
A Denotational Account of
Untyped Normalization by Evaluation?

Andrzej Filinski1 and Henning Korsholm Rohde2

1 DIKU, University of Copenhagen, Denmark; email: andrzej@diku.dk
2 BRICS??, University of Aarhus, Denmark; email: hense@brics.dk

Abstract. We show that the standard normalization-by-evaluation con-
struction for the simply-typed λβη-calculus has a natural counterpart for
the untyped λβ-calculus, with the central type-indexed logical relation re-
placed by a “recursively defined” invariant relation, in the style of Pitts.
In fact, the construction can be seen as generalizing a computational-
adequacy argument for an untyped, call-by-name language to normal-
ization instead of evaluation.

In the untyped setting, not all terms have normal forms, so the normal-
ization function is necessarily partial. We establish its correctness in the
senses of soundness (the output term, if any, is β-equivalent to the input
term); standardization (β-equivalent terms are mapped to the same re-
sult); and completeness (the function is defined for all terms that do have
normal forms). We also show how the semantic construction enables a
simple yet formal correctness proof for the normalization algorithm, ex-
pressed as a functional program in an ML-like call-by-value language.

1 Introduction

1.1 Reduction-Based and Reduction-Free Normalization

Traditional accounts of term normalization are based on a directed notion of
reduction (such as β-reduction), which can be applied anywhere within a term.
A term is said to be a normal form if no reductions can be performed on it.
If the reduction relation is confluent, normal forms are uniquely determined, so
normalization is a (potentially partial) function on terms. Some terms (such as
Ω) may not have normal forms at all; or a particular reduction strategy (such as
normal-order reduction) may be required to guarantee arrival at a normal form
when one exists; such a strategy is called complete. There is a very large body
of work dealing with normalization in reduction-based settings.

However, in recent years, a rather different notion of normalization has
emerged, so-called reduction-free normalization. As the name suggests, it is not
based on a directed notion of reduction, but rather on an undirected notion of

? A version of this article with detailed proofs is available as a technical report [5].
?? Basic Research in Computer Science (www.brics.dk),

funded by the Danish National Research Foundation.

term equivalence. Equivalence may be defined as simply the reflexive-transitive-
symmetric closure of an existing reduction relation, but it does not have to be:
any congruence relation on terms may be used. The task of normalization is
then to define a normalization function on terms, such that the output of the
function is equivalent to the input, and such that any two equivalent terms are
mapped to identical outputs [3].

For some notions of equivalence (such as β-convertibility of untyped lambda-
terms), it is actually impossible to define a computable, total normalization func-
tion with both of these properties; we must thus accept that the normalization
function may be partial. However, even in that case, we can impose a complete-
ness constraint: if we have an independent syntactic characterization of accept-
able normal forms, we can require that the function both produce terms in this
form as output, and that it be defined on all terms equivalent to a normal form.

1.2 Normalization by Evaluation

A particularly natural way of obtaining a reduction-free normalization function
is known as normalization by evaluation (NBE), based on the following idea:
Suppose we can construct a denotational model of the term syntax (i.e., such
that equivalent terms have the same denotation), with the property that a syn-
tactic representation of the term (up to equivalence) can be be extracted from
its denotation; such a model is called residualizing. Then the normalization func-
tion can be expressed simply as a (compositional) interpretation in the model,
followed by extraction.

A priori, such a normalization function is not necessarily effectively com-
putable. It can be given a computational interpretation if the denotational model
is constructed in intuitionistic set theory [3], but this gets somewhat complicated
for domain-theoretic models, especially those involving reflexive domains. In such
cases, it is often easier to establish that the constructions are effective by showing
that they can expressed as images of program terms in a language for which the
domain-theoretic semantics is already known to be computationally adequate.

(It should be noted that the term NBE is also sometimes used for a related
concept, based on reducing – usually in a compositional way – the normalization
problem, which may in general involve open terms of higher type, to an evalu-
ation problem, which involves normalization of only closed terms of base type.
The required transformation is often syntactically related to the model-based
construction above, but the model itself is not made explicit; and in fact, the
subsequent evaluation process may still be specified entirely in terms of reduc-
tions.)

1.3 The Berger-Schwichtenberg Normalization Algorithm

Perhaps the best-known NBE algorithm is due to Berger and Schwichtenberg
[2]. It finds βη-long normal forms of simply-typed λ-terms. We present here its
outline, glossing over inessential details.

Types are of the form τ ::= b | τ1 → τ2. A natural set-theoretic model in-
terprets each base type b as some set, and the function type as the set of all
functions between the interpretations of the types, i.e., [[τ1 → τ2]] = [[τ1]]→ [[τ2]].
For a type assignment Γ , we also take [[Γ]] =

∏
x∈dom Γ [[Γ (x)]].

Let Λ be the set of syntactic λ-terms (written with explicit constructors for
emphasis) over a set of variables V . For a well-typed term Γ ` m : τ , we can
then express its semantics [[m]] ∈ [[Γ]]→ [[τ]] as follows:

[[VAR(x)]] ρ = ρ(x)
[[LAM(xτ ,m0)]] ρ = λa[[τ]]. [[m0]] ρ[x 7→ a]
[[APP(m1,m2)]] ρ = [[m1]] ρ ([[m2]] ρ)

It is easy to check that such a model is sound for conversion, i.e., that when
m↔βη m

′, then [[m]] = [[m′]].
Consider now a model where all base types are interpreted as the set of

(open) syntactic λ-terms, i.e., [[b]] = Λ for all b. In this model, we can define a
pair of type-indexed function families: reification, ↓τ : [[τ]] → Λ, and reflection,
↑τ : Λ→ [[τ]], by mutual induction on types:

↓b l = l

↓τ1→τ2 f = LAM(xτ1 , ↓τ2 (f(↑τ1 VAR(x)))) (where x is chosen “fresh”)

↑b l = l

↑τ1→τ2 l = λa[[τ1]]. ↑τ2 (APP(l, ↓τ1 a))

For simplicity, let us only consider normal forms of closed terms. Then reification
can serve directly as an extraction function: one can check that, for a term ` m : τ
in βη-long normal form, ↓τ ([[m]] ∅) ↔α m. Hence, by soundness of the model,
for any term m′ with m′ ↔βη m, ↓τ ([[m′]] ∅) = ↓τ ([[m]] ∅) ↔α m ↔βη m′.
Alternatively, one can show the latter property directly, for an arbitrary m′.
Either way, the typical proof ultimately involves a logical-relations argument,
even if this argument is pushed entirely into a standard result about the syntax
(namely, that every well-typed term has a βη-long normal form). The latter
approach, however, generalizes better, especially to systems where not all terms
have normal forms.

1.4 A Tentative Algorithm for Untyped Terms

In an untyped (or, more accurately, unityped) setting, we may hope to get a
residualizing model by interpreting the single type of terms as a domain D =
Λ + (D→D). (Again, we gloss over domain-theoretic subtleties for expository
purposes.) We can then define variants of reification, ↓ : D → Λ, and reflection,
↑ : Λ→D, roughly analogous to the simply-typed case:

↓ d = case d of
{
in1(l) → l
in2(f) → LAM(x, ↓ (f(↑VAR(x)))) (x “fresh”)

↑ l = in1(l)

Note that reification is now defined by general recursion, rather than induction.
We can also construct an interpretation, [[m]] ∈ (V →D)→D, by

[[VAR(x)]] ρ = ρ(x)
[[LAM(x,m0)]] ρ = in2(λd. [[m0]] ρ[x 7→ d])

[[APP(m1,m2)]] ρ = case [[m1]] ρ of
{
in1(l) → ↑ (APP(l, ↓ ([[m2]] ρ)))
in2(f) → f ([[m2]] ρ)

Here, reflection is performed “on demand”: when application needs a semantic
function, but [[m1]]ρ is a piece of syntax, it is reflected just enough to allow the
application to be performed.

Again, it can be checked that β-convertible terms have the same denotation.
It is also fairly easy to verify that, for a closed m in β-normal form, ↓ ([[m]] ∅) ↔α

m. What is not obvious at all, however, is that when ↓ ([[m′]] ∅) = m for a general
m′, then m′ must be syntactically β-convertible to a normal form. Indeed, the
problem is a generalization of the usual computational-adequacy problem for a
denotational semantics of a functional language: if the denotation of a closed
term is not ⊥, must the term then evaluate to a value?

For a simply typed language, PCF, adequacy of the natural domain-theoretic
semantics was shown by Plotkin, using a logical-relations argument [8]. Pitts
showed that essentially the same argument applies to an untyped language,
except that the central relation is no longer constructed by induction on types,
but as a solution of a more general “relation equation”; he also showed a general
method for solving such equations, yielding invariant relations [6].

In this paper, we first formalize the construction of the normalization func-
tion from above, addressing especially the issues of potential divergence and
generation of fresh variable names (Section 2). We then show correctness of this
function by a generalized computational-adequacy construction (Section 3). Fi-
nally, we show how the domain-theoretic analysis directly validates a functional
program implementing the construction (Section 4).

1.5 Related Work

The closest related work to ours is probably the NBE-based (in the alternate
sense) algorithm for untyped β-normalization proposed by Aehlig and Joachim-
ski [1]. However, while the functional programs ultimately derived from the anal-
yses are quite similar, the correctness arguments are completely different: theirs
are based entirely on syntactic concepts and results from higher-order rewrit-
ing theory, rather than on the domain-theoretic constructions underlying ours.
In particular, their algorithm is very explicitly reduction-based, departing from
the original meaning of NBE as term extraction from a denotational model of a
conversion relation.

We believe that the domain-theoretic approach enables a more direct and
precise correctness proof for the normalizer, as actually implemented. In Aehlig
and Joachimski’s work, the abstract algorithm is expressed as a small-step op-
erational semantics for a specialized, two-level λ-calculus with named bound

variables; yet the actual normalization program is expressed as a compositional
interpreter in Haskell, using de Bruijn indices for bound variables, and a reflexive
type for the meanings of higher-typed terms. No connection is made to a formal
semantics (operational or otherwise) of the relevant Haskell fragment. While it
may well be possible to formally close this gap, it remains as a potentially major
undertaking. On the other hand, formally relating the domain-theoretic con-
structions in the model-based normalizer to the functional terms implementing
them is completely straightforward. We expect, but have not formally investi-
gated, that Aehlig and Joachimski’s interesting extensions of the basic algorithm
to infinite normal forms (Böhm trees) could also be expressed naturally in the
denotational setting, and be used to validate a functional program producing
such normal forms lazily.

Many of the constructions in the present paper are inspired by the first
author’s work on type-directed partial evaluation [4]. Apart from the obvious
differences arising from typed vs. untyped languages, a significant change is
also that the TDPE work considered equivalence defined semantically (equality
of denotations for all interpretations of “dynamic” constants), while here we
consider syntactic β-convertibility. Accordingly, the central invariant relation ties
denotations to syntactic terms, rather than to denotations in another semantics.

Essentially the same program as in Section 4, but expressed in FreshML,
can be found in a recent paper by Shinwell et al. [9, Figure 7]. However, the
focus there is on a practical application of fresh-name generation, rather than
on normalization as such. Indeed, the underlying algorithm is only informally at-
tributed to Coquand, and carries no formal correctness argument. In the present
work, generation of fresh names is handled explicitly: since constructed out-
put terms are never subsequently analyzed, using a general framework such as
FreshML, or higher-order abstract syntax, is probably overkill. However, we an-
ticipate that a different “back end” for output generation could be used, and have
deliberately tried to keep the constructions and proofs modular with respect to
the term-generation operations. We thus expect that essentially the same argu-
ments – perhaps even a little simplified – could be used to verify correctness of
the FreshML variant of the normalizer as well.

2 A Semantic Normalization Construction

2.1 Syntax and Semantics of the Untyped λ-Calculus

Syntax Let V be a countably infinite set of (object) variables, with x and v
ranging over V . Let Λ be the set of λ-terms defined by

m ::= VAR(x) | LAM(x,m0) | APP(m1,m2)

The set of free variables of a term, FV (m), is defined in the usual way. For any
finite set of variables ∆, we write Λ∆ for the set of λ-terms over ∆, i.e.,

Λ∆ = {m ∈ Λ | FV (m) ⊆ ∆}

Substitutions For technical reasons, we take simultaneous (as opposed to single-
variable), capture-avoiding substitution as the basic concept. Accordingly, we
say that a substitution θ is a finite partial function from variables to terms. We
take FV (θ) =

⋃
x∈dom θ FV (θ(x)), and define the action of θ on a term m in the

usual way, by structural induction on m:

VAR(x)[θ] =
{
θ(x) if x ∈ dom θ
VAR(x) otherwise

LAM(x,m0)[θ] = LAM(x′,m0[θ[x 7→VAR(x′)]])
where x′ 6∈ FV (θ) ∪ (FV (m0)\{x})

APP(m1,m2)[θ] = APP(m1[θ],m2[θ])

As a special case, we use the standard notation m[m′/x] to mean m[[x 7→m′]].
To keep the substitution operation deterministic, we assume that the x′ in the
LAM-clause is picked as some fixed but arbitrary function of the (finite) set of
variables it needs to avoid.

Conversion and normalization We define convertibility between λ-terms, written
m↔ m′, by the axiom schemas for α- and β-conversion,

LAM(x,m) ↔ LAM(x′,m[x′/x]) (x′ 6∈ FV (m)\{x})
APP(LAM(x,m),m′) ↔ m[m′/x]

together with the standard equivalence and compatibility rules, making ↔ into
a congruence relation on terms.
We further define atomic (also known as neutral) and normal forms, as follows:

àt VAR(x)
àt m1 ǹf m2

àt APP(m1,m2)
àt m

ǹf m
ǹf m0

ǹf LAM(x,m0)

We then expect a normalization function on terms to satisfy that the output,
if any, is in normal form and convertible to the input (soundness); convertible
terms either give the same output, or neither one does (standardization); and
if a term has a normal form at all, the normalization function will return one
(completeness).

Semantics A natural way of defining a denotational model of convertibility is
in terms of a reflexive pointed cpo D. Reflexivity means that the continuous-
function space [D→D] is a retract ofD, i.e., that there exist continuous functions

φ : [D → D] → D and ψ : D → [D → D] ,

such that ψ ◦ φ = id[D→D]. The induced interpretation, [[m]] ∈ [[V → D] → D],
is then:

[[VAR(x)]] ρ = ρ(x)
[[LAM(x,m0)]] ρ = φ(λdD. [[m0]] ρ[x 7→ d])

[[APP(m1,m2)]] ρ = ψ([[m1]] ρ) ([[m2]] ρ)

Lemma 1. The interpretation has two expectable properties:

a. If ∀x ∈ FV (m). ρ(x) = ρ′(x), then [[m]] ρ = [[m]] ρ′.
b. Let θ = [x1 7→m1, . . . , xn 7→mn] be a substitution.

Then [[m[θ]]] ρ = [[m]] ρ[x1 7→ [[m1]] ρ, . . . , xn 7→ [[mn]] ρ].

Proof. Part (a) is a straightforward induction on the structure of m. Part (b)
follows by induction on the structure of m, using part (a) in the LAM-case.

Lemma 2 (model soundness). If m↔ m′ then [[m]] = [[m′]]

Proof. By induction on the derivation of m ↔ m′, using Lemma 1 for α- and
β-conversion, and using that ψ ◦ φ = id[D→D] for β-conversion.

2.2 Output-Term Generation

We want to account rigorously for the generation of fresh names, and do so in
a modular manner. We will therefore construct a set Λ̂ (dependent on the name
generation scheme) with elements denoted by l, together with wrapper functions,

V̂AR : V → Λ̂, L̂AM : [V → Λ̂] → Λ̂, ÂPP : Λ̂× Λ̂→ Λ̂

where, in particular, L̂AM provides a fresh name to be used in constructing the
body of the λ-abstraction.

Let N be a set (discrete cpo) containing at least the natural numbers, with
an operation ·+ 1 : N → N , agreeing with the successor operation on naturals.
Let {g0, g1, ...} be a countably infinite subset of V , such that gi = gj implies
i = j, and let gen : N → V be such that gen(n) = gn when n ∈ N.

We write b·c for the inclusion from A to A⊥; and for f : A→ B with B
pointed, we write · ? f for f ’s strict extension to A⊥, i.e., ⊥ ? f = ⊥B and
bac ? f = f a. We then take Λ̂ = [N → Λ⊥] and define wrapper functions for
constructing λ-terms using de Bruijn-level (not -index!) naming as follows:

V̂AR(v) = λnN . bVAR(v)c
L̂AM(f) = λnN . f gen(n) (n+ 1) ? λmΛ

0 . bLAM(gen(n),m0)c
ÂPP(l1, l2) = λnN . l1 n ? λm

Λ
1 . l2 n ? λm

Λ
2 . bAPP(m1,m2)c

Note 1. If we took freshness as a primitive concept, like in FreshML, we could
simply use Λ̂ = Λ⊥; V̂AR(v) = bVAR(v)c; L̂AM(f) = f x ? λm0. bLAM(x,m0)c,
with x fresh for f ; and ÂPP(l1, l2) = l1 ? λm1. l2 ? λm2. bAPP(m1,m2)c.

2.3 A Residualizing Model

From standard domain-theoretic results (e.g., [6]), we know that there exists a
pointed cpo Dr, together with an isomorphism

i : Dr
∼=→ (Λ̂+ [Dr → Dr])⊥

Moreover, this solution is a so-called minimal invariant, which we will need in
the next section.

We first define the reification function ↑ : Λ̂ → Dr and reflection function
↓ : Dr → Λ̂, as follows:

↓ d = case i(d) of


bin1(l)c → l

bin2(f)c → L̂AM(λxV . ↓ (f(↑ V̂AR(x))))
⊥ → ⊥Λ̂

↑ l = i−1(bin1(l)c)

where the recursive definition of ↓ is interpreted in the usual least-fixed-point
sense. Using these, we construct appropriate functions φr : [Dr →Dr]→Dr and
ψr : Dr → [Dr →Dr]:

φr(f) = i−1(bin2(f)c)

ψr(d) = case i(d) of

 bin1(l)c → λd′Dr . ↑ ÂPP(l, ↓ d′)
bin2(f)c → f

⊥ → ⊥[Dr→Dr]

Clearly, we have that ψr ◦ φr = id[Dr→Dr], since i was an isomorphism. The
induced interpretation is denoted by [[·]]r. We can now define a putative normal-
ization function:

Definition 1. For any ∆, let]∆ = max ({n+ 1 | gn ∈ ∆} ∪ {0}) (i.e., the least
n such that ∀n′ ≥ n. gn′ 6∈ ∆). We then define the function norm∆ : Λ∆ → Λ⊥
by

norm∆(m) = ↓ ([[m]]r (λxV . ↑ V̂AR(x)))]∆

In particular, when ∆ is disjoint from the set of gi-names (so]∆ = 0), we write
just norm for norm∆.

3 Correctness of the Construction

3.1 Correctness of the Wrappers

Let s ∈ {at,nf} be a syntactic-form designator. We first define a quaternary
relation, l /∆

s m, expressing that if l represents a term at all, then that term
only has free variables in ∆, is of the syntactic form s, and is convertible to m:

Definition 2. For l ∈ Λ̂ and m ∈ Λ∆, we then define the relation / by

l /∆
s m iff ∀n ≥]∆,m′ ∈ Λ. l n = bm′c ⇒ m′ ∈ Λ∆ ∧ s̀ m

′ ∧m′ ↔ m

Lemma 3. For fixed ∆, s, and m, the predicate P = {l | l /∆
s m} is pointed

(i.e., ⊥Λ̂ ∈ P) and inclusive (i.e., closed under limits of ω-chains).

Proof. Straightforward, noting that / is expressed using intersection, inverse
image, and a (necessarily inclusive) predicate on the flat domain Λ⊥.

Lemma 4. The representation relation is closed under weakening and conver-
sion:

a. If l /∆
s m and ∆ ⊆ ∆′, then also l /∆′

s m.
b. If l /∆

s m and m′ ∈ Λ∆ with m↔ m′, then also l /∆
s m′.

Proof. Both parts are immediate from the definition.

Lemma 5. Representations of terms behave much like the terms themselves:

a. If v ∈ ∆ then V̂AR(v) /∆
at VAR(v).

b. If l1 /∆
at m1 and l2 /∆

nf m2, then ÂPP(l1, l2) /∆
at APP(m1,m2).

c. If l /∆
at m, then also l /∆

nf m.

d. Let f ∈ [V → Λ̂] and m ∈ Λ∆∪{x}. If ∀v /∈ ∆.fv /∆∪{v}
nf m[VAR(v)/x],

then L̂AM(f) /∆
nf LAM(x,m).

Proof. All parts are relatively straightforward. (b) and (d) exploit that ↔ is
a congruence relation. For (d), the assumption about m’s free variables is also
essential.

3.2 Adequacy of the Residualizing Model

To construct the central relation between denotations and terms, we first state
an abstract version of a result due to Pitts [6]:

Theorem 1 (existence of invariant relations). Let A be a cpo, and let i :
D

∼=→ (A + [D→ D])⊥ be a minimal-invariant solution of the domain equation
X ∼= (A + [X →X])⊥. Let T be a set, and let predicates P1 ⊆ A × T , P2 ⊆ T ,
and P3 ⊆ T ×T ×T be given, such that {a | P1(a, t)} is inclusive for every t ∈ T .
Then there exists a relation C ⊆ D × T , with {d | d C t} inclusive for every
t ∈ T , and such that, for all d ∈ D and t ∈ T :

d C t iff i(d) = ⊥
or ∃a. i(d) = bin1(a)c ∧ P1(a, t)
or ∃f. i(d) = bin2(f)c ∧ P2(t) ∧

∀d′ ∈ D; t′, t′′ ∈ T. P3(t, t′, t′′) ∧ d′ C t′ ⇒ f(d′) C t′′.

Proof. The proof proceeds exactly as in Pitts’s paper, with the following minor
refinements: First, the cpo A can be arbitrary (not necessarily discrete), as long
as the relation P1 is inclusive. Also, when P2 is an existential proposition, the
witness need not be unique (such as the result of a deterministic evaluation), as
long as the choice of witness does not affect P3.

We can then establish the existence of a Kripke-style invariant relation, using
sets of variables as worlds:

Lemma 6. There exists a relation . such that for all ∆, d ∈ Dr and m ∈ Λ∆,

d .∆ m iff i(d) = ⊥
or ∃l. i(d) = bin1(l)c ∧ l /∆

at m
or ∃f. i(d) = bin2(f)c ∧ (∃x ∈ V,m0 ∈ Λ∆∪{x}.LAM(x,m0) ↔ m)

∧ ∀∆′ ⊇ ∆, d′ ∈ Dr,m
′ ∈ Λ∆′

,m1 ∈ Λ∆′
.

m↔ m1 ∧ d′ .∆′
m′ ⇒ f(d′) .∆′

APP(m1,m
′)

Proof. By Theorem 1, taking A = Λ̂ and T = {(∆,m) | ∆ ⊆fin V ∧m ∈ Λ∆},
with the predicates chosen as

P1 = {(l, (∆,m)) | l /∆
at m}

P2 = {(∆,m) | ∃x ∈ V,m0 ∈ Λ∆∪{x}.LAM(x,m0) ↔ m}
P3 = {((∆,m), (∆′,m′), (∆′′,m′′)) |

∆ ⊆ ∆′ = ∆′′ ∧ ∃m1 ∈ Λ∆′
.m↔ m1 ∧m′′ = APP(m1,m

′)}

using the equivalence [∀x.(∃y.P (x, y)) ⇒ Q(x)] ⇔ [∀x.∀y.P (x, y) ⇒ Q(x)]. P1

is inclusive in its first argument by Lemma 3. We write d .∆ m instead of
d C (∆,m).

Lemma 7. The relation . shares two key properties with /:

a. If d .∆ m and ∆ ⊆ ∆′, then also d .∆′
m.

b. If d .∆ m and m′ ∈ Λ∆ with m↔ m′, then also d .∆ m′.

Proof. Both parts are straightforward, given Lemma 4, and noting the transi-
tivity of ⊆ and ↔.

The following two lemmas will combine to establish adequacy of our semantics:

Lemma 8. For all l ∈ Λ̂, d ∈ Dr, and m ∈ Λ∆,

a. If l /∆
at m then ↑ l .∆ m

b. If d .∆ m then ↓ d /∆
nf m

Proof. Part (a) follows immediately from the definition of ↑ . Part (b) exploits
↓’s definition as a least fixed point and proceeds by fixed-point induction on the
pointed and inclusive (by Lemma 3) predicate

R = {ϕ ∈ [Dr → Λ̂] | ∀d,∆,m ∈ Λ∆. d .∆ m⇒ ϕ(d) /∆
nf m}

The verification uses the properties of Λ̂-representations (Lemma 5(a,c,d)), and
that both / and . are closed under conversion (Lemmas 4(b) and 7(b)).

Lemma 9. Let m ∈ ΛΓ , and for all x ∈ Γ , let θ(x) ∈ Λ∆ (in particular,
Γ ⊆ dom θ). If ∀x ∈ Γ. ρ(x) .∆ θ(x) then [[m]]r ρ .∆ m[θ].

Proof. By structural induction on m. The case for variables is immediate. For
abstractions, like in a standard Kripke-logical-relations proof, monotonicity of .
(Lemma 7(a)) ensures that the environment and substitution remain related in
the later world ∆′; also, closure under conversion (Lemma 7(b)) in particular im-
plies closure under β-expansion. Both parts of Lemma 8, as well as Lemma 5(b),
are used in the non-standard case for applications.

3.3 Correctness of the Normalization Function

Definition 3. The predicate tot(·) ⊆ Λ̂ is given by tot(l) ⇔ ∀n ∈ N. l n 6= ⊥.

Lemma 10. The following properties hold of the wrapper functions:

a. For all v ∈ V , tot(V̂AR(v)).
b. If for all v ∈ V . tot(f v) then tot(L̂AM(f)).
c. If tot(l1) and tot(l2) then tot(ÂPP(l1, l2)).

Proof. Straightforward verification in each case.

Lemma 11. For all m ∈ Λ and ρ ∈ [V → Dr] such that for all x ∈ FV (m),
there exists an l with ρ(x) = ↑ l and tot(l),

a. If àt m then ∃l ∈ Λ̂. [[m]]r ρ = ↑ l ∧ tot(l).
b. If ǹf m then tot(↓ ([[m]]r ρ)).

Proof. By simultaneous rule induction on àt · and ǹf ·, relying on Lemma 10
for the totality properties of the wrappers.

Theorem 2 (semantic correctness). norm∆ from Definition 1 is a normal-
ization function on Λ∆, i.e.,

a. (soundness) If norm∆(m) = bm′c then m′ ∈ Λ∆, ǹf m
′, and m↔ m′.

b. (standardization) If m↔ m′ then norm∆(m) = norm∆(m′).
c. (completeness) If m↔ m′ with ǹf m

′ then norm∆(m) 6= ⊥.

Proof. (Soundness) Let θ0 be the substitution mapping every x in ∆ to VAR(x),
and ρ0 = λxV . ↑ V̂AR(x). By Lemma 5(a), for every x ∈ ∆, V̂AR(x) /∆

at

VAR(x) = θ0(x), and hence by Lemma 8(a), ρ0(x) .∆ θ0(x). By Lemma 9,
we then get that [[m]]r ρ0 .∆ m[θ0] ↔ m, and therefore, by Lemma 8(b),
↓ ([[m]]r ρ0) /∆

nf m. Assume now that norm∆(m) = bm′c. Taking n =]∆ in
Definition 2, we can then immediately read off that m′ has the required proper-
ties.

(Standardization) This follows directly from model soundness (Lemma 2),
since the residualizing model is indeed a model.

(Completeness) Using Lemma 10(a), we see that ρ0 satisfies the condition
on ρ in Lemma 11. Hence, by part (b) of the latter lemma and Definition 3,
norm∆(m′) 6= ⊥. The desired result then follows from (standardization).

4 An Implementation of the Construction

4.1 Syntax and Semantics of an ML-like Call-by-Value Language

The language is a small fragment of Standard ML where, to sidestep inessential
bookkeeping, we have hard-coded the inductive representation of λ-terms,

datatype term = VAR of string | LAM of string*term | APP of term*term

as an additional base type of the language, and simply taken the value sets
underlying string and term to be the sets V and Λ, respectively.

Syntax The fragment is restricted to a single recursive datatype declaration,

datatype dt = In1 of τ1 | · · · | Ink of τk

where types are given by the grammar

τ ::= unit | int | bool | string | term | τ1 -> τ2 | dt

The syntax of ML expressions is then

e ::= x | n | "v" | () | e1 + e2 | e1 = e2 | "g"^Int.toString e |
fn () => e | fn x => e | e1 e2 | VAR(e) | LAM(e1,e2) | APP(e1,e2) |
case e of VAR x1 => e1 | LAM(x2,x′2) => e2 | APP(x3,x′3) => e3 |
In i(e) | case e of In1 x1 => e1| · · · | Ink xk => ek |
if e1 then e2 else e3 | let fun f (x:τ1):τ2 = e1 in e2 end

where x and f range over ML variable names.

Typing We only consider well-typed ML expressions, as captured by the judge-
ment x1: τ1, ..., xn: τn ` e : τ , asserting that e is of type τ , with free variables
x1, ..., xn of types τ1, ..., τn. It is defined in the usual way by inference rules.

Operational semantics A complete program is a closed expression of type τ1->τ2,
where τ1 and τ2 are ground types (i.e., not containing -> or dt). For such types,
let Cτ denote the set of canonical values underlying τ , e.g., Cint = Z.

For a complete program e : τ1 -> τ2, we can construct a computable partial
function rune : Cτ1 ⇀ Cτ2 , e.g., by

rune(c1) = c2 iff (e c1) ⇓ c2.

where ⇓ is the usual big-step operational semantics of expressions, and c denotes
the syntactic representation of the value c.

Denotational Semantics For the meaning of ML types, we take

[[unit]]ml = 1 = {∗} [[int]]ml = Z [[bool]]ml = B [[string]]ml = V

[[term]]ml = Λ [[τ1 -> τ2]]ml = [[[τ1]]ml → [[τ2]]ml
⊥] [[dt]]ml = S

where iS : S ∼=→ [[τ1]]ml + · · · + [[τk]]ml is a minimal-invariant solution to the
evident predomain equation. We write ini : [[τ i]]ml → [[τ1]]ml + · · · + [[τk]]ml for
the injection functions.

The meaning of ML terms is defined by induction on the typing derivation;
for conciseness we write only the terms. The semantics is structured such that
if Γ ` e : τ and for all (x : τ ′) ∈ Γ , ξ(x) ∈ [[τ ′]]ml, then [[e]]mlξ ∈ [[τ]]ml

⊥ . In
particular, the semantics of dt-constructors and recursive function definitions
are given by:

[[In i(e)]]ml ξ = [[e]]ml ξ ? λa[[τ i]]ml
. bi−1

S (ini(a))c
[[let fun f (x:τ1):τ2 = e1 in e2 end]]ml ξ =

[[e2]]ml ξ[f 7→ fix(λθ[[[τ1]]
ml→[[τ2]]

ml
⊥].λa[[τ1]]

ml
.[[e1]]ml ξ[f 7→ θ, x 7→ a])]

For notational convenience in the following, we will assume that all function
names f in the program are distinct. We can then unambiguously use Θf to refer
to the semantic function whose fixed point f is mapped to in the environment
of the let-body, and θf = fix(Θf).

Theorem 3 (computational adequacy for ML). For a complete ML pro-
gram e, rune(c1) = c2 iff [[e]]ml ∅ ? λf. f(c1) = bc2c.

Proof. Modulo trivial syntactic differences, and an equivalent formulation of the
semantics in terms of strict functions between pointed cpos, rather than general
ones between cpos, this is shown in, e.g., [7, Section 5]. The primary difficulty is,
of course, the definition of the logical relation at type dt, which is again achieved
by exploiting the minimal-invariant property of S.

4.2 The Normalization Algorithm

The concrete representation of the normalization algorithm, with many of the
auxiliary definitions inlined, is shown in Fig. 1. We have instantiated dt as the
type sem, with two constructors In1 = TM and In2 = FUN. It is easy to check
that the top-level expression, NORM : term -> term, is a well-typed complete
program in our sense.

Since ML is a call-by-value language, we must simulate the implicit call-
by-name nature of the residualizing semantics using thunking. We have defined
sem so that [[sem]]ml

⊥
∼= Dr; then semantic functions with codomain Dr can be

represented directly as ML functions into sem, while functions with domain Dr

are represented with source type unit -> sem. As a further optimization, the
strict function ↓ : Dr → Λ̂ is represented as simply a function from sem.

Let us now properly relate the abstract and concrete constructions. To get a
perfect isomorphism between term families and their implementation, we choose
N = Z, with gen(n) = "gn", e.g., gen(13) = "g13". Let iD denote the iso-
morphism i : Dr

∼=→ ([Z → Λ⊥] + [Dr → Dr])⊥ from before. We now also have
iS : S ∼=→ [Z→ Λ⊥] + [[1→ S⊥]→ S⊥].

Lemma 12. There exists an isomorphism iDS : Dr
∼=→ S⊥, satisfying

a. For all l ∈ Λ̂, iDS (i−1
D (bin1(l)c)) = bi−1

S (in1(l))c.
b. For all f ∈ [Dr → Dr],

iDS (i−1
D (bin2(f)c)) = bi−1

S (in2(λt1→S⊥ . iDS (f(i−1
DS (t ∗)))))c.

c. iDS (i−1
D (⊥Dr)) = ⊥S⊥

Proof. The strict functions (iDS , i
−1
DS) are constructed in the natural way by

mutual recursion. That they are actually inverses, and satisfy equations (a) and
(b), follows from the minimal-invariant properties of Dr and S.

We can also state three lemmas, relating the central domain-theoretic func-
tions to the denotations of their syntactic counterparts:

Lemma 13. For all d ∈ Dr and n ∈ Z, ↓ dn = iDS (d) ? λsS . θdown s ? λl
Λ̂. l n.

datatype term = VAR of string | LAM of string*term | APP of term*term

datatype sem = TM of int -> term | FUN of (unit -> sem) -> sem;

let fun down (s:sem):int->term = fn n =>

(case s of

TM l => l n

| FUN f => LAM("g"^Int.toString n,

down (f (fn () => TM(fn n’ => VAR("g"^Int.toString n)))) (n+1)))

in let fun eval (m:term):(string->sem)->sem = fn p =>

(case m of

VAR x => p x

| LAM(x,m0) => FUN(fn d => eval m0

(fn x’ => if x = x’ then d () else p x’))

| APP(m1,m2) => (case (eval m1 p) of

TM l => TM(fn n => APP(l n,down (eval m2 p) n))

| FUN f => f (fn () => eval m2 p)))

in let fun norm (m:term):term =

down (eval m (fn x => TM(fn n => VAR(x)))) 0

in norm end end end

Fig. 1. The normalization algorithm, NORM , in a fragment of ML

Proof. By simultaneous fixed-point induction wrt. the relation R = {(ϕ, θ) ∈
[Dr → Λ̂] × [S → Λ̂⊥] | ∀d ∈ Dr, n ∈ Z. ϕ d n = iDS (d) ? λsS .θ s ? λlΛ̂.l n}.
The inductive step proceeds by analysis of the cases for iD(d); they all follow
straightforwardly, using Lemma 12.

Lemma 14. For all m ∈ Λ, ρ ∈ [V → Dr], and ζ ∈ [V → S⊥], such that
∀x ∈ FV (m). iDS (ρ(x)) = ζ(x), iDS ([[m]]r ρ) = θevalm ? λg. g ζ.

Proof. By structural induction onm, using the fixed-point equation for fix(Θeval)
in the inductive steps, Lemma 12 throughout, and Lemma 13 in one of the
subcases for application.

Lemma 15. For all m ∈ Λ, norm(m) = θnorm m.

Proof. Follows easily from the definition of θnorm, using Lemmas 12, 13 and 14.

Theorem 4 (implementation correctness). The program NORM satisfies
that runNORM (m) = m′ ⇔ norm(m) = bm′c. That is, NORM computes the
normalization function for all λ-terms without free occurrences of gn-variables
(including, in particular, all closed terms).

Proof. A direct consequence of Lemma 15 and Theorem 3.

5 Conclusions and Perspectives

We have presented a domain-theoretic analysis of a normalization-by-evaluation
construction for untyped λ-terms. Compared to the typed case, the main differ-
ence is a change from induction on types to general recursion, both for function

definitions and for the domains and relations on them. That the correctness proof
has a generalized computational-adequacy result at its core, further strengthens
the connection between normalization and evaluation. Moreover, the algorithmic
content of the construction corresponds very directly to a simple functional pro-
gram, enabling a precise verification of the normalizer as actually implemented.

There are several possible directions in which to extend the present work.
Some were already mentioned in Section 1.5, such as generalizations of the al-
gorithm to Böhm trees. It should also be possible to extend the language and
notion of normalization with interpreted constants in a suitable sense. But al-
ready the current results indicate that the fundamental ideas of NBE are not
incompatible with general recursive types. Thus, reduction-free normalization
may provide a complementary view of other equational systems that are cur-
rently analyzed using exclusively reduction-based methods. It might even be
possible to find unified formulations of rewriting-theoretic and model-theoretic
normalization results about particular such systems.

Acknowledgment The authors wish to thank Olivier Danvy and the FOSSACS’04
reviewers for their insightful comments.

References

1. Klaus Aehlig and Felix Joachimski. Operational aspects of untyped normalization by
evaluation. Mathematical Structures in Computer Science, 2004(?). To appear; avail-
able from http://www.mathematik.uni-muenchen.de/~aehlig/pub/03-nbe.ps.

2. Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional
for typed λ-calculus. In Proceedings of the Sixth Annual IEEE Symposium on Logic
in Computer Science, pages 203–211, Amsterdam, The Netherlands, July 1991.

3. Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and normal-
ization proofs. Mathematical Structures in Computer Science, 7:75–94, 1997.

4. Andrzej Filinski. A semantic account of type-directed partial evaluation. In G. Na-
dathur, editor, International Conference on Principles and Practice of Declarative
Programming, volume 1702 of Lecture Notes in Computer Science, pages 378–395,
Paris, France, September 1999. Springer-Verlag.

5. Andrzej Filinski and Henning Korsholm Rohde. A denotational account of untyped
normalization by evaluation (extended version). BRICS Report RS-03-40, Univer-
sity of Aarhus, Denmark, December 2003. Available from http://www.brics.dk/

RS/03/40/.
6. Andrew M. Pitts. Computational adequacy via ‘mixed’ inductive definitions. In

Mathematical Foundations of Programming Semantics, volume 802 of Lecture Notes
in Computer Science, pages 72–82. Springer-Verlag, April 1993.

7. Andrew M. Pitts. Relational properties of domains. Information and Computation,
127(2):66–90, June 1996.

8. Gordon D. Plotkin. LCF considered as a programming language. Theoretical Com-
puter Science, 5(3):223–255, December 1977.

9. Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML: Program-
ming with binders made simple. In Eighth ACM SIGPLAN International Conference
on Functional Programming, pages 263–274. ACM Press, Uppsala, Sweden, August
2003.

