λeÊ.e

↑τ1
.→τ2 = λeÊ.λa[[τ1]]r.↑τ2 (ÂPP〈e, ↓τ1 a〉)

Finally we can state,

Definition 2. We define the normalization function norm as follows: For any
well-typed closed term � E : τ , normE is the unique Ẽ (if it exists) such that
�Ẽ� = ↓τ [[E]]r∅ 0.

Theorem 5 (Correctness). We formulate correctness of norm as three crite-
ria:

Normalization and Partial Evaluation 159

1. norm is total and type preserving: for any � E : τ , normE denotes a well-
defined Ẽ, and � Ẽ : τ . Moreover, Ẽ is in normal form, �nf Ẽ : τ .

2. � normE =βη E.
3. If � E =βη E′ then normE = normE′.

Several approaches are possible for the proof. Perhaps the simplest proceeds as
follows: If Ẽ is already in normal form, then it is fairly simple to show that
normẼ =α Ẽ. (This follows by structural induction on the syntax of normal
forms; the only complication is keeping track of variable renamings.) Moreover,
as we observed in the informal example with “magic” fresh variables, if E =βη Ẽ
then [[E]]r∅ = [[Ẽ]]r∅, and hence normE = normẼ =α Ẽ directly by the definition
of norm. All the claims of the theorem then follow easily from the (non-trivial)
fact that every term is βη-equivalent to one in normal form.

3.4 Implementation

An SML implementation of the λβη-normalizer is shown in Figure 1. Note that,
unlike in the combinatory case, the central function eval is essentially the same
as in a standard interpreter for a simple functional language. In the next section,
we will see how we can take advantage of this similarity, by replacing the custom-
coded interpretation function with the native evaluator of a functional language.

4 Type-Directed Partial Evaluation for Call-by-Name

In this section, we will see how the general idea of normalization by evaluation
can be exploited for the practical task of type-directed partial evaluation (TDPE)
of functional programs [Dan98]. The main issues addressed here are:

Interpreted constants. A problem with the NBE algorithm for the pure λβη-
calculus given in the previous section is that it is not clear how to extend it to,
for example, System T, where we need to deal with primitive constants such
as primitive recursion. Clearly, we cannot expect to interpret nat standardly,
as we did for the combinatory version of System T: we cannot expect that
all extensionally indistinguishable functions from natural numbers to natural
numbers have the same normal form.

To recover a simple notion of equivalence, we need to introduce an explicit
notion of binding times in the programs. That is, we must distinguish clearly
between the static subcomputations, which should be carried out during nor-
malization, and the dynamic ones, that will only happen when the normalized
program itself is executed.

An offline binding-time annotation allows us to determine which parts of
the program are static, even without knowing the actual static values. We can
then distinguish between static and dynamic occurrences of operators, with their
associated different conversion rules. This distinction will allow us to re-introduce
interpreted constants, including recursion.

160 Peter Dybjer and Andrzej Filinski

datatypedatatypedatatype term =
VAR ofofof string | LAM ofofof string * term | APP ofofof term * term

typetypetype termh = int -> term

funfunfun VARh v = fnfnfn i => VAR v
funfunfun LAMh f =

fnfnfn i => letletlet valvalval v = "x" ˆ Int.toString i ininin LAM (v, f v (i+1)) endendend
funfunfun APPh (e1, e2) = fnfnfn i => APP (e1 i, e2 i)

datatypedatatypedatatype sem =
TM ofofof termh | FUN ofofof sem -> sem

funfunfun eval (VAR x) r = r x
| eval (LAM (x, t)) r =

FUN (fnfnfn a => eval t (fnfnfn x’ => ififif x’ = x thenthenthen a elseelseelse r x’))
| eval (APP (e1, e2)) r =

letletlet valvalval FUN f = eval e1 r ininin f (eval e2 r) endendend

datatypedatatypedatatype tp =
BASE ofofof string | ARROW ofofof tp * tp

funfunfun reify (BASE _) (TM e) = e
| reify (ARROW (t1, t2)) (FUN f) =

LAMh (fnfnfn v => reify t2 (f (reflect t1 (VARh v))))
andandand reflect (BASE _) e = TM e

| reflect (ARROW (t1, t2)) e =
FUN (fnfnfn a => reflect t2 (APPh (e, reify t1 a)))

funfunfun norm t e =
reify t (eval e (fnfnfn x => raiseraiseraise Fail ("Unbound: " ˆ x))) 0

valvalval test =
norm (ARROW (ARROW (BASE "a", BASE "b"), ARROW (BASE "a", BASE "b")))

(LAM ("f", LAM ("x", APP (LAM ("y", APP (VAR "f", VAR "y")),
APP (VAR "f", VAR "x")))));

(* val test =
LAM ("x0",LAM ("x1",APP (VAR "x0",APP (VAR "x0",VAR "x1")))) : term *)

Fig. 1. An implementation of the λβη-normalizer in SML

Recursion. When we want to use NBE for conventional functional programs,
we get an additional complication in the form of unrestricted recursion. While
many uses of general recursion can be replaced with suitable notions of primitive
recursion, this is unfortunately not the case for one of the primary applications
of partial evaluation, namely programming-language interpreters: since the in-
terpreted program may diverge, the interpreter cannot itself be a total function
either.

In fact, normalization of programs with interpreted constants is often ex-
pressed more naturally with respect to a semantic notion of equivalence, rather
than syntactic βη-convertibility with additional rules. And in particular, to
properly account for general recursion, it becomes natural to consider domain-

Normalization and Partial Evaluation 161

theoretic models for both the standard and the non-standard interpretations,
rather than purely set-theoretic ones.

4.1 The Setting: A Domain-Theoretic Semantics of PCF

Our prototypical functional language has the following set of well-formed types,
�Σ σ type:

b ∈ Σ

�Σ b type

�Σ σ1 type �Σ σ2 type

�Σ σ1
.→ σ2 type

where the signature Σ contains a collection of base types b. (Note that the
change from τ to σ as a metavariable for object types, and ∆ to Γ for typing
contexts below, is deliberate, in preparation for the next section.) Although we
are limiting ourselves to base and function types for conciseness, adding finite-
product types would be straightforward.

Each base type b is equipped with a countable collection of literals (numer-
als, truth values, etc.) Ξ(b). These represent the observable results of program
execution.

A typing context Γ is a finite mapping of variable names to well-formed types
over Σ. Then the well-typed Σ-terms over Γ , Γ �Σ E : σ, are much as before:

l ∈ Ξ(b)
Γ �Σ l : b

Σ(cσ1,...,σn
) = σ

Γ �Σ cσ1,...,σn : σ

Γ (x) = σ

Γ �Σ x : σ

Γ, x : σ1 �Σ E : σ2

Γ �Σ λ·xσ1.E : σ1
.→ σ2

Γ �Σ E1 : σ1
.→ σ2 Γ �Σ E2 : σ1

Γ �Σ E1·E2 : σ2

Here x ranges over a countable set of variables, and c over a set of function
constants in Σ. Note that some constants, such as conditionals, are actually poly-
morphic families of constants. We must explicitly pick out the relevant instance
using type subscripts. We say that a well-typed term is a complete program if it
is closed and of base type.

Since we want to model general recursion, we use a domain-theoretic model
instead of a simpler set-theoretic one. (However, it is possible to understand most
of the following constructions by ignoring the order structure and continuity, and
simply thinking of domains as sets; only the formal treatment of fixpoints suffers
from such a simplification.)

Accordingly, we say that an interpretation of a signature Σ is a triple I =
(B,L, C). B maps every base type b in Σ to a predomain, that is, a possibly
bottomless cpo, usually discretely ordered. Then we can interpret every type
phrase σ over Σ as a domain (pointed cpo):

[[b]]I = B(b)⊥
[[σ1

.→ σ2]]I = [[σ1]]I →c [[σ2]]I

(For any cpo A, we write A⊥ = A ∪ {⊥} for its lifting, where the additional
element ⊥ signifies divergence. The interpretation of function types is the usual

162 Peter Dybjer and Andrzej Filinski

continuous-function space. Since we only deal with continuous functions in the
semantics, we generally omit the subscript c from now on.)

Then, for any base type b and literal l ∈ Ξ(b), the interpretation must specify
an element Lb(l) ∈ B(b); and for every type instance of a polymorphic constant,
an element C(cσ1,...,σn

) ∈ [[Σ(cσ1,...,σn
)]]I . For simplicity, we assume that Lb is

surjective, that is, that every element of B(b) is denoted by a literal.

We interpret a typing assignment Γ as a labelled product:

[[Γ]]I =
∏

x∈dom Γ

[[Γ (x)]]I

(Note that this is now a finite product of domains, ordered pointwise, i.e., ρ � ρ′

iff ∀x ∈ dom Γ. ρx �Γ (x) ρ′ x.)
To make a smooth transition to the later parts, let us express the semantics

of terms with explicit reference to the lifting monad (−⊥, η⊥ , �⊥), where η⊥ a is
the inclusion of a ∈ A into A⊥, and t �⊥ f is the strict extension of f ∈ A→B⊥
applied to t ∈ A⊥, given by ⊥A �⊥ f = ⊥B and (η⊥ a) �⊥ f = f a. We then
give the semantics of a term Γ � E : τ as a (total) continuous function [[E]]I ∈
[[Γ]]I → [[τ]]I :

[[l]]I ρ = η⊥ (Lb(l))

[[cσ1,...,σn]]I ρ = C(cσ1,...,σn)

[[x]]I ρ = ρx

[[λ·xσ.E]]I ρ = λa[[σ]]I. [[E]]I (ρ[x → a])

[[E1·E2]]I ρ = [[E1]]I ρ([[E2]]I ρ)

Finally, given an interpretation I of Σ we define the partial function returning
the observable result of evaluating a complete program:

evalI ∈ {E | �Σ E : b} ⇀ Ξ(b)

by

evalI E =
{

l if [[E]]I ∅ = η⊥ (Lb(l))
undefined if [[E]]I ∅ = ⊥

where ∅ is the empty environment.

Definition 3 (standard static language). We define a simple functional lan-
guage (essentially PCF [Plo77]) by taking the signature Σs as follows. The base
types are int and bool; the literals, Ξ(int) = {. . . , -1, 0, 1, 2, . . . } and Ξ(bool) =
{true, false}; and the constants,

+,−,× : int .→ int .→ int
=, < : int .→ int .→ bool

ifσ : bool .→ σ .→ σ .→ σ
fixσ : (σ .→ σ) .→ σ

(We use infix notation for applications of binary operations, for example, x + y
instead of +·x·y.)

Normalization and Partial Evaluation 163

Similarly, the standard interpretation of this signature is also as expected:

Bs(bool) = B = {true, false}
Bs(int) = Z = {. . . ,−1, 0, 1, 2, . . . }

Cs(�) = λxZ⊥.λyZ⊥.x �⊥ λn.y �⊥ λm.η⊥ (m � n)
∈{+,−,×,=,<}

Cs(ifσ) = λxB⊥.λa
[[σ]]
1 .λa

[[σ]]
2 .x �⊥ λb. if b then a1 else a2

Cs(fixσ) = λf [[σ]]→[[σ]].
⊔

i∈ω
f i ⊥[[σ]]

(where the conditional if b then x else y chooses between x and y based on the
truth value b.)

It is well known (computational adequacy of the denotational semantics for
call-by-name evaluation [Plo77]) that with this interpretation, evalIs is com-
putable.

Remark 2. This PCF semantics differs from the standard semantics of Haskell
in that there is no extra lifting of function types; Haskell would have [[τ1

.→
τ2]] = ([[τ1]] → [[τ2]])⊥. One can show that this makes no difference, as long as we
cannot observe termination at higher types. That is, with the typing restriction
on complete programs, our denotational semantics is actually computationally
adequate whether we evaluate programs in PCF or in Haskell.

Note that being able to observe termination at higher types breaks the va-
lidity of η-conversion as a semantic equivalence (λ·x.f ·x and f become opera-
tionally distinguishable when f can be replaced with a non-terminating term),
for no clear gain in convenience or expressive power.

4.2 Binding-Time Separation and Static Normal Forms

For partial evaluation, we distinguish between operations that can be performed
knowing only the static input, and those that also require dynamic data. A par-
ticularly useful way of making this distinction is through an off-line binding-time
annotation (BTA), where knowledge about which arguments to a program’s top-
level function will be static, and which will be dynamic, is propagated throughout
the program in a separate phase. Note that this can be done without knowing
the actual values of the static arguments.

The annotation can either be performed by a program (so called binding-time
analysis), or explicitly by the programmer as the program is written. The latter
is quite practical when the usage pattern is fixed – for example, an interpreter
may be specialized with respect to a program, but practically never with respect
to the program’s input data.

Traditional binding-time annotations for typed languages are often expressed
in terms of two-level types [NN88], where types and type constructors (such
as function spaces and products) are annotated as static or dynamic. Type-
directed partial evaluation is unusual in that the binding-time annotations are

164 Peter Dybjer and Andrzej Filinski

expressed in an essentially standard type system, which allows the annotations
to be verified by an ML type checker. It also means that the annotated programs
remain directly executable.

Specifically, BTA in TDPE is performed by expressing the program as a term
over a binding-time separated signature, where the declarations of base types and
constants are divided into a static and a dynamic part. That is, Σ = Σs ∪ Σd

where each of Σs and Σd is itself a signature. Following the tradition, we will
write type and term constants from the static part overlined, and the dynamic
ones underlined.

For simplicity, we require that the dynamic base types do not come with
any new literals, that is, Ξ(b) = ∅. (If needed, they can be added as dynamic
constants.) However, some base types will be persistent, that is, have both static
and dynamic versions with the same intended meaning. In that case, we also
include lifting functions

$b : b .→ b

in the dynamic signature.
We say that a type τ is fully dynamic if it is constructed from dynamic base

types only:
b ∈ Σd

b dtype
τ1 dtype τ2 dtype

τ1
.→ τ2 dtype

We also reserve ∆ for typing assumptions assigning fully dynamic types to all
variables. All term constants in Σd must have fully dynamic types, and in par-
ticular, polymorphic dynamic constants must only be instantiated by dynamic
types, ensuring that the type of every instance is fully dynamic, for example,
Σd(ifτ) = bool .→ τ .→ τ .→ τ . On the other hand, constants from Σs can be
instantiated at both static and dynamic types.

We will always take the language from Definition 3 with the standard seman-
tics Is = (Bs,L, Cs) as the static part. The dynamic signature typically also has
some intended evaluating interpretation Ie

d; in particular, when Σd is merely a
copy of Σs, we can use Is directly for Ie

d (interpreting all lifting functions as iden-
tities). Later, however, we will also introduce a “code-generating”, residualizing
interpretation of the dynamic signature.

Example 1. Given the functional term

power : ι .→ ι .→ ι ≡ λ·xι.fixι
.→ι·(λ·pι

.→ι.λ·nι. ifι·(n = 0)·1·(x × p·(n − 1)))

(abbreviating int as ι), we can binding-time annotate it in four different ways,
depending on which arguments will be statically known:

powerss : ι .→ ι .→ ι ≡ λ·xι.fixι
.→ι·(λ·pι

.→ι.λ·nι. ifι·(n = 0)·1·(x × p·(n − 1)))

powersd : ι .→ ι .→ ι ≡ λ·xι.fixι
.→ι·(λ·pι

.→ι.λ·nι. ifι·(n = $·0)·($·1)·($·x × p·(n − $·1)))

powerds : ι .→ ι .→ ι ≡ λ·xι.fixι
.→ι·(λ·pι

.→ι.λ·nι. ifι·(n = 0)·($·1)·(x × p·(n − 1)))

powerdd : ι .→ ι .→ ι ≡ λxι.fixι
.→ι·(λ·pι

.→ι.λ·nι. ifι·(n = $·0)·($·1)(x × p·(n − $·1)))

Normalization and Partial Evaluation 165

Note how the fixed-point and conditional operators are classified as static or
dynamic, depending on the binding time of the second argument.

Some of the usual concerns of binding-time annotation arise for TDPE as
well: for example, an unannotated term such as (d+3)+s, where d is a dynamic
variable and s a static one, must be annotated as (x+$·3)+$·s. That is, neither of
the additions can be performed even with knowledge of s’s value. Had we instead
written the term as d + (3 + s), we could annotate it as d + $·(3 + s), allowing
the second addition to be eliminated at specialization time. Such rewritings are
called binding-time improvements.

In keeping with the idea that computations involving dynamic constants
should be left in the normalized program, we introduce a new notion of program
equivalence, compatible with any future interpretation of the dynamic operators:

Definition 4 (Static Equivalence). We say that E and E′ are statically
equivalent (wrt. a given static interpretation Is of Σs), written Is � E = E′,
if for every interpretation Id of Σd, [[E]]Is∪Id = [[E′]]Is∪Id .

(More generally, one can imagine an intermediate between static and dynamic
constants: we may consider equivalence in all interpretations of Σd satisfying
some additional constraints [Fil01].)

Note that static equivalence includes not only full βη-convertibility, but also
equalities involving static constants, such as Is � fix·f = f ·(fix·f). However, in
the particular case where the static signature contains no term constants, one
can show that static equivalence coincides with βη-convertibility. (This is known
as Friedman’s completeness theorem for the full continuous type frame [Mit96,
Theorem 8.4.6].)

4.3 A Residualizing Interpretation

To normalize a term with respect to static equivalence, we first adjust our syn-
tactic characterization of normal forms: we allow constants from the dynamic
signature only, and all literals must appear as arguments to $. That is, we add
the following two rules for atomic forms:

Σd(cτ1,...,τn) = τ

∆ �at cτ1,...,τn
: τ

l ∈ Ξ(b)
∆ �at $b·l : b

Also, corresponding to our extension of the language, we assume that in addi-
tion to VAR, LAM, and APP, we have two further syntax-constructor functions
(again with ranges disjoint from those of the others),

CST ∈ V → E LITb ∈ Bs(b) → E (for each b in Σd)

As we only need to represent programs in normal form, we extend the represen-
tation equations as follows:

�cτ1,...,τn

� = CSTc �$b·l� = LITb (Lb(l))

166 Peter Dybjer and Andrzej Filinski

(For simplicity, we assume that elements of V can also be used to represent
constant names. Also, we omit type tags in the generated representation of con-
stants; like for lambda-abstraction, adding them is straightforward.)

Moreover, since we are working with domains, we need to take into account
the possibility of nontermination at normalization time; that is, the reification
function may need to return a ⊥-result. Thus we take

Ê = Z⊥ → E⊥

where E is our set of term representations viewed as a discrete cpo. Elements
of Ê are ordered pointwise, that is e � e′ iff for all i ∈ Z⊥, ei = ⊥ or ei = e′ i.
For the purpose of the semantic presentation, we could have used N instead of
Z⊥ (Ê would still be a pointed cpo with that choice), but we will make use of
the revised definition in Section 4.4: unlike N → E⊥, Z⊥ → E⊥ is actually the
denotation of a type in our standard static signature.

Correspondingly, we define our new wrapper functions taking lifting into
account:

L̂ITb ∈ Bs(b)⊥ → Ê = λd. λi. d �⊥ λn.η⊥ (LITb n)

ĈST ∈ V⊥ → Ê = λd. λi. d �⊥ λv.η⊥ (CSTv)

V̂AR ∈ V⊥ → Ê = λd. λi. d �⊥ λv.η⊥ (VARv)

L̂AM ∈ (V⊥ → Ê) → Ê =

λf. λi. i �⊥ λj.f (η⊥ gj)(η⊥ (j + 1)) �⊥ λl.η⊥ (LAM〈gj , l〉)

ÂPP ∈ Ê × Ê → Ê = λ〈e1, e2〉.λi.e1 i �⊥ λl1.e2 i �⊥ λl2.η⊥ (APP〈l1, l2〉)

For the residualizing interpretation on types, we now specify

Br
d(b) = Ê

Together with the standard interpretation of the static base types, this deter-
mines the semantics of any type σ over Σs ∪ Σd.

The reification functions can be written exactly as before: for any dynamic
type τ , we define a pair of continuous functions by induction on the structure
of τ :

↓τ ∈ [[τ]]Is∪Ir
d → Ê

↓b = λt. t

↓τ1
.→τ2 = λf. L̂AM(λv.↓τ2 (f (↑τ1 (V̂ARv))))

↑τ ∈ Ê → [[τ]]Is∪Ir
d

↑b = λe.e

↑τ1
.→τ2 = λe.λa.↑τ2 (ÂPP(e, ↓τ1 a))

Normalization and Partial Evaluation 167

Finally, we can construct the residualizing interpretation of terms. Again, we
give only the interpretation of Σd’s term constants; the semantics of lambda-
abstraction and application are fixed by the semantic framework. We take:

Cr
d(cτ1,...,τn

) = ↑Σd(cτ1,...,τn
) (ĈSTc) Cr

d($b) = L̂ITb

That is, a general dynamic constant is simply interpreted as the reflection of its
name, while a lifting function forces evaluation of its argument and constructs a
representation of the literal result. (It is this forcing of static subcomputations
that may cause the whole specialization process to diverge.)

Finally, we are again ready to define the normalization function:

Definition 5. For any dynamic type τ , define the auxiliary function

reifyτ ∈ [[τ]]Is∪Ir
d → E⊥, reifyτ = λa.↓τ a(η⊥ 0)

Then for any closed term � E : τ , define the partial function,

normIs E =
{

Ẽ if reifyτ ([[E]]Is∪Ir
d ∅) = η⊥ �Ẽ�

undefined otherwise

And again, we can state three properties of the normalization function:

Theorem 6 (Partial Correctness). Let �Σs∪Σd E : τ be a closed term of
fully dynamic type. Then

1. normIs is type-preserving (but not necessarily total): if normIs E = Ẽ for
some Ẽ then �Σd Ẽ : τ and �nf Ẽ : τ .

2. If normIs E = Ẽ for some Ẽ then Is � Ẽ = E.
3. If Is � E = E′ then normIs E and normIs E′ are either both undefined or

both defined and equal.

The proof is somewhat more involved than in the pure lambda calculus case,
since we can no longer exploit that any term over the full signature is statically
equivalent to one in normal form (terms involving static fixed points may have
no normal forms). We can, however, adapt an explicit normalization proof based
on Kripke logical relations to the domain-theoretic case without too much addi-
tional trouble. The details can be found in [Fil99b], which also sketches how the
normalization result relates to the correctness proof of the Lambda-mix partial
evaluator [JGS93, Section 8.8].

Without strong normalization, another notion from rewriting enters: in gen-
eral it may be that one series of reductions brings a term to normal form, while
another gives rise to an infinite reduction sequence. We usually say that a re-
duction strategy is complete if it terminates with a normal form whenever the
term can be reduced to normal form at all. For the pure, untyped lambda calcu-
lus, for example, one can show that always contracting the leftmost-outermost
redex is a complete strategy for β-normalization. A similar property holds for
our normalizer:

168 Peter Dybjer and Andrzej Filinski

Theorem 7 (Completeness). If for a term E, there exists an Ẽ satisfying the
conclusions of parts (1) and (2) of Theorem 6, then normIs E is in fact defined.

The proof proceeds by showing (through another simple logical-relations ar-
gument) that for any �Σd Ẽ : τ , normIs Ẽ is defined. Thus, if Is � E = Ẽ, then,
by Property (3) of Theorem 6, normIs E = normIs Ẽ and thus normIs E must
be defined. Again, the details can be found in [Fil99b].

4.4 A Normalization Algorithm

Note that, so far, we have only been considering a mathematical normalization
function: from the denotation of a term in a particular domain-theoretic model,
we can extract a syntactic representation of the normal form of the term, if it
exists. We will now consider how to exploit this result to actually compute that
normal form using a functional program.

The benefit of limiting the variation of interpretation to just base types and
constants should now be apparent: instead of constructing an implementation
of a non-standard denotational semantics, we can construct it in terms of an
existing implementation of a standard semantics. We only need to construct a
syntactic counterpart to the notion of a residualizing interpretation. This can be
formalized as follows:

Definition 6. A realization Φ of a signature Σ over a signature Σ′ is a type-
preserving substitution that assigns to every type constant of Σ a type phrase
(not necessarily atomic) over Σ′, and to every term constant of Σ a term over
Σ′. Applying such a substitution to a Σ-phrase (type or term) θ, we obtain a
Σ′-phrase θ{Φ}.

We assume now that we have a PCF-like programming language with sig-
nature Σpl ⊇ Σs and interpretation Ipl agreeing with Is on Σs, as well as an
executable implementation of the corresponding evaluation function evalIpl . For
notational simplicity, we will also require that the programming language in-
cludes binary product types. (This is not essential, as we could have made all
functions curried.)

Assume further that our programming language includes base types var and
exp, with Bpl(var) = V and Bpl(exp) = E. Moreover, let Σpl contain constructor
constants corresponding to the semantic constructor functions, for example,

Σpl(VAR) = var .→ exp Cpl(VAR) = λdV⊥.d �⊥ λv.η⊥ (VARv)

(Note that we extend the semantic constructor function from sets to flat domains
to fit into the interpretation of types.) Finally, we assume a function constant
mkvar : int → var such that for all i ∈ N, Cpl(mkvar)(η⊥ i) = η⊥ gi.

For the type part of the residualizing interpretation, we first define the ab-
breviation

expf ≡ int .→ exp

Normalization and Partial Evaluation 169

and then take, for all dynamic base types b,

Φr(b) = expf

This gives us exactly [[b{Φr}]]Ipl = Ê = [[b]]Is∪Ir
d , and thus [[τ{Φr}]]Ipl = [[τ]]Is∪Ir

d

for all τ .
The wrapper functions are likewise denotable by Σpl-terms, for example,

LAMF : (var .→ expf) .→ expf , LAMF ≡ λ·f.λ·i.LAM·(mkvar·i, f ·(i + 1))

with [[LAMF]]Ipl = L̂AM, and analogously for the other wrappers. Note that
the explicit forcing in the semantic terms comes for free from the strict behav-
ior of the term-constructor and arithmetic constants. We can then express the
realizations of reflection and reification analogously to their semantic definitions:

reifyfτ : τ{Φr} .→ expf

reifyfb ≡ λ·e.e
reifyfτ1

.→τ2
≡ λ·f.LAMF·(λ·v. reifyfτ2

·(f ·(reflectfτ1 ·(VARF·v))))

reflectfτ : expf .→ τ{Φr}
reflectfb ≡ λ·e.e

reflectfτ1
.→τ2 ≡ λ·e.λ·a. reflectfτ2 ·(APPF·(e, reifyfτ1

·a))

with [[reifyfτ]]Ipl ∅ = ↓τ and [[reflectfτ]]Ipl ∅ = ↑τ . And as the residualizing realiza-
tion of the term constants in Σd, we finally take,

Φr(cτ1,...,τn
) = reflectfΣd(cτ1,...,τn

)·(CSTF·c)
Φr($b) = LITFb

It is now straightforward to show:

Theorem 8 (Implementing the CBN normalizer). For any dynamic type
τ , we define the term

reifyτ : τ{Φr} .→ exp, reifyτ ≡ λ·a. reifyfτ ·a·0

Then the static normal form function of any closed term �Σs∪Σd E : τ can be
computed as:

normIs E = Ẽ iff evalIpl (reifyτ ·E{Φr}) = �Ẽ�

In particular, for partial evaluation, if we have a function of two arguments,
where the second argument and the result type are classified as dynamic, that
is,

�Σs∪Σd F : σ .→ τ .→ τ ′

then for any static value �Σs∪Σd s : σ, we can compute normIs (F ·s) to obtain
the specialized program �Σd F̃s : τ .→ τ ′.

170 Peter Dybjer and Andrzej Filinski

Remark 3. The semantics of the type exp is actually a bit subtle. Note that our
analysis assumes that Bpl(exp) is a flat domain, with strict constructor func-
tions. This is trivially satisfied if we take exp as, for example, the type of strings.
However, if we simply use a Haskell-style datatype to define exp, it will also in-
clude many “partially defined” values because of the extra liftings of sum types.
Worse, the constructor functions will not be strict, and the reification function
may in fact produce partially defined results when static subcomputations di-
verge. Only when the normalized term has been completely printed can we be
sure that the normalization function was in fact defined.

Remark 4. When there are no dynamic constants in the signature, the substi-
tution Φr simply replaces all occurrences of b in type tags with exp. In a poly-
morphic language such as Haskell or ML, this allows a shortcut: one can simply
leave all dynamic types in E as uninstantiated polymorphic type variables; the
application of reify will instantiate them to exp. Moreover, any (monomorphic)
dynamic constants can also be handled using explicit lambda-abstractions. This
approach was used in early presentations of TDPE [Dan96], but gets awkward
for larger examples. The functor-based approach described below scales up more
gracefully.

Example 2. Returning to the possible annotations of the power function from
Example 1, we get

norm($·(powerss·3·4)) = $·81

norm(λ·xint.powerds·x·3) = λgint
0 .g0 × (g0 × (g0 × $·1))

norm(λ·xint.powerds·x·-2) undefined

Note first that ordinary evaluation is just a special case of static normaliza-
tion. The second example shows how static normalization achieves the partial-
evaluation goal of the introduction. Finally, some terms have no static normal
form at all; in that case, the normalization function must diverge.

As a further refinement, the signatures and realizations can be very conve-
niently expressed in terms of parameterized modules in a Standard ML-style
module system. The program to be specialized is simply written as the body
of a functor parameterized by the signature of dynamic operations. The functor
can then be applied to either an evaluating (Φe) or a residualizing (Φr) structure.
That is, applying the relevant substitutions does not even require an explicit syn-
tactic traversal of the program, making it possible to enrich the static fragment
of the language (for example, with pattern matching) without any modification
to the partial evaluator itself.

It is also worth noting that the τ -indexed families above can be concisely
defined even in ML’s type system: consider the type abbreviation

rr(α) ≡ (α .→ expf) .× (expf .→ α) .

Normalization and Partial Evaluation 171

Then for any dynamic type τ , we can construct a term of type rr(τ{Φr}) whose
value is the pair (reifyfτ , reflectfτ). We do this by defining once and for all two
ML-typable terms

base : rr(expf) arrow : ∀α, β. rr(α) .× rr(β) .→ rr(α .→ β) ,

with which we can then systematically construct the required value. The tech-
nique is explained in more detail elsewhere [Yan98].

Finally, the dynamic polymorphic constants (for example, fix) now take ex-
plicit representations of the types at which they are being instantiated as extra
arguments. In the evaluating realization, these extra arguments are ignored, since
the standard interpretations of dynamic constants are parametrically polymor-
phic; but the residualizing realization uses the type representations to construct
the reify-reflect pair for Σ(cτ1,...,τn

) given corresponding pairs for τ1, . . . , τn.
We do not show actual runnable code here, since there is no widely adopted

CBN language with SML-style functors, allowing multiple implementations of a
given signature to coexist in the same program. On the other hand, while the
terms above can certainly be coded in ML, their behavior would be suspect for
anything involving recursion. We refer the reader to Section 5.5 for actual SML
code implementing normalization in a call-by-value language; the correspond-
ing code for CBN is virtually identical, except for the actual definitions of the
reification and reflection functions.

5 TDPE for Call-by-Value and Computational Effects

To complete the transition to practical programming, we need to account for the
fact that execution of functional programs may involve general computational ef-
fects, both “internal” (such as catching and throwing exceptions) and “external”
(such as performing I/O operations). It is well known that reasoning about such
programs requires a more refined notion of equivalence than full βη-conversion.

We will look at computational effects in an ML-like call-by-value setting,
where it will turn out that both the semantic and syntactic characterizations
of normal forms differ significantly from the purely functional ones. We ex-
pect, however, that the results in this section can be adapted to programs in
purely functional languages, written in “monadic style”: we would then effec-
tively be normalizing with respect to an equational theory including not only
βη-conversion, but also the three monad laws.

The effectful setting is where the semantic notion of convertibility really
shines: being able to reason about interpreted constants in terms of their deno-
tations, rather than their operational behavior, proves to be a substantial help
when proving the correctness of the final normalization-by-evaluation algorithm,
since that algorithm itself is implemented in terms of computational effects.

172 Peter Dybjer and Andrzej Filinski

5.1 A Call-by-Value Language Framework

As before, a program is a term over a signature of type and term constants. This
time, however, the basic language is a bit richer. We add three new components:

– A let-expression for explicitly expressing sequencing.
– Binary products. (This is mainly for cosmetic reasons, as curried arithmetic

primitives get somewhat ugly in CBV.)
– A primitive type of booleans and an if-expression. We could easily generalize

to general disjoint-union types (see Exercise 8), but simple booleans illustrate
the basic principles.

The set of types over Σ is therefore now:

b ∈ Σ

�Σ b type

�Σ σ1 type �Σ σ2 type

�Σ σ1
.→ σ2 type

�Σ σ1 type �Σ σ2 type

�Σ σ1
.× σ2 type �Σ bool type

The terms are much as before, with the straightforward addition of the fol-
lowing constructors:

Γ �Σ E1 : σ1 Γ, x : σ1 �Σ E2 : σ2

Γ �Σ let x = E1 in E2 : σ2

Γ �Σ E1 : σ1 Γ �Σ E2 : σ2

Γ �Σ (E1, E2) : σ1
.× σ2

Γ �Σ E : σ1
.× σ2 Γ, x1 : σ1, x2 : σ2 �Σ E′ : σ

Γ �Σ match (x1, x2) = E in E′ : σ

Γ �Σ true : bool Γ �Σ false : bool

Γ �Σ E1 : bool Γ �Σ E2 : σ Γ �Σ E3 : σ

Γ �Σ if E1 then E2 else E3 : σ

(We use a pattern-matching construct instead of explicit projections, which could
be defined like fstE ≡ match (x, y) = E in x. This gives a more uniform treat-
ment of normal forms, but is not essential. In practice, one would typically extend
the language to allow general pattern matching in lambda- and let-bindings. See
Exercise 9.)

Again, we say that a complete program is a closed term of base type.

For the semantics, we get a new component: an interpretation is now a
quadruple I = (B,L, C, T), where T = (T, η, �) is a monad modeling the spec-
trum of effects in the language. To model recursion we require that T admits a
monad morphism from the lifting monad, ensuring that any A⊥-computation can
be meaningfully seen as a TA-computation. Technically, the condition amounts
to requiring that the cpo TA is pointed for any A, and that the function
λt. t � f ∈ TA → TB is strict for any f ∈ A → TB, that is, that ⊥TA � f = ⊥TB .

Normalization and Partial Evaluation 173

(Of course, one can take the monad T to be simply lifting, but we will see in
a moment why baking this choice into the semantic framework will prevent us
from using NBE.)

We can then define the CBV semantics of types:

[[b]]Iv = B(b)

[[bool]]Iv = B

[[σ1
.× σ2]]Iv = [[σ1]]Iv × [[σ2]]Iv

[[σ1
.→ σ2]]Iv = [[σ1]]Iv → T [[σ2]]Iv

Note that the meaning of a type is now a cpo that is not necessarily pointed.
The meaning of a type assignment is still a product cpo,

[[Γ]]Iv =
∏

x∈dom Γ

[[Γ (x)]]Iv

but it will not in general be pointed, either.
The meaning of a term Γ �Σ E : σ is now a continuous function [[E]]Iv ∈

[[Γ]]Iv → T [[σ]]Iv ,

[[l]]Iv ρ = η (Lb(l))

[[cσ1,...,σn
]]Iv ρ = η (C(cσ1,...,σn

))

[[true]]Iv ρ = η true

[[false]]Iv ρ = η false

[[x]]Iv ρ = η (ρx)

[[(E1, E2)]]Iv ρ = [[E1]]Iv ρ � λa1. [[E2]]Iv ρ � λa2.η 〈a1, a2〉
[[match (x1, x2)= E in E′]]Iv ρ = [[E]]Iv ρ � λ〈a1, a2〉. [[E′]]Iv (ρ[x1 → a1, x2 → a2])

[[λ·xσ.E]]Iv ρ = η (λa[[σ]]Iv. [[E]]Iv (ρ[x → a]))

[[E1·E2]]Iv ρ = [[E1]]Iv ρ � λf. [[E2]]Iv ρ � λa.f a

[[if E1 then E2 else E3]]Iv ρ = [[E1]]Iv ρ � λb. if b then [[E2]]Iv ρ else [[E3]]Iv ρ

[[let x = E1 in E2]]Iv ρ = [[E1]]Iv ρ � λa. [[E2]]Iv (ρ[x → a])

(Note that the let-construct appears redundant, because we have

[[let x = E1 in E2]]Iv = [[(λx.E2)E1]]Iv ,

but it turns out that including it gives a nicer syntactic characterization of
normal forms.)

The standard static signature is similar to that of Definition 3, except that
we no longer include the type constant bool, the associated literals true and false,
or the constant if in Σs: those are now part of the fixed language core. Also, since
it only makes sense to define recursive values of functional type, the fixed-point
constants are now parameterized by two types,

fixσ1,σ2 : ((σ1
.→ σ2) .→ σ1

.→ σ2) .→ σ1
.→ σ2

174 Peter Dybjer and Andrzej Filinski

Finally, we make the arithmetic and comparison operators uncurried, so that
the infix operation x + y now stands for +·(x, y), etc.

The standard interpretation of the constants is also what could be expected:

Bs(int) = Z

Cs(�) = λ(x, y)Z×Z.η (x � y)
∈{+,−,×,=,<}

Cs(fixσ1,σ2) = λf ([[σ1]]→T [[σ2]])→T ([[σ1]]→T [[σ2]]).

η (
⊔

i∈ω
(λg[[σ1]]→T [[σ2]].λa[[σ1]].f g � λg′.g′ a)i (λa[[σ1]].⊥T [[σ2]]))

Note how we make crucial use of the requirement that T [[σ2]] must have a least
element, for the interpretation of fix.

5.2 Binding Times and Static Normalization

As before, we consider a binding-time annotated program to be expressed over
a signature which has been explicitly partitioned into a static and a dynamic
part. We still say that a general type is fully dynamic if it is constructed using
base types from only the dynamic part of the signature.

For the interpretation of a partitioned signature, we require that all static
constants have meanings parametric in the choice of monad, being able to rely
only on TA being pointed, but not on any other structure of T ; this still allows
us to include operations such as the fixed-point operator above, and possibly
additional primitive partial functions. On the other hand, the meanings of the
dynamic constants may be expressed with respect to a specific monad. Thus, in
a combined interpretation Is∪Id, all the constants can still be given a consistent
interpretation based on the monad of Id. As before, we can then define a notion
of static equivalence: Is �v E = E′ iff for all Id interpreting the dynamic types,
constants, and monad, [[E]]Is∪Id

v = [[E′]]Is∪Id
v .

This notion of static equivalence captures transformations that are safe for
any CBV language with monadic effects. For example, when x does not occur
free in E3, we always have

Is �v (let y = (let x = E1 in E2) in E3) = (let x = E1 in let y = E2 in E3)

Remark 5. Another interesting static equivalence is the following:

Is �v f ·(if E1 then E2 else E3) = if E1 then f ·E2 else f ·E3

This static equivalence is particularly remarkable since it does not hold in the
CBN semantics, unless f is known to denote a strict function, or E1 is guaranteed
to converge. This equation, sometimes known as a commuting conversion, allows
us to eliminate all bool-typed variables as soon as they are introduced (by a
lambda-, match- or let-binding), which enables a simple CBV NBE result for
booleans and sums. An NBE result for sum types in a CBN-like setting was
obtained very recently [ADHS01], but the details are considerably more involved
than for the CBV case treated below.

Normalization and Partial Evaluation 175

It is easy to show that the computational lambda calculus [Mog89] is sound
with respect to static equivalence. (Under certain circumstances, one can also
show that it is complete, much like βη-conversion was complete with respect to
CBN static equivalence.)

For a syntactic characterization of normal forms, somewhat analogous to the
CBN case, we now have notions of normal values and normal computations:

∆(x) = b

∆ �nv x : b

l ∈ Ξ(b)
∆ �nv $·l : b

∆ �nv E1 : τ1 ∆ �nv E2 : τ2

∆ �nv (E1, E2) : τ1
.× τ2

∆ �nv true : bool ∆ �nv false : bool
∆, x : τ1 �nc E : τ2

∆ �nv λ·xτ1.E : τ1
.→ τ2

∆ �nv E : τ

∆ �nc E : τ

∆(x) = bool ∆ �nc E1 : τ ∆ �nc E2 : τ

∆ �nc if x then E1 else E2 : τ

∆(x) = τ1
.× τ2 ∆, x1 : τ1, x2 : τ2 �nc E : τ

∆ �nc match (x1, x2) = x in E : τ

∆(x2) = τ1
.→ τ2 ∆ �nv E1 : τ1 ∆, x1 : τ2 �nc E2 : τ

∆ �nc let x1 = x2·E1 in E2 : τ

Σ(c) = τ1
.→ τ2 ∆ �nv E1 : τ1 ∆, x : τ2 �nc E2 : τ

∆ �nc let x = c·E1 in E2 : τ

In particular, for terms not involving boolean or product types, a normal value
is either a base-typed constant or variable, or of the form

λ·x. let x1 = f1·V1 in · · · let xn = fn·Vn in Vn+1 (n ≥ 0) ,

where all the Vi are normal values, and each fi is a function-typed constant or
variable.

(These rules are actually a bit too permissive, in that they admit both vari-
ants of statically equivalent terms, such as

λ·xbool. if x then 3 else 4 and λ·xbool. if x then 3 else if x then 5 else 4

Of course, a proper normalization function can only return one of those. To
get a more precise syntactic characterization of normal forms, one needs to fur-
ther restrict the occurrences of sum- and product-typed variables, and to pick a
canonical order for their elimination. This can be done fairly straightforwardly
using a split typing context [Fil01]; we omit the details here.)

Remark 6. The observant reader may note that the rules for normal forms es-
sentially correspond (modulo implicit uses of contraction and weakening) to the
left- and right-introduction rules for a Gentzen-style intuitionistic sequent cal-
culus. (The general form of the if-rule as a case expression introduces bound

176 Peter Dybjer and Andrzej Filinski

variables corresponding to the disjuncts.) Moreover, the typing of the general
let corresponds to a cut. In other words, reducing CBV terms to normal form
is closely related to cut-elimination. On the other hand, for the CBN normal-
izer, the rules correspond to the usual introduction and elimination rules in a
natural-deduction calculus. It would be interesting to further investigate these
connections to standard proof-normalization theory. Some results in this direc-
tion have already been obtained by Ohori [Oho99]; see [Fil01] for a more detailed
discussion of this issue.

5.3 A Residualizing Interpretation for CBV

We now aim to find an NBE result for the CBV setting. Note that for the resid-
ualizing interpretation, we need a more “powerful” effect than simple partiality
(as embodied by the lifting monad), because we need to distinguish between
terms such as

E1 ≡ λ·f.λ·x.(λ·y.x)·(f ·x) and E2 ≡ λ·f.λ·x.x

which have observably different behavior (even when the effect is only partial-
ity), and therefore should have different normal forms. But taking partiality as
the residualizing effect will not allow us to extract enough information from the
residualizing interpretations of those two terms to reconstruct them accurately:
for any I whose T is the lifting monad, we have [[E1]]Iv ρ � [[E2]]Iv ρ (with the
strictness of the inequality demonstrated by application of both sides to λa.⊥).
But �E1

� �� �E2
�, so there can be no monotone (let alone continuous) func-

tion reify ∈ [[(b .→ b) .→ b .→ b]]Iv → E⊥ such that reify([[E1]]Iv ∅) = η⊥ �E1
� and

reify([[E2]]Iv ∅) = η⊥ �E2
�.

Instead, we pick for the residualizing interpretation a “universal” effect, which
will ensure that we can probe the residualizing semantic interpretations closely
enough to make all the required distinctions.

Incidentally, such a choice also allows the task of fresh-name generation to
be folded into the residualization monad, instead of requiring us to work with
term families such as Ê. We can now use an effect-based notion of freshness,
generating “globally unique” variable names; with a suitable effect structure, we
can actually make this concept precise.

We first define the name-generation monad. This is just a state-passing
monad on top of partiality; the state is the “next free index”:

T gA = Z → (A × Z)⊥
ηg a = λi.η⊥ 〈a, i〉

t �g f = λi. t i �⊥ λ〈a, i′〉.f ai′

(As in CBN, we use integers rather than natural numbers for the index, in antic-
ipation of embedding the construction into an existing programming language.)

Normalization and Partial Evaluation 177

Using T g we can define an effectful computation that generates a fresh name,
and one that initializes the counter for a delimited subcomputation:

new ∈ T gV
new = λi.η⊥ 〈gi, i + 1〉

withctA ∈ T gA → T gA
withctA = λt.λi. t0 �⊥ λ〈a, i′〉.η⊥ 〈a, i〉

Further, we define T c to be the continuation monad with answer domain
chosen as T gE:

T cA = (A → T gE) → T gE

ηc a = λκ.κa

t �c f = λκ.t(λa.f aκ)

Every T g-computation can be seen as a T c-computation without control effects,
through the monad morphism γg,c

A ∈ T gA → T cA given by

γg,c
A t = λκA→T gE. t �g κ.

In particular, we can “lift” the name-generation functions to T c-computations
as

cnew ∈ T cV
cnew = λκ.λi.κgi (i + 1)

cwithctA ∈ T cA → T cA
cwithctA t = λκ.λi. t(λa.λi′.κai)0

These satisfy the natural equations cnew = γg,c new and cwithct(γg,c t) =
γg,c (withct t).

In any continuation monad, we can define operators for capturing complete
continuations (such as Scheme’s call/cc). However, for our particular choice
of answer domain, we can also define operations for working with delimited or
composable continuations [DF90]:

reset ∈ T cE → T cE

reset t = γg,c
E (tηg) = λκ.tηg �g κ

shiftA ∈ ((A → T cE) → T cE) → T cA

shiftA h = λκ.h(λa.γg,c
E (κa))ηg = λκ.h(λa.λκ′.κa �g κ′)ηg

Here, reset t evaluates t with an empty continuation, thus encapsulating any con-
trol effects t might have. shifth captures and removes the current continuation
(up to the nearest enclosing reset), and passes it to h as a control-effect-free
function.

These definitions are somewhat awkward to work with directly. However, we
can easily check that they validate the following equational reasoning principles:

reset(ηc a) = ηc a

reset(shifth �c f) = reset(h(λa.reset(f a)))

reset(γg,c t �c f) = γg,ct �c λa.reset(f a)

178 Peter Dybjer and Andrzej Filinski

The first of these says that a reset does not affect effect-free computations. The
second specifies the behavior of a delimited shift-operation. (Remember that
shifth = shifth �c ηc, and (shifth �c f) �c g = shifth �c (λa.f a �c g) by the usual
monad laws, so the equation is widely applicable.) The third allows computations
such as cnew (without control effects, but not necessarily completely effect-free)
to be moved outside a reset. For example, we can derive

reset
(
shift(λk.k3 �c λx.ηc (x + 1)) �c λr.ηc (2 × r)

)
�c λa.ηc (−a)

= reset
(
(λk.k3 �c λx.ηc (x + 1))(λa.reset(ηc (2 × a)))

)
�c λa.ηc (−a)

= reset
(
reset(ηc 6) �c λx.ηc (x + 1)

)
�c λa.ηc (−a)

= reset
(
ηc 6 �c λx.ηc (x + 1)

)
�c λa.ηc (−a)

= reset (ηc 7) �c λa.ηc (−a) = ηc (−7)

Note how the doubling operation (which uses the result of shift directly) gets
captured as part of k, while the outer negation (which is protected by a reset) is
not. It is this ability of shift to reschedule “future” computations that will allow
us to properly arrange the residual code as it is being incrementally generated.

We can now take as the non-standard interpretation of dynamic base types
and effects,

Br
d(b) = E and T r = T c

which again allows us to define reification and reflection functions:

↓v
τ ∈ [[τ]]Is∪Ir

d
v → T rE

↓v
b = λe.ηr e

↓v
bool = λb. if b then ηr TRUE else ηr FALSE

↓v
τ1

.×τ2
= λ〈a1, a2〉.↓v

τ1
a1 �r λe1.↓v

τ2
a2 �r λe2.η

r (PAIR〈e1, e2〉)
↓v

τ1
.→τ2

=

λf.cnew �r λv.reset
(
↑v

τ1
(VARv) �r λa.f a �r λb.↓v

τ2
b
)

�r λe.ηr (LAM〈v, e〉)

↑v
τ ∈ E → T r[[τ]]Is∪Ir

d
v

↑v
b = λe.ηr e

↑v
bool = λe.shift(λk.k true �r λe1.k false �r λe2.η

r (IF〈e, e1, e2〉))
↑v

τ1
.×τ2

=

λe.shift(λk.cnew �r λv1.cnew �r λv2.
reset

(
↑v

τ1
(VARv1) �r λa1.↑v

τ2
(VARv2) �r λa2.k 〈a1, a2〉

)
�r λe′.

ηr (MATCH〈〈v1, v2〉, e, e′〉))
↑v

τ1
.→τ2

= λe.ηr(λa.cnew �r λv.
shift(λk.↓v

τ1
a �r λe′.reset(↑v

τ2
(VARv) �r k) �r λe′′.

ηr (LET〈v,APP〈e, e′〉, e′′〉)))

Observe how the non-trivial reflection functions use shift to wrap a syntactic
binding or a test around their invocation points, which are expecting seman-
tic results. Note also how reflection of a boolean expression sequentially traces

Normalization and Partial Evaluation 179

through both possibilities for the boolean value returned, by passing both true
and false to the continuation k.

Remark 7. It is evident that a new variable is generated every time the pseudo-
semantic function returned by ↑τ1→τ2 e is applied. Had we instead, incorrectly,
written ↑τ1→τ2 as λe.cnew �r λv.ηr (λa.shift · · ·), all such applications would
share the same let-variable name, causing clashes. This illustrates how mon-
ads allow us to be precise about “freshness” in a way that informal annotations
of definitions do not readily support.

The residualizing interpretation of dynamic constants and lifting is now:

Cr
d(cτ1,...,τn

) = ↑v
Σ(cτ1,...,τn) (CSTc)

Cr
d($b) = λnBs(b).ηr (LITb n)

Finally, we can again define a static-normalization function. For CBN, we
could restrict ourselves to normalizing closed terms, because free variables could
be lambda-abstracted without changing the result. For CBV, we make the ad-
ditional restriction that the term to be normalized must be a formal value (con-
stant, variable, lifted literal, or lambda-abstraction); we can always wrap a non-
value term E in a dummy lambda-abstraction λ·d.E. We thus take:

Definition 7. For any dynamic type τ , define the auxiliary function

reifyv
τ ∈ [[τ]]Is∪Ir

d
v → T rE, reifyv

τ = λa.cwithctE (↓v
τ a)

(Note how initialization of the counter now happens using computational effects.)
Then, for any closed value �Σs∪Σd E : τ , we define the normalization function

normIs
v E =

{
Ẽ if reifyv

τ ([[E]]Is∪Ir
d

v ∅) = ηr �Ẽ�

undefined otherwise

Again, we can summarize the result:

Theorem 9 (Correctness of CBV normalizer). Partial correctness:

1. For any closed value �Σs∪Σd E : τ , if normIs
v E = Ẽ for some Ẽ then

�nv
Σd

Ẽ : τ .
2. If normIs

v E = Ẽ then Is �v E = Ẽ.
3. if Is �v E = E′ then normIs

v E = normIs
v E′ (both defined and equal, or both

undefined).

Completeness: If E is statically equivalent to some term in normal form,
normIs

v E is defined.

The proofs for both halves are similar to the CBN case, but somewhat more
elaborate, due to the extra parameterization on a dynamic monad, and the
more complicated reification and reflection functions.

180 Peter Dybjer and Andrzej Filinski

Remark 8. It is possible to define a CBV normalization function using only a
suitable state monad in the residualizing interpretation, rather than continua-
tions [SK01, Section 4]. This approach, however, does not allow the normalizer
to handle booleans and sum types as part of the semantic framework.

5.4 A CBV Normalization Algorithm

Again, we can formulate the semantic normalization results in terms of a syntac-
tic realization of the components. As before, we assume that our programming
language has types var, exp, and constants corresponding to the constructor
functions, for example,

Σpl(APP) = exp .× exp .→ exp Cpl(APP) = λ〈e1, e2〉.ηr (APP〈e1, e2〉)

(Note that, unlike for the CBN case, the arguments of the constructor functions
are values, not computations)

We also assume that Tpl = T r, and that we have constants whose interpre-
tations correspond to the semantic functions for name generation and control
primitives:

Σpl(gensym) = 1 → var Cpl(gensym) = λ〈〉.cnew

Σpl(withctσ) = (1 → σ) → σ Cpl(withctσ) = λt.cwithct(t〈〉)
Σpl(reset) = (1 → exp) → exp Cpl(reset) = λt.reset(t〈〉)

Σpl(shiftσ) = ((σ → exp) → exp) → σ Cpl(shiftσ) = shift[[σ]]

Like in the CBN case, a practical programming language usually has many
further types and constants, beyond what we need to construct the residualizing
interpretation of the dynamic signature. Additionally, a CBV language typically
has a wider spectrum of effects than captured by the residualizing monad T r.
(For example, it may allow functions to have side effects or to perform I/O oper-
ations.) And it is not obvious that this additional generality of the programming
language will not get in the way of our result.

What we require is that we can simulate the behavior of a T r-computation
using whatever more general monad the programming language provides. In
fact, we only need to consider evaluation of programs without top-level residuali-
zation-specific effects. In other words, we only require that the evaluation partial
function for complete programs (closed terms of base type) satisfies:

evalIpl
v E =

{
l if [[E]]Ipl

v ∅ = ηpl (Lb (l))
undefined if [[E]]Ipl

v ∅ = ⊥

Note that, unlike the case for CBN, these two possibilities are not exhaustive:
the result of evalIpl

v is unspecified for programs with top-level effects other than
divergence, for example, those that try to capture the top-level continuation,
or rely on the initial value of the gensym counter. Evaluation of such programs

Normalization and Partial Evaluation 181

may abort, diverge, or even return unpredictable results. Of course, the program
E that we evaluate to execute the normalization algorithm will not have such
effects.

One can show that an evalIpl
v with the above properties can be implemented

through a further realization of Σpl in any general-purpose functional language
that supports first-class continuations and references [Fil99a]. (In fact, we can
implement a whole hierarchy of monads by such an embedding, and thus avoid
the need to explicitly lift many monad operations, such as withct to cwithct.)
The details are beyond the scope of these notes, but we do show the actual
construction in Section 5.5.

We can now simply take the residualizing realizations of all dynamic base
types as the type of term representations,

Φr
v(b) = exp

and express the CBV reification and reflection functions as Σpl-terms with ef-
fects:

reifyveτ : τ{Φr
v} .→ exp

reifyveb ≡ λ·e.e
reifyvebool ≡ λ·b. if b then TRUE else FALSE

reifyveτ1
.×τ2

≡ λ·p.match (x1, x2) = p in PAIR·(reifyveτ1
·a1, reifyveτ2

·a2)

reifyveτ1
.→τ2

≡ λ·f. let v = gensym·()
in LAM·(v, reset·(λ·(). reifyveτ2

·(f ·(reflectveτ1 ·(VAR·v)))))

reflectveτ : exp .→ τ{Φr
v}

reflectveb ≡ λ·e.e
reflectvebool ≡ λ·e.shift·(λ·k. IF·(e, k·true, k·false))

reflectveτ1
.×τ2 ≡
λ·e. let v1 = gensym·()

in let v2 = gensym·()
in shift·(λ·k.MATCH·((v1, v2), e,

reset·(λ·().k·(reflectveτ1 ·(VAR·v1), reflectveτ2 ·(VAR·v2)))))

reflectveτ1
.→τ2 ≡ λ·e.λ·a. let v = gensym·()

in shift(λk.LET·(v,APP·(e, reifyveτ1
·a),

reset·(λ·().k·(reflectveτ2 ·(VAR·v)))))

Note that, although these terms are significantly more complicated than their
CBN counterparts, they still share some basic structure. For reification at func-
tional type, we still reflect a new VAR, apply the function, reify the result, and
generate a LAM. Similarly, for reflection, we reify the function argument, gen-
erate an APP, and reflect the result (bound to an intermediate variable this
time.) The main conceptual change is in the added shift and reset operations to
suitably rearrange the generated code.

182 Peter Dybjer and Andrzej Filinski

We complete the residualizing realization of the dynamic signature by taking

Φr
v(cτ1,...,τn

) = reflectveΣ(cτ1,...,τn
)·(CST·c)

Φr
v($b) = λ·n.LITb·n

Finally, we can state again a procedure for computing CBV normal forms:

Theorem 10 (Implementing the CBV normalizer). We define the auxil-
iary term

reifyvτ : τ{Φr
v} .→ exp, reifyvτ ≡ λ·a.withctexp·(λ·(). reifyveτ ·a)

Then for any closed value �Σs∪Σd
E : τ , its CBV static normal form can be

computed as

normIs
v E = Ẽ iff evalIpl

v (reifyvτ ·E{Φr
v}) = �Ẽ�

For partial evaluation, we again take the E to be normalized as the partial
application of the binding-time separated original program to the static argu-
ment:

Example 3. Let us revisit the power function from Example 1 in a CBV setting.
With conditionals now being part of the framework, here are the two interesting
annotations of power:

powerds : ι .→ ι .→ ι = λ·x.fixι,ι·(λ·p.λ·n. if n = 0 then $·1 else x × p·(n − 1))

powersd : ι .→ ι .→ ι =

λ·x.fixι,ι·(λ·p.λ·n. if n = $·0 then $·1 else $·x × p·(n − $·1))

(Note that, unlike for the CBN variant, the “ifs” are not binding-time anno-
tated.) Computing the normal form of λ·x.powerds·x·3, we get

λ·g0. let g1 = g0 × $·1 in let g2 = g0 × g1 in let g3 = g0 × g2 in g3

Conversely, if we specialize with respect to the base, by computing the normal
form of λ·n.powersd·5·n, we obtain essentially just the let-normal form of the
original program, with the literal argument 5 inlined:

λ·g0. let g1 = fixι,ι·(λg2. λg3. let g4 = (g3 = $·0)
in if x4 then $·1

else let g5 = g3 − $·1
in let g6 = g2·g5

in let g7 = $·5 × g6 in g7)
in let g8 = g1·g0 in g8

Remark 9. Note that the normalized forms contain what seems to be excessive
let-sequentialization of trivial arithmetic functions. This is because the residual-
izing interpretation specifically does not know anything about the intended eval-
uating interpretation of those constants, and in particular whether they might
have computational effects that must not be reordered, discarded, or duplicated.

Normalization and Partial Evaluation 183

While the explicit naming of all intermediate results may be useful if the
specialized programs are to be further machine-processed, it makes them hard
to read for humans. Of course, one could unfold the “trivial” lets in a separate
post-processing phase, but doing so loses some of the appeal of generating code
directly from the semantics.

However, it is actually possible to annotate the types of “pure” arithmetic
primitives to make them let-unfoldable at generation time, much as for CBN
functions [Dan96]. Formally, such an annotation corresponds to imposing con-
straints on possible behaviors of the dynamic interpretations of ×, =, etc., so
that these constants may only be interpreted as semantic functions that factor
through the η of the dynamic monad.

5.5 Complete Code for CBV Normalization

For completeness, we include below the full code for the implementation of the
CBV normalizer. The implementation of shift/reset in Figure 2 is equivalent
to the one from [Fil99a], but streamlined a bit for SML/NJ’s notion of first-
class continuation. Figure 3 shows the implementation of type-indexed function
families and presents the dynamic signature. Figure 4 shows the evaluating and
residualizing interpretations of the dynamic signature, as well as an example
of a binding-time separated term parameterized over the dynamic signature.
(The function power_ds uses the evaluating interpretation explicitly, to high-
light the parallels with power_sd. In practice, the static operations in power_ds
would usually be expressed directly in terms of the corresponding native ML con-
structs.) Finally, Figure 5 shows a few concrete execution examples of evaluating
and residualizing the power function.

5.6 Exercises

Exercise 7. Make the ML implementation of TDPE generate residual terms with
explicit type tags for lambda-abstractions and polymorphic constants.

Exercise 8. Extend the ML implementation of TDPE with disjoint unions
(sums).

Exercise 9. Extend TDPE to generate pattern-matching bindings for let and
lambda instead of using an explicit match construct.

Exercise 10. The first Futamura projection is defined as the specialization of an
interpreter with respect to a program [Fut71,Fut99]; it is a standard exercise in
partial evaluation. In this open exercise, you are asked to write an interpreter
for a simple imperative language, and to specialize it with respect to a program
of your choice.

Specifically, you should write a core interpreter, in denotational style, as the
body of a functor; this functor should be parameterized with the generic inter-
pretation of each elementary operation that has to be happen at runtime (such

184 Peter Dybjer and Andrzej Filinski

functorfunctorfunctor Control (typetypetype ans) :
sigsigsig

valvalval reset : (unit -> ans) -> ans
valvalval shift : ((’a -> ans) -> ans) -> ’a

endendend =
structstructstruct

openopenopen SMLofNJ.Cont
exceptionexceptionexception MissingReset
valvalval mk : ans cont option ref = ref NONE
funfunfun abort x =

casecasecase !mk ofofof SOME k => throw k x | NONE => raiseraiseraise MissingReset

typetypetype ans = ans
funfunfun reset t =

letletlet valvalval m = !mk
valvalval r = callcc (fnfnfn k => (mk := SOME k; abort (t ())))

ininin mk := m; r endendend
funfunfun shift h =

callcc (fnfnfn k => abort (h (fnfnfn v => reset (fnfnfn () => throw k v))))
endendend;

typetypetype var = string
datatypedatatypedatatype exp =

VAR ofofof var
| CST ofofof var
| LIT_int ofofof int
| PAIR ofofof exp * exp
| TRUE
| FALSE
| LAM ofofof var * exp
| APP ofofof exp * exp
| LET ofofof var * exp * exp
| MATCH ofofof (string * string) * exp * exp
| IF ofofof exp * exp * exp;

structurestructurestructure Aux :
sigsigsig

valvalval gensym : unit -> var
valvalval withct : (unit -> ’a) -> ’a
valvalval reset : (unit -> exp) -> exp
valvalval shift : ((’a -> exp) -> exp) -> ’a

endendend =
structstructstruct

valvalval n = ref 0
funfunfun gensym () =

letletlet valvalval x = "x" ˆ (Int.toString (!n)) ininin n := (!n+1); x endendend
funfunfun withct t = letletlet valvalval on = !n

ininin n := 0; letletlet valvalval r = t () ininin n := on; r endendend endendend

structurestructurestructure C = Control (typetypetype ans = exp)
valvalval reset = C.reset
valvalval shift = C.shift

endendend;

Fig. 2. Auxiliary definitions

Normalization and Partial Evaluation 185

structurestructurestructure Norm =
structstructstruct

openopenopen Aux
datatypedatatypedatatype ’a rr = RR ofofof (’a -> exp) * (exp -> ’a)

valvalval dint = RR (fnfnfn e => e, fnfnfn e => e)
valvalval bool = RR (fnfnfn b => ififif b thenthenthen TRUE elseelseelse FALSE,

fnfnfn e => shift (fnfnfn k => IF (e, k true, k false)))
funfunfun prod (RR (rya, rta), RR (ryb, rtb)) =

RR (fnfnfn p => PAIR (rya (#1 p), ryb (#2 p)),
fnfnfn e => letletlet valvalval v1 = gensym ()

valvalval v2 = gensym ()
ininin shift (fnfnfn k =>

MATCH ((v1,v2), e,
reset (fnfnfn () => k (rta (VAR v1),

rtb (VAR v2)))))
endendend)

funfunfun arrow (RR (rya, rta), RR (ryb, rtb)) =
RR (fnfnfn f => letletlet valvalval v = gensym ()

ininin LAM (v, reset (fnfnfn () => ryb (f (rta (VAR v)))))
endendend,

fnfnfn e => fnfnfn a => letletlet valvalval v = gensym ()
ininin shift (fnfnfn k =>

LET (v, APP (e, rya a),
reset (fnfnfn () => k (rtb (VAR v)))))

endendend)

funfunfun reify (RR (ry, rt)) a = withct (fnfnfn () => ry a)
funfunfun reflect (RR (ry, rt)) = rt

endendend;

signaturesignaturesignature DYN =
sigsigsig

typetypetype dint
typetypetype ’a rep

valvalval dint : dint rep
valvalval bool : bool rep
valvalval prod : ’a rep * ’b rep -> (’a * ’b) rep
valvalval arrow : ’a rep * ’b rep -> (’a -> ’b) rep

valvalval lift_int : int -> dint

valvalval plus : dint * dint -> dint
valvalval minus : dint * dint -> dint
valvalval times : dint * dint -> dint
valvalval equal : dint * dint -> bool
valvalval less : dint * dint -> bool

valvalval fix : (’a rep * ’b rep) -> ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b
endendend;

Fig. 3. Normalization algorithm and dynamic signature

186 Peter Dybjer and Andrzej Filinski

structurestructurestructure EvalD : DYN =
structstructstruct

typetypetype dint = int
typetypetype ’a rep = unit

valvalval dint = ()
valvalval bool = ()
funfunfun prod ((),()) = ()
funfunfun arrow ((),()) = ()

funfunfun lift_int n = n
valvalval plus = opopop + valvalval minus = opopop - valvalval times = opopop *
valvalval equal = opopop = valvalval less = opopop <

funfunfun fix ((),()) f = fnfnfn x => f (fix ((),()) f) x
endendend;

structurestructurestructure ResD : DYN =
structstructstruct

openopenopen Aux Norm
typetypetype dint = exp
typetypetype ’a rep = ’a rr

valvalval lift_int = LIT_int
valvalval plus = reflect (arrow (prod (dint, dint), dint)) (CST "+")
valvalval minus = reflect (arrow (prod (dint, dint), dint)) (CST "-")
valvalval times = reflect (arrow (prod (dint, dint), dint)) (CST "*")
valvalval equal = reflect (arrow (prod (dint, dint), bool)) (CST "=")
valvalval less = reflect (arrow (prod (dint, dint), bool)) (CST "<")

funfunfun fix (rra, rrb) =
reflect (arrow (arrow (arrow (rra, rrb), arrow (rra, rrb)),

arrow (rra, rrb)))
(CST "fix")

endendend;

functorfunctorfunctor Power (D : DYN) =
structstructstruct

funfunfun power_ds x =
EvalD.fix (EvalD.dint, EvalD.dint)
(fnfnfn p => fnfnfn n =>

ififif EvalD.equal (n, EvalD.lift_int 0)
thenthenthen D.lift_int 1
elseelseelse D.times (x, p (EvalD.minus(n, EvalD.lift_int 1))))

funfunfun power_sd x =
D.fix (D.dint, D.dint)
(fnfnfn p => fnfnfn n =>

ififif D.equal (n, D.lift_int 0)
thenthenthen D.lift_int 1
elseelseelse D.times (D.lift_int x, p (D.minus (n, D.lift_int 1))))

endendend;

Fig. 4. Evaluating and residualizing realizations

Normalization and Partial Evaluation 187

structurestructurestructure PE = Power (EvalD);

valvalval n1 = PE.power_ds (EvalD.lift_int 5) 3;
(* val n1 = 125 : EvalD.dint *)

valvalval n2 = PE.power_sd 5 (EvalD.lift_int 3);
(* val n2 = 125 : EvalD.dint *)

structurestructurestructure PR = Power (ResD);

valvalval t1 = Norm.reify (Norm.arrow (Norm.dint, Norm.dint))
(fnfnfn x => PR.power_ds x 3);

(*
val t1 =
LAM
("x0",
LET
("x1",APP (CST "*",PAIR (VAR "x0",LIT_int 1)),
LET
("x2",APP (CST "*",PAIR (VAR "x0",VAR "x1")),
LET ("x3",APP (CST "*",PAIR (VAR "x0",VAR "x2")),VAR "x3"))))

: exp
*)

valvalval t2 = Norm.reify (Norm.arrow (Norm.dint, Norm.dint))
(fnfnfn n => PR.power_sd 5 n);

(*
val t2 =
LAM
("x0",
LET
("x1",
APP
(CST "fix",
LAM
("x2",
LAM
("x3",
LET
("x4",APP (CST "=",PAIR (VAR "x3",LIT_int 0)),
IF
(VAR "x4",LIT_int 1,
LET
("x5",APP (CST "-",PAIR (VAR "x3",LIT_int 1)),
LET
("x6",APP (VAR "x2",VAR "x5"),
LET
("x7",
APP (CST "*",PAIR (LIT_int 5,VAR "x6")),
VAR "x7")))))))),

LET ("x8",APP (VAR "x1",VAR "x0"),VAR "x8"))) : exp
*)

Fig. 5. Examples: evaluating and specializing power

188 Peter Dybjer and Andrzej Filinski

as arithmetic, state lookup and modification, I/O operations, and fixpoints for
loops), much as in the power example. You should also write two structures: one
for the static interpretations of all elementary constructs, and one for their dy-
namic interpretations. Again, as in the power example, instantiating the functor
with the static structure should yield an interpreter, while instantiating it with
the dynamic structure and should yield the core of a compiler.

Some inspiration for solving this exercise can be found in Danvy’s lecture
notes on type-directed partial evaluation [Dan98], in Grobauer and Yang’s treat-
ment of the second Futamura projection [GY01], and in Danvy and Vestergaard’s
take on semantics-based compiling by type-directed partial evaluation [DV96].

6 Summary and Conclusions

We have shown two different versions of NBE in Sections 2 and 3, and in Sec-
tions 4 and 5 we showed how to generalize the idea of NBE to TDPE. Some of
the key properties of NBE which we have exploited for TDPE are:

– Normal forms are characterized in terms of undirected equivalence, rather
than directed reduction.

– The notion of equivalence is sound for equality with respect to a wide variety
of interpretations.

– Among those interpretations, we pick a particular, quasi-syntactic one, which
allows us to extract syntactic terms from denotations.

On the other hand, we also wish to emphasize some important adaptations
and changes:

– TDPE introduces a notion of binding times, in the form of a distinction
between interpreted (static) and uninterpreted (dynamic) base types and
constants.

– We characterize equivalence in TDPE semantically (equality of interpreta-
tions in all models), rather than syntactically (convertibility).

– We consider a language with computational effects – either just potential
divergence, or general monadic effects – not only a direct set-theoretic inter-
pretation of functions.

Type-directed partial evaluation can be seen as a prime example of “applied
semantics”: while the basic TDPE algorithm, even for call-by-value, can be ex-
pressed in a few lines, we only get a proper understanding of how and why it
works by considering its semantic counterpart.

It is somewhat surprising that the notion of normalization by evaluation is
so robust and versatile. It may well be possible to find other instances within
computer science – even outside of the field of programming-language theory –
where an NBE view allows us to drastically simplify and speed up computations
of canonical representatives of an equivalence class.

Normalization and Partial Evaluation 189

References

[ADHS01] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip Scott. Nor-
malization by evaluation for typed lambda calculus with coproducts. In
Proceedings of the 16th Annual IEEE Symposium on Logic in Computer
Science, pages 303–310, Boston, Massachusetts, June 2001.

[AHS95] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categor-
ical reconstruction of a reduction free normalization proof. In D. Pitt,
D. E. Rydeheard, and P. Johnstone, editors, Category Theory and Com-
puter Science, 6th International Conference, number 953 in Lecture Notes
in Computer Science, Cambridge, UK, August 1995.

[AHS96] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-
free normalization for a polymorphic system. In Proceedings of the 11th
Annual IEEE Symposium on Logic in Computer Science, pages 98–106,
New Brunswick, New Jersey, July 1996.

[Asa02] Kenichi Asai. Binding-time analysis for both static and dynamic expres-
sions. New Generation Computing, 20(1):27–51, 2002. Preliminary version
available in the proceedings of SAS 1999 (LNCS 1694).

[Aug98] Lennart Augustsson. Cayenne – a language with dependent types. In ACM
SIGPLAN International Conference on Functional Programming, pages
239–250, Baltimore, Maryland, September 1998.

[Bar77] Henk Barendregt. The type free lambda calculus. In Handbook of Mathe-
matical Logic, pages 1092–1132. North-Holland, 1977.

[Bar90] Henk Barendregt. Functional programming and lambda calculus. In Hand-
book of Theoretical Computer Science, pages 323–363. Elsevier, 1990.

[Bar92] Henk P. Barendregt. Lambda calculi with types. In Handbook of Logic in
Computer Science, volume 2, pages 117–309. Oxford University Press, 1992.

[Ber93] Ulrich Berger. Program extraction from normalization proofs. In M. Bezem
and J. F. Groote, editors, Typed Lambda Calculi and Applications, number
664 in Lecture Notes in Computer Science, pages 91–106, Utrecht, The
Netherlands, March 1993.

[BS91] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation
functional for typed λ-calculus. In Proceedings of the Sixth Annual IEEE
Symposium on Logic in Computer Science, pages 203–211, Amsterdam, The
Netherlands, July 1991.

[CD93a] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation.
In Proceedings of the Twentieth Annual ACM Symposium on Principles of
Programming Languages, pages 493–501, 1993.

[CD93b] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and
normalization proofs. In H. Barendregt and T. Nipkow, editors, Types for
Proofs and Programs, International Workshop TYPES’93, number 806 in
Lecture Notes in Computer Science, Nijmegen, The Netherlands, May 1993.

[CD97] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and
normalization proofs. Mathematical Structures in Computer Science, 7:75–
94, 1997.

[ČDS98] Djordje Čubrić, Peter Dybjer, and Philip Scott. Normalization and the
Yoneda embedding. Mathematical Structures in Computer Science, 8:153–
192, 1998.

190 Peter Dybjer and Andrzej Filinski

[Dan96] Olivier Danvy. Pragmatics of type-directed partial evaluation. In O. Danvy,
R. Glück, and P. Thiemann, editors, Partial Evaluation, number 1110
in Lecture Notes in Computer Science, pages 73–94, Dagstuhl, Germany,
February 1996. Springer-Verlag. Extended version available as the technical
report BRICS RS-96-15.

[Dan98] Olivier Danvy. Type-directed partial evaluation. In J. Hatcliff, T. Æ. Mo-
gensen, and P. Thieman, editors, Partial Evaluation – Practice and Theory;
Proceedings of the 1998 DIKU Summer School, number 1706 in Lecture
Notes in Computer Science, pages 367–411. Springer-Verlag, Copenhagen,
Denmark, July 1998.

[DD98] Olivier Danvy and Peter Dybjer, editors. Proceedings of the 1998 APPSEM
Workshop on Normalization by Evaluation, NBE ’98, (Gothenburg, Swe-
den, May 8–9, 1998), number NS-98-8 in Note Series, Department of Com-
puter Science, University of Aarhus, May 1998. BRICS.

[DF90] Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceedings
of the 1990 ACM Conference on Lisp and Functional Programming, pages
151–160, Nice, France, June 1990.

[DMP95] Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. The essence of eta-
expansion in partial evaluation. Lisp and Symbolic Computation, 8(3):209–
227, 1995.

[DV96] Olivier Danvy and René Vestergaard. Semantics-based compiling: A case
study in type-directed partial evaluation. In Eighth International Sympo-
sium on Programming Language Implementation and Logic Programming,
number 1140 in Lecture Notes in Computer Science, pages 182–197, Aachen,
Germany, September 1996.

[Fil99a] Andrzej Filinski. Representing layered monads. In Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 175–188, San Antonio, Texas, January 1999.

[Fil99b] Andrzej Filinski. A semantic account of type-directed partial evaluation. In
G. Nadathur, editor, International Conference on Principles and Practice
of Declarative Programming, number 1702 in Lecture Notes in Computer
Science, pages 378–395, Paris, France, September 1999.

[Fil01] Andrzej Filinski. Normalization by evaluation for the computational
lambda-calculus. In S. Abramsky, editor, Typed Lambda Calculi and Appli-
cations, number 2044 in Lecture Notes in Computer Science, pages 151–165,
Krakow, Poland, May 2001.

[Fut71] Yoshihiko Futamura. Partial evaluation of computation process – an ap-
proach to a compiler-compiler. Systems, Computers, Controls, 2(5):721–728,
1971. Reprinted in Higher-Order and Symbolic Computation, 12(4):381–391,
1999.

[Fut99] Yoshihiko Futamura. Partial evaluation of computation process, revisited.
Higher-Order and Symbolic Computation, 12(4):377–380, 1999.

[Gom91] Carsten K. Gomard. A self-applicable partial evaluator for the lambda
calculus: Correctness and pragmatics. ACM Transactions on Programming
Languages and Systems, 12(4):147–172, April 1991.

[GP99] Murdoch Gabbay and Andrew Pitts. A new approach to abstract syntax
involving binders. In Proceedings of the 14th Annual IEEE Symposium on
Logic in Computer Science, pages 214–224, Trento, Italy, July 1999.

[GY01] Bernd Grobauer and Zhe Yang. The second Futamura projection for
type-directed partial evaluation. Higher-Order and Symbolic Computation,
14(2/3):173–219, 2001.

Normalization and Partial Evaluation 191

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall International Series in
Computer Science. Prentice-Hall, 1993. Available electronically at http:
//www.dina.dk/˜sestoft/pebook/.

[Laf88] Yves Lafont. Logiques, Catégories et Machines. PhD thesis, Université de
Paris VII, Paris, France, January 1988.

[Mit96] John C. Mitchell. Foundations for Programming Languages. The MIT
Press, 1996.

[ML75a] Per Martin-Löf. About models for intuitionistic type theories and the no-
tion of definitional equality. In S. Kanger, editor, Proceedings of the 3rd
Scandinavian Logic Symposium, pages 81–109, 1975.

[ML75b] Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H. E.
Rose and J. C. Shepherdson, editors, Logic Colloquium ‘73, pages 73–118.
North-Holland, 1975.

[MN93] Lena Magnusson and Bengt Nordström. The ALF proof editor and its
proof engine. In H. Barendregt and T. Nipkow, editors, Types for Proofs
and Programs, International Workshop TYPES’93, number 806 in Lecture
Notes in Computer Science, pages 213–237, Nijmegen, The Netherlands,
May 1993.

[Mog89] Eugenio Moggi. Computational lambda-calculus and monads. In Proceed-
ings of the Fourth Annual Symposium on Logic in Computer Science, pages
14–23, Pacific Grove, California, June 1989. IEEE.

[Mog92] Torben Æ. Mogensen. Efficient self-interpretation in lambda calculus. Jour-
nal of Functional Programming, 2(3):345–364, July 1992.

[NN88] Flemming Nielson and Hanne Riis Nielson. Two-level semantics and code
generation. Theoretical Computer Science, 56(1):59–133, January 1988.

[Oho99] Atsushi Ohori. A Curry-Howard isomorphism for compilation and pro-
gram execution. In J.-Y. Girard, editor, Typed Lambda Calculi and Appli-
cations, number 1581 in Lecture Notes in Computer Science, pages 280–294,
L’Aquila, Italy, April 1999.

[Pau00] Lawrence C. Paulson. Foundations of functional programming. Notes from a
course given at the Computer Laboratory of Cambridge University, available
from http://www.cl.cam.ac.uk/users/lcp/papers/#Courses, 2000.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theo-
retical Computer Science, 1(2):125–159, December 1975.

[Plo77] Gordon D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5(3):223–255, December 1977.

[Rey72] John C. Reynolds. Definitional interpreters for higher-order programming
languages. In Proceedings of 25th ACM National Conference, pages 717–
740, Boston, Massachusetts, August 1972. Reprinted in Higher-Order and
Symbolic Computation, 11(4):363–397, 1998.

[Ruf93] Erik Ruf. Topics in Online Partial Evaluation. PhD thesis, Stanford Univer-
sity, Stanford, California, February 1993. Technical report CSL-TR-93-563.

[SK01] Eijiro Sumii and Naoki Kobayashi. A hybrid approach to online and offline
partial evaluation. Higher-Order and Symbolic Computation, 14(2/3):101–
142, 2001.

[SW74] Christopher Strachey and Christopher P. Wadsworth. Continuations: A
mathematical semantics for handling full jumps. Technical Monograph
PRG-11, Oxford University Computing Laboratory, Programming Research
Group, Oxford, England, 1974. Reprinted in Higher-Order and Symbolic
Computation, 13(1/2):135–152, April 2000.

192 Peter Dybjer and Andrzej Filinski

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages: An
Introduction. The MIT Press, 1993.

[Yan98] Zhe Yang. Encoding types in ML-like languages. In ACM SIGPLAN Inter-
national Conference on Functional Programming, pages 289–300, Baltimore,
Maryland, September 1998. Extended version to appear in TCS.

	Table of Contents
	1 Introduction
	2 Normalization by Evaluation for Combinators
	2.1 Combinatory System T
	2.2 Standard Semantics
	2.3 Normalization Algorithm
	2.4 Weak Normalization and Church-Rosser
	2.5 The Normalization Algorithm in Standard ML
	2.6 Exercises

	3 Normalization by Evaluation for the $λ_βη$-Calculus
	3.1 The Setting: Simply Typed Lambda Calculus
	3.2 An Informal Normalization Function
	3.3 Formalizing Unique Name Generation
	3.4 Implementation

	4 Type-Directed Partial Evaluation for Call-by-Name
	4.1 The Setting: A Domain-Theoretic Semantics of PCF
	4.2 Binding-Time Separation and Static Normal Forms
	4.3 A Residualizing Interpretation
	4.4 A Normalization Algorithm

	5 TDPE for Call-by-Value and Computational Effects
	5.1 A Call-by-Value Language Framework
	5.2 Binding Times and Static Normalization
	5.3 A Residualizing Interpretation for CBV
	5.4 A CBV Normalization Algorithm
	5.5 Complete Code for CBV Normalization
	5.6 Exercises

	6 Summary and Conclusions
	References

