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Preface

This Ph.D.-thesis was written in the years 2004 to 2008 at the Department of Computer Science at the
University of Copenhagen (DIKU) under the supervision of Professor David Pisinger. The four years
included two six month periods of leave of absence.

During those years I worked on several projects and visited several departments at other universi-
ties in two wonderful parts of the world. I spend a total of approximately seven months at Dipartimento
di Ingegneria Meccanica e Gestionale at Politecnico di Bari in Puglia, Italy. I also spend six months
during the fall of 2007 at Stanford Univesity in California, USA.

While all projects were both exciting and challenging one particular project stood out of the crowd.
The project was a semi-commercial heuristic for container loading of furniture and contained many
joyful elements. It was a wonderful way to get acquainted and experiment with the many require-
ments that must be tackled when dealing with practical problems for the industrial sector. Today, the
difficulties of this project are hard to portray, but I still remember how great worries and concerns
dominated the first many months.

During the first period of leave of absence I focused on the software development of this project.
This was a wonderful opportunity to design a full-blown medium sized piece of computer software
tool for use by the company, and the final version of that tool consisted of more than approximately
90,000 lines of code.

The most difficult part of this project was working with a tight schedule and having to come up
with solutions to challenging problems within strict deadlines. Many sleepless nights were filled with
frustrations and worries over not having a solution for yet another essential corner of the project. The
paper presented in this thesis on the subject does not completely do justice to the huge amount of work
involved.

In the end, however, it was extremely rewarding to visit the company’s headquarters six moths
after the project finished and find that many people were using the software concurrently on four
different continents. Looking back, the frustrations and impossible deadlines are all forgotten. I
now remember mainly the many fond memories of warm days and nights among good friends and
colleagues, and think of this project as a successful marriage between theory and practice.

In a way, this particular project also represents the work of this thesis well. All of the projects
are of strong direct relevance to other sectors – industrial or other scientific fields – and since I began
I have been approached by several parties who have shown keen interest in commercializing ideas
presented here. The thesis has involved many physical, cultural, and spiritual journeys, many were
difficult but they were all enriching and exciting. It has been four wonderful years.
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Abstract

In this thesis we consider solution methods for packing problems. Packing problems occur in many
different situations both directly in the industry and as sub-problems of other problems. High-quality
solutions for problems in the industrial sector may be able to reduce transportation and production
costs significantly. For packing problems in general are given a set of items and one of more contain-
ers. The items must be placed within the container such that some objective is optimized and the items
do not overlap. Items and container may be rectangular or irregular (e.g. polygons and polyhedra)
and may be defined in any number of dimensions. Solution methods are based on theory from both
computational geometry and operations research.

The scientific contributions of this thesis are presented in the form of six papers and a section
which introduces the many problem types and recent solution methods. Two important problem vari-
ants are the knapsack packing problem and the strip-packing problem. In the knapsack packing prob-
lem, each item is given a profit value, and the problem asks for the subset with maximal profit that
can be placed within one container. The strip-packing problem asks for a minimum height container
required for the items. The main contributions of the thesis are three new heuristics for strip-packing
and knapsack packing problems where items are both rectangular and irregular.

In the two first papers we describe a heuristic for the multidimensional strip-packing problem that
is based on a relaxed placement principle. The heuristic starts with a random overlapping placement of
items and large container dimensions. From the overlapping placement overlap is reduced iteratively
until a non-overlapping placement is found and a new problem is solved with a smaller container size.
This is repeated until a time-limit is reached, and the smallest container for which a non-overlapping
placement was found is returned as solution. In each iteration, a single item is translated parallel to
one of the coordinate axes to the position that reduces the overlap the most. Experimental results
of this heuristic are among the best published in the literature both for two- and three-dimensional
strip-packing problems for irregular shapes.

In the third paper, we introduce a heuristic for two- and three-dimensional rectangular knapsack
packing problems. The two-dimensional heuristic uses the sequence pair representation and a novel
representation called sequence triple is introduced for the three-dimensional variant. Experiments for
the two-dimensional knapsack packing problem are on-par with the best published in the literature
and experiments for the three-dimensional variant are promising.

A heuristic for a three-dimensional knapsack packing problem involving furniture is presented in
the fourth paper. The heuristic is based on a variety of techniques including tree-search, wall-building,
and sequential placement. The solution process includes considerations regarding stability and load
bearing strength of items. The heuristic was developed in collaboration with an industrial partner and
is now being used to solve hundreds of problems every day as part of their planning process.

A simple heuristic for optimizing a placement of items with respect to balance and moment of iner-
tia is presented in the fifth paper. Ensuring that a loaded consignment of items are balanced throughout
a container can reduce fuel consumption and prolong the life-span of vehicles. The heuristic can be
used as a post-processing tool to reorganize an existing solution to a packing problem.

A method for optimizing the placement of cylinders with spherical ends is presented in the last
paper. The method can consider proximity constraints which can be used to describe how cylinders
should be placed relative to each other. The method is applied to problems where a placement of
capsules must be found within a minimal spherical or box-shaped container and to problems where
a placement within a given arbitrarily container must be found. The method has applications for
prediction of RNA tertiary structure.
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Abstract in Danish

I denne afhandling betragtes løsningsmetoder til pakningsproblemer. Løsninger af meget høj kvalitet
for industrielle problemer kan reducere transport- og produktionsomkostninger betydeligt. Pakn-
ingsproblemer opstår i mange forskellige situationer både direkte i industrien men også som del-
problemer af andre problemer. Generalt består pakningsproblemer af en mængde af figurer og en eller
flere containere. Figurer og containere kan være rektangulære og irregulære (fx polygoner og polye-
dra) og være defineret i et vilkårligt antal dimensioner. Figurerne skal placeres i containerne uden at
overlappe sådan, at en målfunktion optimeres. De anvendte løsningsmetoder består af teknikker både
fra geometri og optimering.

De videnskabelige bidrag i denne afhandling præsenteres i seks adskildte artikler, som indledes
med en introduktion til problemtyper og populære løssningsmetoder. To vigtige varianter af pak-
ningsproblemer er rygsækpakning og strip-pakning. I rygsækpakningsproblemer gives hver figur en
profitværdi, og problemet er nu at bestemme en delmængde af figurer som kan være i rygsækken
med en maksimal profit-sum. I strip-pakningsproblemet ønsker vi at finde en container med minimal
længde, der kan indeholde alle figurerne. Afhandlingens hovedbidrag består af tre nye heuristikker til
strip- og rygsækpakningsproblemer med rektangulære og irregulære figurer.

I de første to artikler præsenteres en heuristik til løsning af det multidimensionale strip-paknings-
problem. Heuristikken starter med en lang container og en tilfældig placering med overlap. Overlap-
pet reduceres iterativt indtil en placering uden overlap findes, hvorefter et nyt problem med en mindre
container løses. Dette gentages så mange gange som muligt indenfor en bestemt tidsgrænse, hvorefter
den mindste container med en tilhørende placering uden overlap returneres som løsning. I hver itera-
tion flyttes en enkelt figur parallelt med en af koordinatakserne til en placering med mindre overlap.
De eksperimentielle resultater for denne heuristik er blandt de bedste, der er publiceret både for to- og
tredimensionale problemer med irregulære figurer.

I den tredje artikel introduceres en heuristik til to- og tredimensional rektangulære rygsæksprob-
lemer. Heuristikken til todimensionale problemer benytter sekvensparrepræsentationen og en ny
repræsentation introduceres til tredimensional problemer. Eksperimentielle resultater for todimen-
sionale problemer er på niveau med de bedste der er publiceret og resultater for de tredimensionale
problemer er lovende.

En heuristik til det tredimensionale rygsækpakningsproblem, hvor figurer er møbler præsenteres
i den fjerde artikel. Heuristikken er baseret på en række af teknikker heriblandt træsøgning, væg-
bygning, og sekvential placering. Heuristikken blev udviklet i samarbejde med en industripartner, og
bliver nu anvendt til løsning af hundredevis af problemer dagligt som del af deres planlægning.

En enkel heuristik til optimering af placering af figurer med hensyn til balance og moment præsen-
teres i den femte artikel. Balancerede placeringer kan reducere brændstofsforbrug og forlænge lev-
etiden af de anvendte transportmidler. Heuristikken kan bruges som en efterprocesseringsværktøj til
omorganisering af en eksisterende løsning til et pakningsproblem.

En metode til optimering af placering af cylindere med kugleformede ender præsenteres i den
sidste artikel. Metoden kan håndtere afstandskrav, som kan bruges til at angive, hvordan cylinderne
skal placeres i forhold til hinanden. Metoden er anvendt på problemer, hvor en placering af cylindere
skal findes indenfor en minimal kugleformet- eller rektangulær container, og til problemer, hvor en
placering indenfor en vilkårlig container skal findes. Metoden kan anvendes til forudsigelse af tertiære
RNA strukturer.
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Introduction to Packing Problems

1 Introduction

Packing problems have spawned interest from the mathematical community for centuries and arise in
numerous industrial situations with large potential for cost-savings and reduction in pollution caused
by carbon dioxide emission.

The term packing problem is commonly used for a problem where one wishes to find a place-
ment of small items within one or several larger objects. Although this definition may seem abstract,
packing problems arise in many practical situations of our everyday life.

One of the most obvious examples occurs in the super-market. While the price of a superfluous
bag will have a limited impact on the household economy, we are compelled to minimize the environ-
mental impact of our purchases and therefore seek to minimize the number of grocery bags we use to
pack our commodities in. When we divide the items among the bags, we reflect on their shape and
weight, to distribute them evenly.

Another common problem occurs before an extended period of travel. Here the most useful set of
items which can be packed compactly in a suitcase must be selected, and often this selection should
be made such that the total weight is less than the weight limit imposed by any airline involved in the
journey.

Although household problems are too small to warrant extended mathematical analysis, improve-
ment of solutions to packing problems in the industrial sector may lead to substantial cost reductions.
The problems occur both during manufacturing and transportation of goods and several solution meth-
ods will be presented in this thesis. Packing problem may also exist as sub-problems in other scientific
fields and a problem with a biological origin will be discussed in this thesis along with a solution
method.

Determining the optimal way to cut a large item into smaller pieces is equivalent to determining
the optimal way to place the smaller pieces within a container shaped like the large item. There-
fore, packing problems are synonymous with cutting problems and authors refer to the problems we
consider in this thesis as either packing, cutting, or, packing and cutting problems.

Solution methods for these difficult problems consists of a combination of techniques from the
fields of computational geometry, operations research, and algorithms. Therefore any researcher with
a background in those fields should find the topic compelling to work with.

The problems have been studied since the nineteen-sixties and a plethora of solution methods
have been presented over the years. The methods have been mostly heuristic, but exact algorithms
have gained ground in recent years and even a few approximation algorithms have been presented.

Due to the required reduction of carbon emission, the increasing global competition, and the ever
rising oil prices, new methods that improve the current results are needed by industrial sector. At the
same time, increasing computational power and recent research in computer science enable us tackle
larger problems with new and better methods.

Items can be rectangular (rectangles or boxes) or non-rectangular (e.g. polygons and polyhedra).
Throughout this thesis we will refer to items which are non-rectangular and non-spherical as irregu-
lar. While computational methods for packing of rectangular items are able to produce high quality
solutions at this time, it seems that there is still potential improvement of for methods that can handle
non-rectangular item packing, especially in three-dimensions.

The main objective of this thesis is to study novel heuristics for two- and three-dimensional pack-
ing problems involving rectangular and irregular shapes.
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1. Introduction

1.1 Outline

The scientific contributions of this dissertation are presented as six individual papers. One has been
published, one is in press and available online, one has been accepted for publication, two have been
submitted for publication, and one represents work in progress. All submitted and accepted papers
have been or are being peer-reviewed. The papers are reproduced completely as in their final revision
before publication, acceptance, or submission. The six papers are as follows:

• [A] Fast Neighborhood Search for two- and three-dimensional nesting problems
Jens Egeblad, Benny K. Nielsen, and Allan Odgaard. (published, 2007)
In this paper we describe a novel heuristic for solving two- and three-dimensional strip-packing
problems involving irregular shapes represented by polygons.

• [B] Translational packing of arbitrary polytopes
Jens Egeblad, Benny K. Nielsen, and Marcus Brazil (accepted for publication, 2008)
Packing of shapes represented by polyhedra, and a generalization of the work from the first
paper ([A]) to three- and higher dimensions are described in this paper.

• [C] Heuristic approaches for the two- and three-dimensional knapsack packing problem
Jens Egeblad and David Pisinger (in press and available online, 2007)

In the paper, we introduce a new heuristic for the two- and three-dimensional rectangular knap-
sack packing problem which is based on the sequence pair and sequence triple representations
for rectangle and box placements.

• [D] Heuristics for container loading of furniture
Jens Egeblad, Claudio Garavelli, Stefano Lisi, and David Pisinger (submitted, 2007)
A heuristic for the three-dimensional knapsack packing problem of furniture is presented in this
paper. The heuristic is part of a semi-commercial program used by a very large Italian furniture
producer and consists of a wide variety of sub-parts.

• [E] Two- and three-dimensional placement for center of gravity optimization
Jens Egeblad (submitted, 2008)
Heuristics for balanced placement of polygon and polyhedral items within a container are pre-
sented here. This builds on work from the papers [A] and [B].

• [F] Three-dimensional constrained placement of capsules with application to coarse grained
RNA structure prediction
Jens Egeblad, Leonidas Guibas, Magdalena Jonikas, and Alain Laederach (draft, 2008)
This paper represents work in progress. A novel model for coarse grained RNA structure predic-
tion based on compact placement of capsules (cylinders with spherical ends) and and technique
for cylinder placement within a molecular envelope are presented.

The dissertation is organized as follows. First, in Section 2, the main problems of this thesis are
presented and it is shown that they are N P -hard. In order to aid the reader, the most popular and
interesting solution methods are discussed in Section 3 along with speculations about future directions.
In Section 4 the individual papers are presented and discussed. Finally, in Section 5, we give a
conclusion and summarize possible future directions. The subsequent chapters (A,. . . ,F) consists of
the six papers which were produced as part of the thesis. An addendum for the paper [ A] elaborates
on a few missing details and presents updated experiments ([A.1]).

8



Introduction to Packing Problems

Definition of Packing Problems.

Given are two sets of elements, namely

• a set of large objects (input, supply) and

• a set of small items (output, demand)

which are defined exhaustively in one, two, three or an even larger number (n) of geometric
dimensions. Select some or all small items, group them into one or more subsets and assign
each of the resulting subsets to one of the large objects such that the geometric condition
holds, i.e. the small items of each subset have to be laid out on the corresponding large
object such that

• all small items of the subset lie entirely within the large object and

• the small items do not overlap,

and a given (single-dimensional or multi-dimensional) objective function is optimised. We
note that a solution of the problem may result in using some or all large objects, and some
or all small items, respectively.

Figure 1: The definition of packing problems given by Wäscher et al. [157].

2 Preliminaries

The immense number of papers on cutting and packing problems renders the field difficult to approach
as a newcomer. At the time of writing, there are no textbooks on the field and while several surveys
exists (see [30, 44, 45, 102]), they are often brief or with emphasis on particular problems or methods.

In this section we will list some of the problems which are discussed throughout this thesis. Our
focus is on multidimensional problems; i.e., two- or higher dimensional. The problems are presented
and defined in Section 2.1. In Section 2.2 we present a typology which covers the problem types, and
in Section 2.3 we show that most of the problems are N P -hard.

We consider problems where we wish to determine if (and often how) a set of items can be placed
within one or several containers. In feasible solutions items must be placed such that they do not
occupy the same area of the container, i.e. they are not allowed to overlap. An elaborate definition of
the problems was given by Wäscher et al. [157] and is quoted in Figure 1.

The definition given by Wäscher et al. [157] is somewhat abstract, will match a very large number
of problems, and it would be a long and tedious job to list them all. In this text we will deal with three
main groups of problems: subset selection, container-count minimization, and container-size mini-
mization. In container count minimization problems the number of containers should be minimized.
In subset selection problems an optimal subset, with respect to an objective function, of items must be
selected. Finally, in container minimization problems the size of the container should be minimized.
The problems consist of the following ingredients (see Figure 2):

• A container object C. In most of this text, we will deal with only one type of container, but
some problems are defined with respect to multiple types of containers. If C is rectangular, we
let W be the width, H the height, and, for three-dimensional problems, D the depth of C.

9



2. Preliminaries

(a) (b)

Figure 2: (a) A two-dimensional container, item, and placement of an item within the container. (b)
Three-dimensional variant.

• A set of items I. The items are to be packed within C. We let n = |I| be the number of items. If
items have a rectangular shape, we let wi be the width, hi the height, and, for three-dimensional
problems, di the depth of item i ∈ I. Non-rectangular shapes may be simple to describe math-
ematical like a sphere or be completely arbitrary. Arbitrary shapes may be represented in a
number of different ways which we will consider in Section 3.1. In general, we will refer to
arbitrarily shaped items as irregular items. Rotation of items may or may not be allowed.

• A placement P. Each item has a reference point, and the placement describes the position
of each item’s reference point in the container(s). For rectangular items we let the reference
point be the lower-left-back corner of the item. For problems, where rotation or mirroring is
allowed, the placement may also describe the amount each item is rotated and if it is mirrored.
To simplify matters we will generally not distinguish between particular placements in this and
the subsequent section, but use xi,yi, and zi to indicate the position of item i’s reference point.

An important part of evaluating solutions to packing problems in general is the utilization. The uti-
lization of a placement is the area or volume occupied by the items within the container divided by
the the area or volume of the container.

2.1 Problem Types

One-dimensional problems are in a sense the simplest type of packing problems, and we will begin by,
briefly, considering them, in order to move on to the more complicated higher dimensional problems
which are the focus of this text.

2.1.1 One Dimensional Problems

One of the simplest packing problems is the one-dimensional cutting stock problem (1DCSP). Mate-
rials such as paper, textiles and metal are commonly manufactured in large rolls. Different customers
may desire different sized rolls and the large rolls are therefore cut into smaller rolls (see Figure 3 (a)).
Given one large roll size, a set of small rolls sizes, and for each small roll size, a number of required
rolls of that size, the one-dimensional cutting-stock problem is to find the minimal number of large
rolls required (see Figure 3 (b)).

10



Introduction to Packing Problems

(a) (b)

Figure 3: The 1D cutting stock problem. (a) Large rolls must be cut into several smaller rolls. (b)
Given large roll width, determine the number of large rolls required to cut the required pieces.

A related problem is the one-dimensional bin-packing problem (1DBPP). For the bin-packing
problem a set of items each with size wi, for i∈ I, and a bin size W are given, and the problem is to find
the minimal number of bins such that all items are packed in a bin. Fundamentally, the two problems
are the same, since one can transform an instance of one problem into the other, by replacing the term
“large roll” with “bin” and “small roll” with item or vice versa. Authors generally distinguish between
1DCSP and 1DBPP by the number of each item size; cutting stock usually concerns few item sizes
(homogenous), while bin-packing is used for problems with many item sizes (heterogenous). Both
problems fall into the group of problems that we refer to as container-count minimization, since the
number of large rolls or bins must be minimized. The bin-packing problem can be formulated as a
mixed integer linear program (MIP):

min
K

∑
k=1

yk,

s.t.
K

∑
k=1

xik ≥ 1, i ∈ I

∑
i∈I

wixik ≤Wyk, k = 1, . . . ,K

where xi ∈ {0,1}, i ∈ I

yk ∈ {0,1}, k = 1, . . . ,K. (1)

Here K is the maximum number of bins required. The binary variable yk indicates whether bin k is
used (opened). Variable xik indicates whether item i is in the kth bin. The first constraint ensures that
all items are placed in a bin at least once, and the second constraint ensures that the items assigned to
a single bin can be placed in the bin without overlap.

Another common packing problem is the one-dimensional knapsack problem (1DKPP). 1DKPP
must also be solved when the cutting stock problem is to be solved using delayed column generation
(see e.g. [33]). For the one-dimensional knapsack problem we are given a knapsack with a capacity
and each item from I has a weight and a profit-value assigned to it. The objective is to determine the
subset of items which can be packed in the knapsack without violating the weight capacity limit, such

11
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(a) (b)

Figure 4: The 1D knapsack packing problem. (a) A knapsack must be filled with the most profitable
set of items with its weight limit. (b) The knapsack and items represented as a rectangles with equal
height. The width of each item represents its weight.

that the sum of the profit of the items from the subset is maximal. We can write this as a MIP:

max ∑
i∈I

pixi,

s.t. ∑
i∈I

wixi ≤W

where xi ∈ {0,1}, i ∈ I. (2)

Here W is the knapsack’s weight capacity, wi is the weight and pi the profit of each item i ∈ I. The
binary variable xi indicates whether item i is chosen. The constraint is the capacity constraint, which
ensures that all items can fit inside the knapsack without “overlap”. The problem is illustrated on
Figure 4. The knapsack packing problem is a subset selection problem.

Since this text focuses on packing problems in higher dimensions, we will abandon the one-
dimensions problems for now and instead move to the more challenging multi-dimensional problems.
For more information on one-dimensional knapsack packing problems we refer to the book by Kellerer
et al. [90].

2.1.2 Multi Dimensional Subset Selection Problems

The two-dimensional knapsack packing problem (2DKPP) and the one-dimensional variant are re-
lated. For the two-dimensional variant a plate of some size W ×H is given as well as the set of items
I. As for the one dimensional variant of the knapsack packing problem, one is given a set of items,
each item is assigned a profit pi and one must select a maximal profit subset of items I′= {i∈ I|xi = 1},
such that ∑i∈I pixi is maximized and I′ can be packed in the container.

Some authors (e.g. Boschetti et al. [21], Hifi [79], Lai and Chan [95]) also refer to this problem
as the two-dimensional cutting stock problem (2DCSP). When this terminology is used there are a
number of differences. For the 2DCSP items are usually more homogeneous and identical items are
grouped. For each group, a lower-bound value designates the minimum number of items from that
group to be packed.

These problems occurs in glass and metal industries, where large plates must be cut into smaller
pieces which are sold to customers. A simple profit-value for each item is the area it occupies of the
plate. If this value is used the objective is to maximize utilization of the plate. The problem appears
in both unconstrained and constrained versions. In the unconstrained version the number of items of
each type is infinite.

12
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(a) (b) (c)

Figure 5: Guillotine cutting. (a) Guillotine cuttable placement. (b) Non-guillotine cuttable placement.
No sequence of cuts can cut all the items from the plate without cutting an item. (c) Cutting sequence
for (a).

Figure 6: The manufacturer’s pallet loading problem is to determine the optimal loading of a set of
identical items on a pallet.

Some cutting-machines cannot stop in the middle of the plate, but need to divide the plate in its
entirety either horizontally or vertically in each cut. This is referred to as a guillotine cutting stock and
illustrated on Figure 5. Another form of cutting, right-angled cutting, where the cutting-machine can
stop in the middle of the plate but only start from one of the edges, was investigated by Bukhvalova
and Vyatkina [22].

A related two-dimensional problem is the manufacturer’s pallet loading problem (PLP). Here one
wishes to find an optimal loading pattern of identical pieces (boxes), which must be loaded on a pallet.
Although the problem is really a three-dimensional problem as noted by Bischoff and Ratcliff [17], it
is commonly modeled as a two-dimensional variant, where only one layer of items is considered and
this layer is replicated a number of times. The problem is illustrated on Figure 6.

Since there is only one item-type, the objective is to find the loading pattern that maximizes the
number of that item. It can therefore be considered a special case of the two-dimensional knapsack
packing problem, where the lower bound of items is 0, the number of items is infinite, the number of
item types is 1, the items can be rotated by 90 ◦, and the profit of each item is one. Since the items
are assumed to be identical, we will not go into further details on the problem, but simply make a few
remarks. Exact algorithms for this problem have been introduced by Dowsland [43] and Bhattacharya
and Bhattacharya [14], a survey of solution methods for PLP was given by Balasubramanian [5], a
polynomial time algorithm for a version of the problem where placements are required to guillotine-
cuttable was presented by Tarnowski et al. [148], while several heuristics were presented by Herbert
and Dowsland [77], Lins et al. [97], Young-Gun and Maing-Kyu [161].

2DKPP generalizes to three dimensions. A special variant of the problem in three-dimensions,
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Figure 7: The container loading problem and the common use of width (W), height (H), and depth
(D).

is the container loading problem (CLP). The container loading problem occurs in the transportation
industry, where items are transported in shipping-containers. Here one is given a set of items and the
objective is find a packing of the items that maximizes the volume occupied by them. This corresponds
to a three-dimensional knapsack packing problem (3DKPP) where the profit of each item is set to its
volume. The literature considers mostly rectangular items for the container loading problem, and,
unlike the knapsack problem, rotation of the items is generally allowed, although each item may only
be rotated a specified subset of the six axis-aligned rotations.

Standard internal dimensions of shipping containers are 234 × 234 × 592 cm3 for 20-feet con-
tainers and 234 × 234 × 1185 cm3 for 40-feet. Therefore, solution methods for CLP often take ad-
vantage of the elongated container and the large dimensions of the container relative to items, where
as, methods for three-dimensional knapsack packing problems in general, cannot take advantage of
this property. Figure 7 illustrates the CLP.

Another distinction between three-dimensional knapsack packing problems and container loading
problems is that CLP generally considers hundreds of items with a volume sum close to the volume
of the container, while 3DKPP considers less than 100 items with a combined volume which may be
many times larger than the container size.

Apart from the differences related to container dimensions, the item numbers, and the profit value,
container loading problems often also consider stability of the items, i.e, that the items are not floating
in mid-air and will not drop to the floor once the container is moved.

2.1.3 Multi Dimensional Container-Count Minmization

The one dimensional bin-packing problem can also be generalized to more dimensions. Here one
wishes to minimize the number of bins required to pack a set of items. The literature deals mostly
with rectangular items and as for the knapsack packing problem, it is common not to allow rotation.
The bin-packing problem occurs naturally in the industry. Often one can have a set of plates which
must be cut into smaller items, or a number of containers into which items must be divided, and one
wishes to minimize the number of plates or containers used.

Slightly confusing, this problem is also commonly referred to as the two-dimensional cutting stock
problem (by e.g. Gilmore and Gomory [69]), and as for the variant related to the knapsack packing
problem homogeneous and identical items are grouped and for each group, a lower-bound value des-
ignates the minimum number of items from that group to be packed. To avoid further complications
we will refrain from using the cutting stock terminology in the remainder of this text.

Special variants of the bin-packing problem includes the multi-container loading problem (MLCP)
and the multi-pallet loading problem (MPLP). In the multi-container loading problem, one wishes to
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(a) (b)

Figure 8: (a) The strip-packing problem. The height (H), also referred to as the length, of the
container must be minimized. (b) Example packing of irregular items.

minimize the number of containers required to load a set of items. As for the ordinary container
loading problem, a single container may be able to hold hundreds of items while the bins of the
bin-packing problem may contain far fewer items.

Unlike single pallet loading, multi-pallet loading concerns different items, and the objective is
to determine the minimal number of pallets required to load the items. Multi-pallet loading differs
from multi-container loading, in that the container is smaller since it is a pallet, and that there may be
stricter requirements related to stability.

2.1.4 Container Minimization

A set of problems, that occur only in two or more dimensions, are problems where the objective is to
determine the minimal container that is large enough to enclose a given set of items. The objective
may be to minimize one dimension of the container (strip-packing), minimize the area or volume
(area minimization), minimize the circumference of the container, or minimize the radius of a circular
container (circle packing).

Strip-Packing Strip-packing is probably the most commonly studied problem type in this category.
The problem originates from the textile industry, but also occurs in the metal industry. In the textile
industry one is given a roll of fabric, which must be cut into different components that make up
clothing items when sewn together. The objective is to place the pieces such that the length of the strip
is minimized. The is equivalent to a maximizing the utilization of the fabric. More specifically the
problem is as follows: One is given a set of items and must place them within a rectangular container
where one dimension is given (the width of the strip), and the second dimension must be minimized.
The second dimensions which is the height of the container, is referred commonly referred to as the
length of the strip. Since the problem occurs in the clothing industry, items are commonly irregular.
The strip-packing problem involving irregular items is often referred to as the nesting problem. To
avoid any confusing we will refrain from using that terminology in this introduction although it is
commonly used by researchers in the field. The strip-packing problem is depicted on Figure 8.

Three-dimensional strip-packing Strip-packing problems may be generalized to higher dimension
by requiring that all but one of the container dimensions are given. The three-dimensional variant ap-
plies to rapid-prototyping machines, that generate simple plastic objects from computer aided design
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(CAD) systems. The generated objects can be used as design models or prototypes, and allow a de-
signer to physically interact with his new design. The term rapid comes from the fact that the machine
can produce a physical replica of a three-dimensional computerized model within hours. Rapid pro-
totyping machines generate models by building a set of layers. Each layer comes with a significant
process time, and so it is favorable to minimize the number of layers which must be generated for a
given set of items. The problem may also occur as a subproblem in situations where a set of items
should be packed as tightly as possible inside container, such that the remaining space can be used for
a different set of items.

Area minimization Problems where several container dimensions must be minimized concurrently
have also been studied in the literature. An example of such a problem is the two-dimensional minimal
area packing problem, where one has to find the minimal area container large enough to encompass a
set of items. This problem occurs in the Very Large Scale Integrated (VLSI) placement problem, that
deals with the positioning of rectangular modules within a rectangular plate. However, commonly
the problem of minimizing the area of such a plate is deemed less important compared to the more
important problem of minimizing wire-length between the modules.

Circle Packing Another well-known container minimization problem is the circle packing problem,
where one must find the minimal, with respect to radius, circular container which can enclose a set of
circles. In the literature problems in the cable or oil pipeline industries are often cited as sources to
this problem.

2.1.5 Mathematical problems

Packing problems have also attracted attention from the mathematical community, but here homoge-
neous or specific item dimensions are considered. As an example, the famous astronomer Johannes
Kepler was looking for the most efficient way to pack equal-sized spheres in a large box in 1611.
Kepler hypothesized that the optimal strategy was to stack the spheres similar to the way greengrocers
stack oranges in crates. The utilization (volume occupied by the spheres divided by the volume of the
box) of such a stacking is π

3
√

2
≈ 74.048%. Kepler’s hypothesis turned out to be extremely difficult to

prove, but Hales [75] recently published a convincing proof, although it has yet to be completely con-
firmed. Several other related problems have interested the mathematical community over the years.
Some examples are:

• Determine the minimum square or circular container capable of containing n unit circles.

• Determine the maximal number of unit squares in square container with non-integer dimen-
sions, and where the unit squares may be freely rotated.

Discussion of these variants of packing problems is beyond the scope of this text, and we will abandon
them here in favor of the more practical problems that we have discussed so far.

2.2 Typologies

Because researchers come from different backgrounds, equivalent problems are often referred to with
different names. This is already apparent in the prequel where the knapsack packing, container load-
ing, and multi-pallet loading problems are all in a sense equivalent. To remedy this problem, several
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Abbrev. Description
IPPP Identical Item Packing Problem, e.g., Pallet Packing.
SKP Single Knapsack Problem. The knapsack packing problem as described in the prequel.

Also includes the container loading problem.
MIKP Multiple Identical Knapsack Problem. A subset of items for multiple knapsacks must

be determined. Includes the multi-container loading problem and multi-pallet loading
problem.

MHKP Multiple Heterogenous Knapsack Problem. Variant of MIKP, where the knapsacks are
not identical.

SLOPP Single Large Object Placement Problem. This is a form of weakly heterogeneous
single knapsack problem.

MILOPP Multiple Identical Large Object Placement Problem. A variant of SLOPP with multi-
ple knapsacks.

MHLOPP Multiple Heterogenous Large Object Placement Problem. Variant of MILOPP with
different knapsacks.

Table 1: Output maximization problems according to Wäscher et al. [157].

researchers have introduced typologies based on a limited set of core problems. In recent years the ty-
pology by Wäscher et al. [157] has replaced the older typology by Dyckhoff [47], and we will describe
the former briefly here.

Wäscher et al. [157] start by dividing the input objects into two categories: large and small objects.
The large object is/are the container(s), while the small objects are the items to be packed within them.
Further, problems are divided into two main groups: output maximization and input minimization.
Output maximization concerns problems where one is to place a set of small objects within a limited
set of large objects. Input minimization concerns minimizing the number of large objects (or the size
of one) required to pack the items.

Three groups are used to classify the variety of items: identical, weakly heterogeneous, and
strongly heterogeneous. Similarly, the set of large objects are classified as either a single object
(for output maximization), identical, or heterogenous. For input minimization the set of large objects
may be further categorized as either identical or heterogenous.

These distinctions lead to a classification typology with a relatively low number of problem types.
The problems types described in the previous sections can be classified using the typology by Wäscher
et al. [157]. The subset selection problems of Section 2.1.2 are all output maximization problems and
divided into the sub-categories listed in Table 1. The container-count minimization problems of Sec-
tion 2.1.3 are all input minimization problems and are listed in Table 2. The container minimization
problems from Section 2.1.4 are perceived by Wäscher et al. [157] as another category of input mini-
mization problem named Open Dimension Problem (ODP).

To identify problem types further Wäscher et al. [157] also consider the “dimensionality” of a
problem type, i.e., two-dimensional, three-dimensional, or d-dimensional, and the type of items, i.e,
regular (rectangular, circular, cylindrical) or irregular.

Using the typology of Wäscher et al. [157] a two-dimensional knapsack packing problem with
rectangles will be referred to as a “2-dimensional rectangular SKP”, while a three dimensional strip-
packing problem involving irregular shapes will be referred to as a “3-dimensional irregular ODP”.
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Abbrev. Description
SBSBSP Single Bin Size Bin Packing Problem. Bin Packing Problem as described in the pre-

quel.
MBSBPP Multiple Bin Size Bin Packing Problem. Bin Packing Problem with multiple bin sizes.
RBPP Residual Bin Packing Problem (RBPP). Bin Packing with strongly heterogenous bin-

types.
SSSCSP Single Stock Size Cutting Stock Problem. Bin Packing Problem consisting of weakly

heterogenous items.
MSSCSP Multiple Stock Size Cutting Stock Problem. SSSCSP variant with multiple types of

bins.
RCSP Residual Cutting Stock Problem. MSSCSP with strongly heterogenous bin-types.
ODP Open Dimension Problem. Container Minimization Problems such as strip-packing

and area minimization problems.

Table 2: Input minimization problems according to Wäscher et al. [157].

2.3 N P -completeness

From a computer science point of view, one of the most important properties of packing problems is
that they generally fall in the category of N P -hard problems. A notable exception is the manufactur-
ers pallet loading problem (PLP), which Lins et al. [97] note has never been proven N P -hard. This
problem differs from the remaining problems in that it considers identical items to be packed.

For the remaining problems – in multi-dimensional rectangular variant without rotation – proving
that they are N P -hard problems may be done easily by reduction from the set partitioning problem.
We will give a simple proof by first showing that a special problem, which we refer to as the two-
dimensional packing decision problem (2DPDP) is N P -complete and then explaining how the PDP
can be reduced to the packing problems we have discussed in the prequel.

We begin by defining the set partition problem which is known to be N P -complete (see [62]).

Definition 1. Set Partition Problem (SPP). Given a set of items S, each with a positive integer value
wi ∈ N for i ∈ S, decide if we can divide S into two disjoint sets S′ and S′′ such that S′ ∪ S′′ = S and
∑i∈S′ wi = ∑i∈S′′ wi = 1

2 ∑i∈S wi.

We now define the two-dimensional packing decision problem.

Definition 2. Packing Decision Problem (2DPDP). Given a rectangular container of a size W ×H
where W,H ∈ N, and a set of two-dimensional rectangular items I, each with a width wi ∈ N and
height hi ∈ N, decide if a non-overlapping placement, i.e., a packing, of the items exists within the
container. Here, a placement P : I→ N2

0 is a map of items into non-negative integer x,y-coordinates.

2DPDP represents the fundamental aspect of packing problems, which is to determine a non-
overlapping placement of items within one or more containers.

Theorem 1. 2DPDP is N P -complete.

Proof. Let xi, yi be the coordinate of the lower-left corner of each item in a placement. Verifying if a
placement of items contains overlap amount to checking if the intersection ([xi,xi +wi[×[yi,yi +hi[)∩
([x j,x j + w j[×[y j,y j + h j[) is /0 for all i, j ∈ I, i 6= j. The open sets ensures that items are allowed to
abut. This can be done in time O(|I|2). Since a placement may be represented by a list of reference-
point positions, its can have a size which is polynomial of the input-size, and can therefore be used as
a certificate to verify a solution to 2DPDP in polynomial time.
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Figure 9: Illustration of an instance of 2DPDP based on an instance of SPP used to prove that
2DPDP is N P -complete. The height of all rectangles are 1 and W is the sum of all the widths divided
by two. The solution of the 2DPDP problem, shown on the bottom, is also a solution to the SPP
problem with numbers equal to the widths, since it forms two rows of items, each having the same
total width.

Further, given an instance J of SPP we can create an instance J ′ of 2DPDP such that, a yes-answer
exists for J iff a yes-answer exists for J ′. To create J ′ from an instance of J with a set of items I, we
simply create a set of rectangles each with dimensions wi× 1 for i ∈ S, and a rectangular container
with dimensions

(1
2 ∑i∈S wi

)
×2.

If a yes-answer exists for J , we know that two sets S′ and S′′ exists, and we may create a placement
with the items from S′ having y-coordinate 0 and the items from S′′ having y-coordinates 1. If we set
the x-coordinates appropriately this constitutes a non-overlapping placement of the rectangles of J ′.

Conversely, if a yes-answer exists for J ′, the rectangles must be divided into two groups with
respectively y-coordinate 0 and 1. Since the total width of the items is two times the container width,
the total width of the items in each group must be equal to the container width, and therefore these
two groups represent a partition of S. See Figure 9.

Since 2DPDP is N P -complete, we can say that the following problems from Table 1 and Table
2 of Section 2.2 are N P -hard: the 2D-rectangular-SKP is N P -hard, since we may transform an in-
stance of 2DPDP to an instance of 2D-rectangular-SKP where we will get a yes-answer to the 2DPDP-
instance if and only if all items can be packed in the 2D-rectangular-SKP instance. N P -hardness of
2D-rectangular-MIKP and -MHKP follows from 2D-rectangular-SKP, since we may create instances
of 2D-MIKP and 2D-MHKP with a single knapsack. The 2D-rectangular-SLOPP, -MILOPP, and -
MHLOPP are N P -hard, since it is trivial to transform each of the 2D-rectangular-SKP, -MIKP, and
-MHKP to one of the former.

The 2D-rectangular-SBSBSP is N P -hard, since we may transform an instance of 2DPDP to an
instance of 2D-rectangular-SBSBSP where we will get a yes-answer to the 2DPDP-instance if and
only if we only need one bin in the solution of the 2D-rectangular-SBSBSP. By using the same ar-
gumentation as above, we may state that also 2D-rectangular-MBSBPP, -RBPP, -SSSCSP, -MSSCSP,
and -RCSP are N P -hard problems.

Finally, rectangular strip-packing is N P -hard, since we may transform an instance of 2DPDP to
an instance of 2D-rectangular-ODP where we will get a yes-answer to the 2DPDP-instance, if and
only if we can find a container with a width equal to 1

2 ∑i∈I wi
1.

Variants of 2D-irregular-SKP, -MIKP, -MHKP, -SLOPP, -MILOPP, -MHLOPP, -SBSBSP, -RBPP,
-SSSCSP, -MSSCSP, -RCSP, and -strip-packing where the set of allowed irregular items is a superset
of rectangles, are also N P -hard, provided a certificate exists which can be used to verify a solution

1The width and height are interchanged here relative to the definition given in section 2.1.4
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in polynomial time, since it is trivial to transform the rectangular variants to the irregular variants.
Because it can be verified if two polygons overlap in polynomial time, problems involving general
polygons (convex, simple, and with holes), are thus N P -hard.

Finally, all d-dimensional variants of the problems listed above are N P -hard for d > 2, since
the two-dimensional variants can be transformed into d-dimensional variants by setting all remaining
dimensions of items to 1. For completion’s sake, we note that the 2D-rectangular-area-minimization
problem is also N P -hard as proven by Murata et al. [117].
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3 Computational Techniques

The computational techniques used to solve packing problems involve methods from computational
geometry, operations research, as well as mathematical observations. In this section we will review
many of these techniques. As always, space only permits a limited number of contributions to be
summarized, and the selection made in this text is purely subjective. The focus is on methods that
were either common for several researchers, has returned promising results, or which simply feel
powerful or universal according to the author of this thesis.

In order to limit the size of the review we will not consider one-dimensional problems or methods
for guillotine cutting. While guillotine cutting approaches may have relevance to the topics considered
a line much be drawn somewhere and guillotine cutting problems are not within the focus of this thesis.

The section is divided into four parts. First, in Section 3.1, we will consider how the items and
container can be represented. Then, in Section 3.2, we will address the problem of determining if two
items overlap and how to avoid it. In section 3.3 we discuss many of the known solution strategies.
Finally, in Section 3.4 we speculate on possible and likely directions for future research in the field.

3.1 Representing the Items and Container

Up until this point we have not disclosed the true nature of the container or the items involved. Gener-
ally, for a d-dimensional problem, items and containers consists of a closed subset of Rd which may
undergo some some sort of rigid transformation (i.e. translation and rotation if allowed).

Most literature deals with items and containers which can be represented by axis aligned rectan-
gles. For a d-dimensional problem that means sets of the form Πd

k=1[0,wk], where wk ∈ R is the k-th
dimension of the item. Problems involving circles or spheres are modeled similarly.

For other items, we may consider their so-called bounding-box. Assume an item i covers the
closed set si ⊂ Rd , then the bounding-box of si is defined as the set Πd

k=1[x
min
k ,xmax

k ] where:

xmin
k = min{xk | x = (x1, . . . ,xk, . . . ,xd) ∈ Rd , x ∈ si}

xmax
k = max{xk | x = (x1, . . . ,xk, . . . ,xd) ∈ Rd , x ∈ si}.

Rectangular shapes are compelling for two reasons. Firstly, many practical situations deal with plates
or boxes. Secondly, the use of rectangles instead of arbitrary shapes, simplifies the overlap constraints,
which may enable a solution method to find better objective values in less time than what would be
possible with a highly detailed description. It should be noted that significant space can be lost around
items, if bounding-boxes are used rather than an accurate description.

In two dimensions non-rectangular shapes may take the form of circles, polygons, and polygons
with curved boundaries. In three dimensions they may take the form of polyhedra and raster-like
models. In general, we refer to arbitrary shapes as irregular.

Polygons are generally described by the sequence of endpoints of the line-segments that make
up their boundaries (see Figure 10 (a)). Authors may distinguish between convex polygons, simple
(non self-intersecting boundary) polygons, and simple polygons with holes. Endpoints are said to be
in either clockwise or counter-clockwise order, and the order determines the interior of the polygon.
Polygons with holes are generally represented by a list of sequences, one for each closed boundary.

Polyhedra are described by the linear subspaces (faces) that make up their boundary. The simplest
general such definition is a triangle mesh, which is a data-structure composed of a series of triangles
often combined with neighboring information (see Figure 10 (c)).

Researchers have also investigated various types of raster models (see Figure 10 (b)). An item i
which occupy the subset si ⊂ Rd , may be represented implicitly by the function f (p) : Rd → {0,1}
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(a) (b) (c)

Figure 10: Polygons and polyhedra. (a) Polygon with hole with its bounding-box. The polygon is
represented by the endpoints of the edges (black circles). (b) Raster representation of the polygon.
Black circles indicate positions where the raster-function is 1. (c) Polyhedron represented as a number
of triangles. Only four triangles shown here. Each triangle may be represented by its endpoints (the
black circles).

where f (p) = 1 if and only if p ∈ si. The raster representation of such an item, is a function defined
on a coarser domain. E.g., if only integer coordinates p ∈ Zd are represented and nk is the kth dimen-
sion of the item then such a grid can be represented by Πd

k=1nk bits. It should be noted that several
straight-forward compression techniques may use less space. For instance, in two dimensions one
may represent the shapes as a series of x-slabs for each y value.

A particular compression technique for three dimensions is an octree representation. Octrees are
well-known in the area of computer graphics, but we will briefly summarize them here. An octree is a
hierarchical tree data structure commonly used to partition three-dimensional space. Each level of an
octree divides the previous level uniformly into 8 cubes. Each cube is marked depending on whether
the cube is completely inside (black), partially inside (gray) or completely outside the shape (white).
The top level of the octree consists of one cube circumscribing the entire shape. This means that level
n uses up-to 8n−1 cubes. Only gray cubes are sub-divided. A quad-tree is a similar data-structure in
two dimensions consisting of a hierarchy of squares.

Most recent methods represent irregular items by polygon or polyhedra, and in general when we
use the term irregular it we will be for problems involving polygons or polyhedra unless we state
otherwise.

The representation of items must be sufficiently detailed to reach high quality solutions without
complicating the solution process. Thus the choice of representation is strongly connected to the
ability to check for overlap between shapes efficiently which will be discussed in Section 3.2.

3.2 Avoiding Overlap

The two reoccurring constraints for packing problems are that items are not allowed to overlap, and
that all items must be positioned within the container.

In other words, let si ⊂ Rd be the set occupied by item i ∈ I in a d-dimensional problem, then, in
order to ensure that items do not overlap, we require that for any pair of items i and j int(si)∩ int(s j) =
/0, where int(·) is the interior of the sets. Note that this requirement allows the items to abut. Likewise
assume the container covers the set C ⊆ Rd then we also require that si∩C = si for any item i.

We will discuss methods to detect overlap in Section 3.2.1 and present the No fit polygon in
Section 3.2.2 and φ-functions in Section 3.2.3. These concepts can be used to determine efficiently,
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how items must be placed relative to each other to avoid overlap. In Section 3.2.4 we show how a
compact non-overlapping placement can be described by a graph that represents how rectangles need
to placed relative to each other.

3.2.1 Detecting Overlap

Verification of the two constraints depends on the representation of the items and the container. Cir-
cles, and hyper-spheres in general, are particular easy to check for overlap, since the distance between
their centers must be larger than the sum of their radii. Orthogonally placed rectangles, i.e. with axis
aligned sides, are also simple to test for overlap. If we let wk

i be the size of rectangle i in dimension
k, then item i occupies the set [x1

i ,x
1
i + w1

i ]× . . .× [xd
i ,x

d
i + wd

i ]. To ensure that two rectangular items
i and j do not overlap, we have to require that either xk

j ≥ xk
i + wk

i or xk
i ≥ xk

j + wk
j for at least one

dimension 1≤ k ≤ d. In two dimensions these constraints corresponds to the requirement that i must
be either left of, right of, above, or below j. We refer to this as a required relation between i and j. The
procedure becomes a bit more tricky when we deal with irregular items or free rotation of rectangles.

For convex polygons their intersection can be found in O(n) asymptotic time (see e.g. [125, 151]).
The intersection of irregular polygons can be determined in time O(n logn+k logk) (see [39]), where
n is the sum of the number of edges of the input polygons, and k is the number of edges of the output
polygon. Since the output polygon can have O(n2) edges O(n2) is also a lower bound for the running
time of any algorithm that can return the intersection of two polygons, although determining if two
polygons intersect may be done quicker.

For raster models the process can be done in linear time of the input size. Let two two-dimensional
items i and j have raster-functions f and g represented at integer coordinates. To test if the two items
overlap, one may verify if f (x+ xi,y+ yi)+g(x+ x j,y+ y j) = 2 for any (x,y) with

x ∈ {max(xmin
i ,xmin

j ), . . . ,min(xmax
i ,xmax

j )},y ∈ {max(ymin
i ,ymin

j ), . . . ,min(ymax
i ,ymax

j )}, (3)

where [xmin
i ,xmax

i ]× [ymin
i ,ymax

i ] is the bounding-box of item i.
For octree representatons, one may test the cubes recursively. If two black cubes overlap then the

shapes overlap. If gray cubes overlap one may recursively consider their higher resolution sub-cubes
until the highest resolution is reached, or until only white cubes overlap, in which case the actual
shapes do not overlap.

An interesting idea for three-dimensional objects was suggested by Dickinson and Knopf [41,
42] for a heuristic for three-dimensional layout of irregular shapes. Here each of the six sides of
the bounding box of each shape is divided into a uniform two-dimensional grid and the distance
perpendicular to the box-side from each grid cell to the shape’s surface is stored. Determining if two
shapes overlap now amounts to testing the distance at all overlapping grid points of bounding box
sides, when the sides are projected to two dimensions.

3.2.2 No-Fit Polygon

A popular and efficient way to deal with overlap detection is with the so called no-fit-polygon (NFP).
If si ⊆ Rd represents item i, we let si(p) = {p + q | q ∈ si} be si translated by the vector p. For two
items i and j which are represented by polygons the NFP describes the set of translations of i and j
that will cause the two items to overlap.

If we translate i by pi and j by p j, then si(pi)∩s j(p j) = /0 if and only if si(pi−p j)∩s j = /0, and we
say that the vector pi−p j is i’s position relative to j. We may refer to set of relative positions between
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(a) (b)

Figure 11: The clockwise sorting principle for NFP generation. (a) Two convex polygons. The
edges of the polygons are a,b,c and i, j,k respectively (sorted by slope). (b) The NFP of the two
polygons. The polygon with edges a,b,c has been negated to the polygon with edges −a,−b,−c. The
NFP can now be constructed by visiting the edges sorted by slope which is the following sequence
i,−c, j,−a,k,−b.

si and s j that will cause i and j to overlap as their set of overlap resulting positions, ORP(i, j), which
is defined as follows:

ORP(i, j) = {q | si(q)∩ s j 6= /0}. (4)

For items in the plane there is an appealing physical approach to calculate ORP(i, j). Cut both
items out of cardboard. Position j on a sheet of paper with its reference point in 0, and slide the
cardboard-model of i around the model of j, such that the boundary of the two polygons abut. As i is
slid around j, follow the reference point of i, and draw its trajectory on the paper. The boundary of
the figure drawn by the pencil represents the translations of i that will result in i abutting with j and
its interior is ORP(i, j).

To do this mathematically we use a concept which is referred to as the Minkowski-sum. The
Minkowski-sum of two sets s1 ⊆ Rd and s2 ⊆ Rd is defined as (see [39]):

s1⊕ s2 = {p+q | p ∈ s1, q ∈ s2}, (5)

where p+q is the sum of vectors. Let −p be the vector where all of p’s coordinates are negated, then
for a set s we define, −s = {−p | p ∈ s}.

It can be seen (see [39]) that, ORP(i, j) = si⊕−s j, so the ability to evaluate the Minkowski-sum
allows us to determine which relative translations will cause i to overlap with j. Note that, since
we generally allow the items to abut in packing problems, we must really define ORP(i, j) from the
interior of the sets of the items to get:

ORP(i, j) = int(s(i))⊕ int(−s( j)),

so that the boundary of the items can overlap.
For two items represented by polygons P and Q we let NFP(P,Q) = int(P)⊕ int(−Q) be their

NFP which itself is a polygon although it may contain degenerate elements. Using a method which is
quite similar to the physical traversal technique described above, one can determine the NFP for two
convex polygons in O(n) time where n is the sum of edges from the two polygons, provided that the
points of both the polygons are sorted in clockwise (or counter-clockwise) order. The reason for this,
is that the NFP of two convex polygons consists of all the edges of each of the polygons sorted by
slope. This is illustrated on Figure 11.
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Reference point

Q

P

Figure 12: The NFP of two polygons P and Q. The boundary of the NFP corresponds to the position
of P as P is translated around Q.

Unfortunately, it is not quite as simple when dealing with arbitrary polygons. One of the intrinsic
difficulties concerns the ability to position polygons within holes or concavities of other polygons.
If one polygon can be fitted exactly into the hole of another, then the translation that leads to such
a position, should be represented by a single point within the NFP. The NFP of two polygons is
illustrated on Figure 12.

Recent robust methods for calculating the NFP have been introduced by both Bennell and Song
[11] and Burke et al. [24]. Both papers divide the methods for calculating the NFP in three differ-
ent categories: Decomposition techniques, orbiting techniques, and Minkowski-sum techniques. The
decomposition techniques consists of methods that break the polygons into convex or star-like com-
ponents which are easier to handle individually. The orbiting techniques revolve around methods
that implement the trajectory strategy that was mentioned in the beginning of this Section. Finally,
Minkowski-sum techniques are generalizations of the slope-sorting techniques. The algorithm for
generating the NFP by Bennell and Song [11] has worst case running time O(mn+m2n2log(mn)).

The main problem when dealing with NFPs is that algorithms for their computation are highly
complicated which is evident from the fact that robust methods have only begun to appear in the last
few years. Another draw-back of NFPs is that they must be computed for each pair of polygons that
one wishes to test for intersection. This computation is generally done in a preprocessing step and will
result in a number of NFPs which is quadratic in the number of input polygons, which requires both
computational time and storage. Additionally, if items can be rotated, NFPs for each pair of allowed
rotation angles and each pair of polygons are required.

It should be noted though, that the recent methods of Burke et al. [24] and Bennell and Song [11]
are capable of calculating between hundreds and thousands of polygons per second on commodity
hardware. The largest set of NFPs reported by Burke et al. [24] consists of 90,000 NFPs which are
calculated in 142 seconds on a Pentium 4 2 GHz based on an instance consisting of 300 polygons.
However, NFPs for the most common benchmark instances involving polygon shapes are processed
within 1-5 seconds, so the preprocessing time may be negligible with todays hardware.

To solve the problem of determining the NFPs the EURO Special Interest Group on Cutting and
Packing (ESICUP), have made the NFPs for the commonly used benchmark data set for strip-packing
problems with polygons available along with the data-set on their website (2). This way, researchers
are spared the trouble of implementing algorithms for NFP-generation.

Once the NFP of two polygons P and Q has been determined, one can determine if they overlap if
placed at the position p and the position q respetively, by evaluating if their relative position (p−q)
is within NFP(P,Q). This amounts to using a simple point-in-polygon tests such as ray-shooting (see
e.g. de Berg et al. [39]) which can be done in linear time of the size of NFP(P,Q).

If the polygons overlap, we may determine a minimal two-dimensional translation of one of the
polygons, which will result in a non-overlapping relative position. This is referred to as the penetration

2http://paginas.fe.up.pt/˜esicup/
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(a) (b)

Figure 13: (a) An overlapping triangle and retangle. (b) Their NFP. (p−q) is the relative position of
the two polygons. v is the closest point to (p−q) on the boundary and the translation corresponding
to v− (p−q) is the minimal translation of the triangle required to ensure that the two polygons do
not overlap. The length of this is the intersection or penetration depth. The intersection of the line in
direction r from (p−q) determines the amount required to move the triangle in direction r so that the
two shapes do not overlap.

depth. Given a relative position (p−q) we can calculate the penetration depth of polygons P and Q in
linear time in the size of the NFP by evaluating the length of v− (p−q) where v is the point nearest
to (p−q) on the boundary of NFP(P,Q). Given a direction r, we may also use the NFP to determine
the amount we need to translate P along r for the two polygons to not overlap (see Figure 13 (a)). This
is done, simply by shooting a ray from (p−q) along r. The first intersection between the ray and the
boundary of NFP(P,Q) is the nearest non-overlapping translation along r (see Figure 13 (b)).

According to Bennell and Song [11] some researchers have come to feel that the introduction
of the NFP has stifled research in non-overlapping techniques, but NFPs describe non-overlapping
positions between two polygons which is a fundamental aspect of solving packing problems involving
polygons. So it seems, that NFPs by their very definition, are hard to overcome.

Theoretically, the notion of an NFP can be generalized to higher dimensions. Minkowski-sums
of polyhedra have certainly been investigated (e.g. by Varadhan and Manocha [154] and Zhong and
Ghosh [163]), but suffer from the fact the complexity of the output, i.e. the number of edges, faces,
and vertices, can be O(n3m3) (see [139]) for two polyhedra with complexity n and m respectively.
At this time, methods for packing three-dimensional irregular shapes are still in their infancy, but it
would be interesting to examine the potential of a three dimensional NFP (No fit polyhedron).

3.2.3 φ-functions

A concept which is related to the NFP is the notion of φ-functions which were introduced by Stoyan
and Ponomarenko [141] and investigated for two- and three-dimensional problems by Stoyan et al.
[142, 143, 144, 145].

For two d-dimensional sets s1⊆Rd and s2⊆Rd , a φ-function for s1 and s2 is a function φ : R2d→
R, for which we require the following:

• φ(p,q) > 0 for s1(p)∩ s2(q) = /0.

• φ(p,q) = 0 for int(s1(p))∩ int(s2(q)) = /0 and s1(p)∩ s2(q) 6= /0 (i.e. s1 and s2 have been
translated such that they abut).

• φ(p,q) < 0 for int(s1(p))∩ int(s2(q)) 6= /0.
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φ-functions can be perceived as a measure of distance between s1(p) and s2(q), and this is used
several times by Stoyan et al. [143]. For instance, the φ-function of circles and spheres is defined as
the distance between their centers minus the sum of their radii. Stoyan et al. [143] also give a definition
of a φ-function for two convex polygons, such that φ(p,q) is the distance from (p−q) to the boundary
of their Minkowski-sum. This can be done by considering the minimal signed distance from (p−q)
to any of the infinite lines that are coincident with the edges of the convex Minkowski-sum.

φ-functions are adequately abstract to be used to detect overlap by many different simple shapes
(circles, spheres, rectangles, cylinders, regular polygons, and convex polygons) and combinations
which may include unions and disjunctions. For instance, the φ-function of two non-convex polygons,
may be represented by breaking them into convex subparts and combining the set of φ-functions which
comes from each pair of convex subregion.

We may percieve φ-functions as an implicit representation of the Minkowski-sum of two-sets,
since the set {q ∈R | φ(0,q) = 0} is the boundary of the Minkowski-sum. Further, since any relative
position of the two sets is mapped into a real value, which is less than 0 only for overlapping positions,
we may use the value of the φ-function to indicate the amount the two sets overlap. Conversely, since
we are generally interested in compact placements, we may also use positive values to indicate that
the two sets can be moved closer.

While recent research has consistently referred to φ-functions as “promising”, they have yet to
prove competitive with conventional methods for objects other than circles and spheres, but this could
be due to the relatively simple optimization techniques applied thus far.

Further discussions of φ-functions are beyond the scope of this text, but, because they are an
implicit form and a multi-dimensional generalization of NFPs to a variety of shapes and combinations
hereof, they may provide many advantages over NFPs as the researchers familiarize themselves with
the concept in the coming years.

3.2.4 Constraint Graphs

Constraint graphs are a set of directed acyclic graphs width edge-weights, which can be used to
describe the relative position of rectangular items. For a d-dimensional problem, d graphs can be
used to describe the position of each rectangular item – One graph for each dimension.

For instance, to model constraint graphs for a two dimensional placement two graphs Gh and Gv

are needed. For both graphs a node is added for each rectangle, and we name the nodes of a rectangle
a, a in Gh and a in Gv. Further, in Gh a node W (west) is added, while in Gv a node S (south) is
added. Now directed edges are added between the nodes which describe their relative position. An
edge from a to b in Gh indicates that rectangle a must be placed left of b, while an edge from a to b in
Gv indicates that a must be placed below b.

A directed edge from W is added to each node in Gh and a directed edge from S to each node
is added in Gv. The weights of these edges are all set to 0. Edges are added between all pairs of
rectangles such that for any two rectangles a and b, exists exactly one edge from a to b, b to a, a to b,
or b to a. The edges indicate that a is to be placed left, right, below, or above b, respectively. In Gh
each edge (a,b) is given weight equal to the width of rectangle a. In Gv the weight of each edge (a,b)
is set to the height of rectangle a.

The graphs can be used to generate the coordinates of each rectangle in a placement which is
compact in the sense that all rectangles have minimal x- and y-coordinate as described by edges
from the constraints of the graphs. To determine the x-coordinate of a rectangle a one only needs to
determine the longest path (or the critical path) from W to a in Gv which can be done in O(n2) time,
where n is the number of rectangles, since the graph is acyclic (see e.g. [36]). Similarly, one can
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(a) (b) (c)

Figure 14: Constraint graphs for two-dimensional placement of rectangles a,b,c,d,e, f and g.. (a)
Gh. (b) Gv. (c) Resulting placement. Edge weights have been removed but are respectively width and
height of the rectangles for Gh and Gv.

determine the longest path from S to a to determine its y-coordinate. Furthermore one may determine
the position of all rectangles in O(n2) time. The construction of each graph and determination of the
item positions is straight-forward to generalize to higher dimensions.

Figure 14 illustrates this concept. Here the x-coordinate of g is equal to the longest path from W
to g in Gh which goes through b and d, while the y-coordinate is equal to the length of the longest
path from S to g in Gv which goes through a and b.

An important aspect of constraint-graphs is that, as long as an edge exists between the nodes of
any two rectangles a and b in any of the graphs, the placement is guaranteed to be without overlap.
This comes from the fact that such an edge describes one of the required relations (see Section 3.2)
between the two rectangles.

3.3 Solution Approaches

In this section we present many popular solution approaches. An issue which have not covered previ-
ously is with respect to rotation. Most solution methods are not used to solve problems where items
are allowed to rotate. This is especially true for exact algorithms; most likely because enumeration
schemes and bounds are not powerful enough to manage rotated items. We will not dwell any further
on this topic but simply remark that heuristics which do consider rotation, generally only consider
180◦, or multiples of 90◦, rotation of items.

Solution approaches for packing problems fall into many different categories. We will begin by
introducing Mixed Integer Programming Formulations in Section 3.3.1, and proceed to consider some
of the simpler paradigms in sections 3.3.2, 3.3.3, and 3.3.4. A strategy for representing free-space
will be considered in Section 3.3.5. Methods which consider overlap of items during the solution
process are discussed in Section 3.3.6. The notion of envelopes which is the core element of methods
that constructs a placement by positing one item at a time is discussed in section 3.3.7. In Section
3.3.8 non-trivial representations of placements are presented. Advanced techniques for recent exact
algorithms are presented in sections 3.3.9, 3.3.10, and 3.3.11. Finally, the current state of the field of
approximation algorithms is summarized in Section 3.3.12.

3.3.1 MIP Formulations

Since packing problems are optimization problems, an obvious choice for modeling the problem is
through mixed integer programming (MIP). A number of MIP formulations for packing problems
have been considered over the years. Here we restrict ourselves to consider three such models for
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orthogonal rectangular packing and a single model for irregular packing. MIP models are generally
used for exact algorithms.

Beasley [8] introduced a model for two-dimensional knapsack packing problems. However, the
model is simple to generalize to higher dimensions. In this model an integer variable is allocated for
each item and each location throughout the container area. Specifically, we set

xipq =
{

1 if item i is placed with its bottom− left corner at (p,q)
0 otherwise

The coefficient matrix A is a form of “occupancy” matrix that describes which cells are occupied for
each item location and we set

aipqrs =


1 if grid− cell (r,s) is occupied when

item i is placed with its bottom− left corner at(p,q)
0 otherwise

Beasley considered a knapsack packing problem with the profit of each type of item i set to vi, and
required that the number of packed items of type i should be between Pi and Qi. The model is as
follows:

max
n

∑
i=1

vixipq

s.t.
n

∑
i=1

W

∑
j=1

H

∑
k=1

aipq jkxipq ≤ 1 (p = 1, . . . ,W ) (q = 1, . . . ,H)

W

∑
p=1

H

∑
q=1

xipq ≥ Pi, (i = 1, . . . ,n)

W

∑
p=1

H

∑
q=1

xipq ≤ Qi, (i = 1, . . . ,n)

xipq ∈ {0,1,2 . . .} (i = 1, . . . ,n), (p = 1, . . . ,W ), (q = 1, . . . ,H) ,

where the first type of constraint ensures that each location is filled by only one item, and the following
two ensures that the required number of items are packed.

This formulation contains a massive number of integer values, but Beasley introduced a way to
reduce this number, by considering possible positions for each item i based on the dimensions of the
other items. However, even with this reduction, the model still suffers from an exponential number of
integer variables which depends on the container dimensions.

Despite the large number of binary variables, Beasley [8] was actually able to solve many prob-
lems to optimality, by using a combination of lagrange relaxation, sub-gradient search and tree-search.

An advantage of the model by Beasley [8] is that it can be used to model any shape provided that
the shape can be represented accurately using a grid-structure. In a way, one may therefore view this
model as an integer formulation of the raster model used to detect overlap (see section 3.2.1).

A similar model was later used by Hadjiconstantinou and Christophides [74], but unlike the
model of Beasley [8], which used an integer variable for each combination of item and x- and y-
coordinate, Hadjiconstantinou and Christophides [74] uses one binary variable for each item and each
x-coordinate and one binary variable for each item and each y-coordinate. This model was also used
for exact methods in conjunction with lagrange relaxation, sub-gradient search and tree-search.
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The model by Beasley [8] suffers from the fact that an exponential number of variables that de-
pend on the dimension of the container are used. A model for rectangular packing that uses only a
polynomial number of binary variables in the number of items was presented by Onodera et al. [124]
and Chen et al. [29]. For each rectangle a linear variable xi,k is used to describe the coordinate of each
rectangle i in dimension k. To ensure that two rectangles do not overlap two binary variables li, j,k and
l j,i,k are introduced for every pair of items i, j ∈ I in each dimension 1 ≤ k ≤ d. The model (without
objective function) looks as follows:

xi,k− x j,k +Wkli, j,k ≤ Wk−wi,k, 1≤ k ≤ d, i, j = 1, . . . ,n
x j,k− xi,k +Wkl j,i,k ≤ Wk−wi,k, 1≤ k ≤ d, i, j = 1, . . . ,n

∑
n
j=1 li,k, j +∑

n
j=1 lk,i, j ≥ 1, 1≤ k ≤ d, i = 1, . . . ,n

xi,k +wi,k ≤ Wk 1≤ k ≤ d, i = 1, . . . ,n

xi,k ≥ 0, l j,k, li, j ∈ {0,1} for i, j = 1, . . . ,n, k = 1, . . . ,d ,

where li,k, j ∈ {0,1} and Wk is the kth dimension of the rectangular container. The two first constraints
ensures that for every pair of rectangles i and j, the kth coordinate of i meets the requirement that
xi,k +wi,k ≤ x j,k if li, j,k = 1 and vice versa if l j,i,k = 1. If just one of any of li, j,k or l j,i,k are equal to one
for k = 1, . . . ,d then rectangles i and j cannot overlap, and the third constraint ensures that this is true
for at least one dimension k. The last constraint ensures that all rectangular items are placed within
the container boundaries. The model is general and can be used for different packing problems, but
the formulation is likely not suitable for branch-and-bound based algorithms, where the LP-relaxation
is used in each node, since roughly n2 binary variables must be set to 1 to avoid overlap. Onodera
et al. [124] use the model for an exact branch-and-bound algorithm for the minimum area rectangular
packing problem, while Chen et al. [29] use it for the container loading problem. In both cases the
authors report experiments for only around six items.

The first MIP formulation for two- and higher dimensional packing problems is commonly cred-
ited to Gilmore and Gomory [69]. The formulation is based on a principle which had proven success-
ful for one-dimensional cutting-stock problems using column generation (see Gilmore and Gomory
[67, 68]), and is commonly used to introduce column generation to students. Their strategy for the
one-dimensional problem is to enumerate all possible cutting patterns of the stock, i.e. is all possible
feasible placements of items. If we let A j describe the jth cutting pattern, then we set ai j = 1 if item
i belongs to the jth cutting pattern and ai j = 0 otherwise. Let M be the number of feasible cutting
patterns, then all the feasible cutting patterns can used for columns in a n×M matrix A. Since the
problem to be solved is a one-dimensional bin-packing problem, the objective is to minimize the num-
ber cutting patterns required in order for all items to be cut. The full formulation may now be written
as:

min
M

∑
i=1

xi

s.t.

∑
M
i=1 ai jx j = 1 (i = 1, . . . ,n)
x j ∈ {0,1} ( j = 1, . . . ,n),

where x j is a binary variable indicating if pattern j is used or not and the constraints ensures that all
items are cut exactly one time. This model is easily generalizable to higher dimensions, since each
column A j may simply represent any feasible d-dimensional cutting pattern.
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Unfortunately, even for one dimension the number of cutting-patterns is prohibitively large, so
rather than representing all of them in A, Gilmore and Gomory [67, 68] generate the columns dy-
namically. To do this one must solve a knapsack problem, that finds a feasible pattern with maximal
reduced cost. For the one-dimensional case, the knapsack problem is one-dimensional, and easy to
solve using dynamic programming (see e.g. [90]). The dimension of the associated knapsack prob-
lem follows the dimension of the primary problem, and so for higher-dimensional problems one must
solve a higher-dimensional knapsack packing problem. This problem is not quite as simple to manage
as the one-dimensional case, since the dynamic programming approach that works so well for one-
dimensional problems cannot be used for higher dimensions. However, this can be done with one of
the two first models (see also [130, 131]).

So far we have only considered MIP models for orthogonal rectangular items. MIP models for the
strip-packing problem with polygons were introduced by Daniels et al. [38]. The models are based
on NFPs and the principle that the relative position of two polygons, must be outside the NFP (see
Section 3.2.2). For a pair of polygons this is modeled by requiring that the the relative position of
the polygons is located within one of the convex subregions that make up the set of feasible locations
which is the complement of the NFP. Ensuring that a relative position is within a convex subregion can
be done with a set of linear constraints. Ensuring that it is within exactly one is done by introducing
a binary variable for each subregion. Daniels et al. [38] considered the strip-packing problem, but
because of the large number of binary variables, they were unable to solve realistic problems with
more than 6-9 polygons to optimality.

The MIP formulation by Daniels et al. [38] were used by Li and Milenkovic [96] to introduce
Compaction and separation techniques for the strip-packing problem. The compaction procedure
starts from a non-overlapping placement, and a linear-program formulation is used to determine a set
of translational vectors of the polygons, which describes how the polygons should be translated to
reach a feasible solution with less strip-length. NFPs are used to determined the constraints of the
linear programming formulation, such that the resulting translations constitute a feasible placement.
The method is similar to solving the MIP described by [38] with all integer values fixed to match the
current placement.

Since only neighboring polygons are used to determine a set of linear programming constraints
in the original placement, and because the constraints generated depend on the relative position of
two neighboring polygons, the translated placement can give rise to a different linear programming
formulation with a new set of constraints. Therefore Li and Milenkovic [96] repeats the process a
number of times until the constraints of two consecutive placements are equal which is considered a
local minimum of the compaction problem.

A similar method is presented for separation of the polygons, i.e. transform a placement with
overlap to one without overlap such that its strip-length is minimal. Li and Milenkovic [96] use the
compaction and separation technique combined with a database of of good solutions to solve the
strip-packing problem for polygons.

3.3.2 Levels

Heuristics by Baker and Schwarz [4], Berkey and Wang [12], Chung et al. [31] and Lodi et al. [100]
employ a principle based on levels or “shelfs” for two-dimensional problems. The strategy is to fill
the container area row by row. First a row which begins in the lower left corner of the container area is
filled by positioning rectangles one-by-one from left to right. No rectangle may be positioned above
any currently placed rectangle. Once no more items can be placed at the bottom of the container, that
row is full, and the next row, which starts on top of the tallest item of the first row, is filled. Each row is
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Figure 15: Levels or Shelves. The container is filled from left to right in row, with the rectangles of
a row “standing” on the bottom of that row. The height of a row is equal to the height of the tallest
item.

(a) (b)

Figure 16: Stacks. (a) A stack of 5 items. (b) A placement consisting of 6 stacks.

completely flat and rectangles cannot be placed above each other within the same row. By repeatedly
filling rows, one will eventually have placed all items or reach the top of the container. Authors refer
to the rows as “levels” or “shelves”. The procedure is illustrated on Figure 15.

Because of their simplicity, level-based algorithms are easy to analyze and bounds and exact
algorithms for problems constrained to level-based packing have recently been investigated by Lodi
et al. [104] and Bettinelli and Ceselli [13]. These methods are based on column generation, which
level-based packing is particular suitable for, since each set of items in a level may be represented
by a column just as cutting patterns of the one-dimensional cutting stock problem were represented
by columns in the column generation technique by Gilmore and Gomory [67, 68] (see 3.3.1). Level-
based packing is also commonly used for approximation algorithms (see Section 3.3.12). For other
older studies of level packing see the papers by Coffman et al. [35] and Frenk and Galambos [60].

3.3.3 Stacks, Layers, and Walls

Stacks, layers and walls are generalizations of shelf-packing to three dimensions. Gilmore and Go-
mory [69] arrange boxes in stacks that are placed on the bottom of container and fill its height (see
16). Once a suitable set of stacks have been determined, one can solve the three-dimensional prob-
lem by solving the two-dimensional problem where the position of each stack must be determined.
This principle was also used for a heuristic approach based on Genetic Algorithms by Gehring and
Bortfeldt [64].

An advantage of stacks is, that since each item is supported by only one item, one can ensure
global stability of the items simply by ensuring that the largest items are placed at the bottom of the
stack and that higher items do not extend beyond the top of lower boxes.

Stacks reduces the three-dimensional problem to a set of one-dimensional problems and a single
two-dimensional problem. An alternative is to build a set of layers in the height of the container, where
the placement of items in each layer is determined by solving a two-dimensional problem, and no item
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(a) (b)

Figure 17: Layers. (a) 4 layers. (b) A placement consisting of the four layers placed on top of each
other.

Figure 18: Wall-building. 4 Walls are constructed and placed in a container.

can be above any other item. The height of each layer may be set to the height of the tallest box within
it. A tabu-search based heuristic for three-dimensional bin-packing based on layers was presented
by Lodi et al. [103]. Despite of the fact that this method is based on layers, results are surprisingly
comparable to the results of the method by Faroe et al. [53] which consider free placement of items
(see section 3.3.6).

In container loading problems, the largest dimension is the depth of the container. Therefore the
“layers” are constructed using the width W and height H build in the depth of the container. Because
these layers are standing on the container floor as a set of walls which fill the container in its depth
(see Figure 18), this process is called wall-building and was introduced by George and Robinson [66].

To determine the depth of each wall, authors begin by selecting a “layer-defining-box” (LDB) that
fixes the depth of the wall to the depth of the box. Generally wall-building approaches rely heavily on
selection of the LDB and efficient strategies for packing each wall. Bischoff and Marriott [16] com-
pare different ranking functions for the LDB, but does not determine any clear winner, and therefore
recent methods use wall-building in conjunction with some form of meta-heuristic method. Examples
include the heuristics by Bortfeldt and Gehring [18], Gehring and Bortfeld [63], and Pisinger [128]
which are based on genetic algorithms, tabu-search, and tree-search respectively.

To fill the individual walls authors either solve a simpler three-dimensional packing problem such
as Gehring and Bortfeld [63] or a two-dimensional packing problem. George and Robinson [66] solve
a two-dimensional packing problem by placing items in shelves and Pisinger [128] divides the wall
recursively into horizontal and vertical strips and each strip is packed by solving a one-dimensional
knapsack problem, which can be done efficiently in pseudo-polynomial time (see Figure 19).

Wall- and layer building strategies have the clear advantage that they reduce an otherwise hard
problem into simpler sub-problems. However, the most important disadvantage is that space is lost
between walls, if the boxes cannot fully utilize the depth of a wall. This problem is somehow coun-

33



3. Computational Techniques

Figure 19: When filling each wall during wall-building Pisinger recursively fills the wall with horizon-
tal and vertical strips using tree-search. Here six strips are used; first a vertical, then two horizontal
strips, then two vertical strips and finally one horizontal strip.

tered by the fact that container-loading problems often contain hundreds of smaller homogeneous
boxes, but wall-building is very likely to fail for a smaller set of large items.

3.3.4 G4 structures

An interesting divide and conquer structure dubbed G4 was presented by Scheithauer and Terno [137].
If the container is partitioned either horizontally or vertically, then the two smaller packing problems
can be solved and used to form a solution to the entire problem. This can be done recursively, however,
only placements that are guillotine cuttable (see Section 2.1.2) may be considered. To remedy this
situation Scheithauer and Terno [137] introduced a third possibility in addition to horizontal or vertical
partitions. The third possibility is expressed with the G4-structure depicted on Figure 20 (a), which
divides the container into four compartments. If we let n(W,H) denote the maximal number of items
on a plate of size W ×H using a G4-structure, then n(W,H) can be expressed with the recursion

n(W,H) = max
a

max
b

{
n(a,b)+max

e

{
n(c,d)+max

f
{n(e, f )+n(g,h)}

}}
,

with a, . . . ,h as indicated on Figure 20 (a). It should be noted that the values of a, . . . ,h can be chosen
from a subset of the values 1, . . . ,W and 1, . . . ,H which depend on the item dimensions. This recursion
may be calculated efficiently using dynamic programming and forms the basis of the heuristic by
Scheithauer and Terno [137] for the pallet loading problem where there is only one item type. It was
later used for heuristics for multi pallet loading and container loading problems by Scheithauer and
Sommerweiss [136] and Terno et al. [149].

Although G4 structures seem versatile, they are not capable of represent all non-guillotine cuttable
placements. An example of one such placement is illustrated on Figure 20 (c).

3.3.5 Representing Free Space

One of the intrinsic problems when filling a three-dimensional container is to represent the residual
space efficiently. So far we have touched upon simple strategies such as wall- and layer-building
where this is trivial since the residual space can be represented by a single container.

Eley [50] considered three-dimensional rectangular placement in a more free-form manner. Here
residual space is represented as a set of overlapping boxes. Initially the residual space is the complete
container. The first item is positioned at the lower left back corner of the container, and three overlap-
ping boxes which represent the residual space are created; one describes the full space above, one the
space in front of, and one the space right of the item.
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(a) (b) (c)

Figure 20: (a) G4 structure consisting of 4 blocks. (b) Placement using the G4 structure with four
item types. (c) Placement which cannot be represented by a G4 structure.

(a) (b) (c) (d) (e)

Figure 21: Eley’s space representation. (a) A single item is positioned in the container. (b,c,d)
The three residual spaces generated with the insertion of the item. (e) Alternative to the residual
space above the item, which will ensure that any new item positioned above, will be place at a stable
position.

The following items are position one by one. Each item is positioned in a residual space, and
each of the residual spaces it overlaps with are divided into new residual spaces that describe the area
surrounding the item. An item may only be placed in a residual space which is large enough to contain
it. As the placement progresses residual spaces may be merged to reduce their number. The process
is demonstrated on Figure 21.

An important part of this process is that stability can be ensured by limiting the residual space
above items. When new items are positioned, the smaller residual space ensures that they do not
extend beyond the top dimensions of an underlying item. Since residual spaces are merged together,
entire planar areas can be constructed, so that larger items can be positioned above a group of smaller
ones. Eley [50] integrated this method in a variant of tree-search which is often referred to as the pilot
method.

Alvarez-Valdes et al. [1, 2] presented GRASP and tabu-search based heuristics for two-dimensional
knapsack problems with a strategy similar to the one by Eley [50]. However, here the residual spaces
does not overlap, but are simply merged to create large regions.

Several authors have suggested alternative ways to represent free space in the container. Ngoi
et al. [118] use a matrix for each cross section in the height of the container to represent free space.
The matrices are not a complete discretization of the container volume, but represents a non-uniform
grid-structure with cells for every x- and z-coordinate of every corner of the placed boxes between two
consecutive y-coordinates. Bischoff [15] later simplified this apporach by representing the available
height for every location with just one matrix.

35



3. Computational Techniques

(a) (b) (c)

Figure 22: Relaxed placement. (a) A placement with overlap. (b) Overlap has been reduced signifi-
cantly by moving items. (c) A feasible placement without overlap.

3.3.6 Relaxed Placement Methods

Although solutions require that there is no overlap of items, several methods where overlap is allowed
during the solution process have been investigated in the literature. This is especially the case for
problems involving irregular items. Commonly, these methods either include overlap in the objective
function or attempt solely to solve the decision variant of the packing problem, i.e. find a feasible
placement given a set of items and container dimensions. The procedure works by iteratively reducing
overlap. This can be implemented within a local search framework, where one may simple change
the coordinates of one or more items, evaluate the overlap of the new placement, and accept it if it
contains less overlap. The procedure is illustrated on Figure 22

It should be noted that although the area of overlap of two items in the placement, is one of
the most obvious ways to determine the amount of overlap, overlap can be measured in a variety of
different ways (e.g. intersection depth) some of which are presented in Nielsen [120].

Heuristics that employ this principle for two-dimensional problems involving irregular shapes
were investigated by Heckmann and Lengauer [76], Jain and Gea [85], Jakobs [86], Lutfiyya et al.
[105], Oliveira and Ferreira [122], Theodoracatos and Grimsley [150] and Bennell and Dowsland
[10]. Most noteworthy are the methods by Oliveira and Ferreira [122] and Heckmann and Lengauer
[76] where overlap is removed by simulated annealing. Oliveira and Ferreira [122] allow random
moves of items and use a raster model to evaluate the amount of overlap. Heckmann and Lengauer
[76] solves the problem in four phases, where the first phases consider crude representations of items,
while the later phases consider finer representations based on polygons. Also the distance items can
move is determined by the temperature of the simulated annealing.

Recent methods for irregular packing in two dimensions have abandoned the raster models in
favor of polygons. Bennell and Dowsland [9] and Gomes and Oliveira [73] consider translations of
items which result in overlap, but use the compaction and separation techniques described in Section
3.3.1 to remove overlap. Bennell and Dowsland [9] apply the separation techniques whenever the
overlap climbs above a certain threshold level while Gomes and Oliveira [73] conduct separation and
overlap removal after each exchange of shapes.

A relaxed placement heuristic for rectangular packing was used by Faroe et al. [53] for the two-
and three-dimensional bin-packing problem. The number of bins are minimized by starting with a
large number of bins that are iteratively reduced. For each number of bins a decision problem which
ask for a feasible solution is solved. To solve the decision problem, the heuristic iteratively reduces
overlap by translating items either horizontally or vertically. Rather than considering overlap for single

36



Introduction to Packing Problems

positions, all horizontal or vertical translations are considered when items are moved and the position
with the least overlap is chosen. This is done efficiently using an algorithm with asymptotic time
that is polynomial in the number of items. The technique has also been applied to four of the papers
in the thesis ([A],[B], [F], and [E]), for strip-packing of polygons and polyhedra, and for placement
of cylinders with spherical ends. A heuristic based on the procedure from [A] for strip-packing of
polygons was later developed by Umetani et al. [152], but unlike the method by Egeblad et al. [A]
which does not use any form of preprocessing, the method in [152] uses NFPs to calculate the overlap.

Another relaxed placement heuristic by Imamichi et al. [83] takes a more global approach. Here
overlap is calculated as the sum of intersection depths (see Section 3.2.2) of pairs of overlapping poly-
gons. Overlap is iteratively removed by moving the placement in the direction of the gradient of the
objective function, i.e., each item is translated in the direction that determines its minimal penetra-
tion depth. Once overlap has been removed two items are swapped to generate a new overlapping
placement, which is then used to find yet another non-overlapping placement.

Relaxed placement methods have also been applied to three-dimensional problems involving ir-
regular items. The method from [83] was generalized to three dimensions by Imamichi and Hiroshi
[82], where objects are represented by a collection of spheres. Ikonen et al. [81] represents items as
triangle meshes, and use a genetic algorithm to control the search. Overlap is evaluated by checking
bounding boxes for intersection and subsequently the triangles of the items. Cagan et al., Yin and
Cagan, Yin and Cagan [25, 158, 159] use simulated annealing and also handle various additional opti-
mization objectives such as routing lengths. Intersection checks are done using octree decompositions
of shapes.

An interested problem was investigated by Eisenbrand et al. [49] where the maximum number of
uniform boxes that can be placed in the trunk of a car must be determined. For any placement of boxes
they define a potential function that describes the total overlap and penetration depth between boxes
and trunk sides and of pairs of boxes.

Relaxed placement methods work well for decision problems where one must find a non-overlapping
placement within a specific container or number of containers. It is not clear if they can be used for
knapsack packing problems where a specific subset of items must be selected. The method by Eisen-
brand et al. [49] removes and inserts new items into the placement during the solution process, but the
problem involves only one type of item.

The author of this thesis attempted to solve two-dimensional knapsack packing problems using
the relaxed overlap method described in [A] and the following procedure: First, the canonical one-
dimensional relaxation of the two-dimensional knapsack problem is solved. This relaxation is the
one-dimensional knapsack problem which is created by considering the same set of items and item
profit values, but setting the size of each item in the one-dimensional problem to its area from the
two-dimensional problem. Once solved, a two-dimensional decision problem involving the given set
of items is sought for using the method by [A]. If no solution is found within a given time-limit, a
constraint is added to the one-dimensional relaxation that ensures that the same set of items cannot be
selected, and the one-dimensional problem is solved again to reveal a new set of items. The procedure
iterates until a solution can be found.

Since two-dimensional solutions to rectangular problems are often found to be within 2% of the
optimal solution of the canonical one-dimensional relaxation, as described in Egeblad and Pisinger [C],
one would expect that few constraints were required. Unfortunately, it proved impossible even to find
solutions to relevant rectangular problems using this method, which is likely caused by the fact that
the difference between the one-dimensional solution and the two-dimensional solution is too great and
too many constraints are actually needed.
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(a) (b)

Figure 23: Normalized placement. (a) A placement of a set of rectangles. (b) Normalized placement,
where non of the rectangles can be moved left or down without causing overlap.

3.3.7 Bottom-Left Strategies and Envelopes

A placement of rectangles is normalized if it is impossible to translate any rectangle in the placement
to the left, downwards, or – in three-dimensional packing – backwards, without causing overlap. It was
proven by Herz [78] that an optimal placement which is normalized exists for the packing problems
described in Section 2.1. The intuition for this proof is that the rectangles in an optimal solution may
be translated to the left and downwards until no further translation is possible without introducing
overlap (see Figure 23). The consequence of this fact is that the search for an optimal solution can be
limited to placements which are normalized.

A commonly studied paradigm for two-dimensional rectangular packing is the so-called bottom-
left principle. The bottom-left principle takes advantage of the property of normalized placements
and is as follows: We are given an ordering of the items I as a list L. The rectangles are positioned
in the order of L. The leftmost lowest (bottom-left) possible position is chosen for each rectangle.
Chazelle [28] presents a “bottom-left” algorithm with O(n2) running time for n rectangles. Jakobs
[86] and later Liu and Teng [98] considered heuristics for the rectangular strip-packing problem based
on genetic algorithms in which the sequence (L) is the genotype, i.e. placements are represented by
sequences and each individual represents its own sequence of items.

The method by Jakobs [86] was also extended to consider polygons and is one among several
methods for polygons that use the bottom-left or a similar principle to determine the position of the
next item in a sequential placement. Many of these methods rely on envelopes.

The notion of envelopes or profiles for packing problems are particular useful in methods that
constructs a placement one item at a time. The purpose of the envelope is to reduce the set of feasible
positions for each item, by “cutting” off part of the placement area (see figure 24). As that set is
reduced, finding a suitable position for each item may be done more efficiently. In general, methods
that use envelopes for rectangular placement rely on the fact that the set of normalized placements
includes an optimal placement, since each rectangle is placed such that it abuts with the envelope.

For two-dimensional rectangular packing problems a variant of the envelope structure was pre-
sented by Scheithauer [134] and later for two- and three-dimensional problems by Martello et al.
[108]. The placement is constructed starting from the lower-left corner of the placement area. The
concept is illustrated on Figure 25. Whenever a new rectangle is placed, it may not be placed such that
its lower-left corner falls under and to the left of any of the previously placed rectangles’ upper-right
corner. The boundary of the feasible positions is a stair-case pattern, and new rectangles may only be
placed such that their lower-left corner abuts with the inner corner of steps of the stair-case (the circles
on the figure). Once a rectangle is placed, the staircase is expanded, to contain the new rectangle.

The rectangular envelope may be represented by using the rectangles which have already been
placed and can be updated in amortized constant time, each time a rectangle is placed. This renders
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Figure 24: The notion of an envelope. As the placement is constructed a part of the placement area
is inaccessible (closed) and the admissible area for a shape is the remaining area of the placement.

the envelope structure extremely efficient, and it has been used in a number of methods; Martello et al.
[108] used it in conjunction with a branch-and-bound algorithm for the two- and three-dimensional
bin-packing problem to determine if a selection of items were feasible. Given the set of items, Martello
et al. [108] construct a placement recursively, by branching on each remaining rectangle and each
position in the envelope. The same principle was reused in Martello et al. [109] for an exact method for
the two-dimensional strip-packing problem, and the method was revisited by Caprara and Monaci [27]
for the two-dimensional knapsack packing problem. The same envelope was also used by Pisinger
[127] for a heuristic for the area minimization problem, and by Egeblad and Pisinger [C] for a heuristic
for the two-dimensional knapsack packing problem.

While a three-dimensional variant of the envelope structure was presented by [108], it was later
discovered by den Boef et al. [40], that this structure can represent only a subset of three-dimensional
placements which is referred to as robot-packable that are also considered in Egeblad and Pisinger [C].
Although, an optimal solution may not be robot-packable, this subset still represents a comprehensive
set of placements.

Envelopes have also been used extensively for polygon items and were introduced for a heuristic
for the two-dimensional strip-packing problem with polygons by Art, Jr. [3]. While the set of feasible
locations for each new rectangle is reduced to a discrete set for the rectangular envelope, the set of
feasible locations remains infinite for irregular shapes.

Several other heuristics for the strip-packing problem with polygons use some form of envelope
principle along with a greedy strategy similar to the bottom-left principle. The heuristic by Oliveira
et al. [123] places the polygons sequentially at the position in an “envelope” which is deemed most
promising according to different measures. Gomes and Oliveira [72] later added a 2-Exchange neigh-
borhood to the heuristic, which exchanges the position of items in the sequence. A tabu-search based
heuristic in which the sequence is modified was also presented by Burke et al. [23].

The “jostling” heuristic by Dowsland et al. [46] places the polygons sequentially, repeatedly from
left to right and right to left. In each iteration the sequence is changed to reflect the last placement.

While normalized optimal solutions exists for rectangular packing problems, this is not the case
for problems involving polygons, and one cannot expect to find the optimal placement for problems
with polygons using bottom-left principles.

3.3.8 Abstract Representations

A direct representation of placements is a list of the individual coordinates of each item. This repre-
sentation has the main draw-back that infeasible placements which contain overlap can be represented,
and transitions from one placement without overlap to another placement without overlap are not sim-
ple to achieve as discussed in Section 3.3.6. This is illustrated on Figure 26 (a) and (b) where the
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(a) (b) (c)

Figure 25: Rectangular envelope. The shape of an envelope as a placement is constructed by sadding
one rectangle at a time. Rectangles are placed in normalized fashion and may not be placed lower
or left of the envelope which is indicated by thick lines. Circles indicate feasible positions of the
lower-left corner of the next rectangle to be added.

(a) (b) (c)

Figure 26: (a) A placement of rectangles a,b,c. (b) Overlap will appear if b and c are exchanged
directly. (c) No overlap will appear if the rectangles are exchanged in the sequence pair representation
and then positioned using a decoding algorithm (see text).

rectangles b and c exchanges position.
To tackle this problem, many heuristics rely on some form of abstract representation of the po-

sition of items, which does not deal directly with coordinates. Instead the placement is represented
as either sequences or graphs which can be used to assign coordinates to each item using some form
of decoding algorithm. The decoding algorithm generally ensures that the resulting placement is
feasible.

The heuristic by Jakobs [86], which was touched upon in Section 3.3.7, actually uses an abstract
representation of placements. Here a placement of items is represented implicitly by a sequence which
can be decoded to a feasible placement using a bottom-left algorithm that places items one-by-one in
the order or the sequence. The advantage of this representation is that any modification of the sequence
will still lead to a feasible placement.

On the other hand, small changes in the sequence may lead to completely different placements,
which makes them difficult to work with during the intensification stage of local search heuristics,
where the main focus is to reach a local minimum.

Abstract representations work well with local search heuristics since they can easily perform a
small alteration of the current abstract representation, and evaluate the outcome. Alterations can be as
simple as exchanging the position of two items in the ordered list mentioned above, which is difficult
without causing overlap using a direct representation.

During the last half of the 1990’s several more advanced representations for two-dimensional
rectangular packing problems were proposed. The intention of these representations is to maintain the
overall relative positions of rectangles, when small changes are made. The representation that ignited
this research was the Sequence Pair which was introduced as part of a heuristic for the minimal area
rectangle packing problem by Murata et al. [117],
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A sequence pair consists of two sequences of the rectangles. If the rectangles are numbered
1, . . . ,n, the sequence pair consists of two permutations of the numbers (two sequences) < σ+(1), . . . ,
σ+(n) > and < σ−(1), . . . , σ−(n) >, where σ+ and σ− are permutation functions. A sequence pair
can be converted into a placement using two simple rules. For i, j ∈ {1, . . . ,n}:

• σ−1
a (i) < σ−1

a ( j) and σ
−1
b (i) < σ

−1
b ( j), j is placed to the right of i,

• σ−1
a (i) > σ−1

a ( j) and σ
−1
b (i) < σ

−1
b ( j), j is placed above i.

By symmetry all four possible relations between i and j can be deduced. Once the relations are
established one can use them to construct constraint graphs as described in Section 3.2.4, that can
be used to determine positions of i and j. A sequence pair < c,b,a,d,e,g, f >,< a,e,b,c,d, f ,g >
represents the constraint graphs on Figure 14. It should be noted that all normalized placements can
be represented by a sequence pair as proven by Murata et al. [117] and a method that can convert
both a non-overlapping placement and a placement with overlap to a sequence pair was presented by
Egeblad [48].

Since determining a placement of a set of rectangles based on constraint graphs requires O(n2), the
transformation from a sequences pair to a placement can be done in O(n2) time by first constructing
the constraint graph and then using it to determine a placement.

Figure 26 (a) and (c) illustrates an exchange of two rectangles in both sequences of the sequence
pair. The placement in Figure 26 (a) is represented by the sequence pair < b,a,c >,< a,c,b >. Figure
26 (c) shows the placement of the sequence pair < c,a,b >,< a,b,c > after the rectangles b and c
have exchanged position in the sequences. Unlike the direct exchange based on coordinates shown on
Figure 26 (b), the exchange of positions in sequences does not lead to overlap.

A number of authors have suggested faster decoding methods. Tang et al. [147] introduces an
algorithm which can convert a sequence pair to a placement in O(n logn) time using longest weighted
common subsequence algorithms. They also describe a simple O(n2) time algorithm which circum-
vents constraint graphs completely and uses only the sequences to determine the position of each
rectangle. This result was later improved to O(n log logn) time by Tang and Wong [146] with ad-
vanced data structures.

An O(n log logn) decoding algorithm was also introduced by Pisinger [127] who used an envelope
as described in Section 3.3.7. Items are placed one by one using the envelope, and the position in the
envelope to be used for each rectangle is based on the sequence pair. The envelope structure is used
in such a way that only relations between items from the envelope and the item to be placed are
considered, therefore, this algorithm does not completely place rectangles according to the relative
positions induced by the sequences. However, this decoding will generally generate more compact
(semi-normalized) placements, and it was proven that any normalized minimal area packing solution
can be still be represented with a sequence pair and this decoding. The method by Pisinger [127] can
also be simplified to a decoding algorithm with running time O(n2).

The decoding algorithms mentioned above were all used for heuristics for the minimal area rectan-
gle packing problem, but the sequence pair representation was also used by Egeblad and Pisinger [C]
in conjunction with a 2-exchange neighborhood and simulated annealing for solving the two-dimensional
knapsack packing problem. A three-dimensional variant of the sequence pair, referred to as sequence
triple, is also introduced to solve the three-dimensional knapsack packing problem. The sequence-
pair was also used in conjunction with a branch-and-bound method for an exact algorithm for the
two-dimensional rectangular strip-packing problem by Kenmochi et al. [91].

The list of other similar representations include O-trees by Pang et al. [126], B*-trees by Chung
et al. [32] and Corner Block List by Hong et al. [80]. All of these representations were introduced for
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the minimal area rectangle packing problem. They are commonly used together with a metaheuristic,
such as simulated annealing that controls local search based alterations of the representation.

Abstract representations for polygon problems have not been investigated to the same extent. A
major issue is that while a normalized optimal feasible placement always exist for rectangular packing
problems, a similar property is unlikely to exist for more general packing problems, especially if items
can fit within holes of other items. Therefore it may be impossible to represent all relevant placements
by something as simplistic as a pair of sequences. The current methods for irregular packing rely on
a sequence and on the bottom-left principle or something similar, and decoding the sequence into a
placement is a computational complex process. This is in contrast to the sequence pair representation
for which an efficient implementation can decode hundreds of thousands of sequences containing
20-40 rectangles per second on modern commodity hardware.

3.3.9 Packing Classes

An interesting abstract representation for rectangular problems where multiple placements are repre-
sented by a single data-structure is the packing class which was introduced by Fekete and Schepers
[55]. Fundamentally, a packing class consists of a set of undirected graphs Gi = (Vi,Ei) for i = 1, . . . ,d
– one for each dimension of the problem. Each graph Gi contains a set of nodes which corresponds
to the rectangles of the problem similar to the constraint graphs of Section 3.2.4. Additionally, each
graph Gi is an interval graph which means that it represents the intersection of intervals on the real
line. To create a graph from a placement, one connects two nodes in graph Gi with an edge if and only
if the two corresponding rectangles overlap when considering their extents in the ith dimension; i.e., an
edge is added between nodes of rectangles a and b in G1 if and only if [xa,xa +wa]∩ [xb,xb +wb] 6= /0.

Fekete and Schepers [55] consider construction of such graphs and denote a set of edges E1, . . . ,Ed
for the d graphs as a packing class if it satisfies the following properties:

• P1: The graphs Gi = (V,Ei) for i = 1, . . . ,d are interval graphs.

• P2: Each stable set of S of Gi is xi-feasible for i = 1, . . . ,d. A stable set in this context is a
set of unconnected vertices and the requirement means that the sum of the width of a set of
non-overlapping rectangles in one dimension cannot exceed the placement area width.

• P3: ∩d
i=1Ei = /0 for i = 1, . . . ,d. This means that two rectangles cannot overlap in all dimensions.

A packing class defines a whole set of placements. To convert a packing class into a placement, one
must consider the complement of each graph GC

i = (V,EC
i ) and assign an orientation to each of the

edges EC
i . Let the set Fi be the assigned orientation of EC

i then Fi must be a transitive orientation,
i.e., the directed graph GF

i = (V,Fi) must be transitive. Once the transitive orientation is known the
graphs GF

i can be converted to a placement by setting the coordinates of rectangle a using xi(a) =
max{xi(b)+wi(b) | (a,b) ∈ Fi}, which is the same principle as was used to convert constraint graphs
into placements (see Section 3.2.4). Figure 27 illustrates the concept. The 36 placements which
belong to same packing class but corresponds to different orientations are illustrated on Figure 28.

Fekete and Schepers [55, 57] and Fekete et al. [58] also show how to construct the sets E1, . . . ,Ed
such that they constitute a packing class. They use a form of tree-search which adds an edge between
two rectangles in one of the graphs in each node of the tree. To limit the size of the tree they rely on
a set of mathematical theorems which can identify if the properties P1, P2, and P3 are all satisfied.
It should be noted that the actual positions of the rectangles, are generally not required to solve a
problem and therefore a transitive orientation is not required.
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Figure 27: Packing classes. A placement of rectangles in the upper-right corner is used to generate
the interval graphs G1 and G2. The edges of G1 and G2 constitute the packing class that the placement
is part of. The edges of the complementary graphs GC

1 and GC
2 are given an orientation to reveal

graphs GF
1 and GF

2 which can be used to generate the placement of the lower-right corner.

Figure 28: The 36 placements which arise from the packing class represented by the edges of G1 and
G2 from figure 27.
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Their method is used to solve the multidimensional orthogonal knapsack packing problem to
optimality by Fekete et al. [58], but strategies for both rectangular strip-packing and bin-packing are
also discussed by Fekete and Schepers [57]. It should be noted that the authors also take advantage of
bounds which we will return to in Section 3.3.11.

The appeal of packing classes is that they can reduce the solution space significantly, not only by
completely disregarding the coordinates of the individual rectangles, but also by representing many
symmetric placements with one single packing class.

On the other hand, the drawback of packing classes is that they are relatively difficult to construct.
Further, since they do not consider actual coordinates, they seem unsuitable for layout problems where
an objective such as balance or interconnectivity (as in VLSI-layout optimization) must be considered.
It is also not entirely obvious how to handle problems where single items may be rotated.

3.3.10 Constraint Programming

Constraint programming techniques for determining if a feasible packing can be found were used by
den Boef et al. [40] for an an exact method for the three-dimensional rectangular knapsack packing
problem.

For each pair of items one of six relations – since it is a three-dimensional problem – can be
selected similar to the IP-formulation by Onodera et al. [124], where a binary variable is used to
decide the relation between two boxes.

The algorithm uses tree-search to find a feasible assignment of the boxes; in each node of the tree
a pair of boxes is considered, and the algorithm branches on each of the six possible relations between
the rectangles. The algorithm back-tracks if this leads to a feasible assignment.

To determine if the assignment is feasible the algorithm checks if the chosen set of relations will
cause rectangles to be positioned beyond the placement area. This can be done in O(n2) time since the
set of relations induces a constraint graph as discussed in Section 3.2.4. A number of “look-ahead”
techniques are used to determine if a branch will lead to an infeasible solution, which reduces the total
number of branches required. The technique was later used by Pisinger and Sigurd [131] to solve the
two-dimensional bin-packing problem to optimality with column generation.

From a certain point of view the IP technique by Onodera et al. [124], the packing class generation
technique by Fekete and Schepers [55], and the constraint programming technique are all equivalent.
A placement (or a class of placements) is constructed by branching on a number of relations. The
IP model and the constraint programming technique both consider relations of the type “left-of” or
“right-of”. Packing-classes are oblivious to the exact relation since they consider undirected graphs
and only designate if two items overlap in a dimension or not. This makes the feasibility checks
required by Fekete and Schepers [55] harder than the techniques used for constraint programming,
but each packing class cover several placements. Therefore it is not clear which of the methods can
consider most placements within some specified amount of time.

3.3.11 Bounds

Both exact methods and heuristics often take advantage of bounds which predict the optimal value
efficiently. Exact methods are commonly based on the branch-and-bound paradigm and use both
upper and lower bounds to avoid unfruitful branches. Bounds have been utilized mainly for the bin-
packing problem. Here upper bounds can be found with a heuristic, while lower bounds are mostly
based on analysis of the total item area or volume. We consider only the latter type of bounds here
and only for orthogonal rectangular problems where rotation of the items is not allowed.

44



Introduction to Packing Problems

The simplest way to determine if a set of items may be placed within a container, how many
containers are required for the items, or how large a container will be required, is to consider the total
volume of the items. If it exceeds the container space the items cannot be placed within the container.
For the the bin-packing problem the continuous lower bond given by

L0(I) =
⌈

∑
n
i=1 wihi

WH

⌉
,

for an instance I can be used to determine the number of bins.
A more accurate bound, L2, was presented by Martello and Vigo [107]. This bound belongs to a

class of bounds which fit into a general scheme developed by Fekete and Schepers [54] which is based
on the notions of dual feasible functions and conservative scales. A function u : [0,1]→ [0,1] is dual
feasible if, for any finite set of non-negative real numbers S⊂ R:

∑
x∈S

x≤ 1⇒∑
x∈S

u(x)≤ 1.

Fekete and Schepers [54] show that a class of dual feasible functions is the basis for the bounds
presented by Martello and Toth [106] and Martello and Vigo [107]. To evaluate these bounds item
dimensions are changed; items with sides larger than 1−ε are expanded to 1 and items with sides less
than ε are discarded.

Fekete and Schepers [54] proceed to introduce conservative scales. Intuitively, a conservative
scale alters the dimensions of the items, but in such a way, that if we cannot find a feasible placement
of items with the modified dimensions, then we cannot find a feasible placement of items with the
original dimensions.

If all items are scaled such that the container dimensions become [0,1]d for a d dimensional
problem, then, according to the proof by Fekete and Schepers [54], any dual feasible function can
be used to modify item dimensions. Fekete and Schepers [54] present three classes of dual feasible
functions which may be used to alter item dimensions. Once item dimensions have been altered,
one may use the volume criteria stated in the beginning of this section to determine if the items with
modified dimensions are feasible to place within a container for the knapsack packing problem, the
number of bins required for the bin-packing problem, or the required container length for the strip-
packing problem. Since the item dimensions were changed by a dual feasible function, the volume
based bounds for the problem instance with modified item dimensions holds for the original instance.

The bounds based on the dual feasible function presented by Fekete and Schepers [54] dominates
the bounds of Martello and Toth [106] and Martello and Vigo [107]. Other bounds were presented by
Boschetti and Mingozzi [19] and Clautiaux et al. [34] for the two-dimensional bin-packing problem
without rotation, and by Boschetti and Mingozzi [20] for two-dimensional bin-packing with ninety
degree rotation of items.

The bounds by Martello and Vigo [107] were used for a branch-and-bound algorithm for the two-
dimensional bin-packing problem, and later for the three-dimensional variant by Martello et al. [108].
Martello et al. [109] use an extension of the bounds by Fekete and Schepers [54] and Martello and Toth
[106] for an exact algorithm for the bin-packing problem. This method was also by used Caprara and
Monaci [27] for the two-dimensional knapsack packing problem. The bounds by Fekete and Schepers
[54] were used for an exact algorithm for the d-dimensional bin-packing and strip-packing problems
by Fekete and Schepers [56], and for an exact algorithm for the the two- and higher-dimensional
knapsack packing problem by Fekete et al. [58].

It should also be noted that the MIP formulations of Section 3.3.1 can be relaxed to linear programs
which may be used for bounds. This observation was used in conjunction with column generation by
Scheithauer [135] to find bounds for the container loading problem.
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The problem with bounds based solely on volumes is that the dimensions of a particular set of
rectangular items can render a feasible placement of the items impossible even though their combined
volume is far less than that of the container. The scheme presented by Fekete and Schepers [54] reme-
dies part of this problem, but based on the papers by Caprara and Monaci [27] and Fekete et al. [58]
it seems that the current bounds are still not strong enough to enable branch-and-bound methods to
reach optimal solutions for problems where more than 20 rectangular items can fit within the container
at the same time.

3.3.12 Approximation Algorithms

In recent years the term approximation algorithm has become synonymous with a polynomial time
algorithm with guaranteed performance bounds. An approximation algorithm A for a minimization
problem has ratio bound ρ if for any instance I we have A(I)

OPT(I) ≤ ρ, where OPT(I) and A(I) are the
optimal and the value returned by A respectively, An asymptotic ratio bound describes the worst ratio
bound as the size of the problem instances approaches ∞.

Approximation algorithms for multidimensional packing are scarce. The techniques in this cat-
egory are commonly based on sequential placement according to either first fit decreasing (FFD) or
nearest fit decreasing (NFD) algorithms which proceed as follows: First items are sorted according to
decreasing height (FFDH and NFDH) or decreasing size (FFDS and NFDS). Then items are placed
one-by-one in bins, shelves, or layers. To simplify the description we will call them bins in the fol-
lowing. Initially one bin is open. As an item is placed it is either positioned in the first of the open
bins which has enough space to accommodate it (FFD) or only in the last currently opened bin (NFD).
If none of the examined bins are large enough for the item, a new bin is opened and the item placed is
in the new bin.

Bansal et al. [7] proved that no Asymptotic Polynomial Time Approximation Scheme (APTAS)
exists for the two-dimensional rectangular bin-packing problem. They also present a polynomial time
algorithm in n to find the optimal number of bins, as long as bin-sizes are increased by ε. Note that 1

ε

appears in the exponent of n in the asymptotic running time of their algorithm. A similar result which
was discovered independently was presented by Correa and Kenyon [37]. Bansal et al. [7] also present
an APTAS for the problem of placing rectangles into a minimal enclosing rectangle. The algorithm is
based on the nearest fit decreasing height (NDFH) principle and the running time of the algorithm is
polynomial in n and 1

ε
.

Approximation algorithms for the two-dimensional bin-packing problem initially revolved around
squares. An approximation algorithm for square packing, that is packing squares in a minimal number
of squared bins, with an absolute worst case ratio of 2 was presented by van Stee [153] who also
argued that this is the best possible provided N P 6= P . Ferreira et al. [59] presented an algorithm
with asymptotic ratio bound of 1.988 for the same problem using an NFDS principle. The asymptotic
ratio bound has later been improved by Seiden and van Stee [138] to 14

9 + ε and also Kohayakawa
et al. [94] who present an algorithm for the d-dimensional cube bin-packing problem with a general
ratio bound of 2− 2

3
d . Caprara [26] also presents an algorithm for this problem with a conjectured

asymptotic ratio bound between 1.490 and 1.507, which is supported by experimental evidence.
Recently Bansal et al. [6] managed to move well beyond with an approximation algorithm for

the general case where items are rectangles (not squares) which builds on the work by Caprara [26].
This algorithm has an asymptotic ratio bound of Π∞ + ε≈ 1.525...+ ε and was generalized to higher
dimensional problems, albeit with a higher ratio bound of ln(d + ε) + 1 + ε (for a d dimensional
problem) which comes arbitrarily close to 2.0986 for ε→ 0.
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Kenyon and Remila [92] presented an APTAS with a (1 + ε) performance guarantee for the two-
dimensional strip-packing problem which is polynomial in n and 1

ε
and is based on linear program-

ming relaxation. The APTAS was later extended to handle the general case where items may be
rotated by Jansen and van Stee [88]. For higher dimensions, Jansen and Solis-Oba [87] introduced an
approximation algorithm for the three-dimensional strip-packing problem with asymptotic ratio bound
2 + ε. This improves on results by Miyazawa and Wakabayashi [111, 112, 113] although problems
with square box-sides and ninety-degree rotation are also considered by Miyazawa and Wakabayashi
[111, 113] as particular cases. The algorithm by Jansen and Solis-Oba [87] also generalizes to an
algorithm with asymptotic ratio bound 4+ ε for the three-dimensional bin-packing problem.

For the two-dimensional knapsack packing problem Caprara and Monaci [27] presents an approx-
imation algorithm with an absolute ratio bound of 1

3 − ε.
At this point, approximation algorithms for packing problems are mostly of theoretical interest

since either ratio bounds are too large or asymptotic running times too high. A notable exception is
the tabu search heuristic for the two-dimensional bin-packing problem presented by Lodi et al. [101]
which used an approximation algorithm with a performance ratio bound of 4 to generate initial solu-
tions. The initial solutions generated by the approximation algorithm proved to act as good starting
solutions despite the high ratio bound.

3.4 Speculations on The Future

Section 3.3 revealed many of the efficient and effective solution methods which exist for the majority
of packing problems. As evident from the long list of methods we are still far from a complete
unified solution approach which can handle any possible variant of packing problems. Authors still
use individual strategies for individual problems and coming solution methods may still depend on
the specific problem type. In this section we will attempt to shed some light on the current state of the
different problem types and the future directions in each of them.

3.4.1 Rectangular Packing

The current exact methods for two-dimensional knapsack packing ([27, 58]) and three-dimensional
bin-packing ([57, 108, 110, 131]) seem incapable of finding optimal solutions for problems where
more than 20-30 items can be loaded at the same time inside the container within relevant computa-
tional time.

To increase the size of problems that can be considered, bounds must be stronger and the verifi-
cation techniques, such as constraint programming and packing classes, must be extended to handle
symmetries better to avoid considerations of equivalent placements or sub-placements. In general,
exact methods are also still incapable of handling problems involving rotation of the items.

Heuristics for the two-dimensional knapsack ([1] and [C]) and bin-packing problems ([51, 114])
reveal promising results even when a large amount of rectangles can fit it the container at the same
time. While heuristics exist for the three-dimensional bin-packing problem (see e.g. [51]), heuris-
tics for three-dimensional knapsack packing problems, other than the container loading problem, are
practically non-existing with the exception of the one presented in this thesis ([C]). This could be due
to the fact that most practical problems are in the container loading domain where items are relatively
small compared to the container and a large fraction of the items to choose from can fit within the
container at the same time. Since most heuristics for container loading problems try to fill the con-
tainer, rather than considering individual profit values of items, it would also seem relevant to consider
methods for container loading problems where profit values are not proportional to item volumes.
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3.4.2 Two-dimensional Irregular Packing

The strip-packing problem with rectangular items has received less attention in later years, and the
field of strip-packing has been dominated mostly by methods for polygons. Recent heuristics reach
utilization levels of between 85−95% ([9, 23, 73, 83, 152]) including the one presented in this thesis
([A]).

The main missing puzzle in this area seems to be dealing with rotation efficiently. Methods for
free rotation were presented by Liu and He [99] and Nielsen [120] but in both cases results for free
rotation of items are not convincingly better than results when not allowing rotation or only allowing
90◦ or 180◦ rotation. This could either be because the rotation angle which is implicitly selected in
the definition of the items of the instances is such that the non-rotational variant gives good results,
or because the solution space when allowing rotations is much larger and therefore more difficult to
search within.

The NFP is not suitable for rotational problems in its current form and this rules our generaliza-
tions of methods that utilize NFPs to rotational problems. However, it is not unlikely that a rotational
variant of the NFP could somehow be generated. NFPs are related to robot motion planning and a few
considerations for rotational planning are discussed in the book by de Berg et al. [39].

Another element missing for irregular packing is exact methods capable of handling more than
10 items such as the one mentioned in Section 3.3.1 ([38]). The problem here lies in finding proper
branching rules and better bounds than the trivial area bound.

Surprisingly few methods for irregular packing deal with bin-packing, but many methods includ-
ing the one of this thesis ([A]) are likely generalizable to bin-packing problems.

3.4.3 Irregular Three-dimensional Packing

Strip-packing of non-rectangular shapes in three dimensions have also been dealt with for both poly-
hedra by Stoyan et al. [145] and for spheres by Stoyan and et al. [140] Imamichi and Hiroshi [82] and
in this thesis for polyhedra ([B]) and spheres/capsules ([F]). In this thesis we also present a heuristic
for three-dimensional container loading or knapsack packing of furniture ([D]).

Methods for irregular shapes in three dimensions are still in their infancy and a utilization of more
than 55–65 % seems out of reach with current methods as confirmed both by the papers on three-
dimensional strip-packing ([145], [B], [F]) and the paper on container loading of furniture ([D]).

The low utilization for three-dimensional problems could be both due to the geometry of the
items or simply because our methods are not powerful enough. From rectangular packing prob-
lems it is known that, while two-dimensional rectangular problems can be solved with utilization of
95−100% (see [C]), the solutions for the three-dimensional variants, even with many small items in
the container loading problem, rarely reach 90%. Better bounds for the three-dimensional problems
involving irregular shapes could shed more light on the low utilization levels reached. However, the
Kepler conjecture (see Section 2.1.5) which states that the maximal asymptotic utilization of homo-
geneous spherical packing is 74.048% indicates that utilization levels above 70% for irregular shapes
in general, may be unlikely.

As for two-dimensional irregular packing, methods capable of solving problems involving three-
dimensional irregular shapes with free rotation, may become more relevant in coming years. Espe-
cially, since it may be possible to reach higher levels of utilization if free rotation is allowed. A method
that expands on the method of this thesis ([B]) to handle free rotational packing of three-dimensional
polyhedra was presented by Nielsen [120].
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3.4.4 New Constraints and Objectives

As methods for packing problems are becoming widely used in the industrial sector, more complicated
objectives and constraints appear. We will discuss a few of them here.

For the strip-packing problem quality regions must be considered when cutting leather from hides.
This is also discussed in this thesis ([A]).

For container loading one must often ensure that the load on an item is no larger than its strength.
Items should also be positioned such that transportation is feasible and items will not drop and break.
The problems are both described and considered in more detail in the paper on container loading of
furniture in this thesis ([D]).

Another problem in container loading, is with respect to proximity. If a large consignment of items
are to be delivered to the same location, but is for different customers, items for the same customer
should also be close to each other to simplify the unloading process. A similar problem may occur
when loading items; items may be selected from various locations within a large warehouse and the
free space outside the container may only accommodate a limited number of items. To minimize the
number of trips made in the warehouse one should try to place items which are close to each other in
the warehouse close to each other in the container.

An aspect which has not been touched upon is the requirement that solutions can actually be
physically packed. In many cases, human beings still handle the loading, but high utilization levels
may be reached at the sacrifice of placements which are simple to achieve manually. This problem
may have less significance as the loading process is increasingly managed by robots in the future.

Often containers should be loaded such that the consignment is balanced and the inertia moment
is minimized. For airplanes this is important to minimize fuel. For trucks this is important to ensure
that the axles of the trucks carry equal weight. Considerations and methods for this type of problem
involving both rectangular and irregular shapes are presented in more detail in the paper which appears
in this thesis ([E]).

This type of problems may be dealt with either by imposing new constraints, including them as
a term in the objective function, or attempt to modify a good solution with respect to the “clean”
packing problem in a posterior step. It is likely that methods which are capable or easily generalizable
to handle the constraints mentioned above will receive more focus as the field matures in coming
years.

3.4.5 Sensitivity Analysis

Many methods used by the industry may be used as parts of decision support systems where sensitivity
and what-if scenarios must be analyzed. Here the problem may be to quickly answer the consequence
of replacing a subset of the input items with a new set of items. Although re-optimizing the entire
problem can answer such a query, the industry is interested in quick responses, and methods which
can start from an existing solution may turn out to be beneficial.

Also methods which can perform their own set of analysis and suggestions – I.e.:“Replace input
item set A with set B to achieve 2 % higher utilization” – could be of strong interest to the industry.
The author of this thesis is unaware of any method that is capable of answering such queries or
suggestions, but know from first hand experience that the industry desire this functionality.

A possible related topic is that the industry already use solution methods during the design phase
of production for “simulation” purposes. Here the problem may be to select the set of item dimensions
that return the best possible utilization given other constraints for instance with respect to required
volume. To solve this problem with current methods one can re-optimize a problem with different
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item dimensions and select the dimensions that return the highest utilization. New methods targeted
for this problem may be able to get around re-optimization.

3.4.6 Integration with other problems

As techniques for solving packing problems are becoming better and the processing power increases,
research may turn towards problems where packing appear in conjunction with other types of prob-
lems.

One of the well-known problems in operations research is the vehicle routing problem (VRP) (see
e.g. Golden et al. [71]). In the recent years there has been an increasing interest in the integration
of packing problems with vehicle routing problems. An exact algorithm for rectangular packing and
VRP was introduced by Iori et al. [84]. Heuristics were introduced by Fuellerer et al. [61], Gendreau
et al. [65] and Zachariadis et al. [162] for two-dimensional rectangular problems and a heuristic for
the three-dimensional problem by Moura and Oliveira [116]. While this problem is difficult to handle
since it involves two N P -hard sub-problems, one may expect that solving the routing problem renders
the associated packing problems easier since the items for one individual route could be insufficient to
fill a complete container. In any case this topic seems open, especially for three-dimensional packing.

Another difficult problem appears in production planning and supply-chain management (see e.g.
Pochet and Wolsey [132]). Here the set of items to be produced may depend on which items can be
shipped in a container or a fleet of vehicles. Likewise, it may also depend on the set of raw-materials
required for production which can be shipped in a single container. A model for such problems may
involve both supply-chain optimization, VRP, and packing problems.
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4 About the Papers

The thesis consists of six papers and this section contains a short presentation of each of the papers
accompanied by a discussion. The papers [A], [B], [E] all use the same relaxed placement method and
we will begin by discussing them in Section 4.1. In Section, 4.2 we discuss the paper on rectangular
knapsack packing problems [C] and in Section 4.3 the paper on container loading of furniture [D].
Finally, in Section 4.4 we discuss the working paper on capsule packing for tertiary RNA structure
prediction [F].

4.1 Relaxed Packing and Placement

All three of the papers [A], [B], and [E] take advantage of the same principle. The method is based
on iterative overlap minimization and originates from the heuristic by Faroe et al. [53] for rectan-
gular two- and three-dimensional bin-packing which uses the metaheuristic Guided Local Search by
Voudouris and Tsang [155, 156]. To a large degree the framework presented by Faroe et al. [53] has
remained unchanged in the papers considered in this thesis. The main difference between the work by
Faroe et al. [53] and the work presented in this thesis is that we consider irregular items.

The papers all present methods that solve decision problems, i.e. determine if a feasible place-
ment of items within given container dimensions exists. The procedure to solve the decision problem
closely mimics that by Faroe et al. [53] and is as follows: The methods starts from a placement with
overlap and repeatedly translates a single item either horizontally or vertically to a position with less
overlap. A zero-overlap placement corresponds to a solution for the decision problem. Whenever a
placement cannot be improved by a single translation, two items which overlap a lot are “penalized”,
i.e., placements where these two particular items overlap will receive a high objective value. This is
the GLS element of the heuristic. The effect of this is, that the items are pushed away from each other
in the following steps of the solution process since the heuristic will avoid placements where they
overlap.

The heuristic which is used for the papers [A] and [B] starts with decision problems for large
container lengths and then decreases the container length every time a solution to a decision problem
has been found. The heuristic was also used for research outside this thesis. Nielsen [120] considered
different measures of overlap instead of the area, free rotation of shapes, and arbitrary direction trans-
lation (non only horizontal or vertical). Nielsen [119] also considered repeated pattern nesting, i.e.
achieving high utilization where the strip is infinite and the pattern generated is repeated an infinite
number of times.

4.1.1 Two-dimensional Nesting

The first paper in this thesis ([A]) also represents the chronological first work and describes a heuristic
for the two-dimensional strip-packing problem of polygon shapes using the principle described above.
The main novelty of the paper is the minimal overlap translation algorithm that finds the horizontal or
vertical translation of a single polygon which minimizes its overlap with the other polygons.

A proof of the correctness of this algorithm was given in the earlier work by Nielsen and Odgaard
[121] (based on a note by the author of this thesis). However, this proof, which considered a more
versatile set of translations, was deemed too complicated for a single paper and instead a simpler proof
was presented in [A].

Recent updated experiments are presented in [ A.1] and show that the current implementation still
produce some of the best results of the literature.
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An element which we never fully investigated was two-dimensional translation of polygons where
the minimal overlap position can be found for the entire placement area instead of in just one direc-
tion. An algorithm to solve this problem was presented by Mount et al. [115] with a running time
of O((mn)2) where n is the number of edges from the polygon to be translated and m the number
of edges from all other polygons. The approach is based on an arrangement of line segments. Our
initial investigations with implementations of this algorithm showed that there were many problems
with degeneracies where lines and points in the arrangements would coincide and calculation with
rational numbers was required to ensure stability. The running time of the first prototype implementa-
tion was far too high for our local search based heuristic since each translation would take seconds to
calculate, and this local search neighborhood was dropped completely. However, it is possible that a
similar neighborhood, which would just consider two-dimensional translations in a small area around
the polygon to translate, is computational feasible.

The importance of the Guided Local Search (GLS) metaheuristic was not made clear in the orig-
inal paper. The Guided Local Search heuristic seems particularly strong for this problem, because it
works well in conjunction with the piecewise continuous objective function (overlap) and the minimal
overlap translation algorithm. An interesting future direction would be to replace GLS with other
metaheuristics. It is not clear how this could be done. For instance, a tabu-search heuristic (see e.g.
[70]) with a tabu-list of placements would probably be difficult to combine with the minimal overlap
translation algorithm. Simulated annealing (see e.g. Kirkpatrick et al. [93]) would require the accep-
tance of some form of randomly generated solution and it is not clear how such a solution would be
generated to take advantage of the minimal overlap translation algorithm. There are similar concerns
with other metaheuristics such as genetic algorithms.

A meta-heuristic which would be interesting to investigate as a replacement of GLS is adaptive
large neighborhood search (ALNS) (see e.g. [129]). ALNS’s ability to handle several different neigh-
borhoods could make it interesting for this problem, since it would make it possible to introduce
new neighborhoods such as exchange of the position of two items or the two-dimensional translation
neighborhood mentioned above.

4.1.2 Three-dimensional Nesting

Although the first paper did sketch a three-dimensional translation algorithm, several details were
missing, and only a prototype implementation for the decision variant of the three-dimensional prob-
lem was made. Results presented by Stoyan et al. [145] motivated a further investigation of the three-
dimensional strip-packing problem with polyhedra and a generalization of the procedure to higher
dimensions at the same time. The details of a heuristic for the three-dimensional strip-packing prob-
lem and a generalization to higher dimensions were reported in the second paper [B].

While the two-dimensional and three-dimensional procedures are the same and even share im-
plementation, there are several aspects of the proof behind the correctness of the minimal overlap
translation algorithm that were changed. Most important was the introduction of the notion of bal-
anced assignment.

In the paper, the interior of the polytopes is defined as the set of points where a ray shot parallel
to the x-axis intersects the boundary an odd number of times. Therefore, a ray from a point of the in-
tersection of two polytopes should intersect the boundary of both the two polytopes an odd number of
times. However, since the boundary is broken into many different pieces (faces and facets), the pieces
cannot overlap, since that would cause problems in the even/odd counting principle used throughout
the proofs. The notion of balanced assignment ensures that the pieces do not overlap.

Another difference between the two papers is that sides of the three-dimensional polyhedra (and
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polytopes in general) are not limited to triangles but can take any convex form. Additionally, a greedy
method for the three-dimensional strip-packing problem had to be introduced.

4.1.3 Optimization of the Center of Gravity

The paper [E] represents a minor addition to the family of papers on relaxed placement methods for
two- and three-dimensional problems involving polygons and polyhedra. In this paper a heuristic for
the problem where a given set of items, each with a weight, must be placed within a given container,
such that overall balance and inertia moment are optimized. The paper was motivated by recent
methods for this problem (see [E] for more details).

Although it is not a packing problem in the conventional sense, i.e., as described in Section 2.1,
since the set of items to be placed and the container size are given, the purpose of the heuristic is to
use it as a post-processing step of another packing algorithm which determines a feasible subset of
items or container dimension.

The method used in the paper minimizes an objective function consisting of weighted linear com-
bination of balance, inertia moment and overlap, using the same translational moves as in the papers
[A] and [B]. As the procedure progresses the significance of balance and inertia moment is decreased,
so that the overlap will have a higher impact on the solution process. This continues until a feasible
solution is found at which point it is increased again and the heuristic allows overlapping solutions
again.

A similar procedure was used by Faroe et al. [52] for the VLSI layout problem where the total
wire-length of interconnected rectangles must be minimized, and the main contribution of the present
paper is a demonstration that the same principle can be used to handle the relatively simple objective
function involving balance and inertia.

It would also be interesting to investigate if the same principle can be used for three-dimensional
layout problems with wire-connections which were considered by Yin et al. [160].

4.1.4 Relation to FFT Algorithms

An important aspect of the minimal translation algorithm is that it can also be seen as a maximal
overlap translation algorithm. In this context it seems related to well-known convolution based meth-
ods used for e.g. protein docking problems using raster models introduced by Katchalski-Katzir
et al. [89]. These methods compare two raster models (three-dimensional grids) with a Fast Fourier
Transform (FFT) algorithm to determine where structural elements fit the best, i.e., which relative
three-dimensional translation maximizes overlap of the surface. In other words, the objective is to
find the (x,y,z) ∈ Z3 which solves:

max
x,y,z

n

∑
i=1

n

∑
j=1

n

∑
k=1

f (i,k, j) ·g(i− x,k− y, j− z),

where f : Z3→ {0,1} and g : Z3→ {0,1} are “raster functions” which indicate whether a grid-cell
in the three-dimensional n× n× n-grid representations is occupied by the surface or not (1 means
occupied). The FFT makes this possible since the entire three-dimensional convolution h of f and g:

h(x,y,z) =
n

∑
i=1

n

∑
j=1

n

∑
k=1

f (i,k, j) ·g(i− x,k− y, j− z),

can be determined in O(n3 logn) time using the FFT (see e.g. [36]). If a grid-cell is set to 1 whenever
it is occupied by a structure the same procedure can be used to find the translation with maximal
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overlap of two structures. In this case, h(x,y,z) is a discrete version of the volume of overlap of the
structures represented by f and g. This procedure somehow relates to our minimal overlap translation
algorithm.

4.2 Rectangular Knapsack Packing

In the paper [C] a heuristic for the rectangular knapsack packing problem in two- and three-dimensions
is presented. The main strategy in the paper is to use the sequence pair representation to represent
placements. In addition to introducing a new heuristic for the two-dimensional knapsack packing
problem, the paper also demonstrates how versatile the sequence pair representation is, and that it can
be used for other problems than the minimal area packing problem, for which it had previously been
applied to.

Another contribution in the paper is the introduction of the the sequence triple for three-dimensional
representation of placements. To the author’s knowledge this the only truly abstract representation of
placement of boxes other than the graph- and naive sequence-based representations, i.e., constraint
graphs, packing classes, and sequential placement. However, there are two draw-backs of the rep-
resentation. Firstly, it is only capable of representing robot-packable placements. This set excludes
mainly interlocking placements, which, fortunately, may have little relevance in practical applica-
tions. The second drawback is that the asymptotic running time of the decoding algorithm is O(n2)
for n boxes. It would therefore be interesting to examine faster placement strategies or alternative
representation for three-dimensional box placement.

The two-dimensional representation and heuristic are powerful enough to return results which are
on a par with the current methods of the literature. The three-dimensional variants cannot be compared
with other methods from the literature, but returns results which are close to the upper-bounds.

Initial experiments revealed that the three-dimensional representation and heuristic are not capa-
ble of handling container loading problem which contain far more items, but it is possible that the
representation could be used if the small items were combined to larger building blocks, or a different
heuristic principle was used.

4.3 Knapsack Packing of furniture

The paper [D] is the most interesting of the papers from a practical point of view and, in it, we present
a heuristic for knapsack packing of pieces of furniture within a container. The procedure consists
of a number of different steps including: A tree-search method for finding a overall good solution
for large items, a local search heuristic for refining the solution, a local search heuristic for ensuring
overall stability of the large items, a greedy heuristic for placement of medium sized items, and a
wall-building heuristic for placing small items.

The pieces of furniture are represented by triangle mesh structures and the main strategy of the
paper is to determine a large set of possible combinations of furniture to use for the heuristics. The
heuristic now has to select both good combinations as well position each combination within the
container. When placed, each of the selected combinations of pieces of furniture is aligned with one
of the four corners of the width-height plane in the container.

The main contributions of the paper are the combination strategy, the four corner representation
which forms the basis of both the tree-search and local search heuristics, and finally the method that
ensures that each item is placed in a stable fashion.

The four-corner principle can be viewed as a special type of abstract representation, and the lo-
cal search method used bears some resemblance to the method from the paper on two- and three-
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dimensional knapsack packing ([C]); in both cases the heuristic attempts to exchange items in a
sequence and allows placement of items outside the container, and only items inside the container
are included when calculating the objective value. The methods of the two papers were developed
in parallel and interestingly enough their similarity did not occur to us until late in the development
process.

It would be interesting to investigate if elements of the paper can be generalized. It is possible that
the combination strategy can be used for rectangular container loading. Here items would have to be
combined in larger building blocks that can be managed by the tree-search and local search algorithms.
The main problem, however, concerns generation of suitable building blocks. A possibility is to use
some form of three-dimensional knapsack packing or minimal volume packing on smaller subsets.

It is also possible that the combination strategy can be used for other types of shapes. In the
paper, the geometric analysis which forms the basis of combinations is based on the fact that both
items must rest on the floor, and the analysis is made in two dimensions. A general three-dimensional
analysis, e.g. based on minkowski-sums or relaxed placement of few items, could form the basis of a
generalization to more arbitrary shapes.

The combination strategy could likely be used to improve the performance of the relaxed place-
ment methods by assessing good combinations of items in a preprocessing step and translating com-
binations instead of individual items. An additional local search neighborhood could then change the
combinations used as part of the solution process.

4.4 Cylinder Packing and Placement

The final paper [F] represents unfinished work and concerns a heuristic for placement of capsules
which may function as a tool for RNA tertiary structure prediction. Prediction of RNA tertiary
structure is related to prediction of protein tertiary structure and concerns prediction of the three-
dimensional positions of the atoms of the molecule based on known primary and secondary struc-
tures. RNA molecules consist of many helical regions connected by the backbone of the molecule and
RNA molecules differ from proteins in that secondary structure prediction can be used to accurately
determine helical regions which appear in the tertiary structure.

The paper describes a method where the helical regions of RNA molecules are represented as
capsules and geometric considerations are used to predict the tertiary structure. This is a so-called
coarse grained method. Since atoms cannot overlap and the helical regions therefore do not overlap,
the problem is to generate a non-overlapping placement of capsules. Helices are also connected by the
backbone and this property is modeled with proximity constraints that ensures that connected helices
are positioned close to each other.

RNA structures are generally compact due to the same hydrophobic forces which appear in pro-
teins. Therefore, it is conjectured that the capsules should be placed somehow compactly. Three
different compaction strategies are introduced in the paper and are similar to that of the other papers
on relaxed placement ([A] and [B]). The three strategies attempts to minimizes either a box or sphere
container which can contain the capsules. The molecular surfaces of the RNA molecules studied in
conjunction with the paper are not spherical, and therefore it is unlikely that these compaction strate-
gies are useful for tertiary structure prediction of RNA. However, it is possible that a different com-
paction strategy used in conjunction with relaxed placement can return useful results. Nevertheless
results for a heuristic for the problem of compacting interconnected capsules is presented to demon-
strate the potential of the relaxed placement method, and its ability to find placements of capsules with
limited freedom (small container dimensions and proximity constraints).

Another problem considered in the paper is the placement problem where the capsules must be
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placed within a given molecular surface such that the proximity requirements are met. Here one is
given auxiliary information that describes a boundary of the molecule and the objective is to accurately
guess the placement of atoms within the molecule. This is modeled as a decision problem where a
feasible placement of the capsules within an irregular container must be found. A number of random
feasible placements were generated and surprisingly, one of the placements is not far from the known
real structure.

The paper represents work in progress and a number of aspects are missing from it. Firstly,
different compaction strategies need to be investigated to determine if the problem can be considered
as a compaction problem. Secondly, more experiments with placements where the molecular surface
is given are required. Thirdly, it must be determined if the coarse-grained capsule placement can be
successfully used as a starting point for accurate prediction methods.

From a packing problem point of view the main novelty in this paper concerns the overlap trans-
lation method. While the overall principle of the papers Egeblad et al. [A, B] has been reused, the
translational algorithm used in [F] differs substantially. Instead of volume of overlap, which is hard to
determine for capsules, the algorithm deals with directional intersection depth in this paper. This, and
the ability to handle both proximity constraints and an irregular container demonstrates how universal
the minimal overlap principle is.
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5 Conclusion

This thesis presents a number of novel methods for packing problems. Three different types of heuris-
tics are covered for both two- and three-dimensional packing problems. Both the relaxed placement
methods and the heuristic for container loading of furniture involves irregular shapes.

The results for the strip-packing problem with irregular shapes with the relaxed placement tech-
niques ([A] and [B]) are among the best in the literature for two- and three-dimensional problems, and
the core element of the polygon packing procedure, the minimal overlap translation algorithm, can be
implemented in less than one thousand lines of code, which makes it an appealing alternative to NFP
based methods.

The heuristics for rectangular knapsack packing ([C]) demonstrate great potential and the se-
quence triple is a novel abstract representation for three-dimensional placements. Results are on a par
with existing methods and the sequence pair and sequence triple representations are simple to imple-
ment – Placement methods can be implemented in a few hundred lines of code. The biggest question
regarding the three-dimensional heuristic is if it can be scaled to manage container loading problems
consisting of many more items.

The techniques used for container loading of furniture ([D]) are specific for this problem. The
overall heuristic consists of many relatively simple sub-parts, and an interesting future direction would
be to apply some of the principles to other problems. The most impressive part of this work is that the
time from start to finish, i.e., being presented with the problem, dealing with the theory, and producing
a practical software application, was less than 18 months. At the time when we began this project,
there was no obvious way from the literature to deal with irregular shapes to the extent required by
our industrial partner. Today, the principles are being used hundreds of times each week within our
software.

Stability and balance issues are considered both as part of the heuristic for container loading of
furniture and as an individual problem ([E]). The latter is one of several examples of the versatility
and potential of the relaxed placement method presented in [A] and [B].

The principles of the relaxed placement method have also been used for the RNA tertiary struc-
ture prediction problem ([F]) which occurs in bioinformatics. The problem considered cylinders with
capped ends and proximity constraints and the promising results show how universal the relaxed place-
ment methodology is. While the results are promising the draft included in this thesis is incomplete
and more experiments are needed in order to understand the full potential of the method.

A common topic throughout the thesis is the relaxed placement method based on the minimal
overlap translation. While its ability to tackle several problems has been considered in this thesis and
the possibilities of the method seem almost endless, we have yet to successfully use the principle to
solve knapsack packing problems. It would be interesting to investigate the possibilities in this domain
further as part of future research.

It would also be interesting to investigate generalization of the principles which were used for
furniture packing and for there-dimensional rectangular knapsack packing.

Many other future directions have been pointed out in this thesis, both with respect to problem
types and improvements of the presented methods. Solution methods for packing problems are slowly
maturing, but there are still many interesting possibilities to be explored and I hope that some of the
many topics considered in this thesis can form the basis of fruitful future research.
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Fast neighborhood search for two- and three-dimensional
nesting problems

Jens Egeblad∗ Benny K. Nielsen∗ Allan Odgaard∗

Abstract

In this paper we present a new heuristic solution method for two-dimensional nesting prob-
lems. It is based on a simple local search scheme in which the neighborhood is any horizontal or
vertical translation of a given polygon from its current position. To escape local minima we apply
the meta-heuristic method Guided Local Search.

The strength of our solution method comes from a new algorithm which is capable of search-
ing the neighborhood in polynomial time. More precisely, given a single polygon with m edges
and a set of polygons with n edges the algorithm can find a translation with minimum overlap
in time O(mn log(mn)). Solutions for standard test instances are generated by an implementation
and a comparison is done with recent results from the literature. The solution method is very
robust and most of the best solutions found are also the currently best results published.

Our approach to the problem is very flexible regarding problem variations and special con-
straints, and as an example we describe how it can handle materials with quality regions.

Finally, we generalize the algorithm for the fast neighborhood search and present a solution
method for three-dimensional nesting problems.

Keywords: Cutting, packing, nesting, 3D nesting, guided local search

1 Introduction

Nesting is a term used for many related problems. The most common problem is strip-packing where
a number of irregular shapes must be placed within a rectangular strip such that the strip-length is
minimized and no shapes overlap. The clothing industry is a classical example of an application for
this problem. Normally, pieces of clothes are cut from a roll of fabric. A high utilization is desirable
and it requires that as little of the roll is used as possible. The width of the roll is fixed, hence the
problem is to minimize the length of the fabric. Other nesting problem variations exist, but in the
following the focus is on the strip-packing variant. Using the typology of Wäscher et al. [36] this is a
two-dimensional irregular open dimension problem (ODP).

In the textile industry the shapes of the pieces of clothes are usually referred to as markers or
stencils. In the following we will use the latter term except when the pieces need to be defined more
precisely e.g. as polygons.

In order to state the problem formally we first define the associated decision problem:

Nesting Decision Problem Given a set of stencils S and a piece of material, position the stencils S
such that
∗Department of Computer Science, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark. E-mail:

{jegeblad, benny, duff}@diku.dk.
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w

l

Figure 1: The Strip Nesting Problem. Place a number of stencils on a strip with width w such that no
two stencils overlap and the length l of the strip is minimized.

• No two stencils overlap.

• All stencils are contained within the boundaries of the material.

The strip-packing variant can now be stated as:

Strip Nesting Problem. Given a set of stencils S and a strip (the material) with width w find the
minimal length l for which the Nesting Decision Problem can be solved (Figure 1).

The Strip Nesting Problem is N P -hard [e.g. 28].
In this paper we present a new solution method for the Strip Nesting Problem. After a short

analysis of some of the existing approaches to the problem (Section 2) we present a short outline of
the new solution method in Section 3. In short, the approach is a local search method (Section 4) using
the meta-heuristic Guided Local Search (Section 5) to escape local minima. A very efficient search of
the neighborhood in the local search is the subject of Section 6.

In the definitions above we have ignored the additional constraints which are often given for a
nesting problem e.g. whether rotating and/or flipping the stencils is allowed. In Section 7 a discussion
on how we handle such problem variations emphasizes the flexibility of our solution method.

Experiments show that our solution method is very efficient compared with other published meth-
ods. Results are presented in Section 8. Finally, in Section 9, it is shown that our solution method is
quite easily generalized to three-dimensional nesting problems.

2 Existing Approaches to Nesting Problems

There exists numerous solution methods for nesting problems. A thorough survey by Dowsland and
Dowsland [15] exists, but a more recent survey has also been done by Nielsen and Odgaard [28].
Meta-heuristics are one of the most popular tools for solving nesting problems. A detailed discussion
of these can be found in the introductory sections of Bennell and Dowsland [6].

The following is a brief discussion of some of the most interesting approaches to nesting problems
previously presented in the literature. The discussion is divided into three subsections concerning
three different aspects of finding solutions for the problem: The basic solution method, the geometric
approach and the use of a meta-heuristic to escape local minima.
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2.1 Basic solution methods

Solution methods handling nesting problems generally belong to one of two groups. Those only
considering legal placements in the solution process and those allowing overlap to occur during the
solution process.

Legal placement methods

These methods never violate the overlap constraint. An immediate consequence is that placement of
a stencil must always be done in an empty part of the material.

Most methods for strip packing follow the basic steps below.

1. Determine a sequence of stencils. This can be done randomly or by sorting the stencils accord-
ing to some measure e.g. the area or the degree of convexity [30].

2. Place the stencils with some first/best fit algorithm. Typically a stencil is placed at the contour
of the stencils already placed. Some algorithms also allow hole-filling i.e. placing a stencil in
an empty area between already placed stencils [16, 17, 19].

3. Evaluate the length of the solution. Exit with this solution [3] or repeat at step 2 after changing
the sequence of stencils [16, 19].

Unfortunately the second step is quite expensive and if repeated these algorithms can easily end
up spending time on making almost identical placements.

Legal placement methods not doing a sequential placement do exist. These methods typically
construct a legal initial solution and then introduce some set of moves (e.g. swapping two stencils)
that can be controlled by a meta-heuristic to e.g. minimize the length of a strip [8, 9, 10, 11, 20].

Relaxed placement methods

The obvious alternative is to allow overlaps to occur as part of the solution process. The objective
is then to minimize the amount of overlap. A legal placement has been found when the amount of
overlap reaches 0. Numerous papers applying such a scheme exist with varying degrees of success [5,
6, 21, 24, 25, 27, 29, 33]. Especially noteworthy is the work of Heckmann and Lengauer [21].

In this context it is very easy to construct an initial placement. It can simply be a random placement
of all of the stencils, although it might be better to start with a better placement.

Searching for a solution can be done by iteratively improving the placement i.e. decrease the total
overlap and maybe also the strip-length. This is typically done by moving/rotating stencils.

2.2 Geometric approaches

The first problem encountered when handling nesting problems is how to represent the stencils. If
the stencils are not already given as polygons then they can quite easily be approximated by polygons
which is also what is done in most cases. A more crude approximation can be done using a raster
model [12, 21, 27, 29]. This is a discrete model of the stencils created by introducing a grid of some
size to represent the material i.e. each stencil covers some set of raster squares. The stencils can then
be represented by matrices. An example of a simple polygon and its raster model equivalent is given
in Figure 2. A low granularity of the raster model provides fast calculations at the expense of limited
precision. Better precision requires higher granularity, but it will also result in slower calculations.
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Figure 2: The raster model requires all stencils to be defined by a set of grid squares. The drawing
above is an example of a polygon and its equivalent in a raster model.

 (a)  (b) 

Figure 3: The degree of overlap can be measured in various ways. Here are two examples: (a) The
precise area of the overlap. (b) The horizontal intersection depth.

Comparisons between the raster model and the polygonal model were done by Heckmann and
Lengauer [21] and they concluded that the polygonal model was the better choice for their purposes.

Assuming polygons are preferred then we need some geometric tools to construct solutions with-
out any overlaps. In the existing literature two basic tools have been the most popular.

Overlap calculations

The area of an overlap between two polygons (see Figure 3a) can be used to determine whether
polygons overlap and how much they overlap. This can be an expensive calculation and thus quite
a few alternatives have been suggested such as intersection depth [6, 14] (see Figure 3b) and the
Φ-function [32] which can differentiate between three states of polygon interference: Intersection,
disjunction and touching.

Solution methods using overlap calculations most often apply some kind of trial-and-error scheme
i.e. they try to place or move a polygon to various positions to see if or how much it overlaps. This
can then be used to improve some intermediate solution which might be allowed to contain overlap
[5, 6, 7, 21].

No-Fit-Polygons (NFP)

Legal placement methods very often use the concept of the No-Fit-Polygon (NFP) [1, 2, 3, 16, 17,
19, 20, 30], although it can also be used in relaxed placement methods as done by Bennell and
Dowsland [5].

The NFP is a polygon which describes the legal/illegal placements of one polygon in relation to
another polygon, and it was introduced by Art, Jr. [3] (although named envelope).

Given two polygons P and Q the construction of the NFP of P in relation to Q can be found in
the following way: Choose a reference point for P. Slide P around Q as closely as possible without
intersecting. The trace of the reference point is the contour of the NFP. An example can be seen
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Reference point

Q

P

Figure 4: Example of the No-Fit-Polygon (thick border) of stencil P in relation to stencil Q. The
reference point of P is not allowed inside the NFP if overlap is to be avoided.

in Figure 4. To determine whether P and Q intersect it is only necessary to determine whether the
reference point of P is inside or outside their NFP. Placing polygons closely together can be done
by placing the reference point of P at one of the edges of the NFP. If P and Q have s and t edges,
respectively, then the number of edges in their NFP will be O(s2t2) [4].

The NFP has one major weakness. It has to be constructed for all pairs of polygons. If the
polygons are not allowed to be rotated it is feasible to do this in a preprocessing step in a reasonable
time given that the number of differently shaped polygons is not too large.

2.3 Meta-heuristics

Both legal and relaxed placement methods can make use of meta-heuristics. The most popular one
for nesting problems is Simulated Annealing (SA) [9, 20, 21, 27, 29, 33]. The most advanced use of
it is by Heckmann and Lengauer [21] who implemented SA in 4 stages. The first stage is a rough
placement, the second stage eliminates overlaps, the third stage is a fine placement with approximated
stencils and the last stage is a fine placement with the original stencils.

Gomes and Oliveira [20] very successfully combine SA with the ideas for compaction and sepa-
ration by Li and Milenkovic [26]. A very similar approach had previously been attempted by Bennell
and Dowsland, Bennell and Dowsland [5, 6], but they combined it with a Tabu Search variant.

More exotic approaches are genetic, ant and evolutionary algorithms [10, 11, 25] — all with very
limited success.

3 Solution Method Outline

In this section we will give a brief outline of our solution method. Our method is a relaxed placement
method and it can handle irregular polygons with holes. A new geometric approach is utilized and
the Guided Local Search meta-heuristic is used to escape local minima. This approach is inspired by
a paper by Faroe et al. [18] which presented a similar approach for the two-dimensional Bin Packing
Problem for rectangles.

The following describes the basic algorithm for the Strip Nesting Problem.

1. Finding an initial strip length
An initial strip length is found by using some fast heuristic e.g. a bottom-left bounding box
placement algorithm.

2. Reducing the strip length
The strip length is reduced by some value. This value could e.g. be based on some percentage
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of the current length. After reducing the strip length any polygons no longer contained within
the strip are translated appropriately. This potentially causes overlap which is removed during
the subsequent optimization.

3. Applying local search to reduce overlap
The strip length is fixed now and the search for a solution without overlap can begin. The
overlap is iteratively reduced by applying local search. More precisely, in each step of the local
search a polygon is moved to decrease the total amount of overlap. The local search and its
neighborhood are described in Section 4, and a very efficient search of the neighborhood is the
focus of Section 6.

If a placement without overlap is found for the current fixed strip length then we have found a
solution, and step 2 can be repeated to find even better solutions. This might not happen though
since the local search can be caught in local minima.

4. Escaping local minima
To escape local minima we have applied the meta-heuristic Guided Local Search. In short, it
alters the objective function used in step 3 and then repeats the local search. It will be described
in more detail in Section 5.

4 Local Search

4.1 Placement

First we define a placement formally. Let S = {s1, . . . ,sn} be a set of polygons. A placement of
s ∈ S can be described by the tuple (sx,sy,sθ,s f ) ∈ R×R× [0,2π)×{ f alse, true} where (sx,sy)
is the position, sθ is the rotation angle and s f states whether s is flipped. Now the map p : S →
R×R× [0,2π)×{ f alse, true} is a placement of the polygons S .

4.2 Objective function

Given a set of polygons S = {s1, . . . ,sn} and a fixed-length strip with length l and width w, let P be
the space of possible placements. We now wish to minimize the objective function,

g(p) =
n

∑
i=1

i−1

∑
j=1

overlapi j(p), p ∈ P ,

where overlapi j(p) is a measure of the overlap between polygons si and s j. A placement p such
that g(p) = 0 implies that p contains no overlap i.e. p solves the decision problem. We have chosen
overlapi j(p) to be the area of intersection of polygons si and s j with respect to the placement described
by p.

4.3 Neighborhood

Given a placement p the local search may alter p to create a new placement p′ by changing the
placement of one polygon si ∈ S . In each iteration the local search may apply one of the following
four changes (depending on what is allowed for the given problem instance):

• Horizontal translation. Translate si horizontally within the strip.
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Figure 5: Example of a local search. (a) One polygon overlaps with several other polygons and
is selected for optimization. In the top row we have drawn the amount of overlap as a function of
the leftmost x-coordinate of the polygon. The positions beyond the dashed line are illegal since the
polygon would lie partially beyond the right limit of the strip. Local search translates the polygon
to a position with least overlap. (b) In the next iteration the local search may continue with vertical
translation. The graph of overlap as a function of y-coordinate is shown and again the polygon is
translated to the position with least overlap. (c) Local search has reached a legal solution.

• Vertical translation. Translate si vertically within the strip.

• Rotation. Select a new angle of rotation for si.

• Flipping. Choose a new flipping state for si.

The new position, angle or flipping state is chosen such that the overlap with all other polygons
∑ j 6=i overlapi j(p′) is minimized. In other words p′ is created from p by reducing the total overlap in
a greedy fashion. An example of a local search is shown on Figure 5.

Let N : P → 2P be the neighborhood function such that N(p) is the set of all neighboring place-
ments of p. We say that the placement p′ is a local minimum if:

∀p ∈ N(p′) : g(p′)≤ g(p),

i.e. there exists no neighboring solution with less overlap.
Now the local search proceeds by iteratively creating a new placement p′ from the current place-

ment p until p′ is a local minimum.
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5 Guided Local Search

To escape local minima encountered during local search we apply the meta-heuristic Guided Local
Search (GLS). GLS was introduced by Voudouris and Tsang [34] and has previously been successfully
applied to e.g. the Traveling Salesman Problem [35] and two- and three-dimensional Bin-Packing
Problems [18].

5.1 Features and penalties

Features are unwanted characteristics of a solution or in our case a placement. We let the features
express pairwise overlap of polygons in the placement and define the indicator function:

Ii j(p) =
{

0 if overlapi j(p) = 0
1 otherwise

i, j ∈ 1, . . . ,n, p ∈ P ,

which determines whether polygon si and s j overlap in the placement p.
The key element of GLS is the penalties. For each feature we define a penalty count φi j which is

initially set to 0. We also define the utility function:

µi j(p) = Ii j(p)
overlapi j(p)

1+φi j
.

Whenever local search reaches a local minimum p, the feature(s) with highest utility µi j(p) are “pe-
nalized” by increasing φi j.

5.2 Augmented objective function

The features and penalties are used in an augmented objective function,

h(p) = g(p)+λ ·
n

∑
i=1

i−1

∑
j=1

φi jIi j(p),

where λ ∈]0,∞[ is a constant used to fine-tune the behavior of the meta-heuristic. Early experiments
have shown that a good value for λ is around 1−4% of the area of the largest polygon.

Instead of simply minimizing g(p) we let the local search of Section 4 minimize h(p). An outline
of the meta-heuristic and the associated local search is described in Algorithm 1.

5.3 Improvements

The efficiency of GLS can be greatly improved by using Fast Local Search (FLS) [34]. FLS divides the
local search neighborhood into sub-neighborhoods which are active or inactive depending on whether
they should be considered during local search. In our context we let the moves of each polygon be a
sub-neighborhood resulting in n sub-neighborhoods. Now it is the responsibility of the GLS algorithm
to activate each sub-neighborhood and the responsibility of FLS to inactivate them.

For the nesting problem we have chosen to let GLS activate neighborhoods of polygons involved
in penalty increments. When a polygon s is moved we activate all polygons overlapping with s before
and after the move. FLS inactivates a neighborhood if it has been searched and no improvement has
been found.
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Algorithm 1: Guided Local Search for Nesting Decision Problem
Input: A set of polygons S ;
Generate initial placement p;
foreach pair of polygons si,s j ∈ S do

Set φi j = 0;
while p contains overlap do

// Local search:;
while p is not local minimum do

Select polygon si;
Create p′ from p using the best neighborhood
move of si, i.e., such that h(p′) is minimized;
Set p = p′.;

// Penalize:;
foreach pair of polygons si,s j ∈ S do

Compute µi j(p);
foreach pair of polygons si,s j ∈ S such that µi j is maximal do

Set φi j = φi j +1;
return p

If GLS runs for a long time then the penalties will at some point have grown to a level where
the augmented objective function no longer makes any sense in relation to the current placement.
Therefore we also need to reset the penalties at some point e.g. after some maximum number of
iterations which depends on the number of polygons.

6 Fast Neighborhood Search

To determine a translation of a single polygon which minimizes overlap we have developed a new
polynomial-time algorithm. The algorithm itself is very simple and it is presented in Section 6.2, but
the correctness of the algorithm is not trivial and a proof is required. The core of the proof is the
Intersection Area Theorem which is the subject of the following section.

6.1 Intersection Area Theorem

In this section we will present a special way to determine the area of intersection of two polygons.
Nielsen and Odgaard [28] have presented a more general version of the Intersection Area Theorem
which dealt with rotation and arbitrary shapes. In this text however we have decided to limit the theory
to polygons and horizontal translation since this is all we need for our algorithm to work. It will also
make the proof shorter and easier to understand.

In order to state the proof we need to define precisely which polygons we are able to handle. First
some definitions of edges and polygons.

Definition 3 (Edges). An edge e is defined by its end points ea,eb ∈ R2. Parametrically an edge is
denoted e(t) = ea + t(eb− ea) where t ∈ [0,1]. For a point p = (px, py) ∈ R2 and an edge e we say
p ∈ e if and only if p = e(t0) for some t0 ∈ [0,1] and py 6= min(eay ,eby).

The condition, py 6= min(eay ,eby), is needed to handle some special cases (see Lemma 1).
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Positive edges Negative edges

Figure 6: Positive and negative edges of a polygon according to Definition 6.

Definition 4 (Edge Count Functions). Given a set of edges E we define two edge count functions,←−
fE(p),

−→
fE(p) : R2→ N0,

←−
fE(p) = |{e ∈ E | ∃ x′ < px : (x′, py) ∈ e}|,
−→
fE(p) = |{e ∈ E | ∃ x′ ≥ px : (x′, py) ∈ e}|.

Definition 5 (Polygon). A polygon P is defined by a set of edges E. The edges must form one or more
cycles and no pair of edges from E are allowed to intersect. The interior of the polygon is defined by
the set

P̃ = {p ∈ R2|←−fE(p)≡ 1 ( mod 2)}.

For a point p ∈ R2 we write p ∈ P if and only if p ∈ P̃.

Note that this is an extremely general definition of polygons. The polygons are allowed to consist
of several unconnected components and cycles can be contained within each other to produce holes in
the polygon.

Now, we will also need to divide the edges of a polygon into three groups.

Definition 6 (Sign of Edge). Given a polygon P defined by an edge set E we say an edge e ∈ E is
positive if

∀t, 0 < t < 1 : ∃ε > 0 : ∀δ, 0 < δ < ε : e(t)+(δ,0) ∈ P. (1)

Similarly we say e is negative if Equation 1 is true with the points e(t)− (δ,0). Finally we say e is
neutral if e is neither positive nor negative.

The sets of positive and negative edges from an edge set E are denoted E+ and E−, respectively.
Although we will not prove it here it is true that any non-horizontal edge is either positive or

negative, and that any horizontal edge is neutral. Notice that the positive edges are the “left” edges
and the negative edges are the “right” edges with respect to the interior of a polygon (see Figure 6).

The following lemma states some important properties of polygons and their positive/negative
edges.

Lemma 1. Given a vertical coordinate y and some interval I, we say that the horizontal line ly(t) =
(t,y), t ∈ I, crosses an edge e if there exist t0 such that ly(t0) ∈ e. Now assume that P is a polygon
defined by an edge set E then all of the following holds.

1. If I =]−∞,∞[ and we traverse the line from −∞ towards ∞ then the edges crossed alternate
between being positive and negative.
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2. If I =]−∞,∞[ then the line crosses an even number of edges.

3. Assume p /∈ P then the infinite half-line lpy(t) for I = [px,∞[ will cross an equal number of
positive and negative edges. The same is true for I =]∞, px[.

4. Assume p ∈ P. If I = [px,∞[ and if the line crosses n positive edges then it will also cross
precisely n+1 negative edges. Similarly, if I =]−∞, px[ and if the line crosses n negative edges
then it will also cross precisely n+1 positive edges.

Proof. We only sketch the proof. First note that some special cases concerning horizontal edges and
the points where edges meet are handled by the inequality in Definition 3.

The first statement easily follows from the definition of positive and negative edges since clearly
any positive edge can only be followed by a negative edge and vice-versa when we traverse from left
to right. The other statements follow from the first statement and the observation that the first edge
must be positive and the last edge must be negative.

The following definitions are unrelated to polygons. Their purpose is to introduce a precise defi-
nition of the area between two edges. Afterwards this will be used to calculate the area of intersection
of two polygons based purely on pairs of edges.

Definition 7 (Containment Function). Given two edges e1 and e2 and a point p ∈ R2 define the
containment function

C(e1,e2, p) =
{

1 if ∃x1,x2 : x2 < px ≤ x1, (x2, py) ∈ e2,and (x1, py) ∈ e1
0 otherwise.

Given two sets of edges, E and F, we generalize the containment function by summing over all pairs
of edges,

C(E,F, p) = ∑
e1∈E

∑
e2∈F

C(e1,e2, p).

Note that given two edges e1 and e2 and a point p then C(e1,e2, p) = 1⇒ C(e2,e1, p) = 0.

Definition 8 (Edge Region and Edge Region Area). Given two edges e1 and e2 we define the edge
region R(e1,e2) = {p ∈ R2 | C(e1,e2, p) = 1} and the area of R(e1,e2) as

A(e1,e2) =
Z Z

R(e1,e2)
1dA =

Z Z
p∈R2

C(e1,e2, p)dA,

Given two sets of edges, E and F, we will again generalize by summing over all pairs of edges,

A(E,F) = ∑
e1∈E

∑
e2∈F

A(e1,e2).

The edge region of two edges R(e1,e2) is the set of points in the plane for which the containment
function is 1. This is exactly the points which are both to the right of e2 and to the left of e1 (see
Figure 7).

We will postpone evaluation of A(e1,e2) to Section 6.2 since we do not need it to prove the main
theorem of this section. Instead we need to prove a theorem which we can use to break down the
intersection of two polygons into regions.
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e2

e1

Figure 7: The edge region R(e1,e2) of two edges e1 and e2 (see Definition 8).

Containment Theorem Given polygons P and Q defined by edge sets E and F, respectively, then for
any point p ∈ R2 the following holds:

p ∈ P∩Q ⇒ w(p) = 1

p /∈ P∩Q ⇒ w(p) = 0,

where

w(p) = C(E+,F−, p)+C(E−,F+, p)−C(E+,F+, p)−C(E−,F−, p) (2)

Proof. First we note that from the definition of the containment function C it is immediately obvious
that the only edges affecting w(p) are the edges which intersect with the line lpy(t), t ∈]−∞,∞[, and
only the edges from E which are to the right of p and the edges from F which are to the left of p will
contribute to w(p).

Now let m =
−→
fE+(p) and n =

←−
fF−(p). By using Lemma 1 we can prove this theorem by counting.

First assume p ∈ P∩Q which implies p ∈ P and p ∈ Q. From Lemma 1 we know that
−→
fE−(p) =

m+1 and
←−
fF+(p) = n+1. Inserting this into Equation 2 reveals:

w(p) = (n+1)(m+1)+nm− (n+1)m−n(m+1)
= nm+n+m+1+nm−nm−m−nm−n

= 1.

Now for n /∈ P∩Q there are three cases for which we get:

p /∈ P∧ p /∈ Q : w(p) = nm+nm−nm−nm = 0,
p ∈ P∧ p /∈ Q : w(p) = n(m+1)−nm+nm−n(m+1) = 0,
p /∈ P∧ p ∈ Q : w(p) = (n+1)m−nm+(n+1)m−nm = 0.
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We are now ready to prove the main theorem of this section.

Intersection Area Theorem Given polygons P and Q defined by edge sets E and F, respectively, then
the area of their intersection (denoted α) is

α = A(E+,F−)+A(E−,F+)−A(E+,F+)−A(E−,F−). (3)

Proof. From the Containment Theorem we know:

α =
Z Z

p∈R2
w(p)dA.

Using Equation 2 we get:Z Z
p∈R2

w(p)dA =
Z Z

p∈R2
C(E+,F−, p)dA+

Z Z
p∈R2

C(E−,F+, p)dA

−
Z Z

p∈R2
C(E+,F+, p)dA−

Z Z
p∈R2

C(E−,F−, p)dA

Let us only consider
R R

p∈R2 C(E+,F−, p)dA which can be rewritten:Z Z
p∈R2

C(E+,F−, p)dA =
Z Z

p∈R2
∑

e∈E+
∑

f∈F−
C(e, f , p)dA

= ∑
e∈E+

∑
f∈F−

Z Z
p∈R2

C(e, f , p)dA

= ∑
e∈E+

∑
f∈F−

A(e, f )

= A(E+,F−).

The other integrals can clearly be rewritten as well and we achieve the required result.

Note that this theorem implies a very simple algorithm to calculate the area of an intersection
without explicitly calculating the intersection itself.

6.2 Translational overlap

The idea behind the fast neighborhood search algorithm is to express the overlap of one polygon P
with all other polygons as a function of the horizontal position of P. The key element of this approach
is to consider the value of A(e, f ) for each edge-pair in the Intersection Area Theorem and to see how
it changes when one of the edges is translated.

Calculating the area of edge regions

Fortunately it is very easy to calculate A(e, f ) for two edges e and f . We only need to consider three
different cases.

1. Edge e is completely to the left of edge f (Figure 8a).
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Figure 8: The edge region R(e, f ) of two edges as e is translated t units from left to right. (a) e is
completely left of f . (b) e adjoins f . (c) e crosses f . (d) e and f are adjoined again. (e) e is to the
right of f . Notice that R(e, f ) is either /0, a triangle or a triangle combined with a parallelogram.

2. Edge e intersects edge f (Figure 8c).

3. Edge e is completely to the right of edge f (Figure 8e).

For the first case the region between the two edges is /0. For the second case the region is a triangle
and for the third case it is a union of a triangle and a parallelogram.

Now, let the edge et be the horizontal translation of e by t units and define the function a(t) =
A(et , f ). Assume et intersects f only when t ∈ [t4, t2] for appropriate t4 and t2 and let us take a
closer look at how the area of the region behaves when translating e.

1) Clearly for t < t4 we have a(t) = 0. 2) It is also easy to see that for t ∈ [t4, t2] the intersection
of the two edges occurs at some point which is linearly depending on t thus the height of the triangle
is linearly depending on t. The same goes for the width of the triangle and thereby a(t) must be a
quadratic function for this interval. 3) Finally for t > t2, a(t) is the area of the triangle at t = t2 which
is a(t2) and the area of some parallelogram. Since the height of the parallelogram is constant and the
width is t− t2, a(t) for t > t2 is a linear function.

In other words, a(t) is a piecewise quadratic function.
The next step is to extend the Intersection Area Theorem to edge sets Et and F where Et is every

edge from E translated by t units, i.e we want to define the function α(t) = A(Et ,F).
For each pair of edges et ∈ Et and f ∈ F the interval of intersection is determined and the function

ae, f (t) = A(et , f ) is formulated as previously described. All functions ae, f (t) are piecewise quadratic
and have the form:

ae, f (t) =


0 for t < t4e, f

A4e, f t
2 + B4e, f t + C4e, f for t ∈ [t4e, f , t

2
e, f ]

B2
e, f t + C2

e, f for t > t2e, f

(4)

We denote the constants t4e, f and t2e, f the breakpoints of the edge pair e and f , the values A4e, f , B4e, f ,

C4e, f the triangle coefficients of ae, f (t), and the values B2
e, f and C2

e, f the parallelogram coefficients of
ae, f (t).

The total area of intersection between two polygons as a function of the translation of one of the
polygons can now be expressed as in Equation 3:

α(t) = A(E+
t ,F−)+A(E−t ,F+)−A(E+

t ,F+)−A(E−t ,F−). (5)

The functions ae, f (t) are all piecewise quadratic functions, and thus any sum of these, specifically
Equation 5, is also a piecewise quadratic function. In the next section we are going to utilize this
result in our algorithm by iteratively constructing α(t) for increasing values of t.
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Determining the minimum overlap translation

Given a polygon P defined by an edge set E and a set of polygons S (P /∈ S ) defined by an edge set
F the local search of Section 4 looks for a translation of P such that the total area of intersection with
polygons from S is minimized. In this section we present an algorithm capable of determining such a
translation.

The outline of the algorithm is as follows: For each pair of edges (e, f ) ∈ E×F use the signs of
the edges to evaluate whether ae, f (t) contributes positively or negatively to the sum of Equation 5.
Then determine the breakpoints for e and f and compute the triangle and parallelogram coefficients
of ae, f (t). Finally traverse the breakpoints of all edge pairs from left to right and at each breakpoint
maintain the function

α(t) = Ãt2 + B̃t +C̃,

where all of the coefficients are initially set to zero. Each breakpoint corresponds to a change for
one of the functions ae, f (t). Either we enter the triangle phase at t4e, f or the parallelogram phase

at t2e, f of ae, f (t). Upon entry of the triangle phase at t4e, f we add the triangle coefficients to α(t)’s
coefficients. Upon entry of the parallelogram phase at t2e, f we subtract the triangle coefficients and add
the parallelogram coefficients to α(t)’s coefficients.

To find the minimal value of α(t) we consider the value of α(t) within each interval between
subsequent breakpoints. Since α(t) on such an interval is quadratic, determining the minimum of
each interval is trivial using second order calculus. The overall minimum can easily be found by
considering all interval-minima.

The algorithm is sketched in Algorithm 2. The running time of the algorithm is dominated by the
sorting of the breakpoints since the remaining parts of the algorithm runs in time O(|E| · |F |). Thus the
algorithm has a worst case running time of O(|E| · |F | log(|E| · |F |)) which in practice can be reduced
by only considering polygons from S which overlap horizontally with P.

Theoretically every pair of edges in E×F could give rise to a new edge in the intersection P∩Q.
Thus a lower bound for the running time of an algorithm which can compute such an intersection must
be Ω(|E||F |). In other words, Algorithm 2 is only a logarithmic factor slower than the lower bound
for determining the intersection for simply one position of P.

Algorithm 2: Determine Horizontal Translation with Minimal Overlap
Input: A set S of polygons and a polygon P /∈ S ;
foreach edge e from polygons S \{P} do

foreach edge f from P do
Create breakpoints for edge pair (e, f );

Let B = breakpoints sorted;
Define area-function α(t) = Ãt2 + B̃t +C̃;
Set Ã = B̃ = C̃ = 0;
foreach breakpoint b ∈ B do

Modify α(t) by changing Ã, B̃ and C̃;
Look for minimum on the next interval of α(t);

return t with smallest α(t)
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7 Problem Variations

The solution method presented in the previous sections can also be applied to a range of variations
of nesting problems. Two of the most interesting are discussed in the following subsections. More
details and other variations are described by Nielsen and Odgaard [28].

7.1 Rotation

We have efficiently solved the problem of finding an optimal translation of a polygon. A very similar
problem is to find the optimal rotation of a polygon, i.e. how much is a polygon to be rotated to overlap
the least with other polygons.

It has been shown by Nielsen and Odgaard [28] that a rotational variant of the Intersection Area
Theorem is also possible. They also showed how to calculate the breakpoints needed for an iterative
algorithm. It is an open question though whether an efficient iterative algorithm can be constructed.

Nevertheless the breakpoints can be used to limit the number of rotation angles needed to be
examined to determine the existence of a rotation resulting in no overlap. This is still quite good since
free rotation in existing solution methods is usually handled in a brute-force discrete manner i.e. by
calculating overlap for a large set of rotation angles and then select a minimum.

7.2 Quality regions

In e.g. the leather industry the raw material can be divided into regions of quality [22]. Some polygons
may be required to be of specific quality and should therefore be confined to these regions. This is
easily dealt with by representing each region by a polygon and mark each region-polygon with a
positive value describing its quality. Now if an element is required to be of a specific quality, region-
polygons of poorer quality are included during overlap calculation with the element, thus disallowing
placements with the element within a region with less-than-required quality. Note that the complexity
of the translation algorithm is not affected by the number of quality levels.

8 Results

The solution method described in the previous sections has been implemented in C++, and we call
the implementation 2DNEST. A good description of the data instances used can be found in Gomes
and Oliveira [20]. These data instances are all available on the ESICUP homepage1. Some of their
characteristica are included in Table 1. For some instances rotation is not allowed and for others
180◦ rotation or even 90◦ rotation is allowed. In 2DNEST this is handled by extending the neighbor-
hood to include translations of rotated variants of the stencils. Note that the data instances Dighe1 and
Dighe2 are jigsaw puzzles for which other solution methods would clearly be more efficient, but it is
still interesting to see how well they are handled since we know the optimal solution.

Most of the data instances have frequently been used in the literature, but with regard to quality
the best results are reported by Gomes and Oliveira [20]. They also report average results found when
doing 20 runs for each instance. Gomes and Oliveira implemented two variations of their solution
method (GLSHA and SAHA) and results for the latter can be found in Table 1 (2-4GHz Pentium
4). Average computation times are included in the table since they vary between instances. More
precisely they vary between 22 seconds and 173 minutes. When considering all instances the average

1http://www-apdio-pt/esicup
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computation time is more than 74 minutes. In total it would have taken more than 15 days to do all of
the experiments on a single processor.

SAHA is an abbreviation of “simulated annealing hybrid algorithm”. A greedy bottom-left place-
ment heuristic is used to generate an initial solution, and afterwards simulated annealing is used to
guide the search of a simple neighborhood (pairwise exchanges of stencils). Linear programming
models are used for local optimizations including removing any overlap.

We have chosen to run 2DNEST on each instance 20 times using 10 minutes for each run (3GHz
Pentium 4). In Table 1 the quality of the average solution is compared to SAHA followed by com-
parisons of the standard deviation, the worst solution found and the best solution found. We have also
done a single 6 hour long run for each instance. It would take less than 6 days to do these experiments
on a single processor.

The best average results, the best standard deviations and the largest minimum results are under-
lined in the table. Disregarding the 6 hour runs the best of the maximum results are also underlined in
the table. Note that the varying computation times of SAHA makes it difficult to compare results, but
most of the results (10 out of 15) are obtained using more than the 600 seconds used by 2DNEST.

The quality of a solution is given as a utilization percentage, that is, the percentage of area covered
by the stencils in the resulting rectangular strip. Average results by 2DNEST are in general better. The
exceptions are Dagli, Shapes2 and Swim for which the average is better for SAHA. The best solutions
for these instances are also found by SAHA and this is also the case for Dighe1, Dighe2, Shirts and
Trousers. The two latter ones are beaten by the single 6 hour run though. The jigsaw puzzles (Dighe1
and Dighe2) are actually also handled quite well by 2DNEST, but it is not quite able to achieve 100%
utilization. Disregarding the jigsaw puzzles we have found the best known solutions for 10 out of 13
instances.

The standard deviations and the minimum results are clearly better for 2DNEST with the exception
of Shapes2 and Swim which are instances that are in general handled badly by 2DNEST compared to
SAHA. At least for Swim this is likely to be related to the fact that this instance is very complicated
with an average of almost 22 vertices per stencil. It probably requires more time or some multilevel
approach e-g- using approximated stencils or leaving out small stencils early in the solution process.
The latter is the approach taken by SAHA in their multi-stage scheme which is used for the last 3
instances in the table (Shirts, Swim and Trousers).

The best solutions produced by 2DNEST (including 6 hour runs) are presented in Figure 9.

9 Three-dimensional Nesting

Our fast translation method is not restricted to two dimensions. In this section we will describe how
the method can be used for three-dimensional nesting, but we will not generalize the proofs from
Section 6. Solutions for such problems have applications in the area of Rapid Prototyping [37], and
Osogami [31] has done a small survey of existing solution methods.

9.1 Generalization to three dimensions

It is straightforward to design algorithms to translate polyhedra in three dimensions. Edges are re-
placed by faces, edge regions (areas) are replaced by face regions (volumes) and so forth. Positive
and negative faces are also just a natural generalization of their edge counterparts. The only real
problem is to efficiently calculate the face region R( f ,g) between two faces f and g.

85



9. Three-dimensional Nesting

D
ata

instance
A

verage
Std.D

ev.
M

inim
um

M
axim

um
6

hours
Sec.

N
am

e
Size

D
eg.

2D
N

E
S

T
S

A
H

A
2D

N
E

S
T

S
A

H
A

2D
N

E
S

T
S

A
H

A
2D

N
E

S
T

S
A

H
A

2D
N

E
S

T
S

A
H

A
A

lbano
24

180 ◦
86.96

84.70
0.32

1.23
86.12

83.27
87.44

87.43
87.88

2257
D

agli
30

180 ◦
85.31

85.38
0.53

1.07
83.97

83.14
85.98

87.15
87.05

5110
D

ighe1
16

93.93
82.13

5.16
3.90

86.57
74.68

99.86
100.00

99.84
83

D
ighe2

10
93.11

84.17
5.42

6.84
81.81

75.73
99.95

100.00
93.02

22
Fu

12
90 ◦

90.93
87.17

0.62
1.40

90.05
85.08

91.84
90.96

92.03
296

Jakobs1
25

90 ◦
88.90

75.79
0.42

0.88
87.07

75.39
89.07

†∗78.89
89.03

332
Jakobs2

25
90 ◦

80.28
74.66

0.18
0.89

79.53
74.23

80.41
77.28

81.07
454

M
ao

20
90 ◦

82.67
80.72

0.87
0.87

81.07
78.93

85.15
82.54

85.15
8245

M
arques

24
90 ◦

88.73
86.88

0.25
0.81

88.08
85.31

89.17
88.14

89.82
7507

Shapes0
43

65.42
63.20

0.78
0.98

64.25
61.39

67.09
66.50

66.42
3914

Shapes1
43

180 ◦
71.74

68.63
0.79

1.41
71.12

65.41
73.84

71.25
73.23

10314
Shapes2

28
180 ◦

79.89
81.41

1.05
0.74

76.71
80.00

81.21
83.60

81.59
∗2136

Shirts
99

180 ◦
85.73

85.67
0.41

0.49
85.14

84.91
86.33

†86.79
87.38

10391
Sw

im
48

180 ◦
70.27

72.28
0.69

0.97
69.41

70.63
71.53

74.37
72.49

6937
Trousers

64
180 ◦

89.29
89.02

0.28
0.57

88.77
87.74

89.84
89.96

90.46
8588

Table
1:

C
om

parison
ofourim

plem
entation

2D
N

E
S

T
and

S
A

H
A

by
G

om
es

and
O

liveira
[20].Foreach

data
instance

the
num

berofstencils
to

be
nested

and
the

allow
ed

rotation
are

given.
B

oth
algorithm

s
have

been
run

20
tim

es.
A

verage,m
inim

um
and

m
axim

um
utilization

are
given

and
itis

supplem
ented

by
the

standard
deviation.

2D
N

E
S

T
uses

10
m

inutes
(600

seconds)
for

each
run

w
hich

can
be

com
pared

to
the

varying
running

tim
es

of
S

A
H

A
in

the
finalcolum

n
(averages

in
seconds).T

he
second

to
lastcolum

n
is

the
resultofrunning

2D
N

E
S

T
once

for6
hours

(3600
seconds).

∗T
hese

values
have

been
corrected

com
pared

to
those

given
in

G
om

es
and

O
liveira

[20].
†B

etterresults
w

ere
obtained

by
a

m
ore

sim
ple

greedy
approach

(G
L

SH
A

)[20]:81-67%
forJakobs1

and
86-80%

forShirts.

86



Fast neighborhood search for two- and three-dimensional nesting problems

Jakobs1∗ Jakobs2∗ Mao∗ Marques∗

Fu∗ Shapes2 Dighe1 Dighe2

Shapes0∗ Shapes1∗ Dagli

Albano∗ Trousers∗

Shirts∗ Swim

Figure 9: The best solutions found by 2DNEST easily comparable with the ones shown in Gomes and
Oliveira [20].
∗These solutions are also the currently best known solutions in the literature.
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9. Three-dimensional Nesting

Translation direction

Figure 10: An illustration of the face region between two faces. The faces are not necessarily parallel,
but the sides of the face region are parallel with the translation direction. The face region would be
more complicated if the two faces were intersecting.

f g

(a)

f g

(b)

f
g

(c)

f
g

(d)
x

y
z

Figure 11: Translation of a triangle f through another triangle g along the x-axis, where the triangles
have the same projection onto the yz-plane. The face region R( f ,g) changes shape each time two
corner points meet.

Assume that translation is done along the direction of the x-axis. An illustration of a face region is
given in Figure 10. Note that the volume will not change if we simplify the two faces to the end faces
of the face region. This can be done by projecting the faces onto the yz-plane, find and triangulate the
intersection polygon and project this back onto the faces. This reduces the problem to the calculation
of the volume of the face region between two triangles in three-dimensional space. We know that the
three pairs of corner points will meet under translation. Sorted according to when they meet we will
denote these the first, second and third breakpoint.

An illustration of the translation of two such triangles is given in Figure 11. Such a translation
will almost always go through the following 4 phases.

1. No volume (Figure 11a).

2. After the first breakpoint the volume becomes a growing tetrahedron (Figure 11b).

3. The second breakpoint stops the tetrahedron (Figure 11c). The growing volume is now a bit
harder to describe (Figure 11d) and we will take care of it in a moment.

4. After the third breakpoint the volume is growing linearly. It can be calculated as a constant plus
the area of the projected triangle multiplied with the translation distance since the corner points
met.
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a = (x, 0, 0)

xc
xb

Figure 12: The volume of the above tetrahedron can be calculated from the three vectors a, b and c.
In our case b and c are linearly dependent on x which is the length of a (and the translation distance
since the tetrahedron started growing).

We have ignored 3 special cases of pairs of corner points meeting at the same time. 1) If the
faces are parallel then we can simply skip to phase 4 and use a zero constant. 2) If the two last pairs
of corner points meet at the same time then we can simply skip phase 3. 3) Finally, if the first two
pairs of corner points meet at the same time we can skip phase 1. The reasoning for this is simple.
Figure 11c illustrates that it is possible to cut a triangle into two parts which are easier to handle than
the original triangle. The upper triangle is still a growing tetrahedron, but the lower triangle is a bit
different. It is a tetrahedron growing from an edge instead of a corner and it can be calculated as a
constant minus the area of a shrinking tetrahedron.

The basic function needed is therefore the volume V (x) of a growing tetrahedron (a shrinking
tetrahedron then follows easily). This can be done in several different ways, but one of them is
especially suited for our purpose. Given three directional vectors a,b,c from one of the corner points
of the tetrahedron, the following general formula can be used

V =
1
3!
|a · (b× c)|. (6)

In our case one of the vectors is parallel to the x-axis corresponding to the translation direction. An
example of three vectors is given in Figure 12.

Since the angles of the tetrahedron are unchanged during translation, the vectors b and c do not
change direction and can simply be scaled to match the current translation by the value x where x is the
distance translated. This is indicated in the drawing. Using Equation 6, we can derive the following
formula for the change of volume when translating:

V (x) =
1
3!
|a · (xb× xc)|

=
1
3!

∣∣∣∣∣∣x3

 1
0
0

 ·
 bx

by

bz

×
 cx

cy

cz

∣∣∣∣∣∣
=

1
6

∣∣(bycz−bzcy)x3∣∣ .
However, this function is inadequate for our purpose since it is based on the assumption that the
translation is 0 when x = 0. We need a translation offset t and by replacing x with x− t we get:

V (x) =
1
6

∣∣(bycz−bzcy)(x3−3tx2 +3t2x− t3)
∣∣ . (7)
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9. Three-dimensional Nesting

Part2 Part3 Part4

Part5 Part6 Stick2

Block1 Thin

Figure 13: The Ikonen data set.

Now it is a simple matter to use Algorithm 2 in Section 6 for translating polyhedra with Equation 7 as
breakpoint polynomials.

The volume function is a cubic polynomial for which addition and finding minimum are constant
time operations. Assume we are given two polyhedra with m and n faces respectively (with an upper
limit on the number of vertices for each face), then the running time of the three-dimensional variant
of Algorithm 2 is exactly the same as for the two-dimensional variant: O(mn log(mn)). However, the
constants involved are larger.

9.2 Results for three dimensions

A prototype has been implemented, 3DNEST, and its performance has been compared with the very
limited existing results. In the literature only one set of simple data instances has been used. They
were originally created by Ilkka Ikonen and later used by Dickinson and Knopf [13] to compare their
solution method with Ikonen et al. [23]. Eight objects are available in the set and they are presented
in Table 2 and Figure 13. Some of them have holes, but they are generally quite simple. They can all
be drawn in two dimensions and then just extended in the third dimension. They have no relation to
real-world data instances.

Name # Faces Volume Bounding box
Block1 12 4.00 1.00 × 2.00 × 2.00
Part2 24 2.88 1.43 × 1.70 × 2.50
Part3 28 0.30 1.42 × 0.62 × 1.00
Part4 52 2.22 1.63 × 2.00 × 2.00
Part5 20 0.16 2.81 × 0.56 × 0.20
Part6 20 0.24 0.45 × 0.51 × 2.50
Stick2 12 0.18 2.00 × 0.30 × 0.30
Thin 48 1.25 1.00 × 3.00 × 3.50

Table 2: The Ikonen data set.

Based on these objects two test cases were created by Dickinson and Knopf for their experiments.

• Case 1
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Case 1 Case 2

Figure 14: The above illustrations contain twice as many objects as originally intended in Ikonens
Case 1 and 2. They only took a few seconds to find.

Pack 10 objects into a cylinder of radius 3.4 and height 3.0. The 10 objects were chosen as
follows: 3 × Part2, 1 Part4 and 2 × Part3, Part5 and Part6. Total number of faces is 260 and
11.3% of the total volume is filled.

• Case 2
Pack 15 objects into a cylinder of radius 3.5 and height 5.5. The 15 objects were chosen as in
case 1, but with 5 more Part2. Total number of faces is 380 and 12.6% of the total volume is
filled.

Dickinson and Knopf report execution times for both their own solution method (serial packing)
and the one by Ikonen et al. (genetic algorithm) and they ran the benchmarks on a 200 MHz AMD K6
processor. The results are presented in Table 3 in which results from our algorithm are included.

Our initial placement is a random placement which could be a problem since it would quite likely
contain almost no overlap and then it would not say much about our algorithm — especially the GLS
part. To make the two cases a bit harder we doubled the number of objects. Our tests were run on a
733MHz G4. Even considering the difference in processor speeds there is no doubt that our method
is the fastest for these instances. Illustrations of the resulting placements can be seen in Figure 14.

Test Ikonen et al. Dickinson and Knopf 3DNEST

Case 1 22.13 min. 45.55 sec. 3.2 sec. (162 translations)
Case 2 26.00 min. 81.65 sec. 8.1 sec. (379 translations)

Table 3: Execution times for 3 different heuristic approaches. Note that the number of objects is
doubled for 3DNEST.
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10 Conclusion

We have presented a new solution method for nesting problems. The solution method uses local search
to reduce the amount of overlap in a greedy fashion and it uses Guided Local Search to escape local
minima. To find new positions for stencils which decrease the total overlap, we have developed a new
algorithm which determines a horizontal or vertical translation of a polygon with least overlap. Fur-
thermore, our solution method can easily be extended to handle otherwise complicated requirements
such as free rotation and quality regions.

The solution method has also been implemented and is in most cases able to produce better so-
lutions than those previously published. It is also robust with very good average solutions and small
standard deviations compared to previously published solutions methods, and this is within a reason-
able time limit of 10 minutes per run.

Finally we have generalized the method to three dimensions which enables us to also solve three-
dimensional nesting problems.
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Addendum to “Fast neighborhood search for two- and
three-dimensional nesting problems”

Jens Egeblad

1 Implemetation Background

A number of implementation details were missing from the paper [A]. In this addendum we present
new experiments in Section 2 and elaborate on some of the missing details in Section 3.

The work presented in the paper [A] is based on older work by Egeblad et al. [1] and the first
implementation from 2001 already showed results which were competitive with the best results from
the literature. The implementation was later completely rewritten as part of the Master’s thesis by
Nielsen and Odgaard [4] and this implementation was slightly modified and improved for the first
paper [A]. The implementation was heavily modified again to improve floating point stability issues, to
handle the strip-packing variant of three-dimensional problems of the paper [B], to allow for analysis
of overlap measures and handling of free rotation by Nielsen [6], to handle repeated pattern nesting by
Nielsen [5], and to manage the objective function of the paper [E]. Several parts of the implementation
were made more efficient, especially for the three-dimensional problems.

2 New Experiments

Experiments from the paper [A] were rerun with the new implementation (see also Nielsen [6]) and a
comparison of the new implementation (Current NEST2D) and the old implementation (Old 2DNEST)
as well as two other state-of-the-art heuristics by Gomes and Oliveira [2] (SAHA) and Imamichi et al.
[3] (ILSQN) are shown in Table 1. The results of both (Old 2DNEST) and (Current NEST2D) were
over 20 runs and the running times for each run in both implementations were 600 seconds, although
on two different processors. Running times vary for SAHA (see [A] for more details) while results
for ILSQN are from 10 runs of 600 or 1200 seconds depending on the size of the problem.

Best results and average results over the 20 runs for 2DNEST and NEST2D, and average results
for the other heuristics are presented in the table. It can be seen from this table that both the old and
in particular the new implementation are still competitive with the other heuristics from the literature,
the average overall utilization of the average results of NEST2D are 84.93, while the average results
of the best achieved utilization is 85.75. This almost matches ILSQN which has an overall average
of averages equal to 82.74 and overall average of best results equal to 85.89 – Only 0.14 percentage
points better than NEST2D.

It is important to note that the running times are for the complete optimization phase and not
for solving the last decision variant. However, the majority of the running time is spend solving the
decision problem on the last few strip-lengths.

3 Implementation Details

A number of interesting details are omitted from the paper [A] and we discuss them briefly here:
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3. Implementation Details
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Addendum to [A]

Resetting penalties From time to time penalties are reset to 0 for two reasons. Firstly, because
this ensures that the augmented objective function is never too far from the actual objective function.
Secondly, because it ‘kicks’ the heuristic out of the current solution state and allows for masively new
changes. A reset is conducted every 5 · n2 iterations where n is the number of items. This value was
found through parameter tuning.

Penalties in the overlap algorithm Penalties must be included when overlap is calculated in the
algorithm which finds the minimal overlap translation between a polygon p and a set of polygons
P \ {p}. To do this, overlap between p and the individual polygons is maintained as the algorithm
traverses the list of breakpoints. If the overlap for an individual polygon q increases beyond zero
the penalty of the overlap of p and q is added to the objective function. When it decreases to zero
again it is subtracted. This can be done without increasing the asymptotic running time since each
breakpoint comes from one edge of exactly one polygon from P\{p}, and therefore, each breakpoint
only requires update of the overlap of one polygon, which can be done in constant time.

Rotations In the original work by Egeblad et al. [1] rotations were handled differently than trans-
lations. A normal overlap algorithm was implemented to return the overlap of a pair of polygons.
The overlap of each rotation angle considered was measured using this algorithm, while the minimal
overlap translation algorithm was used to determine overlap of translations. Because of small floating
point errors the two algorithms could return slightly different overlap values for the same position and
rotation. This could cause the heuristic to cycle through the same two placements infinitely since one
placement would seem to reduce the overlap when calculated with one of the algorithms and another
with respect to the other algorithm. To remedy this problem the implementation used by Nielsen and
Odgaard [4] and in later papers use the same algorithm for rotation and translation. This is done by
considering a full horizontal translation for each rotation angle considered.

Iterations The paper reports running times but does not detail the number of iterations. However, for
the instances tested in the paper, the number of translations considered range between 1,000 to 26,000
per second depending on the complexity of the instance. Since two translations are considered for
each polygon, and an additionally number of translations for each rotation, the number of iterations
per second is roughly between 250 and 13,000, and the full number of iterations ranges between
150,000 and 78,000,000 for a complete 600 second run.

Decreasing the strip-length The strip-length L is decreased by setting it to L = L′× (1− ε), where
L′ is length of the last solved decision problem. Initially ε is set to 0.01, i.e. the strip-length is
decreased by 1% between each decision problem. However, if no solution to a decision problem has
been found within 10 · n2, then the heuristic updates ε by setting it to ε = 0.7 · ε′ where ε′ is the last
used value of ε.
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irregulære polygoner. (Project at DIKU), 2001.

97



References

[2] A. M. Gomes and J. F. Oliveira. Solving irregular strip packing problems by hybridising simulated anneal-
ing and linear programming. European Journal of Operational Research, 171(3):811–829, 2006.

[3] T. Imamichi, M. Yagiura, and H. Nagamochi. An iterated local search algorithm based on nonlinear pro-
gramming for the irregular strip packing problem. In Proceedings of the Third International Symposium on
Scheduling, Tokyo Japan, pages 132–137, 2006.

[4] B. K. Nielsen and A. Odgaard. Fast neighborhood search for the nesting problem. Technical Report 03/03,
DIKU, Department of Computer Science, University of Copenhagen, 2003.

[5] Benny K. Nielsen. An efficient solution method for relaxed variants of the nesting problem. In Joachim
Gudmundsson and Barry Jay, editors, Theory of Computing, Proceedings of the Thirteenth Computing: The
Australasian Theory Symposium, volume 65 of CRPIT, pages 123–130, Ballarat, Australia, 2007. ACS.

[6] Benny Kjær Nielsen. Nesting Problems and Steiner Tree Problems. PhD thesis, DIKU, University of
Copenhagen, Denmark, 2008.

98



Accepted for publication in the Computational Geometry: Theory and Applications, 2008

Translational packing of arbitrary polytopes

Jens Egeblad∗ Benny K. Nielsen∗ Marcus Brazil†

Abstract

We present an efficient solution method for packing d-dimensional polytopes within the bounds
of a polytope container. The central geometric operation of the method is an exact one-dimensional
translation of a given polytope to a position which minimizes its volume of overlap with all other
polytopes. We give a detailed description and a proof of a simple algorithm for this operation in
which one only needs to know the set of (d−1)-dimensional facets in each polytope. Handling
non-convex polytopes or even interior holes is a natural part of this algorithm. The translation
algorithm is used as part of a local search heuristic and a meta-heuristic technique, guided local
search, is used to escape local minima. Additional details are given for the three-dimensional case
and results are reported for the problem of packing polyhedra in a rectangular parallelepiped. Uti-
lization of container space is improved by an average of more than 14 percentage points compared
to previous methods.

The translation algorithm can also be used to solve the problem of maximizing the volume
of intersection of two polytopes given a fixed translation direction. For two polytopes with com-
plexity O(n) and O(m) and a fixed dimension, the running time is O(nm log(nm)) for both the
minimization and maximization variants of the translation algorithm.

Keywords: Packing, heuristics, translational packing, packing polytopes, minimizing overlap,
maximizing overlap, strip-packing, guided local search

1 Introduction

Three-dimensional packing problems have applications in various industries, e.g., when items must
be loaded and transported in shipping containers. The three main problems are bin-packing, knapsack
packing, and container loading. In bin-packing the minimum number of equally-sized containers suf-
ficient to pack a set of items must be determined. In knapsack packing one is given a container with
fixed dimensions and a set of items, each with a profit value; one must select a maximum profit subset
of the items which may be packed within the container. The container loading problem is a special
case of the knapsack problem where the profit value of each item is set to its volume. Bin-packing,
knapsack packing, and container loading problems involving boxes are classified as orthogonal pack-
ing problems and are well-studied in the literature.

In general, three-dimensional packing problems can also involve more complicated shapes; it is
not only boxes that are packed in shipping containers. An interesting example is rapid prototyping
which is a term originally used for the production of physical prototypes of 3D computer aided design
(CAD) models needed in the early design or test phases of new products. Nowadays, rapid prototyping
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1. Introduction

Scanning mirrorLaser

Levelling roller

Powder cartridge
Powder

Figure 1: An illustration of a typical machine for rapid prototyping. The powder is added one layer at
a time and the laser is used to sinter what should be solidified to produce the desired objects.

technologies are also used for manufacturing purposes. One of these technologies, selective laser
sintering process, is depicted in Figure 1. The idea is to build up the object(s) by adding one very
thin layer at a time. This is done by rolling out a thin layer of powder and then sintering (heating) the
areas/lines which should be solid by the use of a laser. The unsintered powder supports the objects
built and therefore no pillars or bridges have to be made to account for gravitational effects. This
procedure takes hours (“rapid” when related to weeks) and since the time required for the laser is
significantly less than the time required for preparing a layer of powder, it will be an advantage to
have as many objects as possible built in one run of the machine. A survey of rapid prototyping
technologies is given by Yan and Gu [31].

In order to minimize the time used by the rapid prototype machine items must be placed as densely
as possible and the number of layers must be minimized. The problem of minimizing layers may
therefore be formulated as a strip-packing problem: A number of items must be placed within a
container such that the container height is minimized.

In this paper we present a solution method for the multidimensional strip-packing problem. How-
ever, our techniques may be applied to some of the other problem variants, e.g., bin-packing. Specifi-
cally, for three dimensions, we pack a number of arbitrary (both convex and non-convex) polyhedra in
a parallelepiped such that one of the parallelepiped’s dimensions is minimized. No rotation is allowed
and gravity is not considered. A formal description of the problem is given in Section 2 and a review
of related work is given in Section 3.

The solution method described in this paper generalizes previous work by Egeblad et al. [A].
This earlier paper focused on the two-dimensional variant of this problem which is generally known
as the nesting problem (packing polygons in a rectangle), but also included a short description and
some results for a three-dimensional generalization. In both cases overlap is iteratively reduced by a
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Translational packing of arbitrary polytopes

central algorithm which determines a one-dimensional translation of a given polygon/polyhedra to a
minimum overlap position.

Egeblad et al. only prove the correctness of the two-dimensional variant. In this paper, we prove
the correctness of the translation algorithm in three and higher dimensions (Section 4), essentially
describing a solution method for packing polytopes in d-dimensional space. We also give a more
detailed description of the translation algorithm in three dimensions. The complete solution method
is described in Section 5.

Because applications for d > 3 are not obvious, an implementation has only been done for the
three-dimensional case. Experimental results are presented in Section 6 and compared with existing
results from the literature. Finally, some concluding remarks are given in Section 7.

2 Problem description

The main problem considered in this paper is as follows:

The 3D Decision Packing Problem (3DDPP). Given a set of polyhedra S and a polyhedral container
C, determine whether a non-overlapping translational placement of the polyhedra within the bounds
of the container exists.

This problem is N P -complete even if all polyhedra in S are cubes [16]. If ν(P) denotes the
volume of a polyhedron P and this is generalized for sets such that ν(S) = ∑P∈S ν(P) then a non-
overlapping placement for the 3DDPP has a utilization (of the container) of ν(S)/ν(C). Based on the
decision problem we can define the following optimization problem.

The 3D Strip Packing Problem (3DSPP). Given a set of polyhedra S and a rectangular paral-
lelepiped C (the container) with fixed width w and length l, find the minimum height h of the container
for which the answer to the 3D decision packing problem is positive.

An optimal solution to 3DSPP has a utilization of ν(S)/ν(C) = ν(S)/(w · l ·h), i.e., the utilization
only depends on the height of the parallelepiped and not on a particular placement corresponding to
this height. The word strip is based on the terminology used for the 2-dimensional variant of the
problem.

While the solution method discussed in the following sections could be applied to the bin-packing
problem or other variants of multi-dimensional packing problems, we limit our description to the strip-
packing problem. The strip-packing variant has been chosen mainly because it allows a comparison
with results from the existing literature. In the typology of Wäscher et al. [30], the problem we con-
sider, 3DSPP, is a three-dimensional irregular open dimension problem (ODP) with fixed orientations
of the polyhedra.

The polyhedra handled in this paper are very general. Informally, a polyhedron can be described
as a solid whose boundary consists of a finite number of polygonal faces. Note that every face must
separate the exterior and the interior of the polyhedron, but convexity is not required and holes and
interior voids are allowed. A polyhedron is even allowed to consist of several disconnected parts and
holes may contain smaller individual parts.

The problem formulations above are easily generalized to higher dimensions. Simply replace
polyhedron with polytope and consider a rectangular d-dimensional parallelepiped for the strip-packing
problem. We denote the corresponding problems dDDPP and dDSPP, where d is the number of di-
mensions. For simplicity, the faces are required to be convex, but this is not a restriction on the types
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3. Related work

of polytopes allowed, as a non-convex face can be partitioned into a finite number of convex faces.
The polytopes themselves can be non-convex and contain holes.

Since dDDPP is N P -complete dDSPP is an N P -hard problem. Our solution method for dDSPP
is heuristic and therefore not guaranteed to find the optimal solution of dDSPP.

When solving a problem in 3D for physical applications such as rapid prototyping, one should be
aware that some feasible solutions are not very useful in practice since objects may be interlocked.
Avoiding this is a very difficult constraint which is not considered in this paper.

3 Related work

Cutting and packing problems have received a lot of attention in the literature, but focus has mainly
been on one or two dimensions and also often restricted to simple shapes such as boxes. A survey
of the extensive 2D packing literature is given by Sweeney and Paternoster [28] and a survey of the
2D packing literature concerning irregular shapes (nesting) is given by Dowsland and Dowsland [12].
Recent heuristic methods for orthogonal packing problems include the work of Lodi et al. [22] and
Faroe et al. [15] for the bin-packing problem, and Bortfeldt et al. [2] and Eley [14] for the container
loading problem. The meta-heuristic approach utilized in this paper is based on the ideas presented
by Faroe et al.

In the following, we review solution methods presented for packing problems in more than two
dimensions which also involve shapes more general than boxes. A survey is given by Cagan et al. [4]
in the broader context of three-dimensional layout problems for which maximum utilization may not
be the only objective. Their focus is mainly on various meta-heuristic approaches to the problems,
but a section is also dedicated to approaches for determining intersections of shapes. A survey on 3D
free form packing and cutting problems is given by Osogami [26]. This covers applications in both
rapid prototyping in which maximum utilization is the primary objective and applications in product
layout in which other objectives, e.g., involving electrical wire routing length and gravity are more
important.

Ikonen et al. [20] have developed one of the earliest approaches to a non-rectangular 3D packing
problem. Using a genetic algorithm they can handle non-convex shapes with holes and a fixed number
of orientations (45◦ increments on all three axes). To evaluate if two shapes overlap, their bounding
boxes (the smallest axis-aligned circumscribing box) are first tested for intersection and, if they in-
tersect, triangles are subsequently tested for intersection. For each pair of intersecting triangles it is
calculated how much each edge of each triangle intersects the opposite triangle.

Cagan et al. [3] use the meta-heuristic simulated annealing and they allow rotation. They can
also handle various additional optimization objectives such as routing lengths. Intersection checks
are done using octree decompositions of shapes. As the annealing progresses the highest resolution is
increased to improve accuracy. Improvements of this work using variants of the meta-heuristic pattern
search instead of simulated annealing are later described by Yin and Cagan, Yin and Cagan [32, 33].

Dickinson and Knopf [10] focus on maximizing utilization, but they introduce an alternative met-
ric to determine the compactness of a given placement of shapes. In short, this metric measures the
compactness of the remaining free space. The best free space, in three dimensions, is in the form of a
sphere. The metric is later used by Dickinson and Knopf [11] with a sequential placement algorithm
for three-dimensional shapes. Items are placed one-by-one according to a predetermined sequence
and each item is placed at the best position as determined by the free-space metric. To evaluate if two
shapes overlap they use depth-maps. For each of the six sides of the bounding box of each shape,
they divide the box-side into a uniform two-dimensional grid and store the distance perpendicular
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Translational packing of arbitrary polytopes

to the box-side from each grid cell to the shape’s surface. Determining if two shapes overlap now
amounts to testing the distance at all overlapping grid points of bounding box sides, when the sides
are projected to two dimensions. For each shape up to 10 orientations around each of its rotational
axes are allowed. Note that the free-space metric is also generalized for higher dimensions and thus
the packing algorithm could potentially work in higher dimensions.

Hur et al. [19] use voxels, a three-dimensional uniform grid structure, to represent shapes. As for
the octree decomposition technique, each grid-cell is marked as full if a part of the associated shape
is contained within the cell. The use of voxels allows for simple evaluation of overlap of two shapes
since overlap only occurs if one or more overlapping grid cells from both shapes are marked as full.
Hur et al. [19] also use a sequential placement algorithm and a modified bottom-left strategy which
always tries to place the next item of the sequence close to the center of the container. A genetic
algorithm is used to iteratively modify the sequence and reposition the shapes.

Eisenbrand et al. [13] investigate a special packing problem where the maximum number of uni-
form boxes that can be placed in the trunk of a car must be determined. This includes free orientation
of the boxes. For any placement of boxes they define a potential function that describes the total
overlap and penetration depth between boxes and trunk sides and of pairs of boxes. Boxes are now
created, destroyed, and moved randomly, and simulated annealing is used to decide if new placements
should be accepted.

Recently, Stoyan et al. [27] presented a solution method for 3DSPP handling convex polyhedra
only (without rotation). The solution method is based on a mathematical model and it is shown how
locally optimal solutions can be found. Stoyan et al. [27] use Φ-functions to model non-intersection
requirements. A Φ-function for a pair of shapes is defined as a real-value calculated from their relative
placement. If the shapes overlap, abut or do not overlap the value of the Φ-function is larger than,
equal or less than 0, respectively. A tree-search is proposed to solve the problem to optimality, but
due to the size of the solution space Stoyan et al. opt for a method that finds locally optimal solutions
instead. Computational results are presented for three problem instances with up to 25 polyhedra. A
comparison with the results of the solution method presented in this paper can be found in Section 6.

4 Axis-Aligned Translation

As mentioned in the introduction, our solution method for packing polytopes is based on an algorithm
for translating a given polytope to a minimum volume of overlap position in an axis-aligned direction.
This problem is polynomial-time solvable and we present an efficient algorithm for it here. The
algorithm can easily be modified to determine a maximum overlap translation. Note that the position
of a polytope is specified by the position of a given reference point on the polytope; hence its position
corresponds to a single point.

Without loss of generality, we assume that the translation under consideration is an x-axis-aligned
translation. In three dimensions, the problem we are solving can be stated as follows:

1-Dimensional Translation Problem in 3D (1D3DTP). Given a fixed polyhedral container C, a
polyhedron Q with fixed position, and a polyhedron P with fixed position with respect to its y and
z coordinates, find a horizontal offset x for P such that the volume of overlap between P and Q is
minimized (and P is within the bounds of the container C).

By replacing the term polyhedron with polytope this definition can easily be generalized to higher
dimensions, in which case we denote it 1DdDTP. In Section 4.1 we give a more formal definition and
present a number of properties of polytopes which we use in Section 4.2 to prove the correctness of an
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4. Axis-Aligned Translation

algorithm for 1DdDTP. Since the algorithm solves the problem of finding a minimum overlap position
of P we refer to it in the following as the translation algorithm. In Section 4.3 we provide additional
details for the three dimensional case.

Egeblad et al. [A] have proved the correctness of the two-dimensional special case of the algorithm
described in the following and they have also sketched how the ideas can be generalized to 3D. Here
we flesh out the approach sketched by Egeblad et al., and generalize it to d dimensions.

4.1 Polytopes and their Intersections

In the literature, the term polytope is usually synonymous with convex polytope, which can be thought
of as the convex hull of a finite set of points in d-dimensional space, or, equivalently, a bounded
intersection of a finite number of half-spaces. In this paper we use the term polytope to refer to a more
general class of regions in d-dimensional space, which may be non-convex and can be formed from a
finite union of convex polytopes.

By definition, we assume that the boundary of a polytope P is composed of faces, each of which
is a convex polytope of dimension less than d. Following standard notation, we refer to a one-
dimensional face of P as an edge, and a zero-dimensional face as a vertex. The faces must satisfy
the following properties:

1. The (d− 1)-dimensional faces of P (which we refer to as facets) have the property that two
facets do not intersect in their interiors.

2. The facets must be simple, i.e., on the boundary of a facet each vertex must be adjacent to
exactly d−1 edges. Note that this only affects polytopes of dimension 4 or more.

3. Each face of P of dimension k < d − 1 lies on the boundary of at least two faces of P of
dimension k +1 (and hence, by induction, on the boundary of at least two facets).

Note that our definition of a polytope allows two adjacent facets to lie in the same hyperplane.
This allows our polytopes to be as general as possible, while imposing the condition that all faces
are convex (by partitioning any non-convex facets into convex (d−1)-dimensional polytopes). Most
importantly, our definition of polytopes does not require boundaries to be triangulated in 3D. Note that
such a requirement would only allow minor simplifications in the proofs and the algorithm described
later in this paper.

Given a polytope P, we write p ∈ P if and only if p is a point of P including the boundary. More
importantly, we write p ∈ int(P) if and only if p is an interior point of P, i.e., ∃ε > 0 : ∀p′ ∈ Rd ,⇒
||p− p′||< ε, p′ ∈ P.

We next introduce some new definitions and concepts required to prove the correctness of the
translation algorithm in d dimensions.

Let ei be the ith coordinate system basis vector, e.g., e1 = (1,0, . . . ,0)T . As stated earlier we only
consider translations in the direction of the x-axis (that is, with direction ±e1). This helps to simplify
the definitions and theorems of this section without loss of generality since translations along other
axes work in a similar fashion. In the remainder of this section it is convenient to refer to the direction
−e1 as left and e1 as right.

Given a polytope P, we divide the points of the boundary of P into three groups, positive, negative,
and neutral.

Definition 9 (Signs of a Boundary Point). Suppose p is a point of the boundary of a polytope P. We
say that the sign of p is
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Figure 2: (a) A polygon with three positive (thick) edges, (v1,v7), (v2,v3), and (v5,v6), three negative
(dashed) edges, (v3,v4), (v4,v5), and (v6,v7), and one neutral (thin) edge, (v1,v2). Also note that the
end-points v1, v3, v5, v6, and v7 are neutral (thin), v2 is positive (thick) and v4 is negative (dashed). (b)
A polyhedron for which only positive (bright) and neutral (dark) faces are visible. Most of the edges
are neutral since the interior of the polyhedron is neither to the left nor the right of the edges. Two
edges are positive since the interior is only to the right of them.

• positive if ∃ε > 0 : ∀δ ∈ (0,ε) : p+δ · e1 ∈ int(P) and p−δ · e1 /∈ int(P),

• negative if ∃ε > 0 : ∀δ ∈ (0,ε) : p−δ · e1 ∈ int(P) and p+δ · e1 /∈ int(P),

• and neutral if it is neither positive nor negative.

In other words, a point is positive if the interior of the polytope is only on the right side of the
point, it is negative if the interior of the polytope is only on the left side of the point, and it is neutral
if the interior of the polytope is on both the left and the right side of the point or on neither the left nor
the right side.

Clearly, each point on the boundary is covered by one and only one of the above cases. Further-
more, all points in the interior of a given face have the same sign. Therefore, any set of facets F can
be partitioned into three sets F+, F−, and F0 consisting of respectively positive, negative, and neutral
facets from F . Examples in two and three dimensions are given in Figure 2.

In order to handle some special cases in the proofs, we need to be very specific as to which facet
a given boundary point belongs. Every positive or negative point p on the boundary is assigned to
exactly one facet as follows. If p belongs to the interior of a facet f then it cannot belong to the interior
of any other facet and thus it is simply assigned to f . If p does not belong to the interior of a facet then
it must be on the boundary of two or more facets. If p is positive, then it follows easily that this set of
facets contains at least one positive facet to which it can be assigned. Analogously, if p is negative it
is assigned to a negative facet. Such an assignment of the boundary will be referred to as a balanced
assignment. Neutral points are not assigned to any facets. Given a (positive or negative) facet f , we
write p ∈ f if and only if p is a point assigned to f . Note that since all points in the interior of a face
have the same sign, it follows that the assignment of all boundary points of the polytope can be done
in bounded time; one only needs to determine the sign of one interior point of a face (of dimension 1
or more) to assign the whole interior of the face to a facet.
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4. Axis-Aligned Translation

It follows from the definition of balanced assignment that a point moving in the direction of e1,
that passes through an assigned point of a facet of P, either moves from the exterior of P to the interior
of P or vice versa. To determine when a point is inside a polytope we need the following definition.

Definition 10 (Facet Count Functions). Given a set of facets F we define the facet count functions for
all points p ∈ Rd as follows:

←−
C F+(p) = |{ f ∈ F+ | ∃t > 0 : p− te1 ∈ f}|,
←−
C F−(p) = |{ f ∈ F− | ∃t ≥ 0 : p− te1 ∈ f}|,
−→
C F+(p) = |{ f ∈ F+ | ∃t ≥ 0 : p+ te1 ∈ f}|,
−→
C F−(p) = |{ f ∈ F− | ∃t > 0 : p+ te1 ∈ f}|.

The facet count functions
←−
C F+(p) and

←−
C F−(p) represent the number of times the ray from p

with directional vector −e1 intersects a facet from F+ and F−, respectively. Equivalently,
−→
C F+(p)

and
−→
C F−(p) represent the number of times the ray from p with directional vector e1 intersects a facet

from F+ and F−, respectively.
The following lemma states some other important properties of polytopes and their positive/negative

facets based on the facet count functions above.

Lemma 2. Let P be a polytope with facet set F. Given a point p and interval I ⊆ R, we say that the
line segment lp(t) = p+ t · e1, t ∈ I, intersects a facet f ∈ F if there exist t0 ∈ I such that lp(t0) ∈ f .

Given a balanced assignment of the boundary points of P, then all of the following statements
hold.

1. If I = (−∞,∞) then, as t increases from −∞, the facets intersected by lp(t) alternate between
positive and negative.

2. If p /∈ int(P) then
−→
C F+(p) =

−→
C F−(p), i.e, the ray from p in direction e1 intersects an equal

number of positive and negative facets. Similarly,
←−
C F+(p) =

←−
C F−(p).

3. If p ∈ int(P) then
−→
C F−(p)−−→C F+(p) = 1, i.e, the number of positive facets intersected by the

ray from p in direction e1 is one less than the number of negative facets. Similarly,
←−
C F+(p)−

←−
C F−(p) = 1.

The proof is straightforward, and is omitted.
As a corollary, the facet count functions provide an easy way of determining whether or not a

given point is in the interior of P.

Corollary 1. Let P be a polytope with facet set F. Given a balanced assignment of the boundary
points, then for every point p ∈ Rd we have that p lies in the interior of P if and only if

−→
C F−(p)−

−→
C F+(p) = 1. Similarly, p lies in the interior of P if and only if

←−
C F+(p)−←−C F−(p) = 1.

Proof. Follows directly from Lemma 2.

The following definitions relate only to facets. Their purpose is to introduce a precise definition
of the overlap between two polytopes in terms of their facets.
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g f

Figure 3: A simple example of the inter-facet region R( f ,g) of two vertical faces f and g in R3. The
dashed lines delimit the region. Note that the inter-facet region R(g, f ) is empty.

Definition 11 (Containment Function, Inter-Facet Region). Given two facets f and g and a point
p′ ∈ Rd define the containment function

C( f ,g, p′) =
{

1 if ∃ t1, t2 ∈ R : t2 < 0 < t1, p′+ t2e1 ∈ g, and p′+ t1e1 ∈ f
0 otherwise.

Also define the inter-facet region R( f ,g) as the set of points which are both to the right of g and
to the left of f ; that is, R( f ,g) = {p ∈ Rd | C( f ,g, p) = 1}.

Given two facet sets F and G, we generalize the containment function by summing over all pairs
of facets (one from each set):

C(F,G, p) = ∑
f∈F

∑
g∈G

C( f ,g, p).

If f and g do not intersect and f lies to the right of g then in three dimensions the inter-facet region
R( f ,g) is a tube, with the projection (in direction e1) of f onto g and the projection of g onto f as
ends. A simple example is given in Figure 3.

We now state a theorem which uses the containment function to determine whether or not a given
point lies in the intersection of two polytopes.

Theorem 2. Let P and Q be polytopes with facet sets F and G, respectively. Then for any point p∈Rd

the following holds:

p ∈ int(P∩Q) ⇔ w(p) = 1

p /∈ int(P∩Q) ⇔ w(p) = 0,

where

w(p) = C(F+,G−, p)+C(F−,G+, p)−C(F+,G+, p)−C(F−,G−, p) (1)

Proof. C(F+,G−, p) is equal to
−→
C F+(p) ·←−C G−(p), since it is equal to the number of facets from

F+ which are to the right of p, times the number of facets from G− which are to the left of p.
Similar observations allows us to deduce that C(F−,G+, p) =

−→
C F−(p) ·←−C G+(p), C(F+,G+, p) =

−→
C F+(p) ·←−C G+(p), and C(F−,G−, p) =

−→
C F−(p) ·←−C G−(p).
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If we assume p ∈ int(P∩Q) then from Corollary 1, we know that
−→
C F−(p)−−→C F+(p) = 1 and

←−
C G+(p)−←−C G−(p) = 1 and we get:

w(p) =
−→
C F+(p) ·←−C G−(p)+

−→
C F−(p) ·←−C G+(p)−−→C F+(p) ·←−C G+(p)−−→C F−(p) ·←−C G−(p)

= −−→C F+(p) · (←−C G+(p)−←−C G−(p))+
−→
C F−(p) · (←−C G+(p)−←−C G−(p))

=
−→
C F−(p)−−→C F+(p) = 1.

When p /∈ int(P∩Q) the three cases where p /∈P and/or p /∈Q can be evaluated in similar fashion.

In order to solve 1DdDTP we need to define a measure of the overlap between two polytopes.

Definition 12 (Overlap Measures). An overlap measure is a real-valued function µ such that, for any
bounded region R0, µ(R0) = 0 if int(R0) = /0 and µ(R0) > 0 otherwise.

Preferably, an overlap measure should be computationally efficient and give a reasonable estimate of
the degree of overlap of two polytopes. A general discussion of overlap measures in the context of
translational packing algorithms can be found in Nielsen [25].

For the remainder of this paper we restrict our attention to the standard Euclidean volume measure
V d . Given a bounded region of space R we write V d(R) for its volume:

V d(R) =
Z

R
dV d .

In particular V d(R( f ,g)) is the volume of the inter-facet region of facets f and g. For convenience,
we let V d( f ,g) = V d(R( f ,g)) and for sets of facets we use

V d(F,G) = ∑
f∈F

∑
g∈G

V d( f ,g).

The following theorem states that V d is an overlap measure with a simple decomposition into
volumes of inter-facet regions.

Theorem 3. Let R0 be a bounded region in Rd , and let P and Q be polytopes in Rd , with facet sets F
and G respectively, such that R0 = P∩Q. Then V d is an overlap measure, and it satisfies the following
relation:

V d(R0) = V d(F+,G−)+V d(F−,G+)−V d(F+,G+)−V d(F−,G−).

Proof. The theorem essentially follows from Theorem 2 and the proof given for the Intersection Area
Theorem in Egeblad et al. [A], with area integrals replaced by d-dimensional volume integrals.

Note that a balanced assignment is not required in order to get the correct overlap value using
the facet decomposition of Theorem 3. This is due to the fact that the d-dimensional volume of all
points in P∩Q which require the balanced assignment of boundary points to get the correct value in
Theorem 2 is 0 and therefore will have no impact on the resulting volume.

In order to simplify notation in the following sections, for a d-dimensional region R we write V (R)
for V d(R); and for given facets f and g we write V ( f ,g) for V d( f ,g).

4.2 Minimum area translations

In the following we describe an efficient algorithm for solving 1DdDTP with respect to volume mea-
sure using Theorem 3. We continue to assume that the translation direction is e1, i.e., parallel to the
x-axis, and we will use terms such as left, right and horizontal as natural references to this direction.
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4.2.1 Volume Calculations

Here we describe a method for computing the volume of overlap between two polytopes by expressing
it in terms of the volumes of a collection of inter-facet regions, and then using the decomposition of
volume measure given in Theorem 3.

First we introduce some basic notation. Given a point p∈Rd and a translation value t ∈R, we use
p(t) to denote the point p translated by t units to the right, i.e., p(t) = p+ te1. Similarly, given a facet
f ∈ F , we use f (t) to denote the facet translated t units to the right, i.e., f (t) = {p(t) ∈ Rd |p ∈ f}.
Finally, given a polytope P with facet set F , we let P(t) denote P translated t units to the right, i.e.,
P(t) has facet set { f (t)| f ∈ F}.

Now, consider two polytopes P and Q with facet sets F and G, respectively. For any two facets f ∈
F and g ∈ G, we will show how to express the volume function V ( f (t),g) as a piecewise polynomial
function in t with degree d. Combined with Theorem 3, this will allow us to express the full overlap
of P(t) and Q as a function in t by iteratively adding and subtracting volume functions of inter-facet
regions. In order to express volumes in higher dimensions, we use the concept of a simplex. A simplex
is the d-dimensional analogue of a triangle and it can be defined as the convex hull of a set of d + 1
affinely independent points.

Before describing how to calculate V ( f (t),g), we first make a few general observations on R( f (t),g);
recall that V ( f (t),g) = V (R( f (t),g)).

Definition 13 (Hyperplanes and Projections). Let f and g be facets of polytopes in Rd . We denote by
f the unique hyperplane of Rd containing f . Also, we define the projection of g onto f as

proj f (g) = {p ∈ f |∃t ∈ R : p(t) ∈ g} (2)

In other words, proj f (g) is the horizontal projection of the points of g onto f .
Using these definitions, there are a number of different ways to express the inter-facet region

R( f (t),g). Let f ′ = projg( f ) and g′ = proj f (g); then it is easy to see that R( f (t),g) = R( f ′(t),g′) =
R( f ′(t),g) = R( f (t),g′) for any value of t. Clearly, the corresponding volumes are also all identical.
To compute f ′ and g′, it is useful to first project f and g onto a hyperplane h orthogonal to the
translation direction. For a horizontal translation this can be done by simply setting the first coordinate
to 0 (which, in 3D, corresponds to a projection onto the yz-plane). We denote the d−1 dimensional
intersection of these two projections by h = projh( f )∩ projh(g). The region h can then be projected
back onto f and g (or their hyperplanes) to obtain f ′ and g′. This also means that the projections of
f ′ and g′ onto h are identical. In the case of three dimensions, when f ′ is to the right of g′, h is a
polygonal cross-section of the tube R( f ,g) (perpendicular to e1) and f ′ and g′ are the end-faces of this
tube. See Figures 4a and 4b for an example.

Finding the intersection of the projections of f and g is relatively straightforward. Since we
require the facets to be convex, the projections are also convex and can therefore be represented using
half-spaces. The intersection can then easily be represented by the intersection of all of the half-spaces
from the two sets and the main problem is then to find the corresponding vertex representation.

If the intersection h is empty or has dimension smaller than d− 1 then the volume V ( f (t),g) is
0 for any t value. So, assume we have a (d−1)-dimensional intersection h, i.e., a non-degenerate
intersection. Let p1, . . . , pn be the vertices of g′. For each point pi, there exists a translation value ti
such that pi(−ti) ∈ f . Each point pi(−ti) is a vertex of f ′, and each ti value represents the horizontal
distance of pi from the hyperplane f . Assume that the points pi are sorted such that t1 ≤ ·· · ≤ tn. We
refer to these points as breakpoints and the ti values as their corresponding distances.
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g

f

g′
f ′

x-axis

g

f

x-axis

(a) (b)

g

f

x-axis

g′′
f ′′

x-axis

(c) (d)

Figure 4: An example of the inter-facet region R( f ,g) between two faces, f and g, in three dimensions,
where g is in front of f in the x-axis direction. In general the two facets are not necessarily in parallel
planes and they can also intersect. (a) The dashed lines indicate the boundary of the projections of f
on g and g on f . The projections are denoted f ′ and g′. (b) The region R( f ,g) which is identical to
R( f ′,g′). (c) To simplify matters, the projections can be triangulated. (d) One of the resulting regions
with triangular faces.
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g

f ′

g

f ′

g

f ′
g′

(a) (b) (c)

Figure 5: An illustration of the growing tetrahedron volumes needed when a face f ′ passes through
a face g, or equivalently its plane g, in order to calculate the volume of R( f ′,g′). (a) The initial
growing tetrahedron after the first breakpoint. (b) After the second breakpoint, at growing tetrahedral
volume based on the red area needs to be subtracted. (c) After the third breakpoint, a second growing
tetrahedral needs to be subtracted.

We now consider how to compute V ( f (t),g). If t ≤ t1 then the region R( f (t),g) is clearly empty
since f ′(t) is entirely to the left of g′. It follows in this case that V ( f (t),g) = 0. A bit less trivially, if
t ≥ tn then V ( f (t),g) =V ( f (tn),g)+(t−tn) ·V (d−1)(h) which is a linear function in t. In this case f ′(t)
is to the right of g′ in its entirety. Note that V (d−1)(h) is the volume of h in (d−1)-dimensional space.
In R3, V 2(h) is the area of the polygonal cross-section of the tube between f ′ and g′. The volume
V (d−1)(h) can be computed by partitioning h into simplices. Hence the only remaining difficulty lies
in determining V ( f (t),g) for t ∈ (t1, tn]. For any value of t in this interval, f ′(t) and g′ intersect in at
least one point.

Figure 5 is an illustration of what happens when a face in 3D is translated through another face.
This is a useful reference when reading the following. First note that the illustration emphasizes that
we can also view this as the face f ′ passing through the plane g.

An easy special case, for computing V ( f (t),g), occurs when t1 = tn. This corresponds to the two
facets being parallel and thus V ( f (tn),g) = 0.

Now, assume all the ti are distinct. The case where two or more ti are equal is discussed in
Section 4.3. Each facet is required to be simple by definition and thus each vertex pi of g′ has exactly
d−1 neighboring points, i.e., vertices of g′ connected to pi by edges. Denote these points p1

i , . . . , pd−1
i

and denote the corresponding breakpoint distances t1
i , . . . , td−1

i .
Consider the value of V ( f (t),g) in the first interval (t1, t2]. To simplify matters, we change this

to the equivalent problem of determining the function V0( f (t),g) = V ( f (t + t1),g) for t ∈ (0, t2− t1].
V0( f (t),g) can be described as the volume of a growing simplex in t with vertex set {tv j| j = 0, . . . ,d}
where v0 = (0, . . . ,0), vd = (1,0, . . . ,0) and v j = (p j

1− p1)/(t j
1− t1) for 1≤ j≤ d−1. The volume of

this simplex is:
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v0 = (0, 0, 0) v3 = (t, 0, 0)

tv1
tv2

g′
f ′

Figure 6: In 3D, it is necessary to calculate the volume function for a growing tetrahedron based on
two points, v1 and v2, and an overlap distance t. The coordinates of the points change linearly with
respect to a change of the distance t. In d dimensions d−1 neighboring points are used.

V0( f (t),g) =
1
d!
|det([tv1, ..., tvd ])|.

This is illustrated in Figure 6.
Since vd = (1,0, . . . ,0), we can simplify the above expression to

V0( f (t),g) =
1
d!
|det([v1,v2, ...,vd ])td |= 1

d!
|det([v′1,v

′
2, ...,v

′
d−1])t

d |,

where v′i is vi without the first coordinate. This results in very simple expressions in low dimensions:

2D : 1
2 |det(v′2)t

2| = 1
2 |v

y
2t2|

3D : 1
6 |det([v′2v′3])t

3| = 1
6 |(v

y
2vz

3− vz
2vy

3)t
3|

In general V0( f (t),g) is a degree d polynomial in t.
To calculate the original volume V ( f (t),g) we offset the function by setting V ( f (t),g) = V0( f (t −
t1),g) for t ∈ (t1, t2] .

The above accounts for the interval between the two first breakpoints. To handle the remaining
breakpoints we utilize a result of Lawrence [21] concerning the calculation of the volume of a convex
polytope. Lawrence shows that the volume can be calculated as the sum of volumes of a set of
simplices. Each simplex is based on the neighboring edges of each vertex of the polytope.

Given t ∈ (t1, tn], we are interested in the polytope R( f (t),g). It can be constructed by taking the
part of f ′ which is to the right of the hyperplane g, then projecting this back onto g and connecting
the corresponding vertices horizontally. See Figure 5 for some examples. This is a convex polytope,
and its volume can be calculated as follows.

Let ∆(p1, t) denote the initial growing simplex described above, that is V (∆(p1, t)) = V0( f (t1−
t),g). Similarly, let ∆(pi, t), i ∈ {2, ...,n− 1} denote simplices based on the other points pi and their
neighboring points (we do not need to include pn). For each such simplex, the vertices are given by
tv j where v j = (p j

i − pi)/(t j
i − ti). Note that whenever t j

i < ti the direction of the vector from pi to p j
i

is reversed. By an argument of Lawrence [21], we then have
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V ( f (t),g) = V (∆(p1, t))−
k

∑
i=2

V (∆(pi, t)) where k = max
1≤i≤n

{i|ti < t}. (3)

In other words, the volume can be calculated by taking the growing volume of the first simplex and
then subtracting a simplex for each of the remaining breakpoints with a breakpoint distance less than t.
The volume of each simplex can be described as a degree d polynomial in t similar to the description
of V0 of the previous paragraph. In Figure 5a, there is only the first growing simplex (tetrahedron).
After that, in Figure 5b, another growing simplex needs to be subtracted from the first, and finally,
in Figure 5c, a third growing simplex needs to be subtracted. Between each pair of breakpoints, the
total volume between g′ and f ′(t) in the horizontal direction can therefore be described as a sum of
polynomials in t of degree d which itself is a polynomial of degree d.

4.2.2 The Main Algorithm

An algorithm for determining a minimum overlap translation in d dimensions can now be established.
Pseudo-code is given in Algorithm 3. Given polytopes P and Q and a polytope container C, we begin
by determining all breakpoints between facets from P and facets from polytopes Q and C and the
coefficients of their d-dimensional volume polynomials. Signs of all volume polynomials calculated
with regard to the container C should be negated. This corresponds to viewing the container as an
infinite polytope with an internal cavity.

Algorithm 3: Determine minimum overlap translation along x-axis in d dimensions
Input: Polytopes P and Q and a container C;

foreach facet f from P do
foreach facet g from Q∪C do

Create all breakpoints for the facet pair ( f ,g).;
Each breakpoint ( f ,g) has a distance t f ,g and a volume polynomial Vf ,g(t);
(negate the sign of Vf ,g(t) if g ∈C).;

Let B be all breakpoints sorted in ascending order with respect to t.;
Let ν(t) and νC(t) be polynomials with maximum degree d and initial value ν(P).;

for i = 1 to |B|−1 do
Let ti be the distance value of breakpoint i.;
Let f and g be the facets of breakpoint i.;
Let Vi(t) be the volume function of breakpoint i.;
Modify ν(t) by adding the coefficients of Vi(t).;
if g ∈C then

Modify νC(t) by adding the coefficients of Vi(t).;
if νC(t) = 0 for t ∈ [ti, ti+1] then

Find the minimum value t ′i for which ν(t) is minimized in [ti, ti+1].;
return t ′i with smallest ν(t ′i)

The breakpoints are sorted such that t1 ≤ t2 ≤ . . . ≤ tn. The algorithm traverses the breakpoints
in this order while maintaining a total volume function ν(t) which describes the volume of the total
overlap between P and Q∪C. The volume function ν(t) is a linear combination of the volumes of
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simplices for each breakpoint encountered so far (based on Equation 3) and may be represented as a
degree d polynomial in t.

Initially ν(t) = ν(P) for t ≤ t1, corresponding to P being completely outside the container (over-
lapping C). As each breakpoint ti is reached, the algorithm adds an appropriate volume polynomial to
ν(t). Since ν(t) is a sum of polynomials of at most degree d, ν(t) can itself be represented as d + 1
coefficients of a polynomial with degree at most d. When a breakpoint is encountered its volume
polynomial is added to ν(t) by simply adding its coefficients to the coefficients of ν(t).

The subset of volume polynomials which comes from breakpoints related to the container may
also be added to a volume polynomial νC(t). Whenever this function is 0 for a given t-value, it means
that P(t) is inside the container.

For each interval (ti, ti+1] between succeeding breakpoints for which νC(t) = 0, ν(t) can be an-
alyzed to determine local minima. Among all these local minima, we select the smallest distance
value tmin for which ν(tmin) is a global minimum value. This minimum corresponds to the leftmost x-
translation where the overlap between P and Q∪C is as small as possible. Therefore tmin is a solution
to 1DdDTP.

Analyzing each interval amounts to determining the minimum value of a polynomial of degree d.
This is done by finding the roots of the derivative of the polynomial and checking interval end-points.

While finding the exact minimum for d ≤ 5 is easy, it is problematic for higher dimensions, due
to the Abel-Ruffini Theorem, since one must find the roots of the derivative which itself is polynomial
of degree 5 or higher. However, it is possible to find the minimum to any desired degree of accuracy,
e.g., using the Newton-Raphson method. Approximations are needed in any case when using floating
point arithmetics.

The following lemma is a simple but important observation.

Lemma 3. Given two polytopes P and Q, assume that the 1-dimensional translation problem in n
dimensions has a solution (a translation distance t ′) where P does not overlap Q then there also exists
a breakpoint distance tb for which P does not overlap Q.

Proof. Assume that t ′ is not a breakpoint distance. First assume t ′ is in an interval (t1
b , t2

b) of breakpoint
distances. Assume that it is the smallest such interval. Since the overlap value, ν(t ′), is 0 and t ′ is not
a breakpoint distance then, specifically, no facets from P and Q can intersect for t = t ′. Since there
are no other breakpoint distances in this interval, and facets can only begin to intersect at a breakpoint
distance, no facets can intersect in the entire interval (t1

b , t2
b). From the discussion in Section 4.2.1, ν(t)

must be a sum of constants or linear functions for t ∈ (t1
b , t2

b) since no facets intersect in this interval.
ν(t) cannot be linear since t ′ is not an interval end-point and this would imply a negative overlap at
one of the interval end-points which is impossible. Therefore ν(t) = 0 for t ∈ (t1

b , t2
b). By continuity

ν(t1
b) = 0 and ν(t2

b) = 0 and we may choose either of these breakpoints as tb.
Now assume t ′ is within the half-open infinite interval either before the first breakpoint or after

the last breakpoint. Again, since ν(t) is linear on that entire interval and ν(t) cannot be negative, one
can select the breakpoint of the infinite interval as tb.

If a non-overlapping position of P exists for a given translation direction, then P is non-overlapping
at one of the breakpoint distances. Our solution method for dDDPP, as described in Section 5, repeat-
edly solves 1DdDTP problems using Algorithm 3. Since our aim is to find a non-overlapping position
for each polytope we may actually limit our analysis in each translation to testing the interval end-
points. This way one may avoid the computationally inefficient task of finding roots even though one
does not find the true minimum for 1DdDTP (though it might be at the expense of increasing the
number of translations required to find a solution).
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To analyze the asymptotic running time of Algorithm 3, we assume that either one does not find
minima between breakpoints or one considers this a constant time operation (which is true for 5
dimensions or less). For a fixed dimension d, the time needed for finding the intersection of (d−1)-
simplices can also be considered a constant, and the same is true for the calculation of the determinants
used in the volume functions. Given two polytopes with complexity O(n) and O(m), the number of
breakpoints generated is at most a constant times nm. Computing the volume function for each pair of
breakpoints takes constant time and thus the running time is dominated by the sorting of breakpoints
revealing a running time of O(nm log(nm)). In most cases, the number of breakpoints is likely to be
much smaller than O(nm) since the worst case scenario requires very unusual non-convex polytopes
— the vertical extents must overlap for all pairs of edges. If the complexity of the facets is bounded
(e.g. triangles for d = 3), then the number of breakpoints generated for two polytopes with n and m
facets, respectively, is at most O(nm), and the asymptotic running time is O(nm log(nm)).

In some settings it may be desirable to allow for overlap with the region outside the container.
This is easily accommodated by ignoring the condition that νC(t) = 0 in Algorithm 3.

4.3 Special cases in three dimensions

In the previous subsection, it was assumed that either all breakpoints had unique distance values or that
all breakpoints had the same distance value. Here we describe how to handle a subset of breakpoints
with the same distance value for the case where d = 3. In particular, we focus on the special case of
the two first breakpoint distances being equal (and different than the subsequent ones).

Given two convex faces f and g, we know that h, the intersection of their 2D projections onto the
yz-plane, is also a convex polygon. As before, let f ′ and g′ denote the projections of h onto the given
faces. When f and g are not parallel, then for any given translation of f ′, the intersection between f ′

and g′ contains at most two corner points. Furthermore, Equation 3 still applies if these two corner
points are not neighbors; and they can only be neighbors if they are the two first breakpoints or the
two last breakpoints. The latter case is not a problem since at that point, the volume function can be
changed to a linear expression based on the area of h.

The important special case is when the two first breakpoint distances are equal. This problem
varies depending on the shape of h, but in each case the solution is almost the same. Figure 7a
illustrates the standard case with only a single initial breakpoint while Figures 7b-d illustrate three
possible variants of having two initial breakpoints. They differ with respect to the direction of the
neighboring edges, but in all three cases it is possible to introduce a third point p′ which emulates the
standard case in Figure 7a. Essentially, the calculations need to be based on a tetrahedron with fixed
size, a linearly increasing volume and the usual cubic volume function of a growing tetrahedron. A
more detailed illustration and description of the situation in Figure 7b is given in Figure 8, where v′2
corresponds to p1, v′3 to p2, and v0 to p0.

Note that quite often polyhedrons have triangulated surfaces. Given triangular faces, the special
case in Figure 7d cannot occur. The special case in Figure 7b can also be avoided if the intersection
polygon is triangulated and each triangle is handled separately (see Figure 4d).

It is still an open question how to handle identical breakpoint distances in higher dimensions.
Perturbation techniques could be applied, but it would be more gratifying if the above approach could
be generalized to higher dimensions.
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Figure 7: Various special cases can occur when the two first breakpoint distances are equal. Here it
is illustrated in 2D using a dashed line to illustrate the intersection line of the two faces during the
translation. (a) The standard case in which the first breakpoint distance is unique. (b) The two first
breakpoint distances are equal (points p1 and p2) which also means that the dashed line is parallel to
the line between p1 and p2. The sum of the angles at p1 and p2 is greater than 180◦. This can be
handled by introducing a third point p′ at the intersection of the lines through the edges from p1 and
p2. This point is going to have a smaller breakpoint distance and it almost reduces the problem to be
identical with the first case. More details can be seen in Figure 8. (c) The sum of the angles at p1
and p2 is less than 180◦, but we can still find a natural candidate for the additional point p′ based on
the edges from p1 and p2. (d) The sum of angles is exactly 180◦. In this case p′ is just chosen at an
appropriate distance from p2, e.g., such that the angle at p′ is 45◦. This case does not occur if the
input polyhedra have triangulated faces.
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v2
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t′
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Figure 8: To calculate the volume between the faces f ′ and g′, one can base the calculations on
the extended faces illustrated with dashed lines. The volume is a growing tetrahedron (v0,v1,v2,v3)
subtracted by a constant volume (the tetrahedron (v0,v′1,v

′
2,v
′
3)) and subtracted by a linearly growing

volume based on the triangle (v′1,v
′
2,v
′
3) and the translation distance t.
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5 Solution method for dDSPP

In this section we describe our solution method for the d-dimensional strip packing problem (dDSPP),
i.e., the problem of packing a set S of n given polytopes inside a d-dimensional rectangular paral-
lelepiped C with minimal height. In short, we do this by solving the decision problem dDDPP for
repeatedly smaller heights using a local search and a meta-heuristic technique. This stops when a
fixed time limit is reached. The height of the last solved dDDPP is reported as a solution to the
dDSPP. Each instance of dDSPP in turn is solved by repositioning polytopes to minimal overlapping
positions using Algorithm 3. In the following, we first review the local search and the meta-heuristic
technique used and described by Egeblad et al. [A]. We then describe how one can obtain an initial
height (Section 5.2) for which a non-overlapping placement is known to exist.

5.1 Local search and guided local search

To solve dDDPP (for a container with given height) we apply a local search method in conjunction
with guided local search (GLS); a meta-heuristic technique introduced by Voudouris and Tsang [29].
Given a set of polytopes S = {Q1, . . . ,Qn}, the local search starts with a placement of the polytopes
which may contain overlap. Overlap is then iteratively reduced by translating one polytope at a time
in axis-aligned directions to a minimum overlap position. When overlap can no longer be reduced by
translating a single polytope the local search stops. If overlap is still present in the placement then
GLS is used to escape this constrained local minimum. Otherwise a non-overlapping placement has
been found for dDDPP and the strip-height is decreased and all polyhedrons are moved inside the
smaller container.

Minimum overlap translations are found using the axis-aligned translation algorithm described
in the previous section. For each polytope each of the possible d axis-aligned translations are used
and the direction which reveals the position with least overlap is chosen. Note that if P = Qi is
the polytope undergoing translation then the polytope Q (in the translation algorithm in the previous
section) is actually the union of all other polytopes, i.e., Q = ∪n

j=1, j 6=iQ j. The container C in the
previous section is assumed to be a simple rectangular parallelepiped with some initial height h. (The
solution method can, however, be adapted to other containers.)

Let Vi∩ j(P) be the volume of the pairwise overlap of Qi and Q j in a placement P. The local search
minimizes the objective function

f (P) = ∑
1≤i< j≤n

Vi∩ j(P). (4)

In other words, f (P) is the total sum of volumes of pairwise overlaps in placement P. If f (P) = 0
then P is a solution to the current instance of dDDPP.

The local search uses the axis-aligned translation algorithm from the previous section to iteratively
decrease the amount of overlap in the current placement. A local minimum is reached if no polytope
can be translated in an axis-aligned direction to a position with less overlap. To escape local minima
the objective function is augmented using the principles of GLS to give

g(P) = f (P)+λ ∑
1≤i< j≤n

φi, jIi, j(P), (5)

where λ is a penalty constant used to fine-tune the heuristic, φi, j is a penalty term associated with Qi

and Q j (which is described in more detail below), and Ii, j(P)∈ {0,1} is 1 if and only if the interiors of
polytopes Qi and Q j overlap in placement P. Due to the fact that the augmented terms are larger than
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zero if and only if P contains overlap, the augmented objective function, g(P), retains the property that
a value of 0 is reached if and only if there is no overlap in the placement P. Therefore, a placement P
is a solution to the dDDPP if and only if g(P) = 0.

Initially, φi, j = 0 for 1≤ i < j ≤ n. Whenever the search reaches a local minimum with g(P) > 0,
the value of φi, j is increased for the pair Qi and Q j with highest µi, j(P) where µi, j(P) = Vi∩ j(P)

1+φi, j
. We

refer to this as penalizing the pair Qi and Q j. Intuitively, this change of the objective function g(P)
(if large enough), allows the local search to move Qi and Q j away from each other, even if it results
in greater overlap. Ideally, this move causes the local search to reach a different part of the solution
space. To avoid large discrepancy between the real and penalized solution space, the penalties are
reset from time to time. To avoid searching the entire neighborhood in each iteration of GLS, we also
apply fast local search [29].

The translation algorithm in the previous section needs to be able to handle the penalties intro-
duced here. This subject was not fully covered by Egeblad et al. [A] although it is quite straightfor-
ward. First of all an augmented volume polynomial ν′(t) is defined by adding the penalties between
the polytope P = Qi to be translated and all other polytopes. This is done by maintaining an array
of volume functions νQ j(t),Q j ∈ S \Qi. Whenever the overlap between P and a given polytope Q j

changes from 0 or to 0, the penalty for the pair of polytopes P,Q j is, respectively, added to or sub-
tracted from the augmented volume function ν′(t). Note that this does not increase the asymptotic
running time, since the volume polynomial of a breakpoint arising from a face of Q j is only added to
ν′(t) and νQ j(t) and only νQ j(t) needs to be checked for a change to or from 0.

With regard to the usefulness of the local search neighborhood in relation to the number of di-
mensions d, we note that a 1-dimensional translation becomes a less efficient move as d increases,
since up to d axis-aligned translations may be required to move a polytope from one arbitrary point to
another. However, it should also be noted that in general fewer polytopes would be involved in each
translation. If the polytopes are placed compactly in a grid-like fashion with little overlap, then there
are likely to be in the order of d

√
|(S)| polytopes to be considered in each of the coordinate system

axes directions.

5.2 Initial solution

The solution method described above can start with a parallelepiped of any height since the initial
placement is allowed to contain overlaps. However, it makes more sense to set the initial height to one
for which a solution is known to exist.

In any dimension, a naive initial height can be based on the sum of heights of all polytopes, but in
the following, we describe a more ambitious strategy. In short, we use a greedy bounding box based
algorithm in which the polytopes are placed one by one inside the container in an order of decreasing
bounding box volume. This algorithm is based on residual volumes and is related to the approach used
by Eley [14] for the container loading problem in three dimensions. Although the algorithm could be
generalized to higher dimensions, we are only going to describe its three-dimensional variant.

The algorithm maintains a set of empty box-spaces. Each box-space s consists of the volume
[xs,xs]× [y

s
,ys]× [zs,zs]. Initially, the entire container is the only empty space.

Whenever a new shape i with bounding box Bi = [xi,xi]× [y
i
,yi]× [zi,zi] is to be placed inside the

container, the list of empty spaces is searched. Let s′ be the empty space with lexicographical least
z′s, y′

s
, and x′s (lower-left-back corner), which is large enough to contain Bi. Shape i is now positioned

in s with offset (xi,yi,zi)T such that Bi’s lower-left-back corner is coincident with the lower-left-back
corner of s; (xi,yi

,zi)
T +(xi,yi,zi)T = (x′s,y

′
s
,z′s)

T .
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6. Computational experiments

Next all residual spaces that overlap with the bounding box of the positioned shape i, B′i = [xi +
xi,xi +xi]× [y

i
+yi,yi +yi]× [zi +zi,zi +zi], are split into six new box-spaces and removed from the list

of empty box-spaces. For each overlapping space s, we generate the following six new box-spaces:

[xs,xi + xi]× [y
s
,ys]× [zs,zs], [xs,xs]× [y

s
,y

i
+ yi]× [zs,zs], [xs,xs]× [y

s
,ys]× [zs,zi + zi]

[xi + xi,xs]× [y
s
,ys]× [zs,zs], [xs,xs]× [yi + yi,ys]× [zs,zs], [xs,xs]× [y

s
,ys]× [zi + zi,zs].

These represent the volumes left, below, behind, right, above, and in-front of Bi, respectively. If any
of the intervals are empty then the new space is empty. Each of the new non-empty spaces are added
to the list of empty spaces and may be used for the remaining bounding boxes. To reduce the number
of empty spaces generated throughout this process, spaces which are contained within or are equal to
other empty spaces are discarded whenever a new bounding box is placed.

The resulting placement is a non-overlapping placement and the maximum z value of any placed
bounding box B′i may be used as a basis for the initial strip-height. To diversify solutions to 3DSPP
we place shapes randomly within a container with this strip-height. This is the only random element
of the solution method.

6 Computational experiments

The solution method described in this paper was implemented for the three dimensional problem
using the C++ programming language and the GNU C++ 4.0 compiler. We denote this implementa-
tion 3DNEST. Although similar in functionality, this implementation is not identical to the one used
by Egeblad et al. [A]. In particular, the new implementation can handle convex faces without trian-
gulating them and it can handle the strip packing problem. Another noteworthy feature of the new
implementation is that it is possible to do almost all calculations with rational numbers — the only
exception is the computation of minimum values between breakpoints in the translation algorithm
since this requires solving quadratic equations. This is primarily convenient for debugging purposes,
and is currently not very useful in practice since it is much slower than using standard floating point
precision.

Due to the limited precision of floating point calculations, the correctness of all solutions found are
verified using CGAL [17], i.e., it is verified that no polyhedron is involved in any significant overlap
with other polyhedra or the container. In the experiments presented in this section, the largest total
volume of overlap allowed in a solution corresponds to 0.01% of the total volume of all polyhedrons
for the given problem.

All experiments were performed on a system with a 2.16 GHz Intel Core Duo processor with
2 MB of level 2 cache and 1 GB of RAM. Note that the implementation only uses one core of the
processor.

6.1 Problem instances

The literature on the subject of three-dimensional packing contains only few useful problem instances
with regard to a comparison of results. We have found two appropriate data sets for our experiments.
The first one was introduced by Ikonen et al. [20] and the second one was introduced by Stoyan
et al. [27]. The sets contain 8 and 7 polyhedra, respectively. Characteristics of these data sets are
presented in Table 1. The Stoyan polyhedra are all convex and relatively simple with a maximum of
18 faces, while some of the Ikonen polyhedra are non-convex and feature up to 52 faces. Real world
instances, e.g., from the rapid prototyping industry, could easily contain more than 100,000 faces,
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but in most cases it would also be possible to simplify these polyhedra considerably without making
substantial changes to the basic shape, e.g., Cohen et al. [6] has an example of a model of a phone
handset which is reduced from 165,936 to 412 triangles without changing its basic shape.

Ikonen Stoyan
Name Faces Volume Bounding box Type 1 2 1 2 3
Block1 12 4.00 1.00 × 2.00 × 2.00 Convex
Part2 24 2.88 1.43 × 1.70 × 2.50 Non-convex 3 8
Part3 28 0.30 1.42 × 0.62 × 1.00 Non-convex 2 2
Part4 52 2.22 1.63 × 2.00 × 2.00 Non-convex 1 1
Part5 20 0.16 2.81 × 0.56 × 0.20 Non-convex 2 2
Part6 20 0.24 0.45 × 0.51 × 2.50 Non-convex 2 2
Stick2 12 0.18 2.00 × 0.30 × 0.30 Convex
Thin 48 1.25 1.00 × 3.00 × 3.50 Non-convex
Convex1 14 176.00 5.00 × 6.00 × 8.00 Convex 1 1 2
Convex2 4 74.67 11.00 × 4.00 × 14.00 Convex 1 1 4
Convex3 10 120.00 3.00 × 4.00 × 12.00 Convex 1 1 6
Convex4 16 124.67 3.00 × 4.00 × 16.00 Convex 1 1 4
Convex5 18 133.33 4.00 × 8.00 × 10.00 Convex 1 3 4
Convex6 8 147.00 6.00 × 7.00 × 7.00 Convex 1 2 3
Convex7 16 192.50 6.00 × 10.00 × 9.00 Convex 1 3 2

Number of polyhedra: 10 15 7 12 25

Table 1: Characteristics of the three-dimensional polyhedra from the literature used in the experi-
ments.The rightmost 5 columns describe the sets of polyhedra used in the problems presented in the
originating papers. A number in one of these columns is the number of copies of the polyhedra in
the corresponding problem instance, e.g., 6 copies of the polyhedron named Convex3 is present in the
problem instance Stoyan3.

6.2 Puzzles

To further test the capabilities of our solution method, we devised and implemented a generator for
random problem instances. The generator creates a problem instance by splitting a three-dimensional
cube into smaller pieces. The pieces along with container dimensions matching the width and height
of the cube constitute a problem instance for which the optimal utilization is known to be 100%.

A set of half-spaces H can be used to define a convex polyhedron as the set of points which
is contained in all of the half-spaces. This polyhedron can be found by generating the set, I, of all
intersection points of distinct planes p,q,r with p,q,r ∈H , and then generate the convex hull C of the
subset of points from I which are contained in all of the half-spaces. An elegant way to find the points
of the convex hull is by using the concept of dualisation (see de Berg et al. [9]). Let C d be the convex
hull of the dual points of H , then the planes of the facets of C d are duals of the corner points of C .
This allows one to find C in time O(n logn) (de Berg et al. [9]) using just a convex hull algorithm.

Given a positive integer n, the construction of an n-piece puzzle commences as follows. Initially, a
set of 6 half-spaces, H0, is generated such that they correspond to a cube. Now let P1 = {H0} then we
will iteratively construct a sequence of half-space sets Pi. To do this, we select the smallest cardinality
half-space set H ∈ Pi for each i and generate a random plane which can be used to split H into two new
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(a) (b) (c) (d)

Figure 9: Examples of three different puzzles and the cutting planes used to generate them. (a) Three
convex polyhedra. (b) The corresponding cube and cutting planes. (c) A puzzle with 5 pieces. (d) A
puzzle with 10 pieces.

sets H ′ and H ′′. We then let Pi+1 = (Pi \{H})∪{H ′,H ′′}, i.e., the set of half-space sets containing H ′

and H ′′ as well as all sets from Pi except H . Since the cardinality |Pi|= i, it follows that |Pn|= n. If
the random plane used to split each half-space set has been selected appropriately we may generate n
non-empty convex polyhedrons from the half-space sets in Pn. In Figure 9, three examples of various
sizes are visualized including the cutting planes used to generate them.

It is important to emphasize that a solution method specifically designed with this type of instances
in mind may be able to find better solutions more efficiently than our general method. However, since
the optimal utilization for these instances is 100%, we may use them to evaluate the quality of the
solutions produced by the heuristic. It is interesting to see if we can actually solve some of them even
though the solution method is obviously not ideal for puzzle-solving.

6.3 Benchmarks

The two problems given by Ikonen et al. [20] (see Table 1) are decision problems with a cylindrical
container and they have already been shown to be easily solved by Egeblad et al. [A]. The only
previous results and thus also the best results for the Stoyan instances are reported by Stoyan et al. [27]
and their results are repeated in the first two columns of Table 2.

Stoyan Bounding box 3DNEST

Problem Height Util. (%) Height Util. (%) Height Util. (%) Improv.
Stoyan1 27.0 29.88 46 17.54 19.31 42.05 (3.4) 12.17
Stoyan2 30.92 27.21 34 24.75 19.83 42.45 (1.0) 15.24
Stoyan3 45.86 29.33 45 29.90 29.82 45.12 (0.8) 15.79

Table 2: The results from Stoyan et al. [27] are compared to the average results of 10 runs of 10
minutes with 3DNEST. Results for the initial solution found by 3DNEST is also reported. The
second last column includes the standard deviation over the 10 runs. The last column emphasizes the
difference between 3DNEST and the approach by Stoyan et al.
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In Table 2, we also report the results of the initial solution found using the algorithm described in
Section 5.2 and the average results found by running 3DNEST with 10 different random seeds and 10
minutes for each seed. Note that the initial solution found is actually slightly better than the solution
found by Stoyan et al. [27] for the largest problem instance. The last column of Table 2 emphasizes
the percentage of material saved (on average) when 3DNEST is compared to the results from Stoyan
et al. The utilization of 3DNest is on an average about 14 percentage points higher than that of Stoyan
et al., and the average improvement over the utilization of Stoyan et al. is 50.2%. This demonstrates
that 3DNest performs very well in comparison to existing methods.

In order to make some additional experiments, a new problem instance called Merged1 was cre-
ated by combining the polyhedra from Stoyan and Ikonen. It contains one copy of each of the polyhe-
dra in Table 1 and the Ikonen polyhedra have been scaled with a factor of 4 to better match the size of
the Stoyan polyhedra. Larger versions of this problem instance called Mergedi are simply created by
making i number of copies of each polyhedron. The dimensions of the container for these instances
are chosen such that a solution with 50% utilization is a cube. Furthermore, we have used the puzzle
generator described above to generate 40 puzzles with 5, 10, 20, and 40 pieces. Rather than testing
each puzzle with 10 different random seeds, 10 different puzzles are tested for each of the four cardi-
nalities. The purpose of this is to illustrate the heuristic’s capabilities independently of the input data.
Each shape of these puzzles has an average of about 11-13 facets which is very similar to the Stoyan
instances.

Results are presented in Table 3. The utilization of the initial solution (0 seconds) and the uti-
lization after 10, 60, 300, and 600 seconds are reported. All values are averages over 10 runs with
different seeds for 3DNEST, except in the case of the puzzles where the seed is used to vary the prob-
lem instance. The best solution after 10 minutes, the standard deviation, and the average number of
translations done per second are reported for each instance.

Utilization after number of seconds Max. Std. Translations
Problem Size 0 10 60 300 600 util. dev. per second
Stoyan1 7 17.54 39.76 41.60 42.05 42.05 46.38 3.4 1468
Stoyan2 12 24.75 38.25 39.90 41.79 42.45 44.27 1.0 887
Stoyan3 25 29.90 39.19 42.49 44.58 45.12 46.67 0.8 756
Merged1 15 23.44 37.29 39.68 42.38 42.97 44.12 1.0 462
Merged2 30 23.62 30.23 39.77 42.80 42.92 42.99 0.1 295
Merged3 45 24.58 27.02 35.49 42.23 43.32 44.99 1.0 265
Merged4 60 24.80 26.09 31.61 40.06 41.99 42.81 0.5 233
Merged5 75 26.17 26.66 29.63 37.99 40.96 42.56 0.7 199
Puzzle5 5 28.85 98.30 98.89 98.89 99.22 100.00 2.2 -
Puzzle10 10 20.90 72.68 84.96 93.74 94.30 100.00 14.4 353
Puzzle20 20 15.77 42.27 50.05 72.20 82.54 95.16 12.2 205
Puzzle40 40 13.62 26.40 34.56 45.68 49.59 70.85 7.8 145

Table 3: Average results obtained by running 3DNEST 10 times for at most 10 minutes in each run.
Results include the utilization obtained with the initial solution, within 10 seconds and within 1, 5,
and 10 minutes. The maximum utilization and standard deviation is also included for the results after
10 minutes. Finally, the average number of translations per second is presented except in the case of
Puzzle5, for which an optimal solution was often found within a second. Note that the results for the
Puzzle problems are on 10 different instances rather than with 10 different random seeds.
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Figure 10: The best solution found for Stoyan3 without using rotation (from two different angles).
The utilization is 46.67%.

After 10 seconds the results are already better than those of Stoyan et al. for all of the Stoyan
instances with an average utilization close to 40%. The heuristic continues to improve solutions but
utilization is only improved by less than 1 percentage point after 300 seconds. Solutions for the
Merged instances appear to be quite good with utilizations matching the smaller Stoyan instances
even with as many as 60 and 75 shapes. Also here, solutions are generally only improved by one
percentage point after the first 300 seconds with the exception of Merged5. The optimal utilization for
Merged5 is probably higher than it is for Merged1 which is also indicated by the initial solutions, but
the slow decline in the number of translations performed is also a strong indication that large problem
instances are solved efficiently by 3DNEST. Puzzles with 5 or 10 pieces are most often solved to
optimality, and even puzzles with 20 pieces are handled quite well within the time limit of 10 minutes.
The average utilization of these instances is only 50% after 10 minutes, and the best found utilization
is less than 71% which is far from the optimal 100%. The best solutions found for Stoyan3 and
Merged5 are shown in Figure 10 and Figure 11.

A simple strategy for handling rotation has also been implemented in 3DNEST. The local search
neighborhood was expanded, so that in addition to trying translations in three directions, 24 different
orientations (90◦ increments for each axis) are also tried. In each iteration the translation or orientation
which results in least overlap is chosen. This was mainly done to get an indication of the improvement
possible in the utilization when allowing rotation. The results are presented in Table 4 and better
results are indeed obtained for the Stoyan instances while some of the large Merged instances are
not handled very well, most likely because of the increased amount of computations needed and the
increased size of the solution space.

A lower bound on the height of the Stoyan instances and Merged1 is 16 since these instances
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Figure 11: The best solution found for Merged5 without using rotation (from two different angles).
The utilization is 42.12%.

contain a shape (see Convex4 in Table 1) with height 16 which cannot be rotated and still be within
the bounds of the container. In all runs on Stoyan1 and Merged1 as well as most runs on Stoyan2,
3DNest is able to find solutions matching this bound and therefore these solutions are optimal.

7 Conclusion

In this paper we have presented a solution method for the multi-dimensional strip-packing problem.
An earlier version of this method was previously tested by Egeblad et al. [A] and proved very suc-
cessful for two dimensions. Three problem instances in three dimensions, by Stoyan et al. [27], were
used to show that the presented solution method is able to reach far better results than those by Stoyan
et al. [27]. The heuristic has also been tested on problems where the optimal value is known, and has
proven able to find the optimal solution for instances with 10 items and close to optimal solutions for
instances with 20 items. A simple rotation scheme shows that increased utilization may be achieved
by allowing rotation, and optimal solutions are found for instances with 7 and even 15 items.

The translation algorithm presented in Section 4 is strongly connected to packing problems, but it
is important to emphasize that the algorithm could also be used to maximize the volume of intersec-
tion of polytopes with an axis-aligned translation. Also, the restriction to axis-aligned translations is
imposed only in order to keep the mathematical details as simple as possible. It is, of course, possible
to alter the algorithm for translation in an arbitrary direction: a trivial approach would be to rotate the
input data.

It is also important to note the simplicity of the translation algorithm which is able to work directly
with the faces of the polyhedrons. Unlike many other methods, as presented in Section 3, we do not
rely on additional approximating data-structures such as octrees, depth maps or voxels. Even though
intersection volumes of non-convex polytopes are calculated, the intersections are never explicitly
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Average Utilization Translations
Problem Size Height Avg. Min. Max. per second
Stoyan1 7 16.00 50.42 (0.0) 50.42 50.43 1325.21
Stoyan2 12 16.13 52.17 (0.5) 51.15 52.58 682.27
Stoyan3 25 25.60 52.57 (1.2) 50.41 54.02 673.50
Merged1 15 16.00 46.87 (0.0) 46.87 46.87 440.18
Merged2 30 20.97 45.09 (1.3) 43.50 47.72 305.21
Merged3 45 26.50 40.83 (0.9) 39.75 42.95 299.31
Merged4 60 32.93 36.25 (1.9) 33.44 39.26 275.15
Merged5 75 40.27 31.89 (1.2) 29.31 33.52 242.22

Table 4: Results obtained when allowing rotation.Average utilization, standard deviation, minimum
and maximum utilization are reported. The last column is the average number of translations per
second.

constructed. Non-convex polytopes are handled as easily as the convex ones and even holes are
handled without any changes to the algorithm. Other problem variants might include non-rectangular
containers [18], quality regions [18], repeated patterns [24] and more. Although these references
are for the 2D problem, the generalized constraints can be handled by our solution method in any
dimension, essentially without affecting the running time.

If one does not calculate the minimum between each set of breakpoints in the translation algorithm,
then only rational numbers are needed for the solution method described (given that the input problem
only uses rational numbers). This property permits the use of the method if exact calculations are
needed for some reason. In two dimensions, a minimum between breakpoints can also be found using
rational numbers since one only needs to solve linear equations.

Mount et al. [23] described what is essentially a 2D translation algorithm in 2D space (solving
2D2DTP). Given polygons with n and m edges, the worst case running time is O((mn)2). Their
approach is based on an arrangement of line segments. Decomposition techniques for d ≥ 3 have
been studied by several authors (see de Berg et al. [7]), and it would be interesting if these methods
can be used to generalize the solution method for 2D2dTP to dDdDTP. It is also an open question how
to make an algorithm for 2D3DTP or more generally d′DdDTP for any d ≥ 3 and d′ ∈ {2, . . . ,d−1}.
For the sake of completion, de Berg et al. [8] solve the maximization variant of 2D2DTP with two
convex polygons in time O((n + m) log(n + m)). Ahn et al. [1] consider a generalization of the same
problem in which they allow rotation.

Finally, Cheong et al. [5] present an approximation algorithm, that finds a translation for two
general polygons where the area of overlap is at least µopt − ε, for some given value ε and µopt is the
maximal overlap of any translation. If the polygons have complexity n and m, the running time of
their algorithm is O(m+(n2/ε4) log2 n) and O(m+(n3/ε4) log5 n), if rotations are allowed.

Free orientation of shapes is one of the most important directions for future research. Especially
when considering that most applications of packing 3D shapes, e.g., rapid prototyping, do allow
free orientation. Another important direction for future research is how to also handle some of the
constraints which are typically part of more general layout problems, e.g., constraints concerning
gravity or wire length [4].
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Heuristic approaches for the two- and three-dimensional knapsack
packing problem

Jens Egeblad∗ and David Pisinger

Abstract

The maximum profit two- or three-dimensional knapsack packing problem packs a maximum
profit subset of some given rectangles or boxes into a larger rectangle or box of fixed dimensions.
Items must be orthogonally packed, but no other restriction is imposed to the problem. We present
a new iterative heuristic for the two-dimensional knapsack problem based on the sequence pair
representation proposed by Murata et al. (1996) using a semi-normalized packing algorithm by
Pisinger (2006). Solutions are represented as a pair of sequences. In each iteration, the sequence
pair is modified and transformed to a packing in order to evaluate the objective value. Simulated
annealing is used to control the heuristic. A novel abstract representation of box placements,
called sequence triple, is used with a similar technique for the three-dimensional knapsack prob-
lem . The heuristic is able to handle problem instances where rotation is allowed. Comprehensive
computational experiments which compare the developed heuristics with previous approaches
indicate very promising results for both two- and three-dimensional problems.

1 Introduction

Assume that we are given a set of n rectangles j = 1, . . . ,n, each having a width w j, height h j and
profit p j and a rectangular plate having width W and height H. The maximum profit two-dimensional
knapsack packing problem (2DKP) assigns a subset of the rectangles onto the plate such that the
associated profit sum is maximized. All coefficients are assumed to be nonnegative integers, and the
rectangles may not be rotated. A packing of rectangles on the plate is feasible if no two rectangles
overlap, and if no part of any rectangle exceeds the plate.

The maximum profit three-dimensional knapsack packing problem (3DKP) assigns a subset of
boxes each with dimensions w j,h j,d j into a larger box with dimensions W , H and D.

The problem has direct applications in various packing and cutting problems where the task is
to use the space or material in an optimal way. The 2DKP problem also appears as pricing problem
when solving the two-dimensional bin-packing problem [11, 31, 32]. 2DKP and 3DKP are NP-hard
in the strong sense, which can be shown by reduction from the one-dimensional bin packing problem.
An extensive survey on cutting and packing as well as a useful classification of these problems was
developed by Wascher, Haussner and Schumann [33].

The problems we consider in this paper can be classified as two- and three-dimensional rectangular
single knapsack problems (SKP) according to the typology of Wascher, Haussner and Schumann [33].
The items considered are strongly heterogeneous and we consider problems with and without rotation.

A related problem is the constrained two-dimensional orthogonal non-guillotine cutting problem.
Here equal items are grouped in types and for each item-type there are both a lower bound and an

∗Corresponding Author: Tel.: +45 35 32 14 00; fax: +45 35 32 14 01. E-mail addresses: jegeblad@diku.dk (J. Egeblad),
pisinger@diku.dk (D. Pisinger)
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upper bound on the number of that type required in the solution. Therefore the constrained non-
guillotine cutting problem may be seen as a generalization of the orthogonal knapsack packing prob-
lem. Instances for the constrained non-guillotine cutting problem are often weakly heterogeneous,
and solution methods commonly take advantage here of.

Integer Programming formulations of the 2DKP have been presented by Beasley [5], Hadjicon-
stantinou and Christofides [15], and Boschetti, Hadjiconstantinou, Mingozzi [7] among others.

Fekete and Schepers [11, 12, 14] solved the 2- and 3DKP through a branch-and-bound algorithm
which assigns items to the knapsack without specifying the position of the rectangles. For each assign-
ment of items a two-dimensional packing problem is solved, deciding whether a feasible assignment
of coordinates to the items is possible such that they all fit into the knapsack without overlaps. An
advanced graph representation was used for solving the latter problem. Baldacci and Boschetti [3]
used a similar approach but introduced new reduction-tests and a cutting-plane approach to compute
more effective bounds. Pisinger and Sigurd [32] solved the 2DKP through a branch-and-cut approach
in which an ordinary one-dimensional knapsack problem is used to select the most profitable items
whose overall area does not exceed the area of the plate. Having selected the most profitable items, a
two-dimensional packing problem in decision form is solved, through constraint programming. If all
items can be placed in the knapsack the algorithm terminates, otherwise an inequality is added to the
one-dimensional knapsack stating that not all the current items can be selected simultaneously, and
the process is repeated. Finally, Caprara and Monaci [8] developed a branch-and-bound algorithm for
the 2DKP. The algorithm is based on a branch-and-bound scheme which assigns items to the knapsack
without specifying the position of each item, followed by a feasibility check. The latter is done using
an enumeration scheme from Martello, Monaci, Vigo [25].

Several authors have also applied heuristics to the constrained non-guillotine packing variant of
the problem. Lai and Chan [20, 21] use simulated annealing and genetic algorithms. Solutions are
represented as a sequence of items that are transformed into a placement. Only limited computational
results are reported. The work by Leung et al. [22, 23] is based on that of Lan and Chan and the
bottom-left placement procedure introduced by Jakobs [18]. Beasley [4] described a heuristic based
on genetic algorithms capable of efficiently generating good solutions for instances with up to 4000
pieces. However, the heuristic is unable to reproduce known optimal solutions for smaller instances.
Intermediate solutions explicitly state coordinates of rectangles, and overlap of items are allowed
during the solution process. A penalty in the objective function ensures that overlap is minimized.
More recently Alvarez-Valdes et al. applied both of the meta-heuristics GRASP and Tabu-search
[1, 2] to the problem and were able to achieve very impressive results on the data used by Beasley.

In the present paper we first present an IP formulation of the 2- and 3DKP. In Section 3 we describe
the sequence pair representation, which we use in Section 4 with a simple local search neighborhood
controlled by Simulated Annealing to solve 2DKP. In Section 5 we introduce a novel abstract repre-
sentation of box placements in three dimensions and use the same methods as for two dimensions to
solve 3DKP. Finally in Section 6 we present our result on existing and new benchmarks instances for
2- and 3DKP.

2 Integer programming formulation of the problem

In the following we show an integer programming formulation of the 3DKP. A formulation of 2DKP
easily follows by removing variables and constraints for the third dimension.

We will introduce the decision variable si to indicate whether box i is packed within the knapsack
box. The coordinates of box i are (xi,yi,zi), meaning that the lower left back corner of the box
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is located at this position. If a rectangle is not packed within the knapsack we may assume that
(xi,yi,zi) = (0,0,0). As no part of a packed box may exceed the knapsack, we have the obvious
constraints

0≤ xi ≤W −wi, 0≤ yi ≤ H−hi, 0≤ zi ≤ D−di. (1)

We introduce the binary decision variables `i j (left), ri j (right), ui j (under), oi j (over), bi j (behind) and
fi j (in-front), to indicate the relative position of boxes i, j where i < j. To ensure that no two packed
boxes i, j overlap we will demand that

`i j + ri j +ui j +oi j +bi j + fi j ≥ 1, (2)

whenever si = s j = 1. Depending on the relative position of two rectangles the coordinates must
satisfy the following inequalities

`i j = 1 ⇒ xi +wi ≤ x j, ri j = 1 ⇒ x j +w j ≤ xi,
ui j = 1 ⇒ yi +hi ≤ y j, oi j = 1 ⇒ y j +h j ≤ yi,
bi j = 1 ⇒ zi +di ≤ z j, fi j = 1 ⇒ z j +d j ≤ zi.

(3)

The problem may now be formulated as

max
n

∑
i=1

pisi

s.t. `i j + ri j +ui j +oi j +bi j + fi j ≥ si + s j−1 i, j = 1, . . . ,n
xi− x j +W`i j ≤W −wi i, j = 1, . . . ,n
x j− xi +Wri j ≤W −w j i, j = 1, . . . ,n
yi− y j +Hui j ≤ H−hi i, j = 1, . . . ,n
y j− yi +Hoi j ≤ H−h j i, j = 1, . . . ,n
zi− z j +Dbi j ≤ D−di i, j = 1, . . . ,n
z j− zi +D fi j ≤ D−d j i, j = 1, . . . ,n
0≤ xi ≤W −wi i = 1, . . . ,n
0≤ yi ≤ H−hi i = 1, . . . ,n
0≤ zi ≤ D−di i = 1, . . . ,n
`i j,ri j,ui j,oi j,bi j, fi j ∈ {0,1} i, j = 1, . . . ,n
si ∈ {0,1} i = 1, . . . ,n
xi,yi,zi ≥ 0 i = 1, . . . ,n

(4)

The first constraint ensures that if boxes i and j are packed, then they must be located left, right, under,
over, behind or in-front of each other as stated in (2). The next six constraints are just linear versions
of the constraints (3). The last three inequalities correspond to the constraints (1).

The MIP-model has 6n2 +n binary decision variables and 3n continuous variables. Although the
size of O(n2) binary variables is not alarming, the problem is difficult to solve. This is mainly due to
the use of conditional constraints (3), as these will loose their effect when solving the LP-relaxation,
and thus bounds from LP-relaxation are in general far from the MIP-optimal solution value.

3 Sequence pairs

Murata et al. [17] presented an abstract representation of two-dimensional rectangle packings based on
sequence pairs. The problem they consider is the minimum area enclosing rectangle packing problem.
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Figure 1: A packing represented by sequence A = <e,c,a,d,f,b> and sequence B =
<f,c,b,e,a,d>.

In the abstract representation every compact packing can be represented by two permutations of the
numbers {1,2, . . . ,n} where each number represents a rectangle in the problem instance. The pair of
permutations is called a sequence pair (A,B).

For a given packing, the two permutations A and B are found as follows: We use the relation Ai j

to denote that item i precedes j in sequence A. We define

(xi +wi ≤ x j ∨ yi ≥ y j +h j) ⇔ Ai j (5)

In a similar way we use the relation Bi j to denote that item i precedes j in sequence B, defining

(xi +wi ≤ x j ∨ yi +hi ≤ y j) ⇔ Bi j (6)

Each of the two relations A,B given by (5) and (6) defines a semi-ordering, and hence for a given
packing the two permutations A and B can easily be found by repeatedly choosing one (of possibly
more) minimum elements. Figure 1 illustrates a packing and a corresponding sequence pair (A,B).

From (5) and (6) we immediately see that if item i precedes item j in both sequences, then i must
be placed left of j. If i succeeds j in sequence A but i precedes j in sequence B then i must be placed
under j. Formally we have

Ai j ∧Bi j ⇒ i is left of j (7)

¬Ai j ∧Bi j ⇒ i is under j (8)

where we use the terminology ¬Ai j to denote A ji.
The implications (7) and (8) can be used to derive a pair of constraint graphs as illustrated in

Figure 2. In both graphs the nodes correspond to the items and edges indicate which rectangles should
be placed left of each other (respectively under each other). In the first graph we have an edge from i

r rr
r
r

r r
r-�

���

@
@@R

H
HHj

��
�*

PPPPq
��

��1�
���1

-
HHHjc

e

f

a d

b

r
r r
r
r r r

r

@
@@I

�
���

6

6
�
���

@
@

@
@
@I

J
J
JJ] 6







�

�
�
�
��>

6

J
J
JJ]

f b

c

e
a d

Figure 2: Constraint graphs corresponding to the sequence pair (A,B) =
(<e,c,a,d,f,b>,<f,c,b,e,a,d>).
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Figure 3: Transformation of a sequence pair to a packing using the ordinary transformation (left) and
using the semi-normalized transformation (right).

to j if and only if item i should be placed left of j (Ai j ∧Bi j). In the second graph we have an edge
from i to j if and only if item i should be placed under j (¬Ai j ∧Bi j). Redundant edges are removed
from the figure for clarity. Traversing the nodes in topological order while assigning coordinates to the
items, a packing (i.e. the coordinates of the items) can be obtained in O(n2) time. Tang et al. [34, 35]
showed how the same packing can be derived without explicitly defining the constraint graph, but by
finding weighted longest common subsequences in the sequence pair.

Pisinger [30] further improved the algorithm, by presenting an algorithm which transforms a se-
quence pair to a semi-normalized packing in time O(n log logn). A normalized packing is a packing
where the items are packed according to the sequence B and where each new item is placed such that
it touches an already placed item on its left side, and an already placed item on its lower side. A
semi-normalized packing is a packing where the items are packed according to the sequence B and
where each new item is placed such that it touches the contour of the already placed items both from
left and from below. The difference between a packing based on the ordinary transformation and the
semi-normalized packing of the transformation by Pisinger is illustrated in Figure 3.

4 Sequence pairs for two-dimensional knapsack packing

Let any sequence pair represent a feasible solution to the 2DKP. To evaluate the solution we transform
the sequence pair into a packing. The solution value is sum of the profit values of those items which
are located completely within the knapsack W ×H of the transformed packing. Figure 3 illustrates
two such packings which arose from the conventional and semi-normalized transformation of the
sequence-pair. The solution values of each packing is the sum of the profits of items within the
dashed lines.

The transformation from sequence pair to packing may be stopped as soon as the contour of
already placed items is completely outside the knapsack. For problems where only a small fraction of
items fit inside the knapsack, this can save substantial time, since generating the packing will take an
amount of time which is roughly equal to the time required to place only the subset of items which
are inside the knapsack.

This section is organized as follows: In section 4.1 we describe our heuristic in more detail. In
Section 4.2 we describe how to accommodate problems where rotation is allowed and in Section 4.3
we describe how problem instances can be simplified during the solution process.
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4.1 Simulated annealing

To solve the 2DKP, we use the meta-heuristic Simulated Annealing which works well in cooperation
with the sequence pair representation [17, 30, 34, 35].

In this setting we repeatedly make a small modification to the sequence pair, transform the se-
quence pair into a packing, evaluate the profit of the corresponding packing, and accept the solution
depending on the outcome. In Simulated Annealing any non-improving solution is accepted with
probability that decreases over time. An outline of the algorithm is found in Figure 4.

choose initial incumbent solution s ∈ S
choose initial time t0
choose time step ts
a := 0
repeat

choose s′ ∈ N(s)
if f (s′)≤ f (s) then

accept := true
else

p := rand(0,1)
T := 1

t0+ts·a

∆ := f (s′)− f (s)
f (s)

if p < e
−∆
T then

accept := true
end

end
if accept then

s := s′

a := a+1
end

until stopping-criteria
return s

Figure 4: Simulated Annealing Heuristic

Our variant of Simulated Annealing is as follows: At any given time the temperature is evaluated
as 1/(t0 + ts ·a) where t0 is a start time-value, ts is a time-step value and a is the number of accepted
solutions. The temperature depends on the time, so the higher t0 + ts · a is, the lower is the current
temperature. The temperature is decreased only when a new solution is accepted.

The neighborhood N(s) of a solution s = (A,B) is defined as one of the following three permuta-
tions: Either exchange two items in sequence A; exchange two items in sequence B; or exchange two
items in both sequence A and B. The items are selected randomly.

4.2 Rotations

Few papers consider exact algorithms for packing problems where rotation is allowed. A possible
explanation could be the increased size of the solution space and the lack of high-quality upper bounds.
In our heuristic, rotations are easy to handle as we may represent each packing by the triple (A,B,R).
Here (A,B) is the sequence pair and R = (r1, . . . ,rn) is a binary vector of length n. In a placement of
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(A,B,R) item i is rotated ri ·90 degrees. If rotation is allowed the neighborhood N(s) of our heuristic
is extended with a fourth permutation: Change the rotation flag of an item in R.

4.3 Removing items

In instances where only a small fraction of the items can fit inside the knapsack, it can be advanta-
geous to a-priori remove some items which provably will not be selected in an optimal solution. Our
approach is based on standard techniques for reducing the number of items in a 0-1 Knapsack Problem
[19] and is similar to the one presented in [1].

Let the 1-dimensional relaxation of the (2DKP) be given by the following 0-1 Knapsack Problem
(1DKP):

max
n

∑
j=1

p jx j

s.t.
n

∑
j=1

(w jh j)x j ≤WH

x j ∈ {0,1}, j = 1, . . . ,n

(9)

Assume that z∗ is the currently best known solution to (2DKP), then clearly z∗ is a lower bound for
(1DKP), and an optimal solution to (1DKP) is also an upper bound on z∗.

Now, assume that we have an upper bound u1
j for (1DKP) with the additional constraint that x j = 1.

If u1
j ≤ z∗ then we know that item j will not be chosen in an improved solution of (1DKP), and hence

neither in an improved solution of (2DKP).
As our upper bound we have chosen to use the Dembo and Hammer [10] upper bound uDH

which can be calculated as follows: Sort the items in (1DKP) according to nonincreasing efficiency
p j/(w jh j) and fill the knapsack in a greedy way until the first item s (split items) does not fit into
the knapsack. Then the Dembo and Hammer upper bound is given by uDH = ∑

s−1
i=1 pi + (WH −

∑
s−1
i=1 wihi)ps/(wshs). If we fix a variable x j = 1 the upper bound becomes u1

j = uDH + p j−(w jh j)ps/(wshs)
which can be calculated in constant time.

During the simulated annealing, we run this test whenever we encounter an improving solution z∗

and remove every item j for which u1
j ≤ z∗ from the problem.

5 Three dimensions

For the three-dimensional problem we will consider a new representation which like the sequence
pair for two dimensions will contain the relative box placements for three dimensions. We call the
representation sequence triple since it consists of three sequences. Not all three-dimensional packings
are obtainable with this representation but we will prove that a large subset of all normalized packings,
known as fully robot packable packings, may be represented.

A robot packing is a packing which can be achieved by successively placing boxes starting from
the bottom-left-behind corner, and such that each box is in-front of, right of, or over each of the
previously placed boxes [26]. Robot packings are motivated by several industrial applications, where
boxes have to be packed by robots equipped with a rectangular “hand” parallel to the base of the large
box. To avoid collisions between the hand and the boxes, it is demanded that no already packed box
blocks for the “hand” movement. In [26] it is shown that the quality of a packing is seldom affected
by restricting the solution space to the set of robot packings.
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i wi hi di xi yi zi
1 2 4 9 4 3 0
2 3 7 3 6 0 6
3 3 7 6 6 0 0
4 5 2 3 4 7 6
5 5 2 6 4 7 0
6 6 3 3 0 0 6
7 6 3 6 0 0 0
8 4 6 3 0 3 0
9 4 6 6 0 3 3

Figure 5: A packing and the corresponding sequence triple (A,B,C) = {< 9,4,8,5,1,6,2,7,3 >,
< 7,8,6,9,1,3,5,2,4 >, < 2,3,6,7,1,4,5,9,8 >}.

A packing is a fully robot packable packing if all six 90 degree rotations of it are robot packings
or, equivalently, the robot criteria is satisfied no matter which corner is selected as start corner instead
of the bottom-left-behind corner.

This section is organized as follows: First we describe the Sequence Triple representation in detail
in Section 5.1. Then we describe an algorithm to transform a Sequence Triple to a packing in Section
5.2. Finally, in Section 5.3, we describe how the same Simulated Annealing strategy we use for the
sequence pair is applied to the sequence triple to form a heuristic for 3DKP.

5.1 Sequence triple

A given fully robot packable packing is represented by three sequences A, B and C where each se-
quence is a permutation of the n boxes. For any sequence X we define the relation Xi j to mean that i
is before j in sequence X . For convenience we use the notation ¬Xi j⇔ X ji.

In a similar way as in Section 3 we define the relation Ai j by

(xi +wi ≤ x j ∨ yi ≥ y j +h j ∨ zi ≥ z j +d j) ⇔ Ai j (10)

In other words Ai j iff i is located left, over or in-front of j. Using the formulation (2) we have
Ai j⇔ `i j +oi j + fi j ≥ 1.

Relation Bi j is defined by

(xi ≤ x j +w j ∨ yi ≤ y j +h j ∨ zi ≤ z j +d j) ⇔ Bi j (11)

This means Bi j iff i is located left, under or behind of j. The relation can be expressed as Bi j ⇔
li j +ui j +bi j ≥ 1.

Finally, relation Ci j is defined by

(xi ≥ x j +w j ∨ yi +hi ≤ y j ∨ zi ≥ z j +d j) ⇔ Ci j (12)

In words, Ci j iff i is located right, under or in-front of j, which can be expressed as Ci j ⇔ ri j + ui j +
fi j ≥ 1.
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Due to the definition of fully robot packable packings, there will always be an item which is lo-
cated furthest left-over-behind. By removing this item and repeating the operation, we get the ordering
of sequence A. In a similar way the orderings of B and C can be determined, as illustrated in Figure
5 (The letters A,B,C on the figure indicate the directions which are used for defining the correspond-
ing sequence of boxes). This shows that every fully robot packable packing can be represented by a
sequence triple.

Using the relations

Ai j⇔ `i j +oi j + fi j ≥ 1, `i j + ri j ≤ 1,
Bi j⇔ li j + yi j +bi j ≥ 1, oi j +ui j ≤ 1,
Ci j⇔ ri j +ui j + fi j ≥ 1, fi j +bi j ≤ 1,

(13)

we find that

Ai j ∧¬Bi j ∧ Ci j ⇔ fi j = 1
Ai j ∧ Bi j ∧ Ci j ⇔ `i j + ri j ≥ 1∨oi j +ui j ≥ 1∨ fi j +bi j ≥ 1
¬Ai j ∧¬Bi j ∧ Ci j ⇔ ri j = 1
¬Ai j ∧ Bi j ∧ Ci j ⇔ ui j = 1

Ai j ∧¬Bi j ∧¬Ci j ⇔ oi j = 1
Ai j ∧ Bi j ∧¬Ci j ⇔ `i j = 1
¬Ai j ∧¬Bi j ∧¬Ci j ⇔ `i j + ri j ≥ 1∨oi j +ui j ≥ 1∨ fi j +bi j ≥ 1
¬Ai j ∧ Bi∧¬Ci j ⇔ bi j = 1

(14)

Notice that Ai j ∧Bi j ∧Ci j and ¬Ai j ∧¬Bi j ∧¬Ci j cannot occur for any packing. We have, however,
chosen to assign these cases a meaning, such that every sequence triple has a corresponding packing.
This leads to the following four implications, similar to (7) and (8), which are used to determine the
relative box positions:

Ai j ∧Bi j ∧¬Ci j ⇒ i is left of j (15)

¬Ai j ∧Bi j ∧ Ci j ⇒ i is under j (16)

¬Ai j ∧Bi j ∧¬Ci j ⇒ i is behind j (17)

Ai j ∧Bi j ∧ Ci j ⇒ i is behind j (18)

Notice that both (17) and (18) impose that i must be behind j in the packing. The unfortunate con-
sequence of this is that the representation is biased towards orderings in that direction which could
have a negative impact on the solution process, but as we wish to let every sequence triple represent a
packing, an arbitrary choice had to be done.

5.2 A placement algorithm

To find a placement (i.e. the coordinates of the boxes) corresponding to a sequence triple, we can
construct three constraint graphs similar to Figure 2: In the first graph we have an edge from item i to
item j if i is located left of j (i.e. Ai j ∧Bi j ∧¬Ci j). In the second graph we have an edge from item
i to item j if i is located under j (i.e. ¬Ai j ∧Bi j ∧Ci j). In the last graph we have an edge from item
i to item j if i is located behind j (i.e. ¬Ai j ∧Bi j ∧¬Ci j or Ai j ∧Bi j ∧Ci j). Traversing the nodes in
topological order for each graph while assigning coordinates to the items, we find the location of all
boxes in time O(n2).
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By observing that Bi j is a necessary criteria for node i to precede node j in each of the three
constraint graphs, we may actually omit the topological ordering as it is in each case given by the
order of sequence B.

The first box in B is placed at (x,y,z) = (0,0,0) and succeeding boxes are placed one by one
according to the order of sequence B. At any time let P consist of all previously placed boxes. Now
assume we wish to place box i. To determine the position of i we compare i with every box j ∈ P.
Let Px ⊆ P be the subset of boxes which satisfy (15), (i.e. Ai j ∧Bi j ∧¬Ci j) let Py ⊆ P be the subset
which satisfy (16), (i.e. ¬Ai j ∧Bi j ∧Ci j) and let Pz ⊆ P be the subset which satisfy (17) or (18) (i.e.
¬Ai j ∧Bi j ∧¬Ci j or Ai j ∧Bi j ∧Ci j). Now assign to i the coordinates (xi,yi,zi) determined by

xi = max(0,max
j∈Px

(x j +w j)) (19)

yi = max(0,max
j∈Py

(y j +h j)) (20)

zi = max(0,max
j∈Pz

(z j +d j)) (21)

Once a box has been placed it is inserted into P.
If we maintain a table in which the position of each box i in the three sequences A,B,C is saved,

we can test whether Ai j, Bi j or Ci j holds in constant time for two given boxes i, j. Since placing a box
only requires comparison with every previously placed box, calculating (19) to (21) for a given box i
can be done in O(|P|) = O(n) time. Placing all n boxes then requires O(n2) time.

To speed up the placement procedure slightly we remove a box from P if it is completely “shaded”
by a newly inserted box. A box j is shaded by a box i if x j + w j ≤ xi + wi, y j + h j ≤ yi + hi and
z j + d j < zi + di, hence it does not affect the placement of future boxes, and by removing it we can
avoid subsequent redundant checks.

5.3 Simulated annealing

To solve 3DKP, we use the same Simulated Annealing scheme used for two dimensions but with
the three-dimensional sequence representation. The neighborhood is increased to accommodate the
extra sequence and consists of the following permutations: 1) exchange two boxes from one of the
sequences, 2) exchange two boxes in sequence A and B, 3) exchange two boxes in sequence A and C,
4) exchange two boxes in sequence B and C, 5) exchange two boxes in all sequences.

6 Computational experiments

The heuristic described in the previous sections was implemented in C++ using a modified version of
the sequence pair algorithm by Pisinger [30] for two dimensions and an implementation of the place-
ment algorithm for sequence triple described in Section 5.2 for three dimensions. The implementation
was tested on a computer with an AMD Athlon 64 3800+ (2.4 GHz) processor with 2 GB of RAM
using the GNU-C++ compiler (gcc 4.0). This section is divided into three parts; Section 6.1 considers
tighter upper bounds to evaluate the quality of solutions. Section 6.2 deals with the 2DKP and Section
6.3 considers the 3DKP.

6.1 Bounds

To determine the quality of the solutions we compare solution values with upper bound introduced by
Fekete et al. [13, 14] which is based on conservative scales.
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Given an instance I of (3DKP) with container dimensions W ×H ×D a new instance I′ with
dimensions 1× 1× 1 is generated by scaling the dimensions of each item i ∈ I by 1

W , 1
H and 1

D ,
respectively. Define the conservative scale:

u(k)(x) =
{

x for (k +1)x ∈ Z
b(k +1)xc1

k otherwise
,

and let u(0)(x) = x. Now for each j,k, l = 0,1, . . . ,4, instances are generated from I′ by setting item i’s
dimensions to u( j)(w′i)×u(k)(h′i)×u(l)(d′i). The minimal optimal value of the 1-dimensional relaxation
of any of these instances is used as an upper bound of I. For an instance of (2DKP) similar bounds
are determined by disregarding the third dimension.

For instances where rotation is allowed the upper bound from conservative scales is not valid,
hence we use the weaker upper bound given by the optimal value of (1DKP) defined in (9).

6.2 2D computational experiments

To test the 2DKP heuristic we used both classical instances from the literature and a new set of
instances (described in Table 1). The instances were used for parameter tuning of the heuristic. Results
are reported for instances both without and with rotation allowed.

6.2.1 Classical instances for 2DKP

We use the benchmarks instances considered by Fekete et al. [14], Caprara and Monaci [8] and
Alvarez-Valdes et al. [1, 2]. The instances are listed in Table 2.

The instances beasley1-12 originate from [6]. The cgcut and gcut instances are guillotine-
cut instances from [9] and [5] respectively. The guillotine-cut instance wang20 is from [36]. The
instances 3 to CHL5 are also guillotine-cut instances by Hifi [16]. The data for hadchr3 and
hadchr11 was presented in [15]. The instances okp1-5 are by Fekete and Schepers [12].

To transform the gcut instances, exactly one rectangle was created in the 2DKP instance for each
rectangle in the original instance. For the constrained instances bi duplicates of each rectangle were
created, where bi is the maximum number of times rectangle i may be cut from the material.

In addition to the above instances, Beasley [4] presented a set of 630 instances (ngcutfs), which
are listed in Table 3. In these, the number of distinct items, M, ranges between 40 and 1000, but items
are duplicated Q times, with Q ∈ {1,3,4}. Therefore the total number of items, n, ranges from 40 to
4000.

6.2.2 New instances for 2DKP

To test the performance of the heuristic for problems where many rectangles can exist simultane-
ously in the knapsack, we have created 80 new instances. The rectangle dimensions in each in-
stance belongs to one of five different classes which are listed in Table 1. Dimensions of the items
are selected randomly from a uniform distribution between the first and last values of the inter-
vals in the ‘Width’ and ‘Height’ columns of the table. The five classes are tall (T), wide (W),
square (S), uniform (U) and diverse (D). The number of rectangles, n, in each instance is
selected from the set {30,50,100,200}. The rectangles may be clustered (C) and random (R).
Clustered instances consists of only 20 rectangles which are duplicated appropriately, while in
the random instances all rectangles are independently generated. Finally the area of the bin is either
25 % or 75 % of the total area of the rectangles and the height of the bin is always twice its width.
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Table 1: The five different classes of the new ep2 instances.

Class Description Width Height
T Tall. Rectangles are tall [1, 1

3 ·100] [ 2
3 ·100,100]

W Wide. Rectangles are wide [ 2
3 ·100,100] [1, 1

3 ·100]
S Square. Rectangles are square [1,100] Equal to width
U Uniform. Largest dimension is no more than

150% of the smallest
[ 2

3 ·100,100] [ 2
3 ·100,100]

D Diverse. Largest dimension can be up-to 100
times the smallest

[1,100] [1,100]

The naming convention is ep2-n-c-t-p, where n ∈ {30,50,100,200} is the number of rectangles,
c ∈ (T,W,S,U,D) describes the class, t ∈ (C,R) describes if it is clustered or random, p ∈ 25,75
describes the size of the bin in percentage of the total rectangle area. The profit of the rectangles
is always the area of the rectangle times a random number from {1,2,3}. The instances are pre-
sented in Table 4 and are available along with the source code to generate them at this web-address:
http://www.diku.dk/˜pisinger/codes.html.

6.2.3 Parameter setting

Three parameters are crucial for the results of Simulated Annealing: The start time t0, the time step ts
and the stopping-criteria. A time limit is used as stopping-criteria. Suitable values of t0 and ts and the
time limit depend on the complexity of the instance.

For each instance we determine two indicator values n0 and n1. We set n0 = n · Vknapsack
Vitems

, where
Vknapsack is the area (volume) of the knapsack and Vitems is sum of the items’ area (volume). It indicates
the average number of items a knapsack may contain.

We use the value n0 to determine the running time of our experiments: For an instance with n
rectangles and n0 defined as above let F(n,n0) = n0 lgn. If we expect n0 items to fit into the knapsack
and the order of the items matters then there are roughly n!

n0! ≈ nn0 ways to select the items and we
may expect that there are roughly nn0 different possible solutions to search. Thus F(n,n0) = lg(nn0)
should give us a rough indication of the size of the solution space of the instance.

The running time T (n,n0) (in seconds) of each instance is determined from the value F(n,n0) as
follows

T (n,n0) =


30 for F(n,n0) < 25
60 for 25≤ F(n,n0) < 65

120 for 65≤ F(n,n0) < 100
240 for 100≤ F(n,n0) < 250
600 for 250≤ F(n,n0)

(22)

The value n1 is the number of items chosen in an optimal solution of (1DKP) defined in (9). For
all considered instances, this problem is solved to optimum very quickly using the exact method by
Pisinger [28]. n1 reflects the number of rectangles to be expected in an optimal solution which is
another indicator of the complexity of the instance.

To determine appropriate values of t0 and ts we experimented with the 23 instances marked with
‘’*’ in Table 2 and 4. These contain between 16 and 200 rectangles.

We performed the experiments with t0 ∈ {10−3,10−2,10−1,100,101,102,103,104,105} and ts ∈
{102,101,10−1,10−3,10−5,10−7,10−9,10−11,10−13}. For the 23 instances, each of the 81 combina-
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Figure 6: Results of the Simulated Annealing heuristic for different values of t0 and ts on four different
instances.

tions of t0 and ts were tested using the running times from (22). Results from four selected instances
are presented in Figure 6.

Based on the results of the parameter tuning for the 23 instances, we were able to establish that
good values of t0 and ts are:

t0 = n2
1, ts =

n2
1

107 ,

The values can be interpreted in the following way: The higher t0 and ts the less likely is the acceptance
of a non-improving permutation. The larger the number of rectangles is in an optimal solution the
more improving steps must be undertaken before the heuristic reaches a local minimum.

6.2.4 Results

Using the parameters of the previous section, our heuristic was applied to the instances described in
Sections 6.2.1 and 6.2.2. To determine the robustness of the heuristic, we ran it on each instance
with 10 different random seeds. For the classical instances, the optimal solution value is reported [14]
where known. For the remaining instances, we compare our results with the upper bounds described
in section 6.1.

The results are reported in Tables 2–6 which all follow the same format. The average, best and
worst results of our heuristic on each instance for the 10 seeds are reported in the columns entitled
‘Avg.’, ‘Best’ and ‘Worst’, respectively. The time before the heuristic discovered the best solution is
reported in the column entitled ‘Best Time’ and the time spent on each seed is reported in the column
entitled ‘Seed Time’ (total time = 10× Seed Time).

In Table 2, we report results for the classical instances. The column ‘Optimal’ contains values of
optimal solutions. For gcut13, no optimal value is currently known, but we have reported the results
and upper bounds of respectively Caprara and Monaci [8] and Fekete and Schepers [14]. The ‘Exact
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Methods Time’ represent the running time of the algorithms by Caprara and Monaci [8] and Fekete
and Schepers [14]. All running times are in seconds. The running times of Alvarez-Valdes et al. [1]
are reported in the column entitled ‘Alvarez-Valdes’ (Instances were solved to optimality). Instances
marked with ‘*’ were used for parameter tuning.

The heuristic finds the optimal value in all but four of the instances. For the remaining instances
except hadchr3, the deviation is less than two percent from optimum. The heuristic is able to im-
prove the best known solution of gcut13 by 0.8%. The time to find the best solution is generally
below one second for the small instances and reaches only a few minutes for the most difficult in-
stances.

For the constrained guillotine-cut instances, we generally get equal or better results than the orig-
inal authors since we also allow for non-guillotine packing. However, the unconstrained instances
(gcut) have been transformed and are not comparable with results from the original paper.

Table 3 summarizes results on the 630 ngcutfs instances as well as the results of Beasley [4] and
Alvarez-Valdes et al. [1, 2]. As in [4] and [1, 2], results are reported as the average percent deviation
from the (1DKP) upper bound in the columns marked ‘Avg./1D’. The average time in seconds it took
to reach the best solution is given in columns marked ‘Time’. The results in ‘Beasley’ are taken from
[4] and the results in ‘Alvares-Valdes et al.’ are taken from [1].

It is seen that in terms of solution quality, our results are 0.4% better than those of Beasley and
only 0.25% worse than Alvarez-Valdes et al. Since their reported results for large instances are found
within the first second, we suspect that the approach by Alvarez-Valdes et al. benefits from a greedy
constructive algorithm that is applied before their local search, which seems to find optimal solutions
for instances with hundreds of items or more. In the present paper, we are mainly interested in
comparing the local search frameworks and not the initial greedy heuristics. Moreover, it should
be emphasized that although the ngcutfs instances contain up-to 4000 items, the average value of
n0 and n1 are 5.4 and 7.9 and the maximal values are respectively 9.31 and 21. This indicates that the
number of rectangles which can fit inside the knapsack is only a few dozen. Therefore it would be
interesting to compare results for instances where more than a hundred items fit simultaneously inside
the knapsack.

The results on the 80 newly proposed benchmarks are listed in Table 4. Here ‘Bound’ refers to
the upper bound based on conservative scales and ‘Best/Bound’, ‘Avg./Bound’, ‘Worst/Bound’ are
the percentage deviations between the heuristic best, average and worst solutions and the conserva-
tive scale upper bound calculated as 100− [solution value]/[bound value] · 100. Only for 11 of the
instances is the best result more than 5% from the upper bound and on average the deviation is only
3.0%. The average deviation is 4.6%, 3.1%, 2.4% and 2.1 for n = 30, 50, 100, and 200 respectively.
For 9 of the instances, the heuristic finds the optimal solution since the deviation from the upper bound
is 0. This shows the heuristic’s ability to find good solutions for both small and large instances and
that the gap between solution value and upper bound decreases as the number of items and size of the
knapsack increases.

Figure 7 illustrates the behavior of the heuristic over time for the instances okp5, ep-100-S-R-75
and ep2-200-U-C-75. The y-axis is the percentage of the best solution found during the run and
the x-axis is the percentage of the full running time for each instance. The graph shows that after
rougly half the running time the solution value stays within 1 percent of the best found solution value
and that the heuristic quickly converges but allows for minor changes throughout the entire solution
process. The best results for three of the instances are shown in Figure 8.
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Table 2: Results for the classical benchmark instances.

Egeblad & Pisinger Exact Methods Time Time
Instance n n0 n1 Optimal Best Avg. Worst Best Time Seed Time Fek-Sch Cap-Mon Alvarez-Valdes
beasley1 10 5.3 5 164 164 164 164 ≤ 0.02 30 ≤ 0.02 - 0
beasley2 17 6.3 8 230 230 230 230 ≤ 0.02 60 ≤ 0.02 - 0
beasley3 21 7.6 6 247 247 247 247 ≤ 0.02 60 ≤ 0.02 - 0
beasley4 7 6.5 6 268 268 268 268 ≤ 0.02 30 ≤ 0.02 - 0
beasley5 14 6 7 358 358 358 358 ≤ 0.02 30 ≤ 0.02 - 0
beasley6 15 7.8 8 289 289 289 289 ≤ 0.02 60 ≤ 0.02 - 0
beasley7 8 18.3 8 430 430 430 430 ≤ 0.02 30 ≤ 0.02 - 0
beasley8 13 8.2 9 834 834 834 834 ≤ 0.02 60 ≤ 0.02 - 0
beasley9 18 7.4 9 924 924 924 924 0.3 60 ≤ 0.02 - 0
beasley10 13 6.8 7 1452 1452 1452 1452 ≤ 0.02 60 ≤ 0.02 - 0
beasley11 15 9.1 8 1688 1688 1688 1688 ≤ 0.02 60 ≤ 0.02 - 0
beasley12 22 8.6 11 1865 1865 1865 1865 0.3 60 ≤ 0.02 - 0
cgcut1* 16 10.7 8 244 244 244 244 ≤ 0.02 60 1.46 0.3 -
cgcut2* 23 14.8 11 2892 2892 2892 2892 1.2 120 531.93 531.93 -
cgcut3* 62 3.9 11 1860 1860 1846 1840 1.6 30 4.58 4.58 -
gcut1* 10 3.82 4 48368 48368 48368 48368 ≤ 0.02 30 0.01 ≤ 0.02 -
gcut2 20 4.6 5 59798 59798 59704 59563 16.6 30 0.22 0.19 -
gcut3* 30 4.6 6 61275 61275 61275 61275 2.1 30 3.24 2.16 -
gcut4 50 4.3 6 61380 61380 61380 61380 0.9 30 376.52 346.99 -
gcut5 10 4.6 4 195582 195582 195582 195582 ≤ 0.02 30 0.5 ≤ 0.02 -
gcut6 20 4.1 5 236305 236305 236305 236305 ≤ 0.02 30 0.12 0.06 -
gcut7 30 3.7 5 240143 240143 240143 240143 ≤ 0.02 30 1.07 0.22 -
gcut8 50 4.5 5 245758 245758 245758 245758 0.1 60 168.5 136.71 -
gcut9 10 4.9 5 939600 939600 939600 939600 ≤ 0.02 30 0.08 ≤ 0.02 -
gcut10 20 3.7 5 937349 937349 937349 937349 0.6 30 0.14 ≤ 0.02 -
gcut11 30 4.6 6 969709 969709 968582.3 958442 ≤ 0.02 30 16.3 14.76 -
gcut12* 50 4 4 979521 979521 978727.8 976877 26.2 30 25.39 16.85 -
gcut13* 32 20.1 18 ≥8408316 8691947 8637809.1 8615240 239.3 240 1800 -

≥8622498 1800
≤9000000

hadchr3 42 5 4 1178 1086 1086 1086 ≤ 0.02 30 ≤ 0.02 - -
hadchr7 7 6.6 5 1865 1865 1865 1865 0.3 60 ≤ 0.02 - -
hadchr8 22 8.6 11 2517 2517 2517 2517 ≤ 0.02 30 ≤ 0.02 - -
hadchr11 10 5.6 6 1270 1270 1270 1270 ≤ 0.02 30 ≤ 0.02 - -
hadchr12 15 5.3 4 2949 2949 2949 2949 0.4 30 ≤ 0.02 - -
wang20* 15 5.4 3 2726 2716 2712.5 2711 29.2 60 2.72 2.72 0.11
3 62 3.9 11 1860 1860 1846 1840 1.6 30 ≤ 0.02 - -
3s 62 3.9 6 2726 2726 2722.5 2721 8.6 30 ≤ 0.02 - -
a1 62 4.2 11 2020 2020 2004 1960 ≤ 0.02 30 ≤ 0.02 - -
a1s 62 4.2 7 2956 2950 2950 2950 18.1 30 ≤ 0.02 - -
a2 53 5.5 11 2615 2615 2594 2545 2.3 30 ≤ 0.02 - -
a2s 53 5.5 7 3535 3535 3517.9 3516 7.6 30 ≤ 0.02 - -
chl2 19 9.1 10 2326 2326 2326 2326 11.9 60 ≤ 0.02 - -
chl2s 19 9.1 9 3336 3336 3336 3336 55.5 60 ≤ 0.02 - -
chl3 35 89.8 35 5283 5283 5283 5283 ≤ 0.02 240 ≤ 0.02 - -
chl3s 35 89.8 35 7402 7402 7402 7402 ≤ 0.02 240 ≤ 0.02 - -
chl4 27 92.7 27 8998 8858 8763.5 8658 ≤ 0.02 240 ≤ 0.02 - -
chl4s 27 92.7 27 13932 13932 13932 13932 ≤ 0.02 240 ≤ 0.02 - -
chl5 18 7.4 5 589 589 587 584 1.7 60 ≤ 0.02 - -
okp1* 50 14.3 9 27718 27718 27542.7 27486 6.6 120 35.84 11.6 0.05
okp2 30 9.6 11 22502 22214 22098.6 21947 22.9 60 1559 1535.95 2.14
okp3* 30 8.3 11 24019 24019 23859.8 23531 11 60 10.63 1.91 3.4
okp4 61 10.1 8 32893 32893 32893 32893 4.9 60 4.05 2.13 0.66
okp5* 97 12.6 15 27923 27923 26759 25468 5.4 120 488.27 488.27 ≤ 0.02

Table 3: Average results for the 630 ngcutfs instances.

Instance Avg. 1D Deviation Time
Beasley Egeblad & Pisinger Alvarez-Valdes et al. Beasley Egeblad & Pisinger Alvarez-Valdes et al.

Type 1 1.64 1.19 0.95 558.1 37.38 19.61
Type 2 1.70 1.29 1.06 668.4 45.03 23.84
Type 3 1.66 1.19 0.94 830.0 62.05 32.56
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Table 4: Results for the ep2 instances.

Instance n n0 n1 Bound Best Best Time Seed Time Best/Bound Avg./Bound Worst/Bound
ep2-30-D-C-25 30 7.5 5 6339 6160 60 6.2 2.82 2.82 2.82
ep2-30-D-C-75* 30 22.2 25 12760 12588 240 12.7 1.35 1.46 1.97
ep2-30-D-R-25 30 7.4 6 6877 6129 60 35.1 10.88 10.88 10.88
ep2-30-D-R-75 30 22.4 24 14395 14259 240 148.8 0.97 1.18 1.53
ep2-30-S-C-25 30 7.4 11 82059 81944 60 0.5 0.14 0.14 0.14
ep2-30-S-C-75 30 22.4 22 198013 195670 240 12.9 1.20 1.37 1.47
ep2-30-S-R-25 30 7.5 9 97151 85220 60 54.0 12.28 14.19 14.40
ep2-30-S-R-75 30 22.5 24 228676 225747 240 174.8 1.28 1.34 1.69
ep2-30-T-C-25 30 7.5 9 30462 22608 60 0.1 25.78 25.78 25.78
ep2-30-T-C-75 30 22.4 22 73944 73565 240 186.8 0.54 0.55 0.61
ep2-30-T-R-25* 30 7.4 8 30570 26034 60 0.2 14.84 14.84 14.84
ep2-30-T-R-75 30 22.3 23 78323 77627 240 206.4 0.89 1.20 1.41
ep2-30-U-C-25 30 7.5 8 143750 133101 60 ≤ 0.02 7.74 7.74 7.74
ep2-30-U-C-75 30 22.5 22 354871 343528 240 23.4 3.22 3.22 3.22
ep2-30-U-R-25 30 7.5 8 143127 137739 60 ≤ 0.02 3.76 3.76 3.76
ep2-30-U-R-75 30 22.4 22 366621 352982 240 0.5 3.74 3.74 3.74
ep2-30-W-C-25 30 10.6 10 35727 35727 60 11.8 0.00 0.00 0.00
ep2-30-W-C-75 30 22.4 22 46176 46176 240 ≤ 0.02 0.00 0.00 0.00
ep2-30-W-R-25 30 10.5 13 34332 34332 60 0.2 0.00 0.00 0.00
ep2-30-W-R-75* 30 22.2 23 45777 45777 240 0.5 0.00 0.00 0.00
ep2-50-D-C-25 50 12.4 11 11094 10369 120 96.8 6.56 6.85 7.21
ep2-50-D-C-75 50 37.1 44 21433 21076 240 127.2 1.70 1.96 2.40
ep2-50-D-R-25 50 12.5 19 12495 11475 120 119.2 8.16 8.82 12.01
ep2-50-D-R-75 50 37.1 38 31657 31426 240 235.6 0.78 1.51 2.11
ep2-50-S-C-25 50 12.5 14 161376 154653 120 24.5 4.21 4.21 4.21
ep2-50-S-C-75 50 37.4 38 391915 387690 240 40.9 1.08 1.75 3.41
ep2-50-S-R-25 50 12.4 12 142758 138263 120 107.4 3.19 3.22 3.27
ep2-50-S-R-75 50 37.3 38 306187 303774 240 234.3 0.82 1.03 1.30
ep2-50-T-C-25* 50 12.4 19 46065 46019 120 12.3 0.10 0.10 0.10
ep2-50-T-C-75 50 37.2 39 118094 114081 240 56.9 3.42 4.25 4.82
ep2-50-T-R-25 50 12.4 12 51175 51175 120 7.7 0.00 0.00 0.00
ep2-50-T-R-75 50 37.2 36 144602 141056 240 138.8 2.45 2.81 4.02
ep2-50-U-C-25 50 12.5 13 242937 231774 120 4.8 4.60 4.79 4.87
ep2-50-U-C-75 50 37.4 37 632455 619080 240 207.4 2.17 2.47 3.64
ep2-50-U-R-25 50 12.4 12 263251 227979 120 8.5 13.40 13.75 13.90
ep2-50-U-R-75* 50 37.4 38 576134 564394 240 235.8 2.07 2.29 3.54
ep2-50-W-C-25* 50 13.7 15 50130 50130 120 18.1 0.00 0.00 0.00
ep2-50-W-C-75 50 37.3 37 94279 87320 240 21.0 7.38 7.38 7.38
ep2-50-W-R-25 50 12.9 13 55920 55920 120 0.5 0.00 0.00 0.00
ep2-50-W-R-75 50 37.4 35 115156 114656 240 97.0 0.49 0.95 1.22
ep2-100-D-C-25 100 24.5 19 23250 22730 240 225.0 2.25 2.80 3.47
ep2-100-D-C-75 100 74.0 77 51241 49732 600 536.7 2.99 3.85 4.99
ep2-100-D-R-25 100 24.7 23 22326 22133 240 237.9 0.92 1.31 2.14
ep2-100-D-R-75 100 74.6 73 51231 50874 600 520.3 0.73 1.11 2.08
ep2-100-S-C-25 100 24.9 28 323640 314198 240 39.2 2.98 3.57 4.15
ep2-100-S-C-75 100 74.9 81 756554 747129 600 580.4 1.29 1.63 2.49
ep2-100-S-R-25 100 24.9 27 254616 250242 240 210.3 1.77 2.69 3.70
ep2-100-S-R-75* 100 74.9 80 523573 519787 600 595.6 0.76 1.26 1.68
ep2-100-T-C-25* 100 24.9 27 92331 92331 240 28.2 0.00 0.00 0.00
ep2-100-T-C-75 100 74.7 69 265970 256480 600 316.4 3.65 4.06 4.96
ep2-100-T-R-25 100 24.8 25 103359 102837 240 34.3 0.56 0.78 1.05
ep2-100-T-R-75 100 74.8 77 262492 257927 600 573.4 1.78 2.39 3.49
ep2-100-U-C-25 100 25.0 25 547224 505794 240 42.2 7.63 8.70 9.77
ep2-100-U-C-75 100 75.0 75 1433510 1400642 600 14.0 2.29 2.29 2.29
ep2-100-U-R-25 100 25.0 26 518661 493901 240 157.0 4.77 5.28 5.51
ep2-100-U-R-75 100 74.9 75 1216431 1203544 600 418.4 1.10 1.26 1.74
ep2-100-W-C-25 100 24.9 29 70437 70164 240 4.9 0.39 0.71 1.06
ep2-100-W-C-75 100 74.9 88 167577 159929 600 450.9 4.56 4.88 6.38
ep2-100-W-R-25* 100 25.0 27 70224 70224 240 165.3 0.00 0.04 0.12
ep2-100-W-R-75 100 74.7 77 247494 230809 600 393.8 6.80 7.40 8.33
ep2-200-D-C-25* 200 49.2 63 46728 45987 600 530.4 1.73 2.55 3.99
ep2-200-D-C-75 200 149.7 160 127834 124146 600 536.5 2.99 3.87 4.73
ep2-200-D-R-25 200 49.6 57 43605 42138 600 591.4 3.46 4.83 5.80
ep2-200-D-R-75 200 149.3 154 99002 97694 600 450.6 1.39 2.19 3.47
ep2-200-S-C-25 200 49.9 54 649446 636050 600 39.9 2.15 2.78 3.43
ep2-200-S-C-75 200 149.8 155 1315780 1297053 600 570.2 1.49 2.29 3.08
ep2-200-S-R-25 200 49.8 48 519498 506437 600 533.1 2.59 5.30 7.48
ep2-200-S-R-75* 200 149.7 143 1225926 1201303 600 581.5 2.06 3.10 3.75
ep2-200-T-C-25* 200 50.0 41 188684 184528 600 319.9 2.26 3.48 3.84
ep2-200-T-C-75 200 149.5 152 441796 431290 600 558.1 2.44 3.35 4.57
ep2-200-T-R-25 200 49.7 50 190638 188967 600 587.1 0.98 1.23 1.53
ep2-200-T-R-75 200 149.5 145 476289 468381 600 597.6 1.72 2.67 3.64
ep2-200-U-C-25 200 50.0 51 1084836 1056636 600 512.6 2.84 2.96 2.97
ep2-200-U-C-75 200 149.8 151 2313551 2265176 600 549.6 2.15 2.58 2.78
ep2-200-U-R-25 200 49.9 49 1039584 1015452 600 587.0 2.39 3.70 5.05
ep2-200-U-R-75 200 149.7 149 2447655 2400803 600 176.6 1.97 2.14 2.65
ep2-200-W-C-25 200 49.6 76 161002 157508 600 577.0 2.21 2.97 3.83
ep2-200-W-C-75 200 149.4 160 390001 375767 600 566.1 3.78 4.26 5.10
ep2-200-W-R-25 200 49.9 50 196128 196086 600 170.7 0.02 0.14 0.26
ep2-200-W-R-75 200 149.6 146 511386 503222 600 586.7 1.69 2.24 2.79
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Figure 7: Illustration of the heuristic behavior over time.

6.2.5 Results with Rotations

We repeated all tests allowing rotation, doubling the running time to accommodate for the larger
solution space. A maximum time limit of 600 seconds was still assigned to all instances. Parameter-
tuning revealed that the setting of t0 and ts reported in Section 6.2.3 also give good results when
rotation is allowed.

The results on the two sets of instances are reported in Table 5 and Table 6. The tables follow
the same format as the tables without rotation, however the column ‘No rotation’ is the value of the
optimal solution without rotation for the classical instances and the best solution without rotation for
the ep2 instances where the optimal solutions are not known. For gcut13 no optimal values without
rotation is know and we have reported the best solution from Table 2. To compare the quality of the
solution we used the (1DKP) upper bound, which is weaker than the bound from conservative scales.
The column ‘No rotation/1D’ contains percentage deviations between the result without rotation and
the (1DKP) upper bound and ‘Best/1D’, ‘Avg./1D’, ‘Worst/1D’ are deviation between best, average
and worst results over the 10 runs and the (1DKP) upper bound.

With the exception of two instances the results with rotation for the classical benchmark instances
are better or equal to the results without rotation. This was expected since rotations make it possible
to arrange the rectangles in more ways, and hence denser packings can be obtained. Indeed, the
heuristic solution is generally larger than 95% of the (1DKP) upper bound, and often reaches 98%
when rotation is allowed.

For the 28 of the ep2 instances, we get results which are more than 2% closer to the upper bound
than without rotation. We get slightly worse results when allowing rotation in 15 of the 80 cases but
only for 3 instances is the result more than 2% further from the upper bound. This demonstrates the
heuristics ability to handle rotation well, even though the solution space is increased by a factor of 2n

which makes it much harder to find near-optimal solutions. The average deviation between the best
result and the (1DKP) upper bound for the ep2 instances is 2.3% which means the heuristic performs
well even with rotation for large instances. It also shows that utilization increases by a few percent if
rotation is allowed.
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Table 5: Results with rotation for the benchmark instances.

Instance 1D No rotation Best Best Time Seed Time No rotation/1D Best/1D Avg./1D Worst/1D
beasley1 201 164 193 ≤ 0.02 60 18.41 3.98 3.98 3.98
beasley2 253 230 250 0.3 120 9.09 1.19 1.19 1.19
beasley3 266 247 259 0.4 120 7.14 2.63 2.63 2.63
beasley4 275 268 268 ≤ 0.02 60 2.55 2.55 2.55 2.55
beasley5 373 358 370 ≤ 0.02 60 4.02 0.80 0.80 0.80
beasley6 317 289 300 23.9 120 8.83 5.36 5.99 5.99
beasley7 430 430 430 ≤ 0.02 60 0.00 0.00 0.00 0.00
beasley8 938 834 886 0.2 120 11.09 5.54 5.54 5.54
beasley9 962 924 924 4.4 120 3.95 3.95 4.57 4.57
beasley10 1517 1452 1452 ≤ 0.02 120 4.28 4.28 4.28 4.28
beasley11 1864 1688 1786 ≤ 0.02 120 9.44 4.18 4.18 4.18
beasley12 2012 1865 1932 1.8 120 7.31 3.98 4.47 4.47
cgcut1 260 244 260 0.7 120 6.15 0.00 0.00 0.00
cgcut2 2919 2892 2909 115.3 240 0.92 0.34 0.34 0.34
cgcut3 2020 1860 1940 6.3 60 7.92 3.96 3.96 3.96
gcut1 62488 48368 58136 ≤ 0.02 60 22.60 6.96 6.96 6.96
gcut2 62500 59798 60656 23.9 60 4.32 2.95 3.22 3.31
gcut3 62500 61275 61275 49.6 60 1.96 1.96 2.26 2.92
gcut4 62500 61380 61710 30.1 60 1.79 1.26 1.28 1.47
gcut5 249854 195582 233969 1.1 60 21.72 6.36 6.36 6.36
gcut6 249992 236305 239467 0.1 60 5.47 4.21 4.21 4.21
gcut7 249998 240143 245306 34.5 60 3.94 1.88 2.64 2.83
gcut8 250000 245758 247462 21 120 1.70 1.02 1.12 1.26
gcut9 997256 939600 953293 ≤ 0.02 60 5.78 4.41 4.41 4.41
gcut10 999918 937349 938036 0.1 60 6.26 6.19 6.19 6.19
gcut11 1000000 969709 979580 20 60 3.03 2.04 2.46 2.96
gcut12 1000000 979521 987674 8.9 60 2.05 1.23 1.23 1.23
gcut13 9000000 ≥ 8736757 8897979 344.5 480 2.92 1.13 1.64 2.32
hadchr-3 1347 1178 1272 ≤ 0.02 60 12.55 5.57 5.57 5.57
hadchr-7 2012 1865 1932 9.7 120 7.31 3.98 4.03 4.47
hadchr-8 3079 2517 2722 ≤ 0.02 60 18.25 11.59 11.59 11.59
hadchr-11 1547 1270 1431 1 60 17.91 7.50 7.50 7.50
hadchr-12 3604 2949 3252 9.8 60 18.17 9.77 9.77 9.77
wang20 2800 2771 2762 118 120 1.04 1.36 1.50 1.50
3 2020 1860 1940 0.9 60 7.92 3.96 3.96 3.96
3s 2800 2726 2758 12.6 60 2.64 1.50 1.54 1.57
a1 2140 2020 2120 40.2 60 5.61 0.93 1.78 1.87
a1s 3000 2956 2985 1.7 60 1.47 0.50 0.50 0.50
a2 2705 2615 2690 18.4 120 3.33 0.55 0.55 0.55
a2s 3600 3335 3579 99.1 120 7.36 0.58 0.58 0.58
chl2 2502 2326 2429 8.9 120 7.03 2.92 3.20 4.32
chl2s 3410 3336 3390 7.8 120 2.17 0.59 0.59 0.59
chl3 5283 5283 5283 ≤ 0.02 480 0.00 0.00 0.00 0.00
chl3s 7402 7402 7402 ≤ 0.02 480 0.00 0.00 0.00 0.00
chl4 8998 8998 8912 ≤ 0.02 480 0.00 0.96 1.77 2.98
chl4s 13932 13932 13932 ≤ 0.02 480 0.00 0.00 0.00 0.00
chl5 600 589 600 7.6 120 1.83 0.00 0.00 0.00
okp1 29133 27718 28423 41.7 240 4.86 2.44 4.24 5.47
okp2 24800 22502 24263 1.6 120 9.27 2.17 5.19 8.05
okp3 26714 24019 25216 7.2 120 10.09 5.61 7.28 10.99
okp4 33631 32893 32893 19.7 120 2.19 2.19 2.19 2.19
okp5 29045 27923 27971 121 240 3.86 3.70 6.06 11.43
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Table 6: Results with rotation for the ep2 instances.

Instance Best Best time Seed Time No rotation/1D Best/1D Avg./1D Worst/1D
ep2-30-D-C-25 6340 57.4 120 4.23 1.43 1.52 1.55
ep2-30-D-C-75 12672 347.5 480 1.35 0.69 1.20 1.50
ep2-30-D-R-25 6875 113.6 120 16.54 6.39 6.58 6.66
ep2-30-D-R-75 14330 115.3 480 0.94 0.45 0.62 0.93
ep2-30-S-C-25 81944 1.8 120 6.04 6.04 6.04 6.04
ep2-30-S-C-75 195670 30.4 480 1.18 1.18 1.56 2.20
ep2-30-S-R-25 83160 1.4 120 12.28 14.40 14.40 14.40
ep2-30-S-R-75 225747 127.2 480 1.28 1.28 1.40 2.02
ep2-30-T-C-25 26436 0.5 120 29.29 17.32 17.87 18.52
ep2-30-T-C-75 73565 144.4 480 0.51 0.51 1.04 1.50
ep2-30-T-R-25 29535 3.3 120 16.28 5.02 5.02 5.02
ep2-30-T-R-75 77387 77.6 480 0.89 1.20 1.80 2.49
ep2-30-U-C-25 141588 0.2 120 7.41 1.50 1.50 1.50
ep2-30-U-C-75 351682 204.7 480 3.20 0.90 0.90 0.90
ep2-30-U-R-25 140287 22.6 120 7.51 5.80 5.80 5.80
ep2-30-U-R-75 360202 450.9 480 3.72 1.75 1.75 1.75
ep2-30-W-C-25 37851 75.6 120 11.44 6.17 6.33 6.34
ep2-30-W-C-75 53668 174.6 480 14.33 0.43 0.83 1.37
ep2-30-W-R-25 37258 32.5 120 9.43 1.71 2.29 2.85
ep2-30-W-R-75 52895 254.1 480 14.61 1.33 1.80 2.70
ep2-50-D-C-25 11010 90.0 240 6.54 0.76 1.27 1.66
ep2-50-D-C-75 21230 278.8 480 1.67 0.95 1.56 2.05
ep2-50-D-R-25 12456 209.6 240 8.81 1.02 2.78 5.65
ep2-50-D-R-75 31531 299.1 480 0.73 0.40 1.22 1.84
ep2-50-S-C-25 154653 9.3 240 4.17 4.17 4.20 4.43
ep2-50-S-C-75 387526 285.3 480 1.08 1.12 2.18 3.41
ep2-50-S-R-25 138335 235.4 240 3.15 3.10 3.18 3.53
ep2-50-S-R-75 303605 313.8 480 0.79 0.84 1.23 1.78
ep2-50-T-C-25 46327 91.8 240 2.26 1.61 1.88 3.42
ep2-50-T-C-75 117226 303.3 480 3.40 0.74 1.01 1.23
ep2-50-T-R-25 53383 172.2 240 5.99 1.93 2.10 2.28
ep2-50-T-R-75 142124 388.1 480 2.45 1.71 2.23 3.56
ep2-50-U-C-25 246645 0.1 240 14.86 9.39 9.39 9.39
ep2-50-U-C-75 626218 365.4 480 2.11 0.99 1.46 2.11
ep2-50-U-R-25 241032 26.6 240 14.39 9.49 9.49 9.49
ep2-50-U-R-75 570751 398.3 480 2.04 0.93 1.71 1.80
ep2-50-W-C-25 51360 22.2 240 4.21 1.86 1.86 1.86
ep2-50-W-C-75 111307 354.7 480 22.17 0.79 1.21 2.05
ep2-50-W-R-25 57561 102.5 240 3.92 1.10 1.25 1.26
ep2-50-W-R-75 113868 452.1 480 0.43 1.12 1.55 2.18
ep2-100-D-C-25 23220 415.3 480 2.24 0.13 0.26 0.71
ep2-100-D-C-75 50515 378.0 600 2.94 1.42 2.67 4.17
ep2-100-D-R-25 22281 51.7 480 0.86 0.20 0.42 0.64
ep2-100-D-R-75 50772 410.8 600 0.70 0.90 1.78 2.81
ep2-100-S-C-25 316238 341.7 480 2.92 2.29 3.37 4.36
ep2-100-S-C-75 745608 354.1 600 1.25 1.45 1.91 2.45
ep2-100-S-R-25 251303 343.7 480 1.72 1.30 2.30 3.79
ep2-100-S-R-75 515379 509.9 600 0.72 1.57 2.02 3.96
ep2-100-T-C-25 99429 98.6 480 8.94 1.94 3.31 6.41
ep2-100-T-C-75 260968 574.9 600 3.57 1.88 2.94 3.77
ep2-100-T-R-25 102957 303.1 480 0.51 0.39 1.06 2.93
ep2-100-T-R-75 259019 497.6 600 1.74 1.32 2.30 3.44
ep2-100-U-C-25 531585 192.6 480 7.57 2.86 5.11 6.17
ep2-100-U-C-75 1400642 147.6 600 2.29 2.29 2.37 3.06
ep2-100-U-R-25 504801 48.2 480 4.77 2.67 4.27 4.95
ep2-100-U-R-75 1203634 576.3 600 1.06 1.05 1.63 1.69
ep2-100-W-C-25 94098 205.3 480 26.63 1.61 2.57 4.24
ep2-100-W-C-75 165709 599.5 600 6.77 3.40 3.69 5.00
ep2-100-W-R-25 103431 444.4 480 32.83 1.06 2.83 4.78
ep2-100-W-R-75 242357 356.2 600 6.74 2.08 2.87 3.49
ep2-200-D-C-25 46056 473.0 600 1.59 1.44 2.32 3.09
ep2-200-D-C-75 123724 561.3 600 2.88 3.22 3.56 4.07
ep2-200-D-R-25 42844 572.0 600 3.36 1.75 3.62 5.14
ep2-200-D-R-75 96344 593.3 600 1.32 2.68 3.64 5.88
ep2-200-S-C-25 637579 333.6 600 2.06 1.83 2.86 3.45
ep2-200-S-C-75 1292256 596.0 600 1.42 1.79 2.52 4.30
ep2-200-S-R-25 505687 589.1 600 2.51 2.66 4.78 7.11
ep2-200-S-R-75 1198449 576.0 600 2.01 2.24 4.33 6.11
ep2-200-T-C-25 186248 77.0 600 2.20 1.29 2.32 3.81
ep2-200-T-C-75 432747 563.5 600 2.38 2.05 2.66 3.54
ep2-200-T-R-25 189141 577.5 600 0.88 0.79 1.43 2.61
ep2-200-T-R-75 465169 583.1 600 1.66 2.33 3.67 4.86
ep2-200-U-C-25 1073880 238.0 600 2.60 1.01 2.04 2.73
ep2-200-U-C-75 2265346 570.2 600 2.09 2.08 2.34 2.71
ep2-200-U-R-25 1035978 422.7 600 2.32 0.35 1.95 4.37
ep2-200-U-R-75 2406562 591.2 600 1.91 1.68 2.06 2.25
ep2-200-W-C-25 158468 506.2 600 2.17 1.57 2.36 3.75
ep2-200-W-C-75 382662 587.2 600 3.65 1.88 3.85 6.30
ep2-200-W-R-25 210864 575.9 600 8.51 1.62 2.10 2.50
ep2-200-W-R-75 501738 599.7 600 1.60 1.89 3.51 4.52
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ep2-50-T-R-75 ep2-200-D-R-75 ep2-100-U-R-75

Figure 8: Best results for three two-dimensional instances without rotation.

Figure 9: A solution to gcut13 with profit 8736757 which was reached after 144 10 minute runs.

6.2.6 The instance gcut13

Since gcut13 is the only instance of the classical benchmark instances from the literature where
the optimal solution is unknown, we decided to investigate this instance further without considering
rotations. We used 144 seeds with 10 minutes running time on each seed; thus the total running time
was 24 hours for this instance. The parameters for the Simulated Annealing were based on the results
we gathered during parameter-tuning for gcut13, and were set to t0 = 0.1 and ts = 10 . The best
result was reached after 367 seconds for one of the seeds and was 8736757 which is 0.5% closer to
the upper bound than the 8691947 we were able to reach with 10 seeds and 4 minutes running time.
This demonstrates that the heuristic is able to return marginally improved results given more running
time. The resulting placement can be seen in Figure 9.
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Table 7: The 5 different classes of new ep3 instances.

Class Description Width Height Depth
F Flat. Boxes are flat [50,100] [50,100] [25,60]
W Long. Boxes are long [1, 2

3 ·100] [1, 2
3 ·100] [50,100]

S Cubes. Boxes are cubes [1,100] Equal to width Equal to width
U Uniform. Largest dimension is no

more than 200% of the smallest
[50,100] [50,100] [50,100]

D Diverse. Largest dimension can be up-
to 50 times the smallest

[1,50] [1,50] [1,50]

6.3 3D computational experiments

A set of experiments were also conducted using the three-dimensional variant of our heuristic which
follows the same scheme as the experiments conducted for the two-dimensional variant. New in-
stances for 3DKP are introduced in Section 6.3.1, the parameter-tuning is outlined in Section 6.3.2
and results are presented in Section 6.3.3.

6.3.1 New instances

As we were unable to locate any benchmark instances for the three-dimensional knapsack problem
from the literature, we have generated 60 random instances. It should be noted that Fekete et al. [14]
do report results for a number of 3DKP problem instances, but the instances are not described in
detail. The new instances contain 20, 40 or 60 boxes. The dimensions of the boxes were chosen from
5 different classes described in Table 7. The width, height and depth of the boxes in each class are
selected randomly from the intervals in the ‘Width’, ‘Height’ and ‘Depth’ columns of the table. As
for the two-dimensional case, boxes are clustered and random, and the container has a volume equal
to 50% or 90% of the total volume of the boxes. The naming convention is ep3-n-c-t-p, where
n ∈ {20,40,60} is the number of boxes, c ∈ (F,L,C,U,D) describes the class, t ∈ (C,R) describes
if it is clustered or random, p ∈ {50,90} describes the size of the bin in percentage of the total box
volume. The profit of a box is set to the volume times a random number from {1,2,3}. The instances
are presented in Table 8 and are available along with the source code to generate them at this web-
address: http://www.diku.dk/˜pisinger/codes.html.

6.3.2 Parameters

As for the two-dimensional instances we determine values n0 and n1 and for each instance we set the
running time based on the function F(n,n0) = n0 lgn, so that for F(n,n0)≤ 110 the running time is set
to 120 seconds, for 110 < F(n,n0)≤ 200 the running time is set to 300 seconds, and for F(n,n0) > 200
the running time is set to 600 seconds.

Nine three-dimensional instances were selected for parameter tuning tests. Values for t0 was
selected from {100, 101, 102, 103, 104, 105, 107, 108} and ts from {10−10, 10−8, 10−6, 10−4, 10−1,
100, 102, 104, 106}. Based on the 81 parameter combinations we found results similar to the two-
dimensional case, and based on these we determined good values to be

t0 =
n2

1
5

,and ts = n2
1.
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6.3.3 Results

The results from our 3D tests are presented in Table 8 using the same format as the tables of the
two-dimensional results.

For the instances with 20 items, the gap between the best found solution and the conservative
scales upper bound is as large as 38.7% for one instance but only 13.6% on average and in two cases
the heuristic is able to reach the upper bound thus finding optimal solutions. For the instances with 40
items, 16 of the best solutions are within 15% of the upper bound and as much as 7 are within 10%.
The average gap between best solutions and upper bound is 12.53%. For the instances with 60 items,
the heuristic reaches best solutions which have a gap which is less than 20% to the upper bound for
all but one of the instances. For 8 of the instances, the gap is less than 10% and the average gap is as
low as 11.4%. The best results for eight of the instances are shown in Figure 10.

Our method finds high quality solutions quickly with an average gap to the upper bound of only
12.8%. In most of the instances, the best solution is found long before the heuristic’s time limit,
so solutions may be significantly closer to the optimal value than the bounds indicate. Results with
large gaps could be due to the geometry of the boxes which can make it hard to utilize the three-
dimensional knapsack as well as in the one-dimensional problems. Another explanation could be that
the conservative scales bound does not function well on those instances or that the heuristic simply
performs poorly in some cases.

To the best of our knowledge no other authors report gaps to upper bound for the three-dimensional
knapsack packing problem. Fekete et al. [14] report only the number of problems solved to optimality.
Their items are also larger than ours and we suspect that far fewer may be loaded in the knapsack than
in our instances. This reduces the solution space and increases the strength of the bounds, making the
instances easier to solve than the instances considered herein.

Instances for the Container Loading Problem contain hundreds of items, and state-of-the-art
heuristics (e.g. [24, 27, 29]) reach volume utilization of slightly more than 90% on average. Initial
experiments with our heuristic for container loading instances resulted in solutions with utilization of
around 84% within 1 minute.

Container loading heuristics however only optimize volume utilization, and hence cannot handle
a general profit objective. Moreover, they exploit that most container loading instances contain many
similar items. The strength of our heuristic is that it is not based on assumptions on the item sizes or
profit. Based on our experiments we believe our heuristic is most suitable for medium sized instances
where less than 80 items can fit in the knapsack simultaneously. We also suspect that the proposed
heuristic for 3DKP cannot compete with heuristics tailored specifically for the Container Loading
Problem.

7 Conclusion

In this paper, we have presented simulated annealing based approaches for the two- and three-dimensional
knapsack problem. For the two-dimensional knapsack problem, we utilize an abstract representation
for rectangle packings called sequence pair whereas for the three-dimensional problem we utilize a
novel abstract representation for box packings called sequence triple. We have proved that the se-
quence triple is able to represent any fully robot packable packing.

The heuristic for two dimensions is generally able to reproduce the results of exact algorithms
with similar running times. The heuristic also gives the best known results for the only unsolved
classical-instance; gcut13. To demonstrate the high quality of the results of the heuristic for larger
instances we have created a new set of instances with up-to 200 rectangles and also here the heuristic
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Table 8: Results for the new ep3 instances.

Instance n n0 n1 1D Bound Best Best time Seed time Best/Bound Avg./Bound Worst/Bound
ep3-20-C-C-50.3kp 20 9.9 13 125170 65308 65308 ≤ 0.02 120 0.00 0.00 0.00
ep3-20-C-C-90.3kp 20 17.8 19 155222 97422 80124 ≤ 0.02 120 17.76 17.76 17.76
ep3-20-C-R-50.3kp 20 9.9 15 108421 63849 62364 ≤ 0.02 120 2.33 2.33 2.33
ep3-20-C-R-90.3kp 20 17.8 19 118927 80956 66844 ≤ 0.02 120 17.43 17.43 17.43
ep3-20-D-C-50.3kp 20 9.8 13 21792 13192 13192 ≤ 0.02 120 0.00 0.00 0.00
ep3-20-D-C-90.3kp 20 17.6 17 38842 30728 27848 0.1 120 9.37 9.37 9.37
ep3-20-D-R-50.3kp 20 10.0 12 19298 17845 15170 23.6 120 14.99 16.26 18.08
ep3-20-D-R-90.3kp 20 17.8 18 25676 24836 20822 3.1 120 16.16 16.16 16.16
ep3-20-F-C-50.3kp 20 9.9 13 114718 89771 71816 ≤ 0.02 120 20.00 20.00 20.00
ep3-20-F-C-90.3kp 20 17.8 17 246440 184773 167281 0.6 120 9.47 12.46 13.75
ep3-20-F-R-50.3kp 20 9.9 11 128928 85712 80962 0.1 120 5.54 5.54 5.54
ep3-20-F-R-90.3kp 20 18.0 18 191008 172182 155155 0.4 120 9.89 10.35 12.03
ep3-20-L-C-50.3kp 20 10.0 8 33780 28716 20835 23.0 120 27.44 27.65 27.67
ep3-20-L-C-90.3kp 20 17.8 18 63772 51988 48404 ≤ 0.02 120 6.89 6.89 6.89
ep3-20-L-R-50.3kp 20 9.9 10 31415 30037 24809 0.6 120 17.41 17.55 18.15
ep3-20-L-R-90.3kp 20 18.0 17 37570 37832 32892 29.8 120 13.06 14.98 16.80
ep3-20-U-C-50.3kp 20 9.9 10 154428 148412 91036 26.6 120 38.66 41.08 42.11
ep3-20-U-C-90.3kp 20 17.9 17 162251 152837 132291 0.2 120 13.44 16.15 17.04
ep3-20-U-R-50.3kp 20 9.9 10 140762 123675 97358 0.2 120 21.28 22.66 28.45
ep3-20-U-R-90.3kp 20 17.9 18 211545 209795 188691 26.3 120 10.06 10.06 10.06
ep3-40-C-C-50.3kp 40 19.7 29 224754 170318 141418 0.1 120 16.97 16.97 16.97
ep3-40-C-C-90.3kp 40 35.7 33 358993 252425 243447 0.6 300 3.56 3.56 3.56
ep3-40-C-R-50.3kp 40 19.8 22 202725 145067 126069 0.6 120 13.10 13.10 13.10
ep3-40-C-R-90.3kp 40 35.9 38 245888 226890 218971 11.0 300 3.49 3.49 3.49
ep3-40-D-C-50.3kp 40 19.9 22 34128 32520 20464 0.1 120 37.07 40.42 46.33
ep3-40-D-C-90.3kp 40 35.6 30 70302 63600 56124 113.9 300 11.75 14.08 14.34
ep3-40-D-R-50.3kp 40 19.2 24 35001 35803 28019 36.2 120 21.74 24.17 26.14
ep3-40-D-R-90.3kp 40 35.7 36 52769 53698 49476 244.0 300 7.86 9.11 9.81
ep3-40-F-C-50.3kp 40 19.9 19 225834 180302 161310 23.3 120 10.53 10.53 10.53
ep3-40-F-C-90.3kp 40 35.8 33 543292 473556 416467 3.4 300 12.06 13.36 14.06
ep3-40-F-R-50.3kp 40 19.7 21 312163 277727 238990 93.7 120 13.95 17.36 22.64
ep3-40-F-R-90.3kp 40 35.7 37 396059 400886 367045 282.3 300 8.44 8.78 9.60
ep3-40-L-C-50.3kp 40 19.6 21 80264 61222 56742 76.9 120 7.32 8.63 8.78
ep3-40-L-C-90.3kp 40 35.5 34 117699 115632 106602 223.6 300 7.81 8.71 9.90
ep3-40-L-R-50.3kp 40 19.9 21 61275 62931 50389 80.9 120 19.93 21.93 26.22
ep3-40-L-R-90.3kp 40 35.6 35 85517 87114 77514 235.2 300 11.02 11.97 13.10
ep3-40-U-C-50.3kp 40 20.0 20 216956 185028 164976 0.4 120 10.84 11.87 14.27
ep3-40-U-C-90.3kp 40 35.9 36 461920 442120 388456 78.5 300 12.14 12.14 12.14
ep3-40-U-R-50.3kp 40 19.8 20 271163 276228 242819 12.0 120 12.09 12.86 14.07
ep3-40-U-R-90.3kp 40 35.9 37 401482 408182 371662 286.9 300 8.95 9.58 10.52
ep3-60-C-C-50.3kp 60 29.7 37 363614 373341 252584 3.1 300 32.34 34.40 34.98
ep3-60-C-C-90.3kp 60 53.7 57 620658 534168 499572 92.8 600 6.48 6.48 6.48
ep3-60-C-R-50.3kp 60 29.8 44 303842 229567 224875 273.2 300 2.04 4.57 16.73
ep3-60-C-R-90.3kp 60 53.7 58 427077 415339 384302 49.4 600 7.47 7.80 7.97
ep3-60-D-C-50.3kp 60 29.2 38 90084 75732 65502 63.4 300 13.51 13.57 13.63
ep3-60-D-C-90.3kp 60 53.4 55 129504 115968 105540 450.7 600 8.99 9.01 9.02
ep3-60-D-R-50.3kp 60 29.4 41 56227 58185 49011 227.3 300 15.77 18.60 20.39
ep3-60-D-R-90.3kp 60 53.4 56 73109 74464 67202 337.1 600 9.75 10.21 10.70
ep3-60-F-C-50.3kp 60 29.7 40 522640 517890 467730 3.9 300 9.69 9.69 9.69
ep3-60-F-C-90.3kp 60 53.3 50 642192 616504 540732 145.3 600 12.29 12.92 14.60
ep3-60-F-R-50.3kp 60 29.6 30 437008 442187 378079 138.6 300 14.50 15.66 18.52
ep3-60-F-R-90.3kp 60 53.6 55 668571 685430 625362 413.5 600 8.76 9.65 10.02
ep3-60-L-C-50.3kp 60 29.6 34 131466 127740 119676 229.3 300 6.31 9.64 11.53
ep3-60-L-C-90.3kp 60 53.5 52 124652 127340 113107 226.8 600 11.18 12.09 13.08
ep3-60-L-R-50.3kp 60 29.3 29 74166 76856 62190 297.8 300 19.08 21.03 23.27
ep3-60-L-R-90.3kp 60 53.3 54 117361 120313 107270 373.4 600 10.84 11.67 12.06
ep3-60-U-C-50.3kp 60 29.6 34 430130 441418 361340 42.6 300 18.14 18.83 20.13
ep3-60-U-C-90.3kp 60 54.0 54 324792 343738 293852 181.7 600 14.51 15.57 16.70
ep3-60-U-R-50.3kp 60 29.7 31 452615 465935 396794 281.2 300 14.84 16.07 17.17
ep3-60-U-R-90.3kp 60 53.6 55 604852 618814 550375 531.6 600 11.06 11.67 12.17

153



7. Conclusion

ep3-20-C-C-50 ep3-20-L-C-90

ep3-40-D-R-90 ep3-40-U-R-50

ep3-40-F-R-90 ep3-60-L-C-50

ep3-60-U-C-50 ep3-60-U-R-50

Figure 10: Best results for 8 three-dimensional instances.
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performs extremely well by generating results with an average gap to our upper bound of less than
3.0%.

The heuristic for the three dimensional case demonstrates the potential for the sequence triple rep-
resentation. Exact methods are capable of solving small problems to optimality and tailored heuristics
based on greedy principles work well for container loading problems. The proposed local search based
heuristic performs very well for medium sized problems with an average gap to the upper bound of
only 13%.

The heuristics are generally able to return very good results for both two- and three-dimensional
problems within few minutes, and often within seconds for the classical two-dimensional benchmark
instances.

Acknowledgements

The authors wish to thank the anonymous reviewers for their many helpful and supporting comments.

References

[1] Alvarez-Valdes, F. Parre no, and J.M. Tamarit. A tabu search algorithm for two-dimensional
non-guillotine cutting problems. Technical Report TR07-2004, Universitat de Valencia, 2004.

[2] R. Alvarez-Valdes, F. Parre no, and J.M. Tamarit. A grasp algorithm for constrained two-
dimensional non-guillotine cutting problems. Journal of Operational Research Society, 56:414–
425, 2005.

[3] R. Baldacci and Marco A. Boschetti. A cutting-plane approach for the two-dimensional orthogo-
nal non-guillotine cutting problem. European Journal of Operational Research, 2006. Available
online.

[4] J. E. Beasley. A population heuristic for constrained two-dimensional non-guillotine cutting.
European Journal of Operational Research, 156:601–607, 2004.

[5] J.E. Beasley. Algorithms for two-dimensional unconstrained guillotine cutting. Journal of the
Operational Research Society, 36:297–306, 1985.

[6] J.E. Beasley. An exact two-dimensional non-guillotine cutting tree search procedure. Operations
Research, 33:49–64, 1985.

[7] M.A. Boschetti, E. Hadjiconstantinou, and A. Mingozzi. New upper bounds for the two-
dimensional orthogonal cutting stock problem. IMA Journal of Management Mathematics,
13:95–119, 2002.

[8] A. Caprara and M. Monaci. On the 2-dimensional knapsack problem. Operations Research
Letters, 1(32):5–14, 2004.

[9] N. Christophides and C. Whitlock. An algorithm for two dimensional cutting stock problems.
Operations Research, 25:30–44, 1977.

[10] R.S. Dembo and P.L. Hammer. A reduction algorithm for knapsack problems. Methods of
Operations Research, 36:49–60, 1980.

155



References

[11] S. P. Fekete and J. Schepers. A new exact algorithm for general orthogonal d-dimensional knap-
sack problems. In Algorithms ESA ’97, Springer Lecture Notes in Computer Science, volume
1284, pages 144–156, 1997.

[12] S. P. Fekete and J. Schepers. On more-dimensional packing III: Exact algorithms. submitted to
Discrete Applied Mathematics, 1997.

[13] S. P. Fekete and J. Schepers. A general framework for bounds for higher-dimensional orthogonal
packing problems. Mathematical Methods of Operations Research, 60:81––94, 2004.

[14] S. P. Fekete, J. Schepers, and J. C van der Veen. An exact algorithm for higher-dimensional
orthogonal packing. Operations Research, 3(55):569–587, 2007.

[15] E. Hadjiconstantinou and N. Christophides. An exact algorithm for general, orthogonal, two-
dimensional knapsack problems. European Journal of Operational Research, 83:39–56, 1995.

[16] M. Hifi. Two-dimesional (un)constrained cutting stock problems. http://www.laria.u-
picardie.fr/hifi/OR-Benchmark/2Dcutting/, 2006.

[17] H.Murata, K.Fujiyoshi, S.Nakatake, and Y.Kajitani. Vlsi module packing based on rectangle-
packing by the sequence pair. IEEE Transaction on Computer Aided Design of Integrated Cir-
cuits and Systems, 15:1518–1524, 1996.

[18] S. Jakobs. On genetic algorithms for the packing of polygons. European Journal of Operational
Research, 88:165–181, 1996.

[19] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin, Germany, 2004.

[20] K. K. Lai and J. W. M. Chan. Developing a simulated annealing algorithm for the cutting stock
problem. Computers and Industrial Engineering, 32:115–127, 1997.

[21] K. K. Lai and J. W. M. Chan. A evolutionary algorithm for the rectangular cutting stock problem.
International Journal on Industrial Engineering, 4:130–139, 1997.

[22] T.W. Leung, C. H. Yung, and M. D. Troutt. Applications of genetic search and simulated an-
nealing to the two-dimensional non-guillotine cutting stock problem. Computers and Industrial
Engineering, 40:201–204, 2001.

[23] T.W. Leung, C. H. Yung, and M. D. Troutt. Application of mixed simulated annealing-genetic
algorithm heuristic for the two-dimensional orthogonal packing problem. European Journal of
Operational Research, 145:530–542, 2003.

[24] D. Mack, A. Bortfeldt, and H. Gehring. A parallel hybrid local search algorithm for the container
loading problem. Internatinal Transaction in Operations Research, 11:511–533, 2004.

[25] S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip packing problem. IN-
FORMS Journal on Computing, 3(15):310–319, 2003.

[26] S. Martello, D. Pisinger, D. Vigo, E. den Boef, and J. Korst. Algorithm 864: General and
robot-packable variants of the three-dimensional bin packing problem. ACM Transactions on
Mathematical Software, 33:1–7, 2007.

156



Heuristic approaches for the two- and three-dimensional knapsack packing problem

[27] A. Moura and J. F. Oliveira. A grasp approach to the container-loading problem. IEEE Intelligent
Systems, 20(4):50–57, 2005.

[28] D. Pisinger. A minimal algorithm for the 0-1 knapsack problem. Operations Research, 45:758–
767, 1997.

[29] D. Pisinger. Heuristics for the container loading problem. European Journal of Operations
Research, 3(141):382–392, 2002.

[30] D. Pisinger. Denser packings obtained in O(n log log n) time. INFORMS Journal on Computing,
19:395–405, 2007.

[31] D. Pisinger and M. Sigurd. The two-dimensional bin packing problem with variable bin sizes
and costs. Discrete Optimization, 2:154–167, 2005.

[32] D. Pisinger and M. M. Sigurd. Using decomposition techniques and constraint programming for
solving the two-dimensional bin packing problem. INFORMS Journal on Computing, 19:36–51,
2007.

[33] G. Wascher, H. Haussner, and H Schumann. An improved typology of cutting and packing
problems. European Journal of Operational Research, 2007. Available online.

[34] X.Tang and D.F.Wong. Fast-sp: a fast algorithm for block packing based on sequence pair. In
Asia and South Pacific Design Automation Conference, 2001.

[35] X.Tang, R.Tian, and D.F.Wong. Fast evaluation of sequence pair in block placement by longest
common subsequence computation. In Proceedings of DATE 2000 (ACM), Paris, France, pages
106–110, 2000.

[36] P. Y.Wang. Two algorithms for constrained two dimensional cutting stock problems. Operations
Research, 31:573–586, 1983.

157





Submitted. 2007

Heuristics for container loading of furniture
Jens Egeblad (jegeblad@diku.dk), Claudio Garavelli (c.garavelli@poliba.it),

Stefano Lisi (s.lisi@poliba.it), David Pisinger (pisinger@diku.dk)

Abstract

We consider a real-life container loading problem which occurs at a typical furniture producer.
The problem is to determine an optimal subset from a larger set of furniture which can be loaded
into a container of given dimensions. Each item has an associated profit and a loadable subset of
items with maximal total profit is considered optimal. In the studied company, the problem arises
during the planning of transportation of products to clients hundreds of times daily. The instances
may contain more than one hundred of different items with irregular shapes. Large-sized items are
combined in specific structures to ensure proper protection of the items during transportation and
to reduce the complexity of the remaining problem. We have developed a method composed of
several heuristics which are applied successively to the problem. The average loading utilization
is 91.3% for the most general instances with average running times around 100 seconds.
Keywords: Packing, Combinatorial Optimization, Logistics, Transportation, Heuristics .

1 Introduction

The container loading optimization problem is a central problem in the industry, where it appears
in various formulations like bin-packing, knapsack packing, container loading and multi-container
loading. Surveys on packing problems were presented by Dyckhoff et al. [24] or Wäscher et al. [62].

In this paper we consider container loading of pieces of furniture. The problem occurs at a typical
furniture producer and solutions to hundreds of such problems every day may be required. Solu-
tions must be generated within minutes on commodity hardware. Items may have non-rectangular
(irregular) shapes and each item has an associated profit value to describe how desirable it is to load.

The problem we address can be formulated as a three-dimensional knapsack packing problem with
irregular shapes; Given a consignment of items and container dimensions W , H and D, the objective
is to determine the maximal profit subset of the consignment, which can fit inside the container. It
is easy to see that, since the one-dimensional knapsack problem is NP-hard (see e.g [41]), the three
dimensional variant is also NP-Hard. In the typology by Wäscher et al. [62] the problem belongs to
the category strongly heterogeneous three-dimensional Single Knapsack Problem (SKP) with irregular
shapes.

Items (products produced) are divided into three different categories:

Figure 1: Example of irregular items to be loaded.
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Figure 2: Example solution with more than 300 items and our coordinate system convention.

• Large: Irregularly shaped items such as armchairs, 2- and 3-seat sofas, chaise lounges and
corners which are used to combine two segments of a sofa to a corner-sofa. To avoid damage
during transportation, items must be placed in a stable location and only a specific set of rota-
tions are allowed. The validity of a position and rotation may also depend on the surrounding
items. See Figure 1.

• Medium-sized: Box-shaped robust items, such as ottomans. All six possible axis-aligned rota-
tions are allowed.

• Small: Small accessory box-shaped items or items loaded in cardboard boxes, e.g. vases, lamps
and glass-plates for tables. These items have different levels of fragility and may be allowed
only a subset of the six possible axis aligned rotations.

An example solution with more than 300 items from all three categories is illustrated on Figure 2. For
a problem instance we let L, M, S and I = L∪M∪S be the sets of large, medium, small items and all
items respectively. Instances are generally weakly heterogeneous and we let L , M , S and I be the
different types of large, medium, small and all items respectively.

Although all items i ∈ I have an associated profit pi, large items are always more desirable than
medium-sized items which in turn are more desirable than small-items.

In this paper we present a new strategy for handling problems with three-dimensional irregular
shapes based on combination and simplification of items. This is achieved by a geometric algorithm
and heuristics that generate building blocks called templates. To place large items we also introduce
a new simple paradigm called quad-walls, which uses templates for efficient placement.

Our solution method is divided into several steps; during a preprocessing stage combinations of
large items are determined. Then a tree-search heuristic finds an initial solution of L. A local search
heuristic is used to refine the initial solution and ensure stability. Next, medium-sized items are
placed using a greedy-approach. Finally, small items are placed at the end of the container, using a
wall-building heuristic, and in remaining free space, using a greedy heuristic.

This paper is organized as follows: First, we present an overview of previous relevant work in
Section 2. Then, in Section 3 we present an overview of our heuristic method and devote a section
to each step of the optimization process in Section 4 to 10. Finally, in Section 11 we present the
experimental results followed by a conclusion in Section 12.
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2 Related Work

While the three-dimensional knapsack problem with irregular shapes that we study in this paper has
not been studied in the literature, several variants of the problem have been investigated since the
seminal work of Gilmore and Gomory [32] in the 1960’s.

For two- and three-dimensional packing the most common problem definitions are: Container
loading, pallet packing, strip-packing, bin-packing and knapsack-packing. In general some or all
container dimensions are given and one must find a placement of items such that the items do not
overlap and some objective is minimized or maximized. The problems are also commonly NP-hard.
In the following we discuss prior work in each related problem category.

2.1 Knapsack-packing

In the one-dimensional knapsack problem one is given a maximal weight W and a set of items each
with an associated weight wi and profit pi,and a subset of the items I′ ⊆ I must be selected such that
∑i∈I′ wi ≤W and z = ∑i∈I′ pi is maximized.

In the two- and three-dimensional knapsack problems we are given container dimensions, W ×
H(×D), and a set of rectangular items. Each item has an associated profit value and one has to select
a maximal profit subset of the items that can be placed in the knapsack without overlap.

While the one-dimensional knapsack problem has been thoroughly investigated (see e.g. [41]),
the multi-dimensional variants have received less attention. Although we are unaware of work within
the field of irregular shapes some work has been done with rectangles and boxes.

Several Integer Programming formulations for two-dimensional knapsack problem exists (see e.g.
[4, 11, 37]), but they generally suffer from large numbers of integer variables, and numerous symmet-
ric solutions.

A general approach for packing problems with rectangular items was proposed by Fekete and
Schepers [26, 27, 28]. Among the list of problems they are able to solve are multidimensional knap-
sack problems. Their approach is a branch-and-bound algorithm which assigns items to the knapsack
without specifying the position of the rectangles. For each assignment of items an advanced graph rep-
resentation is used to decide if a feasible assignment of coordinates to the items is possible. A branch-
and-bound algorithm for the two-dimensional knapsack problem was also developed by Caprara and
Monaci [17]. As in the work by Fekete and Schepers, items are assigned to the knapsack without
specifying the position of each item and an enumeration scheme from Martello, Monaci, Vigo [46] is
used to ensure feasibility.

In the area of heuristics Egeblad and Pisinger [C] use the sequence-pair (see [49, 54, 63]) to
represent two-dimensional feasible placements and a novel representation for three dimensions. Rep-
resentations are modified with Simulated Annealing. Also Alvarez-Valdes et al. [1, 2] applied both
GRASP and Tabu-search to the two-dimensional knapsack problem with very impressive results.

2.2 Container Loading

A specific version of the three-dimensional knapsack problem is the container loading problem (CLP).
Here the “profit” value of each item is equal to its volume. Thus the objective is to maximize the
utilization of the container volume.

Solution methods for the container loading problem often utilize a form of wall-building technique
originally introduced by George and Robinson [31]. In wall-building the container is filled in the depth
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with walls of items. Each wall has dimensions W ×H× di where di is the depth of the ith wall. For
each wall one usually selects a layer defining box (LDB) and let di be the depth of that box.

Once the depth of the wall has been determined it is filled either by considering the simpler
three-dimensional packing problem ([29]), or a two-dimensional packing problem. While George
and Robinson [31] solves the two-dimensional packing problem by placing items in shelves, Pisinger
[53] divides the wall into horizontal and vertical strips and each strip is packed by solving a one-
dimensional knapsack problem.

Generally the wall-building approaches rely heavily on selection of the LDB and efficient strate-
gies for packing each wall. Bischoff and Marriott [7] compare different ranking functions for the LDB,
without determining a clear winner. This illustrates the need to elaborate on the greedy strategy, and
much better results are achieved when LDB-selection is integrated with metaheuristics. Experiments
have been conducted with genetic algorithms ([29]), tabu-search ([10]), and tree-search ([53]).

While the advantage of wall-building is that the problem is reduced to simpler sub-problems, wall-
building strategies commonly suffer from the fact that space is lost when items do not fully utilize the
depth of a wall.

Several authors have suggested alternative ways to represent free space in the container. Morabito
and Arenales [47] suggest a slicing tree representation, where each tree corresponds to a guillotine cut-
ting of the container and the leafs represent single boxes. Gilmore and Gomory [32] arrange boxes in
towers which are placed on the container floor, thus reducing the problem to two dimensional packing.
This strategy is also used with the genetic algorithm by Gehring and Bortfeldt [30]. Scheithauer [56]
use a three-dimensional contour representation along with a form of dynamic programming. Ngoi
et al. [50] use a matrix for each cross section in the height of the container to represent free space.
Bischoff [8] later simplified this apporach by representing the available height for every location with
just one matrix. Eley [25] use a list of available space, which is updated each time a new block of
boxes is placed. An interesting approach was also suggested by Terno et al. [59], where layers are
build using a non-slicing structure for two-dimensional packing called M4.

While methods for multidimensional knapsack problems generally work well with less than 50-
100 items, heuristics for container loading problems are typical geared to problems with 100-200
items. At the time of writing, some of the highest utilization values have been achieved by Mack et
al. [45] using a parallelized hybrid of tabu-search and simulated annealing running on 64 processors
which utilizes the advanced wall-building procedure of [29]. In general they achieve higher than 90%
utilization. Some of the best results with a non-parallel method were achieved by Moura and Oliveira
[48] with overall utilization slightly below 90%.

2.3 Irregular Shapes

Most methods that consider packing of irregular shapes are made for the nesting problem, which is
the problem of arranging a set of irregular shapes on a two-dimensional strip with fixed height and
minimal width. The majority of successful heuristics for the nesting problem are iterative but can be
roughly divided in two segments; legal and relaxed methods. Legal methods iteratively try to improve
feasible solutions while relaxed methods also incorporate infeasible solution in which items overlap
during the solution process.

In general shapes are represented by polygons. Art [3] was among the first to consider legal
placement. He used an envelope-principle, which, for a partial solution, defines the legal positions
of the next polygon. Legal placement methods also often utilize another concept; the so called no-
fit polygon (NFP). Given two polygons P and Q the NFP can be defined as NFP(P,Q) = {p− q |
p ∈ P,q ∈ Q}, which is the set of translations of Q such that P and Q overlap. Note that the NFP
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is closely related to the Minkowski-sum. For two point sets A and B the Minkowski-sum is the set
{a+b | a ∈ A, b ∈ B}, which means that the NFP is the two-dimensional Minkowski-sum where one
polygon has been inverted in both axes.

Several methods places items sequentially using the NFP. Oliviera et al. [52] and Dowsland et al.
[23] generates a sequence by heuristically estimating how well a piece fits with the next position.

Other authors used a modification scheme where the sequence is iteratively modified and re-
evaluated. Blazewicz et al. [9] used tabu-search. Burke and Kendall [13, 14, 15] used the NFP with
ant-colony algorithms, simulated annealing and evolutionary algorithms and more recently Burke et
al. [12] used tabu-search and hill-climbing.

Also more problem specific heuristics have been investigated. Gomes and Oliveira [35] used a
2-exchange heuristic. Dowsland et al. [22] used a “jostling” mechanism where the placement is al-
ternately generated left-to-right and right-to-left, based on the sequence of the previous placement.
Recently, Gomes and Oliviera [36] used a combination of simulated annealing and linear program-
ming to generate impressive results.

A number of researchers have considered infeasible solutions during the solution process. Here
overlap of shapes is allowed but iteratively reduced. Once the total overlap has been reduced to
0, a feasible solution has been reached. Several authors have experimented both with a simplified
raster-model and geometric models for measuring overlap. Lutfiyya et al. [44] use a raster model in
conjunction with simulated annealing. Later Oliveira and Ferreira [51] experimented with both raster
and geometric models. Dowsland and Bennel al. [5, 6] experimented with intersection depth as a
measure of overlap, and combined LP-compaction methods by Li and Milenkovic [43] and the NFP
for faster evaluation. A particular ambitious heuristic with relaxed placement is the 4-stage simulated
annealing by Heckmann and Lengauer [38]. Lately, Egeblad et al. [A] use the metaheuristic Guided
Local Search combined with a fast geometric algorithm to determine a minimal-overlap horizontal
and vertical translation of a polygon. Currently the best results in the literature are evenly divided
among this work and the work by Gomes and Oliveira [36].

2.3.1 Irregular 3D-packing

Three-dimensional packing of irregular shapes has received far less attention. Methods generally
represent surfaces of shapes by triangle-mesh structures.

Ikonen et al. [39, 40] were among the first to consider optimization problems with irregular three-
dimensional shapes. They proposed to use genetic algorithms with a relaxed placement method based
on triangle intersection. Cagan et al. [16] also use a relaxed placement method, but with simulated
annealing and spatial octrees (see e.g. [19]) to quickly determine pairwise overlap. Dickinson and
Knopf [20, 21] use a legal placement method where items are placed sequentially, and each item is
placed with an individual optimization heuristic, but the sequence is only placed once. Also Stoyan
et al. [58] use a serial packing method. They have generalized the concept of φ-functions (which is
a form of description of overlapping area similar to the NFP) to three dimensions. Recently, Egeblad
et al. [A] generalized their 2D relaxed placement method to three dimensions with results surpassing
those of Ikonen et al. and Dickinson and Knopf both in speed and quality.

2.4 Weight and Stability Considerations

Gehring and Bortfeldt [30] consider a set of constraints which are important with respect to the place-
ment of items. The constraints they consider are: Items may be placed only on top of a stack with
sufficient bearing strength to accommodate it. Some items may only be stacked a limited number of
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Figure 3: The different stages of the solution process

times on top of each other. Some items may only be at the top of a stack. Since strength of an item
depends on its orientation, only a limited number of item-depending orientations may be used. Items
must be loaded such that they do no drop to the floor during transportation. The center of gravity of
the overall placement must coincide with the center of the container for transportation with trucks and
airplanes.

The approach by by Gehring and Bortfeldt [30] was based on building stacks which makes it
relatively simple to accommodate most of these constraints. To handle the COG constraints they
divided the container space into layers (walls) parallel to the back of the container. Once volume-
optimization is complete, individual walls are interchanged, mirrored or rotated by 180 degrees to
move the COG within the demanded range.

Davies and Bischoff [18] combined the items into deeper layers called blocks and determined a
good permutation of the blocks by random search. Eley [25] also apply this principle and reports that
only 3-4 blocks are required in order for items to be placed acceptably with respect to the center of
gravity.

A weight considereration technique by Ratcliff and Bischoff [55] was later refined by Bischoff [8]
to use a matrix representation to describe not only the available space for each region of the floor but
also the bearing-strength of each region. As the heuristic is constructive it is easy to ensure that items
are positioned without violating load constraints.

3 Solution Process

Our solution process is divided into a number of stages which we outline in this section. The process
completes the stages illustrated on Figure 3 one at a time from left to right. In the initial stages the
heuristic considers mainly large items. Once a placement for large items is determined medium and
small items are considered.

During a preprocessing step the full three-dimensional structure of the items is analyzed to de-
termine how items can be placed relative to each other. To simplify the task of placement, item
geometry is reduced for the following stages. The last three stages consider only box-items, but a set
of constraints apply to the small items which make them complex to handle.

Each stage of the optimization process is described in the following:

1. Preprocessing (L). Generation of set of templates which describe sub-placements of items. See
Section 4.

2. Quad-wall bulding (L). A tree-search heuristic which fills the container by selecting four
templates which fit next to each other in the width and height of the container (quad-wall)
determines a placement of large items. See Section 6.
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Figure 4: The triangle mesh-structure of an item shown here in the item-coordinate system.

3. Local search (L). Refinement of the quad-wall solution occurs via a local search heuristic for
large items as described in Section 7.

4. Stability (L). A special local search heuristic, described in Section 8, ensures stability of the
solution generated in step 3.

5. Greedy algorithm (M). Once the large items have been placed we proceed to place medium-
sized items between and above large items with a greedy algorithm described in Section 9.1.
As explained in Section 9.2 this algorithm is also used to evaluate placement of large items.
This is indicated on Figure 3 by the area below the three first heuristic steps, which protrudes
into the “Greedy algo.” step.

6. Wall-building (S). The available space at the end of the container, which is maximized dur-
ing the first stages, is filled with small items using a traditional wall-building heuristic to be
described in Section 10.2.

7. Greedy algorithm (S). Remaining small items which are robust enough to be placed on top of
large items, are placed using the greedy algorithm of step 5, as described in Section 10.3

3.1 Item Representation

Although three-dimensional shapes may be represented in different ways, we have chosen a triangle-
mesh structure (mesh). Here the surface of the items is represented by a list of triangles in space (See
Figure 4).

Collecting triangle meshes is a complex problem. Although laser-scanning was considered we
settled on parametric models. A set of approximately 50 parameters (measures) per item, taken from
the physical model, are converted by a mesh-generation algorithm to a mesh of the item. In the
problem studied, only large items are represented by meshes, since other items are packed as boxes.

4 Preprocessing

Prior to optimization, large items undergo two types of analysis; Geometric analysis and template
building. The geometric analysis is used to determine where item-types must be positioned relative
to each other to avoid overlap. Template building is used to create suitable sub-placements of a few
large items, which are used to simplify the problem.
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4.1 Geometric analysis

The geometric analysis determines non-overlapping compact placements of items relative to each
other. Although several combinations could be considered, we only consider placements of two shapes
(pairs), such that their surfaces are in contact with each other.

If rotation angles are fixed, the boundary of the three-dimensional Minkowski-sum of A and the
inverse of B, describe all surface-contacting translations of B relative to A – Like the NFP in two
dimensions (see Section 2.3). For non-convex polyhedra with respectively m and n features the com-
binatorial complexity of the Minkowski-sum can be as high as O(m3n3) (see e.g. [57]) and thus this
is an expensive operation.

To simplify the problem, we take advantage of the fact that the shapes we consider describe mainly
sofas. When loaded in the bottom of the container, a sofa is first rotated 90 degrees around the x-axis
(see Figure 4) and placed with its armrest on the container floor. Therefore the following conditions
apply:

• Both items must stand on the ground, so only a two-dimensional set of relative translations may
be allowed.

• Fragile parts of sofas must point towards each other, for protection during transportation.

• The items are generally semi-convex sofa-shapes which limits the number of possible relative
positions. In general, for every relative x-translation we assume that there is one and only one
acceptable y-translation.

Let meshes A and B (e.g. sofas or chairs) be defined as in the coordinate system on Figure 4. Although
meshes are rotated around the x-axis when the pairs are placed inside the container we omit this step
here, so one should imagine in the remainder that the xy-plane is the container floor. We let Bπ be B
rotated 180◦ around the z-axis, so that the fragile parts (the seats) of A and Bπ can point towards each
other.

The legal translations of Bπ are those where Bπ touches A and Bπ has its seat pointing towards
A. We begin by translating A and Bπ in the z-direction such that the minimal z-coordinate of their
bounding-boxes is 0. Then for any x-translation of Bπ we wish to find the minimal y-translation such
that Bπ does not overlap with A. Figure 5 shows this y-translation as a function of x-translation. This
function represents all the different possible pairs, we are allowed to consider, and Figure 6 illustrates
five of these pairs.

To calculate the function we commence as follows: First let A′ be the triangles from A with
upwards pointing normal (y > 0) and B′ be the triangles from Bπ with downwards pointing normal
(y < 0). All other triangles represent parts of the surfaces which point away from the opposite mesh.

For every triangle t ∈A′ and every corner point, p = (px, py, pz), of a triangle from B′ we determine
the intersection of t and the plane z = pz. This is either the empty set, a single point, or a line-segment
which can be described by a linear function f p,t(x) on a closed interval Jp,t = [J1

p,t ,J
2
p,t ], that gives

the line’s y-coordinate for every x-coordinate. Assume the intersection is a line-segment and define
fp,t(x) = f p,t(x− px) and Jp,t = [J1

p,t − px,J2
p,t − px], then for every x ∈ Jp,t , p + (x, fp,t(x),0) ∈ t.

I.e. (x, fp,t(x),0) is the required translation of p, such that p touches t. If the intersection is not a
line-segment define Jp,t = /0.

We also determine fp,t(x) in x for every corner point, p, of any triangle in A′ and every triangle t
in B′, i.e. the opposite set of linear functions.

Now we loop over all pairs of edges, (ea,eb), with positive x extent, from triangles in A′ and
triangles in B′ respectively. For every edge pair ea and eb we determine a function fea,eb and half-open
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Relative Pair Positions

Figure 5: Example output of the pairing algorithm described in Section 4.1. Two copies of the mesh
from Figure 4 are paired together and the output is a piecewise linear function describing relative
y-position for every relative x-position.

Figure 6: Five different pairs which arise from the piecewise linear pair-function in Figure 5.

interval Jea,eb such that eb translated x ∈ Jea,eb along the x-axis and fea,eb(x) along the y-axis intersects
with ea.

For each linear function set fp,t(x) = −∞, x /∈ [J1
p,t ,J

2
p,t) and fea,eb(x) = −∞, x /∈ Jea,eb . Let F be

the set of all such linear functions and define the piecewise linear function fall(x) = max f∈F f (x), as
the maximum y-coordinate of any f ∈ F and for every x. The function fall(x) can be generated in
time O(|F |2) since every f ∈ F is a line segment. In total the number of line segments generated is
O(|A′||B′|) and the total running time is O(|A′|2|B′|2).

Let B(x,y) be Bπ translated (x,y,0) units. Now for x ∈ (−∞,∞) the set of translations (x, fall(x),0)
are translations of Bπ such that one or more edges or point of a triangle in B(x, fall(x)) touches A but
no triangle of B(x, fall(x)) intersects A.

4.2 Template building

The second part of the preprocessing stage determines a large set of feasible and stable sub-placements
of items which we call templates. A template t represents a placement of items of different types and
simplify the inner-portions of our heuristics by reducing the number of geometric computations and
making it easier to ensure overall stability.

For a template t, let (t1, . . . , tn) be its item-types with t i ∈ L for i = 1, . . . ,n and let |t| = n be the
number of its item-types. For each t i, i = 1, . . . , |t|, the template also contains the relative position and
rotation of t i. Let T be the set of templates. For a template t ∈ T we let tp be the total profit of its item
types. Let w(t), h(t), d(t) be the dimensions of t’s minimal axis-aligned box, [0,w(t)]× [0,h(t)]×
[0,d(t)], which contains its items (bounding-box).

If the template is used at a position p ∈ R3 items matching each of the item-types t i are placed
relative to p and orientated as in the template. We refer to the positioned sub-placement of items as a
bundle and define the bounding-box a bundle b as [bx1,bx2]× [by1,by2]× [bz1,bz2].

Since the same set of item-types may be combined in many different ways, we group similar tem-
plates. For a tuple (t1, . . . , tn) of item-types we let R(t1, . . . , tn)⊆ T be the set of templates containing
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the item-types t1, . . . , tn. For t ∈ T we let R(t) be the set of templates containing the same item-types
from t and we say that s, t ∈ T are related if and only if s ∈ R(t).

During this stage many templates are generated in each of the following categories: Singletons,
stacks, pairs based on the geometric analysis of Section 4.1, pairs of stacks, user-defined templates
and fused templates.

For every item-type i ∈ L a singleton template containing only i is generated for each allowed
rotation. An example singleton-template is depicted in (Figure 7 (a)).

Stacks, as shown in Figure 7 (b), are generated by a recursive algorithm that adds item-types on
top of each-other until the container height is reached. All such possible templates are constructed.
The bounding-box of the meshes is used to avoid overlap when stacking. To limit the number of
templates an item is not allowed on top of a shorter item. Because items are large, stacks commonly
contain less than four items.

The geometric analysis (see Section 4.1) returns all possible legal pairs between any two sofa
item-types as illustrated in Figure 7 (d). To limit the solution space, only a low number of these pairs
are used as templates. The pairs chosen are: P1: Pair with minimal bounding-box volume. P2: Pair
which fills the container in the width next to P1 (maximal sliding). P3 and P4: rotated versions of
P1 and P2 (around y-axis). P5: Pair which occupies half the container width. Although more pairs
theoretically allow for better solutions, experiments showed that in practice they tend to have the
opposite effect – Presumably because the size of the solution space is increased.

Pairs of stacks (See figure 7 (e)) are built by combining the techniques for pair and stack construc-
tion. To limit the number of combinations the stacks are build by adding items one-by-one in order
of non-increasing height to the smallest stack. Once the composition of the two stacks have been
determined possible combinations are determined using the geometric analysis of Section 4.1 similar
to pairs.

Because items in our context have a soft surface, geometric analysis is not as accurate as physical
measurements and so there is a great advantage in using measured data. In our implementation we
have around 40 different kinds of user-defined templates for which the user can specify the constituent
types, width, height and depth of the template. See Figure 7 (c) for an example of a user-defined
template.

Finally, for reasons which will be clarified in Section 5, the templates of the previous categories are
also fused heuristically together along the x-axis to form new templates (See Figure 7 (f)). Specifically
any pair of constructed templates are fused if there is room for a third template in the container width.
This process is recursive over all templates and may generate new larger templates which are fusions of
many narrow templates. To ensure that not too many combinations are generated, this preprocessing
step begins by repeating similar templates and continues to combine distinct templates where the
resulting utilization will be high. This process stops once f fused templates have been created. We
discovered that f = 2000 is an adequate number.

In general a template is generated for each allowed orientation of the templates described in the
prior sections. This implies a discrete rotational model — not all rotations are possible. This limitation
works well with the real-life situation, where only a limited number of rotations may be allowed for
some templates or items for quality assurance reasons. For every template at least a y-axis rotated
variant will also be generated.
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(a) (b) (c) (d) (e) (f)

Figure 7: Examples of templates.

(a) (b) (c)

Figure 8: Contours (b and c) of a template (a).

5 Sequence Representation

Due to the size of large items there is generally only room for at most two pair-templates in the width
and height of the container. Therefore we limit the possible ways a template can be placed in the in
xy-plane to four alignments numbered 1−4 matching the four corners lower-left, lower-right, upper-
left and upper-right. A solution of n large items may be represented as a sequence of template and
alignment pairs of the form < (t1,a1), . . . ,(tn,an) > for t ∈ T and a∈ {1, . . . ,4}. To convert a sequence
into a placement templates are placed one-by-one in the order of the sequence.

Assume we apply template t to place bundle b then we proceed as follows. First we determine x
and y-extents of a such that (bx1,by1), (bx2,by1), (bx1,by2) and (bx2,by2) coincide with (0,0), (0,W ),
(H,0) and (H,W ) for respectively the lower-left, lower-right, upper-left and upper-right alignments.
To determine the z-extent the set of current bundles, B, is considered. Let B′ ⊆ B be the set of bundles
for which [bx1,bx2]× [by1,by2] overlaps in the xy-plane. Then b is placed such that bz1 = maxb′∈B′ bz2.

Realizing an entire sequence of n templates takes O(n2) since this process takes O(|B|) time
for each template, however if bundles are sorted and searched in order of highest z, finding the z-
coordinate generally requires only evaluation of a few top placed bundles, since the search may stop
once all templates have lower z-coordinate than the current maximum.

As an alternative to alignments, templates could be placed according to some greedy principle.
However, this strategy easily ruins the entire solution if for instance two templates are exchanged
whereas alignments help maintain locally optimal placements.

It is easy to determine a lower z-coordinate than the one arising from the use of bounding-boxes.
Since the x- and y-coordinate of each item within the template are fixed once the template is aligned
one can search for a collision along the z-axis, using the meshes of each template. This operation is
computationally expensive and in the sequel we describe how it can be quickened by reducing to two
dimensions and caching values.
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(a)

(b)

Figure 9: A substantial amount of space can be recovered by using the contours of templates to
determine required distance between bundles (b) rather than the bounding-box (a).

5.1 Profile Considerations

Rather than considering the full three-dimensional structure of templates we reduce the collision de-
tection problem to a two-dimensional problem. This strategy works by considering either the xz-plane
or yz-plane, but the techniques are similar and we will only describe the approach for the xz-plane
here.

For each template t we generate a contour of its extreme points in the xz-plane (see Figure 8).
Let tT be the set of triangles of the positioned and oriented meshes of items in t. Let tu(x) = max{z |
∃y, s ∈ tT : (x,y,z) ∈ s} be the value of the maximal z-coordinate of any point on a triangle in tT that
overlaps with x (Figure 8 (b)), and let tl(x) = min{z | ∃y, s ∈ tT : (x,y,z) ∈ s} (Figure 8 (c)). tl and tu
are piecewise linear functions which can be constructed from the edges of each triangle.

For a bundle b of a template t, define the translated contours bu(x) = tu(x−bx1)+bz1 and bl(x) =
tl(x− bx1). Now assume, we have aligned a bundle b′ (only x- and y-coordinates have been de-
termined). Then if we place b′ b′z1 = maxx bu(x)− b′l(x) the templates of the two bundles will not
overlap.

Since the items we consider generally consists of surfaces which are not completely parallel to the
coordinate system planes, a considerable amount of space in the container can be saved by this simple
strategy, as seen in Figure 9. On the other hand the nature of the items are such that little, if anything,
would be gained by considering a full three-dimensional collision detection.

5.2 Caching

The piecewise linear functions tu and tl are calculated for all templates during preprocessing. With
many thousands of templates precalculation of required distance between all template-pairs for any
relative position is not a viable approach. However, since templates can only be aligned to the left and
right side of the container a template can only be placed with two different x-coordinates. Therefore
there are only four possible ways the templates can be positioned relative to each other in the x-
direction.

Additionally, when the required distance between two templates is calculated as in Section 5.1,
it is stored in a binary search tree for later use. Additionally, if accurate physical measures for two
templates are known, these can be inserted into the data structure during preprocessing.
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4. Upper−right

2. Lower−right1. Lower−left

3. Upper−left

Figure 10: A quad-wall consists of up-to 4 templates that may be placed in the four alignment
corners.

6 Quad-Wall Building

The first step of the heuristic consists of a tree-search algorithm for large items. The tree-search
algorithm fills the container in the depth by determining good ‘walls’ consisting of four templates
(quad-wall). Each quad-wall is ranked according to how well it fills the width and height of the
container. Quad-walls are appended in the depth until the container is full at which point the tree-
search heuristic backtracks and uses walls with less rank.

It is important to note that, unlike traditional wall-building schemes, quad-walls have no bound-
aries in the z-direction and, when placed, their constituents are pushed as far back in the container as
possible as described in Section 5. Another important element is that the constituents of a quad-wall
are repeated a number of times in the depth, but not necessarily an equal number of times. Determi-
nation and realization of walls are described in the following sections.

6.1 Quad-Wall Selection

A quad-wall is a combination of templates that can fit next to each other in the width and the height of
the container. In practice the most commonly used type of template is a pair. Using the same argument
as in the start of Section 5 there is commonly only room for up-to four different templates in the width
and height of the container (see Figure 10).

Since the number of templates in some instances can reach 30,000 the number of combinations of
four templates could be as high as 30,0004, and it is intractable to evaluate all possible walls within
reasonable time. Rather, we use an additional tree-search heuristic to find high-quality walls. A
fundamental part of evaluating walls is to rank individual templates. For a template t ∈ T we define
rank(t) = p(t)

h(t)d(t) , which indicates how profitable t is per height and depth unit.
Quad-walls are constructed by assigning a template to each of the corners in the order lower-left

(1), lower-right (2), upper-left (3) and upper-right (4). A partial wall, < t1, . . . , ti > for i = 1, . . . ,4, is
an assignment of a template t j ∈ T ∪{nil} to each corner j, j = 1, . . . , i. A corner j may be empty if
t j = nil. The templates that may be assigned to corner i depend on the assignment of templates to the
first i−1 corners. Let Ti(< t1, . . . , ti−1 >)⊆ T be the set of templates allowed at corner i if templates
t1, . . . , ti−1 have been assigned to corners 1 to i−1.

The search begins by ranking all partial walls containing lower-left templates t1:

rank1(< t1 >) = rank(t1)+ max
t2∈T2(<t1>)

rank(t2)+ max
t3∈T3(<t1>)

rank(t3). (1)

The set T2(< t1 >) depends only on the width of t1. Therefore all templates allowed in the lower-right
corner can be stored in a balanced search-tree with width as key, and the best ranked t2, given the
width of t1, can be found in time O(log |T |). A similar argument holds for t3. This way each template
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can be evaluated in O(log |T |) time. Let T 1 be the at most m1 best ranked walls with a lower-left
template where m1 is a parameter for the heuristic.

The heuristic then proceeds recursively to rank walls with templates assigned to the remaining
corners. Define ranki(< t1, . . . , ti >) of a partial wall consisting of i templates as:

ranki(< t1, . . . , ti >) =
{

rank(ti)+maxt∈T4(<t1,...,ti>) rank(t) for i = 2,3
rank(ti) for i = 4

, (2)

and let T i(< t1, . . . , ti >) be the set of at most mi best ranked partial walls with respect to ranki(<
t1, . . . , ti−1, ti >) for ti ∈ Ti(< t1, . . . , ti−1 >), where mi is a parameter for the heuristic. Then let T i

be the at most Πi
j=1m j partial walls consisting of templates at corners 1, . . . , i and let it be defined

recursively as

T i = ∪<t1,...,ti−1>∈T i−1
T i(< t1, . . . , ti >). (3)

This means that at each corner we generate the at most Πi
j=1mi best ranked partial walls, T i, by

appending the best ranked partial walls from the previous corner, T i−1, with templates at corner i.
The parameters mi determines the number of branches at each level of the tree search and are used
to describe the width of the search-tree. The set T 4 are walls with template assignments to all four
corners and |T 4| ≤ mtot = Π4

j=1m j which we will consider in the following. Note that not all corners
need to be assigned a template. This can be dealt with by including a template with no profit and
item-types in T .

6.2 Domination

If two walls w ∈ T 4 and v ∈ T 4 consists of the same item-types, v may dominate w by utilizing the
space strictly better, and w may be discarded.

To test for domination, all pairs of quad-walls w,v ∈ T 4 with equal elements are compared by
considering four points based on the bounding-boxes of templates from each wall. Assume a wall w
consists of templates < w1,w2,w3,w4 >, and each template wi would be placed as bundle bi, if it were
to be used at this time, then we define

q1(w) = (b1
x2,b

1
y2,b

1
z2), q2(w) = (b2

x1,b
2
y2,b

2
z2), q3(w) = (b3

x2,b
3
y1,b

3
z2), q4(w) = (b4

x1,b
4
y1,b

4
z2).

The points qi(w), i = 1, . . . ,4 are illustrated on Figure 11. Now, to determine if wall w is dominated
by v, we require that qi(v)z ≤ qi(w)z for all i = 1, . . . ,4 and:

q1(v)x ≤ q1(w)x, q1(v)y ≤ q1(w)y, q2(v)x ≥ q2(w)x, q2(v)y ≤ q2(w)y,
q3(v)x ≤ q3(w)x, q3(v)y ≥ q3(w)y, q4(v)x ≥ q4(w)x, q4(v)y ≥ q4(w)y.

If w is dominated we simply remove it from T 4. Note that cases where walls have no assigned template
in one (or several) corner(s) i (i.e. wi = nil), can be dealt with by assigned appropriate values to qi.

6.3 Quad-Wall-appending

The m walls from T 4 with highest rank(w) = ∑
4
i=1

p(ti)
d(ti)

for w =< t1, t2, t3, t4 >∈ T 4 are selected and
the best of these is appended to the current solution.

In traditional wall-building a wall is constructed once and independently of the previously placed
elements. Here, however, we apply the templates < t1, . . . , t4 > of a quad-wall by a set of rules. Let di
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Figure 11: The four points of each wall used for domination check.

(a) (b)

Figure 12: Example placement using quad-walls. (a) Placement after use of first quad-wall (3
templates). (b) Placement after use of second quad-wall (4 templates).

be the maximum z-coordinate of any bounding-box of current bundles at corner i of the container for
i = 1, . . . ,4. Let d+

i be the resulting maximum z coordinate if template ti is applied at corner i. Then
we apply templates ti to corner i from the wall one-by-one using the following rule.

1. If d+
4 ≤ d2 and d+

4 ≤ d3 we apply t4,

2. otherwise if d+
3 ≤ d1 we apply t3 ,

3. otherwise if d+
2 ≤ d1 we apply t2 ,

4. otherwise we apply t1.

We repeat this until there are insufficient items or space to apply one of the four templates.
Note that by these rules a wall is not simply repeated, rather templates are distributed depending

on depth. E.g. a very deep template will not be applied as often as a thin template. It is also important
to note that as the templates are placed, they are pushed as far back in the container as possible, so
while a quad-wall is a collection of items in the width and height of the container it does not fill
“slices” of the container. Example of placements after the first and second wall have been used are
shown of Figure 12.

6.4 Backtracking

The quad-wall placement is embedded in a tree-search heuristic. Each stage where a wall is appended
to the container is a node in a search tree and each candidate wall corresponds to a path to a child-node
in the search tree. Once the the container is filled and there is insufficient space for further templates at
the end of the container, the heuristic back-tracks in the search tree and continues with the second-best
ranked wall. When all walls of a node have been investigated the heuristic back-tracks to the node’s
parent and continues with the next wall of the parent.

At most 150,000 forward and backward steps in the search-tree are allowed due to time-constraints.
To ensure that the heuristic does not search only in the end of the container the values of mi are re-
duced at the lower levels of the tree and generally we set mi = 1

2 mi−1, to balance the inner tree-search.
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Item bundles added

(a) (b)

Figure 13: The best solution from the quad-wall heuristic (a) is appended with remaining items that
may protrude out of the container (b) before local search is applied.

At every q steps (e.g. q = 10,000) we back-track to the root node of the tree. This strategy works
adequately to ensure that searching is done both within the beginning and the end of the container.

7 Local Search

The best solution found during tree-search is used as start-solution for a local-search heuristic. During
local search, solutions are represented as the type of sequences described in Section 5 and one side
of the container is ’open’ to allow bundles to extend beyond the container boundary. Only the profit
of those bundles which are completely inside the container contribute to the objective function. Items
which are not part of the initial solution are added to the end of the loading as additional bundles, and
will in general protrude the container as shown in Figure 13. The idea is that the local search will be
able to move some of these items inside the container boundaries and thereby increase the solution
value. This strategy is similar to the one used by [C] for two-dimensional and three-dimensional
knapsack problems with boxes.

Let the current solution be defined as the sequence σ =< (t1,a1), . . . ,(tn,an) > and let σ(i) =
(ti,ai) be the ith element of the sequence, then the local search neighborhoods consists of the follow-
ing:

Exchange: For every i, j, with 1 ≤ i, j ≤ n, i 6= j, every alignment ai,a j = 1, . . . ,4 and every
related template t ′i ∈ R(ti), t ′j ∈ R(t j) we try the sequence σ′ where σ′(i) = (t j,a j), σ′( j) = (ti,ai) and
σ′(k) = σ(k) otherwise. This corresponds to exchanges of two templates in the sequence combined
with replacing them with their relatives and testing all alignments.

Subset Side-Exchange: For every i, j with 1≤ i < j ≤ n we try the sequences σ′ where σ′(k) =
(tk,o(ak)) for i ≤ k < j and σ′(k) = σ(k) otherwise. We define o(1) = 2, o(2) = 1, o(3) = 4 and
o(4) = 3. This corresponds to a swap of alignment between left and right of templates from all
possible consecutive sub-sequences.

Insert: For every i, j with 1≤ i, j≤ n, i 6= j and every alignment ai = 1, . . . ,4 we try the sequences
σ′ = σ, but with ti removed and reinserted before t j.

Combine: For templates t and s let R(t ∪ s) be the set of templates with all elements from t
and s. Then for every i, j with 1 ≤ i, j ≤ n, i 6= j, every alignment ai = 1, . . . ,4 and every template
tk ∈ R(ti ∪ t j) we try the sequences σ′ = σ, but with ti and t j removed and σ′(i) = (tk,ai). This
corresponds to removing all ti and t j and reinserting a template with all the items from both templates
at the position of i at all four alignments.

Split: For every i, j with 1 ≤ i, j ≤ n, i 6= j, every alignment ak = 1, . . . ,4, every k = 1, . . . , |ti|,
every template t ′i ∈ R(t1

i , . . . , tk−1, tk+1, . . . , t |ti|i ) and tk ∈ R(tk) we try the sequences σ′ = σ, but with
σ′(i) = (t ′i ,ai) and (tk,ak) inserted before the jth element. This corresponds to splitting ti into two
templates, one with |ti|−1 elements and one with one element, and attempting to place the singleton
element everywhere in the sequence with every alignment.
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Cross-over: For every i, j with 1≤ i, j≤ n, i 6= j, every k = 1, . . . , |ti|, every l = 1, . . . , |t j|, every re-

lated template t ′i ∈R(t1
i , . . . , tk−1

i , tk+1
i , . . . , t |ti|i , t l

j), every related template t ′j ∈R(t1
j , . . . , t

l−1
j , t l+1

j , . . . , t |t j|
j , tk

j ),
every alignment ai = 1, . . . ,4 and every alignment a j = 1, . . . ,4 we try the sequence σ′ = σ, but with
σ(i) = (t ′i ,ai) and σ( j) = (t ′j,a j). This corresponds to all exchanges of one of the item-types from ti
with an one item-type from t j and trying all alignments.

Every time a sequence is tried its templates are applied to their respective alignment to evaluate
the objective value of the solution. The local search behaves as a steepest descent algorithm —
i.e. all neighboring solutions are evaluated before choosing the change which results in the largest
improvement.

Although the neighborhoods are quite large, we are generally able to place more than a 100,000
sequences per second, so in practice many changes may be examined within reasonable times. Exper-
iments showed that not all neighborhoods need to be examined in every iteration. Thus the neighbor-
hoods are examined in the order in which they are described above. If an improving move is found in
one neighborhood subsequent neighborhoods are not searched.

Once the heuristic terminates all items which are not within the container boundaries are removed
to ensure that the solution is feasible.

7.1 Objective Functions

The primary objective function is to maximize the total profit of bundles loaded within the container
boundaries. However, with this objective function, changes are only accepted if they result in in-
creased profit which may be hard to achieve in one single move.

To allow changes that may improve the objective value if more steps are allowed, a set of sec-
ondary objective functions is used. At any given time one secondary objective function is active.
Changes where the total profit remains the same but increases the active secondary objective are now
also accepted. Additionally changes that give the largest improvement in the primary objective value
are always preferred, but ties are settled by considering the secondary objective value. Local mini-
mum only occurs when no improvement with respect to neither the primary nor the active secondary
objective value can be found.

Our secondary objective functions are as follows:

1. Minimize total depth. Minimize z2 of any bundle.

2-4. Minimize total depth of item in corner i. Minimize the maximal value of z2 for any bundle
placed at the ith corner. This gives rise to four secondary objective functions.

5. Minimize sum corner-depths. The sum of the maximal z2 for each of the four corners is
minimized.

6. Minimize total depth of loaded items. Similar to 1 but only bundles inside the container are
considered.

At any given moment only one secondary objective function is active. Initially 1 is active. When the
heuristic reaches a local minimum with respect to the currently active secondary objective function, it
switches to the next secondary objective function from list. After 6 it switches to 1 again.

After a specified number of non-profit-improving iterations the heuristic terminates. In practice
one can evaluate all secondary objective values for all permutations, so when a local minimum is
reached and the secondary objective function is changed, all permutations with respect to the new
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secondary objective function have already been evaluated, and the best move with the new secondary
objective can be carried out instantly.

7.2 Metaheuristics

The large local search neighborhood is geared towards minor alterations that only shifts items slightly
around and can be thought of as a “clean-up” or “tighten” of the quad-wall solution.

Meta-heuristics such as Simulated Annealing [42], Tabu-Search (e.g. [33, 34]) and Guided Local
Search [60, 61] were investigated. Unfortunately, none of these proved able to find better solutions
than the simple local search scheme within acceptable computational time. An explanation could
be that, while the quad-wall heuristic of the previous section determines a good local structure by
generating quad-walls, it is harder to locate structured solutions with the mentioned meta-heuristics.

8 Stability-Search

For transportation it is important that items are loaded in such a way, that they are not damaged by
dropping to the floor of the container. In this section we consider only large items.

To handle this requirement a second local search heuristic is initiated once the local search of
Section 7 is complete. This heuristic starts from the best solution found during the previous step, and
it is completely equivalent to the local search in Section 7 except that the objective function has been
replaced. We will refer to the heuristic of step as stability-search.

In stability search the objective function is to minimize the total profit of unstable templates. When
no improving change can be found, the search terminates and templates which violate their stability
requirement are removed from the solution and the resulting solution is stable.

Alternatively, one could limit the tree-search and local search heuristics to consider only stable
solutions. Preliminary testing, however, showed that the chosen approach is favorable for two reasons.
Checking stability is an expensive operation, but solutions are commonly almost stable after the local
search step, and resolving the few problems that arise is faster. The second reason is that overall
solution quality decreases when only stable solutions could be searched, presumably because the
heuristics benefits from passing through unstable solutions.

8.1 Center of Mass

A fundamental part of our stability check is based on centroids. The centroid is the center of mass
of an object if it has uniform density. The centroid, R, and signed volume, V , of a tetrahedron with
o = (0,0,0)t and a,b,c ∈ R3 as corner points may be calculated as:

R =
a+b+ c

4
, V =

a · (b× c)
6

. (4)

To calculate the centroid R of a set of n tetrahedra one can use the cumulative expression:

R = ∑
n
i=1ViRi

∑
n
i=1Vi

, (5)

where Ri is the centroid and Vi is the volume of each tetrahedron i.
The centroid of a mesh with n triangles each with corner points ai, bi, ci ∈ R3, can be determined

by decomposing it into n tetrahedra consisting of points o, ai, bi, ci and using the addition formula
(5). In principle any point can be chosen as o, since the volume and centroid calculation of each
tetrahedron is signed and negative tetrahedra cancels surplus contribution of positive tetrahedra.
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Figure 14: Stability evaluation. (a) Item to be evaluated is shown as dashed box. (b) Height levels
below the item (xz-projection). The circle roughly in the middle is the xz-projection of the centroid of
the item. The difference between the maximum height-values of each of the four zones of the centroid
must be less than some preset value. Here it is 140 cm−115 cm = 25 cm.

8.2 Stability Evaluation

While existing methods in the literature demand that each item is placed on an even surface, this
constraint can often be circumvented in practice by use of e.g. polystyrene plates.

Hence we have chosen the following approach. To evaluate if an item is positioned in a stable
fashion, we divide the xz-projection of its bounding box into four areas around the xz-projection of
the centroid (which must be within its bounding box). We then determine the maximal height of items
within each of the four regions which are below the item considered (see Figure 14). Now we require
that the height difference between the maximal height of the four regions must be less than some value
h (e.g. 15 cm).

This requirement ensures that the item is properly supported around its centroid and that there is
no more than h difference between the height of the supporting items below it. By this strategy items
can also be supported by two or more different items below so even “bridges” are acceptable.

9 Medium Sized Items

The medium-sized items is the second group we consider. Medium-sized items have identical profit-
value and one large item is considered more valuable than any number of medium-sized items. The
medium-sized items are boxes which may be rotated 90 degrees around any of the coordinate axis
resulting in up-to six different orientations.

Medium sized items are placed using a polynomial time greedy heuristic which will be explained
in Section 9.1. A greedy heuristic is adequate for this part of the problem, because items are relatively
small and homogeneous. Secondly, an efficient placement method allows us to integrate the greedy
heuristic in the heuristics for large items, as will be explained in Section 9.2.

9.1 Greedy Algorithm

The algorithm places types of items, one type at a time, until there is insufficient space for more items.
Types are considered in order of decreasing size; Since largest items are often the hardest to place,
and small items can appropriately fill the remaining empty holes.

Each type is considered in three steps: 1) Find start position, 2) Determine volume to be filled.
3) Calculate efficient fill. If the volume is insufficient to accommodate all items of the current type,
the same type is considered in the next iteration. Otherwise, if all items of this type are placed, or no
volume is sufficient for the current type, the algorithm proceeds to the next type.
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m

(a) (b)

Figure 15: Two-dimensional illustration of NFBs.

9.1.1 Start Position

The algorithm begins by finding a start-position. Let m be an item of the next item type and let:

mr = [xr
m,xr

m]× [yr
m
,yr

m]× [zr
m,zr

m], (6)

be the bounding-box of m with respect to rotation r ∈ {1, . . . ,6}. Let K be the set of bounding-boxes
of previously placed items or bundles and define i ∈ K as follows: [xi,xi]× [y

i
,yi]× [zi,zi]. Now, for

two boxes i and j the no-fit-box:

NFB(i, j) = [xi− x j,xi− x j]× [y
i
− y j,yi− z j]× [zi− z j,zi− z j],

is the set of translations of box j for which j will overlap with box i (like the NFP from Section 2.3).
When we consider an item of type m, NFB(i,mr) are created for all previously placed items i and

rotations r. Constraints of the form “m not above i” – e.g. if m is too heavy – are easy to handle by
expanding NFB(i,mr) to the height of the container.

For every triple of i, j,k, if NFB(i,mr), NFB( j,mr) and NFB(k,mr) intersects, we determine the
intersection point (NFB(i,mr)x, NFB( j,mr)y, NFB(k,mr)z)T (right side NFB(i,mr), top of NFB( j,mr)
and front of NFB(k,mr)). If the intersection point is not contained within some NFB(l,mr), l ∈ K, it
is feasible position of mr with respect to bounding-boxes of previously placed items. The intersection-
point, q, with lexicographically least z, y and x coordinates is chosen as start point for placing boxes of
type m. To ensure that items are placed within the container dimensions artificial boxes representing
the container sides are introduced.

Figure 15 illustrates this procedure reduced to two dimensions. The current placement is shown in
(a) along with the box-type m that we wish to place. The light-shaded rectangles with thick lines in (b)
demonstrates the NFBs of the placement and translations of m’s lower-left corner to any point within
the white area are feasible positions. Filled circles indicate feasible intersection points determined by
the algorithm while hollow circles represent infeasible intersection points.

Determination of the start-position takes O(n5) time, where n is the number of items in the problem
instance. However, in practice the algorithm is fast and may be speeded up further by a sweep-line
principle, which moves from low to high z-coordinates with breakpoints at zi and zi for i ∈ K. During
this traversal, a list of “active” boxes, which are the boxes that overlap with the current z-coordinate,
are maintained, and one can end the search as soon as the first non-overlapping position has been
found.
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Figure 16: Volume determination from the start-point q.

9.1.2 Volume Determination

For the start position q, we determine a suitable box-volume V which will be filled by items of the
current type, m. The start position, q, is the lexicographically lowest intersection-point with type m,
for some rotation r and q is a feasible position of mr.

Determination of the extents of V is illustrated on Figure 16. First V ’s lower-left-back coordinate
is set to q; (xV ,y

V
,zV ) = q . To determine the upper-right-front coordinates (xV ,yV ,zV ) we move right

from q parallel to the x-axis until we hit the first box from K. This give us xV . We then find the
minimal y≥ y

V
such that the line segment between xV ,y,zV and xV ,y,zV intersects a box from K and

let this be our yV . Finally, we determine zV by finding the minimal z ≥ zV such that the axis-aligned
box with corners q and (xV ,yV ,z) intersect a box from K.

Determining the volume V can be done in O(|K|) time. An example of the volume V is depicted
on Figure 15 as a the dashed rectangle extended from the start-point determined in section 9.1.1.

9.1.3 Volume Filling

To fill V we use a three-level recursive guillotine division of V into smaller volumes. The division
considers cuts of V parallel to the x-axis, y-axis and z-axis, such that one direction is chosen for the
first level. In each recursion only divisions in directions not used in previous levels are allowed.

We will describe only the x-division since y- and z-divisions are similar. An x-cut divides V into
two parts V ′(x′) = {(x,y,z) ∈ V | x ≤ x′} and V ′′(x′) = {(x,y,z) ∈ V | x ≥ x′}. Let W (mr) = xr

m− xr
m

and W (V ) = xV − xV be the width of volume V and mr, respectively. Let the height H(mr), H(V ) and
depth D(mr), D(V ) be similarly defined.

For a volume V and item mr, let C(V,mr) be the number of times mr can be placed inside V ;

C(V,mr) =
⌊

W (V )
W (mr)

⌋
·
⌊

H(V )
H(mr)

⌋
·
⌊

D(V )
D(mr)

⌋

For r ∈ {1, . . . ,6} we consider x-cuts which divides V into volumes V ′(xi) and V ′′(xi) for xi =
xV + i · (wmr), i ∈ {0, . . . ,bW (V )

w(mr)c}. We then select x′ and s such that C(V ′(x′),mr)+C(V ′′(x′),ms) are
maximal.

We then proceed with the volume V ′(x′) and V ′′(x′) to consider y-cuts and z-cuts, but such that
one side of the new cuts of V ′(x′) and V ′′(x′) use mr and ms respectively. For each of the volumes on
the third level only the cut-direction unused at higher levels of the recursion is allowed.

This procedure is repeated with y-cut and a z-cut as initial cut. The cutting sequence and ori-
entation assignment which results in the highest utility of V is used to fill the eight sub-volumes of
V .
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9.2 Integration

Since a good solution of medium-sized items may depend on the placement of large items, the greedy
approach is also integrated with the tree-search and local search heuristics for large items. At any
time while running the two heuristics let z′l be total profit value of the large items and z′m for the
medium-sized items of the currently best known solution. When the heuristics encounter a solution
with solution value zl equal to z′l for large items, the solution value zm for medium sized items is
calculated. If zm > z′m the current best known solution is replaced.

10 Small Items

The last set of items to be placed is the small items. These have a lower precedence than large and
medium-sized items. A number of constraints apply to them which will be explained in in Section
10.1. Small items are placed both using a wall-building heuristic, to be described in Section 10.2, and
the greedy algorithm of Section 9, as described in Section 10.3.

10.1 Constraints

The constraints that we consider for small items can be divided into three groups; Rotations, robust-
ness and weight.

For each item a specified subset of the six possible 90 degree rotations around coordinate system
axis is allowed.

For each item m we let s(m) ∈ {1, . . . ,6} define its robustness and for any two items mi and m j,
we require s(m j)≥ s(mi) for mi to be be placed on m j. This ensures that an item is only put on top of
a more robust item, so that fragile items are not placed on the bottom of a stack.

Finally, let g(m) be the weight of item m (e.g in Kilograms). Then, for any two items mi and m j

with s(mi) = s(m j), we require that g(mi) < g(m j) if mi is to be placed on top of m j.

10.2 Wall-building

As previously described the wall-building paradigm of container loading heuristics fills the container
in the depth by constructing walls of items. We are using the wall-building approach by Pisinger [53],
which improved the heuristic by George and Robinson. Rather than considering just one wall-depth
for each wall, Pisinger used a tree-search heuristic which branches on a number of different wall
depths. In addition, walls are filled by either horizontal or vertical strips and the heuristic branches
on different strip-widths for each strip. Finally each strip is packed optimally by solving a knapsack
problem. The heuristic back-tracks once there is no room for additional walls.

The heuristic is used to pack items in a box-volume at the end of the container with dimensions
W ×H×(D−maxl∈L z(l)) where l is the set of bounding-boxes of templates and medium-sized items
from the previous steps. Once the local search and greedy heuristic for large items completes, local
search is used an additional time but this time the objective is to minimize maxl∈L z(l) so that the
input-space for the wall-building heuristic is maximized. This is illustrated on figure 18 where (a)
shows a solution with respect to large items which is optimized to the solution of (b) in which the
space at the end of the container (bright gray area) is filled by the wall-building heuristic.

The wall-building proceeds similarly to the wall-building in [53], but only vertical strips are al-
lowed to accomodate the constraints described in Section 10.1.
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Figure 18: Maximizing space for small items at the end of the container.

The filling of vertical strips is again solved using knapsack packing, but once the optimal set of
boxes has been determined, the boxes are sorted according to robustness value and weight to ensure
that the constraints are not violated.

To handle rotational constraints only allowed rotations are considered during depth determination
of layers, width of each layer, and packing in each strip.

10.3 Additional Filling

Although wall-building fills the volume of the container quite well, it is desirable to fill also the
volume above the large items. To handle this we simply use the greedy heuristic from Section 9 on
each item. When placing an item m robustness constraints are are ensured by expanding the NFBs for
items with lower robustness than m to the container height.

11 Experiments

The heuristic has been implemented in C++ (gcc 3.4.2) running under Linux on a AMD 64 3800+
2.4 GHz. Since the problem has not been studied in prior literature no test-instances were available.
Therefore, to demonstrate the capabilities of the heuristic we have constructed a small dataset and
report results in this section.

11.1 Dataset

The dataset consists of 40 large, 10 medium sized and 40 small items types.
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The large items are shapes of chairs, sofas, chaise lounges and corners. Items are paired together
and used in complex templates generated automatically as explained in Section 4. To further mimic the
behavior at a furniture producer a set of user-defined templates were determined by a geometric tool.
For each item-type less than 6 user-defined templates were created. These templates are comprised
of up-to 5 items, but only one type of item. Profit values for large items were selected from the set
{10,20,30}, and is correlated to the dimensions of the item. Both the user-defined templates and the
profit values mimic the practical use of the heuristic.

Medium-sized box-shaped items were generated with random dimensions taken from the interval
20 to 80. The profit of all medium-sized items was set to 5.

Small box-shaped items were generated with random dimensions from the interval 10 to 80. The
set of allowed rotations, robustness values and weight were determined randomly. Weight was set
randomly between 1 and 10 kg. The profit of small items was set to 2 for all items.

A total of 61 instances divided among three groups were created: (A) 21 instances containing
only large items, (B) 20 instances with large and medium sized items, and (C) 20 instances with large,
medium and small items. The most homogeneous instances consists of three large item-types, while
the largest and most heterogeneous instances consists of a total of 90 distinct item-types (40 large,
10 medium, 40 small). All instances used container dimensions equal to a 40 ft. high-cube container
(234×239×1185cm3). The high-cube container allows us to better demonstrate the heuristic’s ability
to place items in multiple layers. Instances were generated so that the total profit was approximately
and at least 160, 180 and 200 for (A), (B) and (C) respectively. The characteristics of the instances are
reported in Table 1 which is described in the following section. The dataset is available for download
at http://www.diku.dk/ p̃isinger/ along with a description of the file-format used.

11.2 Results

Results of the computational experiments for all 61 instances are reported in Table 1. For each instance
we report the number of item-types in each of the three group in the column marked |L |/|M |/|S | and
the number of items in the columns marked |I|, |L|, |M|, |S|. The column labeled “Loaded” under
“Items” indicates the total number of items loaded. The columns labeled “Profit” gives the total profit
of items (I) and profit of large items (L). The columns labeled “Loaded profit” is the best solution
value for all items (I) and for each of the three item groups L, M and S.

Since no real performance measure exists, we have reported the utilization of each of the instances
as two different values. The bounding-box utilization in the column labeled “BB” is the percentage
of the container volume occupied by the bounding-boxes of the items. Since bounding-boxes can
overlap, only non-overlapping volume is accounted for. The mesh-utilization is the percentage of the
container occupied by meshes (for large items) and boxes (for medium-sized and small items) and is
reported in column “Mesh”.

The average results for the three instance groups and all instances are reported in the rows labeled
1−21, 22−41, 42−61 and 1−61.

On average the bounding-box utilization is 89.2% and the mesh-utilization is 59%. The utilization
generally increases as more small items are available. When only large-sized items are considered,
the average utilization in percent is 86.5 resp. 56.4 increasing to 89.9 resp. 59.8 when the cargo also
contains medium-sized items. However, for the hardest series of instances containing all three types
of items and up-to 200 items, volume utilization is 91.3% and 60.9% respectively. This compares
well with traditional container loading heuristics where the state-of-the-art is around 90− 91% for
box-shaped items.

Since the space between pairs of large items cannot be used for quality assurance reasons, the
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Figure 19: Solution of instance 61 with 114 items (running time was 134 sec.)

bounding-box utilization is probably the most correct performance measure, as it accounts for this
lost space between the items.

The running time in seconds is reported in column “Time”. The average running time is only
around 100 seconds, which is highly acceptable for real-life applications. A solution to a typical
instance (instance 61) is shown on Figure 19.

12 Conclusion

We have developed a new heuristic for the three-dimensional knapsack container loading problem
with irregular shapes. The heuristic consists of several sub-heuristics, which each solves a specific
part of the overall problem.

Items are divided into three different groups reflecting their importance, size and complexity.
Large items are irregular, represented by three-dimensional triangle-meshes and initially a set of tem-
plates which are used by tree-search and local-search heuristics are generated. Medium-sized item
are rectangular and placed using a simple greedy heuristic. Small items are rectangular and loaded
primarily in the end of the container with a modified wall-building approach. To fill out the remaining
parts of the container small items are also placed using a greedy heuristic.

The solution-method is able to find good solutions for problems with hundreds of heterogeneous
items within minutes on current common hardware. The bounding-boxes of items occupy more than
89% of the container on average and in instances with items in all three groups the average utilization
is 91%. These results compares well with state-of-the-art container loading heuristics that consider
only smaller boxes and reach around 90% utilization.

Finally, the algorithm was implemented at a major European furniture producer and improved
their utilization by 3−5%.
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Items Profit Loaded profit Utilization Time
Inst. |L |/|M |/|S | |I| |L| |M| |S| Loaded I L I L M S BB Mesh (sec.)

1 3/0/0 85 85 0 0 54 1600 1600 1270 1270 89.9 59.8 58.6
2 82 82 0 0 62 1600 1600 1360 1360 84.2 60.7 46.8
3 82 82 0 0 74 1600 1600 1520 1520 88 53.2 61.5
4 76 76 0 0 73 1600 1600 1550 1550 81.2 50.6 50.8
5 86 86 0 0 60 1610 1610 1350 1350 85 64.3 67.9
6 6/0/0 78 78 0 0 67 1600 1600 1470 1470 91.6 60.5 76
7 61 61 0 0 53 1610 1610 1490 1490 82.3 53.4 55.7
8 70 70 0 0 55 1610 1610 1400 1400 87.8 62 68.5
9 80 80 0 0 65 1610 1610 1360 1360 89.2 61.4 90.3

10 12/0/0 82 82 0 0 65 1610 1610 1400 1400 86.6 57.6 57.5
11 71 71 0 0 64 1600 1600 1430 1430 87.9 58 75.7
12 75 75 0 0 63 1600 1600 1430 1430 89.1 61.5 89.5
13 62 62 0 0 51 1610 1610 1370 1370 84.6 56.8 46.9
14 24/0/0 77 77 0 0 63 1610 1610 1370 1370 84.6 53.5 120.4
15 83 83 0 0 69 1600 1600 1410 1410 85.1 51.2 168.7
16 78 78 0 0 62 1600 1600 1370 1370 85.6 53.2 82.3
17 84 84 0 0 68 1610 1610 1380 1380 85.3 54.4 104.2
18 40/0/0 84 84 0 0 65 1600 1600 1360 1360 86.8 52.6 71.8
19 80 80 0 0 65 1620 1620 1400 1400 85.9 53.1 81.5
20 79 79 0 0 63 1600 1600 1360 1360 88.9 53.2 145.9
21 82 82 0 0 67 1610 1610 1410 1410 87.7 53.6 129

1-21 78 63.2 1605.24 1605.24 1402.9 1402.9 86.5 56.4 83.3
22 3/1/0 80 63 17 0 73 1815 1730 1675 1590 85 89.8 62.6 44.8
23 106 79 27 0 73 1815 1680 1395 1260 135 89.2 63.2 86.4
24 90 74 16 0 79 1810 1730 1530 1450 80 89.6 61.7 49.2
25 92 63 29 0 79 1805 1660 1575 1430 145 91.2 62.5 63.1
26 6/2/0 117 88 29 0 81 1805 1660 1445 1300 145 86.4 56.1 114.9
27 130 97 33 0 83 1825 1660 1525 1360 165 93.5 67.6 176.6
28 100 78 22 0 88 1800 1690 1570 1460 110 86.7 56.9 77.2
29 99 70 29 0 76 1805 1660 1645 1500 145 90.6 61.6 132.7
30 12/4/0 118 83 35 0 100 1825 1650 1585 1410 175 90.4 59.6 78.2
31 101 71 30 0 89 1820 1670 1560 1410 150 87.1 58.6 52.3
32 107 78 29 0 80 1805 1660 1665 1520 145 91.9 63 140
33 92 70 22 0 72 1820 1710 1520 1410 110 91.2 63.8 67.3
34 24/8/0 108 82 26 0 84 1800 1670 1580 1450 130 89.9 58.7 95.4
35 110 81 29 0 90 1815 1670 1585 1440 145 90.8 59.8 109.2
36 100 79 21 0 84 1805 1700 1525 1420 105 91.7 59.3 129.8
37 109 83 26 0 89 1800 1670 1570 1440 130 91.7 59.8 165.5
38 40/10/0 104 84 20 0 84 1800 1700 1530 1430 100 89.4 56.4 96.4
39 103 85 18 0 81 1800 1710 1430 1340 90 87.4 52 123.8
40 113 83 30 0 88 1800 1650 1540 1390 150 89.7 56.7 168.6
41 101 85 16 0 82 1800 1720 1530 1450 80 89.5 55.6 78

22-41 104 78.8 75.2 82.8 1808.5 1682.5 1549 1423 126 89.9 59.8 102.5
42 3/1/3 114 82 32 104 66 2008 1640 1600 1440 160 0 91.3 58.8 88.2
43 221 108 24 89 100 2018 1720 1316 1170 120 26 88.2 61.5 52
44 194 90 19 85 120 2025 1760 1593 1420 95 78 90 64.7 55.8
45 238 103 32 103 77 2016 1650 1490 1330 160 0 93.8 60.7 109.9
46 6/2/6 167 75 26 66 106 2012 1750 1654 1480 130 44 92.3 64.2 78.6
47 205 92 26 87 99 2014 1710 1716 1550 130 36 89.9 57.5 124.8
48 211 87 31 93 96 2021 1680 1665 1470 155 40 90 62.1 123
49 200 78 36 86 127 2022 1670 1706 1480 180 46 93.4 64.3 105.7
50 12/4/12 181 78 24 79 103 2008 1730 1606 1440 120 46 92.5 64.2 106.5
51 152 72 20 60 101 2020 1800 1566 1410 100 56 89.9 62 57.7
52 165 75 27 63 119 2001 1740 1587 1380 135 72 90.9 64.8 71.1
53 172 75 23 74 113 2013 1750 1587 1390 115 82 91.8 64.4 78.3
54 24/8/24 219 83 33 103 108 2001 1630 1581 1390 165 26 92.7 58.6 73.6
55 196 90 27 79 101 2013 1720 1559 1380 135 44 92.1 60.4 70.6
56 219 92 31 96 130 2017 1670 1487 1260 155 72 88.1 56.9 64.9
57 183 84 22 77 109 2014 1750 1600 1450 110 40 91.8 58.9 134.6
58 40/10/40 191 88 12 91 112 2002 1760 1596 1460 60 76 91.2 56.2 142.7
59 200 88 24 88 120 2006 1710 1590 1410 120 60 92.5 59 177.6
60 194 84 22 88 123 2016 1730 1606 1430 110 66 92 59.5 236.3
61 204 90 17 97 114 2019 1740 1595 1450 85 60 91.7 60.2 134

42-61 191.3 85.7 25.4 85.4 107.2 2013.3 1715.5 1585 1409.5 127 48.5 91.3 60.9 104.3
1-61 123.7 84 1510.5 1411.6 83 15.9 89.2 59 96.5

Table 1: Characteristics and computational results for the 61 test instances.
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Placement of two- and three-dimensional irregular shapes
for inertia moment and balance

J. Egeblad∗

Abstract

We present a heuristic for the problem of placing irregular shapes in two or three dimensions
within a container, such that the placement of the shapes is optimized for balance and inertia mo-
ment and no two shapes overlap. The heuristic is based on a technique that iteratively removes
overlap. The technique was introduced by Faroe et al. [7] for rectangular objects and later gener-
alized by Egeblad et al. [A] to handle irregular shapes. We extend this method and demonstrate
its ability to optimize an objective function related to the individual position of each shape. The
approach iteratively reduces an augmented objective function which is the sum of balance, inertia
moment and overlap and uses the metaheuristic Guided Local Search.
Keywords: packing, nesting, balanced packing, three-dimensional packing

1 Introduction

Problems that involve a placement of two- or three-dimensional shapes within a container or a set
of containers are generally referred to as cutting and packing problems (see Wäscher et al. [13] for a
survey) or sometimes layout problems (see Cagan et al. [2] for a survey). While researchers have thor-
oughly investigated problems such as bin-packing, knapsack-packing, strip-packing and component
layout problems, methods for ensuring overall stability of the placements have received less attention.
In this paper we investigate the problem of packing shapes while ensuring balance and reduce inertia
moment of the placement.

Balance must be ensured by minimizing the difference between the global center of gravity of
the items and a specified target center of gravity. The moment of inertia, which describes the force
required to turn the items around an axis going through the center of gravity, must also be minimized.

The problem occurs in transportation problems where balance is important. Ships must be loaded
such that the likeliness of capsizing is minimal. Trucks should not tip and the weight should be
distributed evenly on the wheels. Cars must be designed such that the engine and other elements are
placed in balance and with minimal inertia of moment. Airplanes and space exploration vehicles must
be in balance and the moment of inertia should be minimal to minimize fuel consumption.

In this paper we view the problem of achieving balance solely as a post-processing problem
which is applied to solutions arising from typical transportation problems such as container-loading,
knapsack-packing or bin-packing. Our objective is to determine optimal positions of items within
container boundaries, since we assume that the selection of shapes have occurred a priori.

We consider both the two- and three-dimensional variants of the problem. For two dimensions
we consider polygonal shapes and for three dimensions polyhedra. Our technique is described mainly
for three dimensions, and we only detail the simpler two-dimensional variant in cases where the two
differ substantially.
∗jegeblad@diku.dk, Department of Computer Science, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
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1. Introduction

Given a container shape C and a set of items P described as polygons (polyhedrons), where each
item i ∈ P has an associated weight gi, we wish to solve the following problem:

minimize F(P ),
s.t.

(I) P (i)∩P ( j) = 0 ∀i, j ∈ P
(II) P (i)∩C = P (i) ∀i ∈ P.

(1)

Where P is a placement of P and P (i) is i translated and rotated as described by P . The constraints (I)
and (II) ensure that no two shapes overlap and all shapes are placed within the container boundaries.
Notice that if the container C is a box then C = [X0,X1]× [Y0,Y1]× [Z0,Z1].

Assume that the desired center of gravity is located in the coordinate system origin, (0,0,0), then
the objective function F is defined as:

F(P ) = α

n

∑
i=1

gi(x2
i + y2

i + z2
i )+βGx(P )2 + γGy(P )2 +δGz(P )2

where xi, yi and zi are the positions of the center of gravity of shape i ∈ P in the placement P , and Gx,
Gy and Gz are defined as follows:

Gx(P ) = ∑i∈P gixi
∑i∈P gi

Gy(P ) = ∑i∈P giyi
∑i∈P gi

Gz(P ) = ∑i∈P gizi
∑i∈P gi

The first summation term of the objective function describes the moment of inertia while the last three
terms are used to describe the square distance between origin (desired center of gravity) and actual
center of gravity in each of the three directions. The values α, β, γ and δ are weights which can be
used to adjust the importance of individual terms in the resulting solution. We refer to this problem
as the Balanced Weight Placement Problem (BWPP) and the two- and three-dimensional variants as
respectively BWPP-3D and BWPP-3D.

An alternative formulation is to minimize the moment of inertia such that the center of gravity is
confined to a target region around the origin given by [Lx,Ux]× [Ly,Uy]× [Lz,Uz]. This formulation is
achieved with β, γ and δ set to 0 and adding the additional constraints:

(III) Lx ≤ Gx(P )≤Ux

(IV) Ly ≤ Gy(P )≤Uy

(V) Lz ≤ Gz(P )≤Uz

(2)

We refer to this formulation as the Constrained Balanced Weight Placement Problem (CBWPP) and
the two- and three-dimensional variants as CBWPP-2D and CBWPP-3D.

Two example solutions to the two-dimensional problem are depicted in Figure 1. Here each item
has been colored according to weight; The darker the color the heavier the item. The desired center of
gravity is marked by dashed lines. While the actual center of the solution is marked by dotted lines;
The actual center and the desired center are very close in the two examples.

The problem we consider is NP-hard, as stated by the following theorem.

Theorem 4. The Balanced Weight Placement Problem and Constrained Balanced Weight Placement
Problem are NP-Hard.

Proof. Let DBWPP-2D be the decision variant of BWPP-2D and let it be defined as follows; Given
a value k, a container shape C and a set of items P described as polygons (polyhedrons), where each
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(a) (b)

Figure 1: Example solutions. (a) 64 1x1 squares in 10x10 container (BWPP-2D). (b) Irregular shapes
within irregular container (CBWPP-2D).

item i ∈ P has an associated weight gi, determine if we can can find a placement P with F (P ) ≤ k
which is feasible under the constraints (I-II).

To prove that BWPP-2D is NP-Hard we show that DBWPP-2D is NP-complete by reduction from
the Set Partition Problem (SPP) which is known to be NP-complete (see e.g. Cormen et al. [3]). The
SPP is given as follows; Given a set of n items each with size ai, let M = ∑

n
i=1 ai and determine if a

subset S of the items can be found such that:

∑
i∈S

ai = ∑
i/∈S

ai =
M
2

. (3)

To show that DBWPP-2D is NP-complete we define the reduction function from an instance of
SPP to an instance, I , of DWBPP-2D as follows: Create items with center of gravity in their middle
and dimensions [−ai

2 , ai
2 ]× [−0.5,0.5] all with weight gi = ai (mass density 1), let the container be

defined as C = [−M
4 , M

4 ]× [−1,∞], set α = 0, β = 1, γ = 1 and k = 0.
We first show that a solution of the SPP also constitute a solution to I . Assume that the rectangles

from S are numbered 1, . . . ,m and the remaining rectangles are numbered m + 1, . . . ,n, this means
that ∑

m
i=1 ai = ∑

n
i=m+1 ai = M

2 . Then assign coordinates to the rectangles as xi = ∑
i−1
j=1 a j + ai

2 −
M
2 and

yi = −1
2 for i = 1, . . . ,m. and xi = ∑

i−1
j=m+1 a j + ai

2 −
M
2 and yi = −1

2 for i = m + 1, . . . ,n. Denote this
placement P and observe that P is a feasible placement of BWBPP-2D due to the dimensions of the
rectangles (see figure 2 (a)). Now we can calculate the center of gravity of P :

Gx(P ) =
1
M

(
m

∑
i=1

ai

(
i−1

∑
j=1

a j +
ai

2
−M

4

)
+

n

∑
i=m+1

ai

(
i−1

∑
j=m+1

a j +
ai

2
−M

4

))
(4)

=
1
M

(
M2

8
−M2

8
+

M2

8
−M2

8

)
= 0. (5)

Gy(P ) =
1
M

(
−

m

∑
i=1

ai
1
2

+
i−1

∑
j=m+1

ai
1
2

)
=

1
M

(
−M

2
+

M
2

)
= 0. (6)

This shows that a solution to SPP constitute a solution to the instance I .
Conversely, assume we have a solution, P , to I . Then we know that

(
n

∑
i=1

aixi)2 +(
n

∑
i=1

aiyi)2 = 0. (7)
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1. Introduction

(a) (b) (c)

Figure 2: Illustrations for Theorem 4 (see text). (a) Solution from SPP used to generate a solution
to DBWPP-2D. (b) Placement P from the proof of Theorem 4; All rectangles are slid down. (c)
Placement P ′ where all rectangles have y-coordinate yi = {−1

2 , 1
2 , 1

2 , . . .}.

Therefore ∑
n
i=1 aixi = 0 and ∑

n
i=1 aiyi = 0. Now create a new placement, P ′ by sliding all rectangles

downwards in the y-direction as far as possible without creating overlap (see figure 2 (b)). Each
rectangle i now has coordinates x′i = xi and y′i ≤ yi. Note that the x-portion of the center of gravity P
is the same as P ′ since we do not alter the x-coordinates.

Since all rectangles have height 1 and we cannot move any rectangle to a lower y-coordinate, we
know that all y′i ∈ {−1

2 , 1
2 , 3

2 , 5
2 , 7

2 , . . .} (see figure 2 (c)). Let S be the group of rectangles with y′i =−1
2

and let S′ be the set of all other rectangles.
The total area occupied by the rectangles in S which all have y′i =−1

2 cannot exceed M
2 since they

all have height one and the width of the container is M
2 so ∑i∈S ai ≤ M

2 . For a rectangle i in P which
extends beyond the horizontal line y = 1 (yi + 1

2 > 1), we have either slid i down such that y′i < yi or
we have y′i ≥ 3

2 since yi > 1
2 and every rectangle is 1 unit high. Assume at least one such rectangle

exists then we have:

0 =
n

∑
i=1

aiyi =−
n

∑
i∈S

ai
1
2

+ ∑
i∈S′

aiyi >−M
2

+ ∑
i∈S′

ai
1
2

=−M
2

+
M
2

= 0, (8)

which shows that the assumption that yi > 1
2 must be wrong and no rectangle can therefore stretch

beyond the horizontal line y = 1 in P .
Therefore we can divide the rectangles in P in two groups S = {i ∈ {1, . . . ,n}|yi = −1

2} and
S′ = {i ∈ {1, . . . ,n}|yi =−1

2} and we have that

∑
i∈S

ai = ∑
i∈S′

ai =
M
2

, (9)

since the width of the container is M
2 . S and S′ can now be used for a solution to SPP. The reduction

may be done in polynomial time, and the resulting solution to DBWPP-2D represents a valid solution
to SPP. A solution to DBWPP-2D may be verified in polynomial time, and therefore DBWPP-2D is
NP-complete and BWPP-2D is NP-hard. A similar reasoning shows that CBWPP-2D is NP-hard.

1.1 Contribution

In this paper we present a heuristic for determining the optimal placement of a set of two- or three-
dimensional items with respect to (1). Our solution method is based on work by Egeblad et al. [A] on
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the strip-packing problem of irregular shapes. This method is briefly summarized in Section 4, while
we detail how to accommodate the objective function and additional constraints in Section 5.

The primary element of the method by Egeblad et al. [A] is an algorithm which is able to find the
minimal overlap translation of one shape among a placement of shapes in polynomial time, and we
will show how this algorithm is extended to accommodate the objective function F (P).

The remainder of the paper is organized as follows. In Section 2 we describe relevant work from
the literature that considers similar problem formulations. We explain how to determine the center of
mass of each individual item in Section 3.

Finally we present computational results for both the two- and three-dimensional variants with
respect to both rectangular and irregular shapes in Section 6.

2 Related Work

We briefly summarize the solution methods that consider balanced loadings here.
Amiouny et al. [1] consider the problem of placing items in an airplane or in a truck with two

axles. It is explained that although airplanes need not be loaded such that they are in complete balance
along the long axis, it is generally favorable to do so, since the pilot will otherwise have to compensate
with increased fuel consumption. In some countries there are limits to the maximal allowed weight on
each axle of a truck, and they argue that if one wishes to minimize the maximal weight on each axle
the center of gravity of the load must be located halfway between the two axles. The problem they
consider is a one-dimensional problem and they present two approximation algorithms and a heuristic
for solving the problem. Both approximation algorithms have running time O(n logn) and guarantee
that the center of gravity of the load does not deviate from the target point by more than half the size
of the largest box. An alternative heuristic for this problem was later proposed by Mathur [10].

Fasano [8] describes a knapsack variant of the problem where one is given a set of items and
must select and place a subset of items that maximizes the utilization of the container, given that
the center of gravity must fall within a given convex domain. The problem considered is a three-
dimensional problem with boxes and “tetris”-like shapes. His solution method is based on Mixed
Integer Programming. No results are reported.

Wodziak and Fadel [14] describe a genetic algorithm for two-dimensional placement of rectangles
with applications in the area of truck-loading.

Teng et al. [11] describe a method for optimizing the placement of parts in space satellites. The
satellite is modeled as a section of a cone which is split in two parts by a plate. Parts must be
mounted on either side of the plate such that the moment of inertia is minimized. First the two-
dimensional problems of placing parts on the plate is solved, then the appropriate position of the plate
is determined. The items they consider consists of both cylinders and boxes. The paper does not detail
their placement approach, but they report that they use a Broyden-Fletcher-Goldfarb-Shanno (BFGS)
variable metric unconstrained minimization method.

Gehring and Bortfeldt [9] consider center of gravity during container loading. Their heuristic uses
the wall-building paradigm commonly used for container loading problems, where the container is
divided into smaller parts (walls) in its depth and items in each part are placed by solving a two-
dimensional packing problem. Each item must be contained fully within the wall it has been assigned
to. Once the packing heuristic completes, the walls of the best solution are interchanged, mirrored or
rotated by 180 degrees to move the center of gravity of the overall placement towards the center of the
container.

A similar approach was used by Davies and Bischoff Davies and Bischoff [4] for trucks. However,
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their walls were deeper and they utilized random search to optimize for the center of gravity. Eley [5]
also use this principle. He reports that as little as 3-4 to walls may be sufficient to achieve acceptable
solutions.

3 The Center of Mass

We consider only items with their mass distributed uniformly throughout their volume. If an object
has uniform mass, its center of mass is referred to as its centroid. For rectangles and boxes the centroid
coincides with the geometric center. For more complex items this is not the case.

The standard way to calculate the centroid c = (xc,yc) ∈ R2 of a polygon with n points, (xi,yi) ∈
R2, i ∈ {1, . . . ,n}, is.

xc =
1

6A

n

∑
i=1

(xi + xi+1)(xiyi+1− xi+1yi),

yc =
1

6A

n

∑
i=1

(yi + yi+1)(xiyi+1− xi+1yi),

A =
1
2

n

∑
i=1

(xiyi+1− xi+1yi),

where (xn+1,yn+1) = (x1,y1) and A is the area of the polygon.
For a tetrahedron i with corner points (0,0,0)t and a,b,c ∈R3 its signed volume, Vi, and centroid,

Ri, can be calculated as:

Vi =
a · (b× c)

6
. Ri =

a+b+ c
4

.

To calculate the centroid of a set of n tetrahedra one can use the cumulative expression:

R = ∑
n
i=1ViRi

∑
n
i=1Vi

, (10)

where Ri is the centroid and Vi is the volume of each tetrahedron i.
If a polyhedron is described by a set of n triangles in space, each with corner points ai, bi, ci ∈R3,

its centroid is equal to the centroid of the n tetrahedra consisting of the four points (0,0,0)t , ai, bi, ci,
i = 1, . . . ,n which can be calculated using (10).

4 Finding a non-overlapping placement

In this section we briefly summarize the work by Faroe et al. [7] and Egeblad et al. [A] which is the
foundation of our heuristic.

The solution process of Faroe et al. [7] and Egeblad et al. [A] revolves around solving the decision
variant of a packing problem in which a non-overlapping placement of a set of shapes must be found
within given container dimensions. The method uses the metaheuristic Guided Local Search (GLS)
by Voudouris and Tsang [12] to control the solution process.

Egeblad et al. [A] begin by defining the total overlap in a placement P as,

G(P ) = ∑
i, j∈P

overlap(i, j),
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where overlap(i, j) is the area or volume of overlap of shapes i and j in placement P . In order to find
a solution to the placement problem, G(P ) is minimized by iteratively reducing the overlap. In each
iteration shapes are translated in one of the two or three axis-parallel directions to the position that
results in least overlap. This procedure terminates once G(P ) = 0 for the current placement P , since
this placement has no overlap and is a solution.

The metaheuristic GLS by Voudouris and Tsang [12] is applied to help escape local minima. GLS
uses an augmented objective, and Faroe et al. [7] formulate it as follows:

min H(P ) = ∑
p,q∈P

overlap(p,q)+λ ∑
p,q∈P

I(p,q)ρp,q

where λ is a fine-tuning parameter for the heuristic, I(p,q) = 1 if shapes p and q overlap in placement
P and 0 if not, and ρp,q is a penalty term. At each local minimum the value ρp,q is increased for the
pair of shapes p and q for which the value overlap(p,q)

ρp,q+1 is largest. After ρp,q has been increased, the
solution process commences with the modified objective function. The consequence of increasing the
penalty term for p and q, is that the heuristic will prefer a placement where p and q no longer overlap.

For two dimensions, the minimal overlap translation for a polygon p is determined by an algorithm
with running time O(mn logmn), where m is the number of edges from p and n is the number of edges
belonging to other polygons. The algorithm works by considering every pair of edges from p and all
other shapes. For each pair of an edge from p and and edge from another shape a piecewise quadratic
function describes the size of the area between the two edges for all horizontal translations of p. Each
piece of the quadratic function represents an interval of translations of p. The piecewise quadratic
functions are added together to represent a piecewise quadratic function that describes the total area
of overlap. Penalties are accounted for by adding each to the piecewise quadratic in the intervals
that corresponds to a positive overlap between the shapes of that penalty. The combined overlap and
penalties form one piecewise quadratic function H(P (p, t)) which describes the overlap and penalty
value for each t translation of p along the x-axis relative to placement P :

H(P (p, t)) = ∑
j∈P

overlap(p(t),q)+λ ∑
j∈P

I(p(t),q)ρpq. (11)

Here p(t) is p translated t units along the x-axis and P (p, t) is the placement P with shape p(t) in-
stead of p. The minimal overlap position is determined by traversing the piecewise quadratic function
H(P (p, t)) from low to high values of t and analyzing each segment for minima. Only minima cor-
responding to translations within the container boundaries are considered and t for the global such
minimum is selected as best translation. An example of H(P (p, t)) is illustrated on Figure 3.

A similar approach works for three dimensional triangle-mesh polyhedra. Here the volume be-
tween each triangle from p and each of the triangles from all other polyhedra can be represented by
a piecewise cubic function in the amount t p is translated. Combined these constitute a complete
piecewise cubic function which describes the volume of overlap and any penalties for all values of t.

5 Solving the Balance Problem

The procedure described in Section 4 was used by Faroe et al. [6] to optimize the placement of rectan-
gles (modules) in Final Placement of VLSI design. Here the objective was to find a non-overlapping
placement of the modules with minimal wire-length. To solve this problem Faroe et al. [6] minimized
a sum of wire-length and overlap as objective function. Since overlap and wire-length minimization
in VLSI design are counteracting objectives the procedure by Faro et al. slowly increased the weight
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Figure 3: Illustration of the procedure by Egeblad et al. [A]. (a) An overlapping placement containing
one shape. (b) The total overlap is described as a piecewise quadratic function of the horizontal
translation of the shape.

of overlap in the objective function from 0 towards ∞ such that overlap minimization increasingly
dominates the objective and a legal placement with little wire-length would eventually be found. The
paradigm described does not have any requirements with respect to the initial placement and may
therefore be well suited for improving and legalizing an initial, possibly infeasible, placement.

Our approach follows the method by Faroe et al. [6] and considers the augmented gravity objective
function:

minimize E(P ) = H(P )+ωF(P ). (12)

E(P ) is a weighted sum of overlap, balance and inertia in placement P . Starting from some initial
placement the objective value is iteratively reduced by translating shapes parallel to one of the two
or three coordinate axes to the position that has minimal value E. Like the previous methods we use
GLS to ensure that the local search can overcome local minima.

The value of ω changes during the solution process. Initially ω is set to a very large number so
only balance and moment of inertia is optimized. We now slowly decrease the value of ω, so that
in the beginning of the solution process the balance objective, F(P ) is the most important objective,
and the heuristic converges towards non-overlapping placements. Let ωi be the value of ω after i
translations, then we set ωi+1 = ψωi. Empirically we found that ψ = 0.999 is a good compromise
between fast convergence and high solution quality.

Once an feasible non-overlapping placement has been determined, the current value of ω is mul-
tiplied by k and the procedure continues with the new objective function. Initially k is set to 2. If the
objective value of the feasible solution, w.r.t balance, is equal to the last found feasible solution k is
doubled until a new feasible placement is found at which point k is reset to 2. This is done to avoid
cyclic behavior.

The development of ω and the balance inertia objective value for the instance ep2-100-U-R-75
(to be presented in Section 6) is depicted in figure 4. Here the the best found objective value (objective)
is shown as a function of time along with the logarithm of the value of ω (omega). The first feasible
solution is found after 5 seconds and it is demonstrated and the heuristic continuously find better
solutions during the first 45 seconds.

The minimal overlap algorithm by Egeblad et al. is adapted to accommodate the augmented
objective function E. The algorithm by Egeblad et al. searches a piecewise quadratic function for
global minimum. By adding F(P ) to this quadratic function, which account for the overlap, we can
ensure that the minimum found by the algorithm is the translation of a polygon (polyhedron) that
reduces E the most.
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Figure 4: The solution process of ep2-100-U-R-75.

The value of the balance and inertia objective function F for the placement P (p, t) can be deter-
mined as:

F(P (p, t)) = F(P )+αgp(t− xp)+β

(
Gx +

gp(t− xp)
∑i∈P gp

)2

, (13)

where Gx is the x-coordinate of the center of gravity for P . This shows that F(P (p, t)) can be eval-
uated in constant time for any t if F(P ) is known and that F(P (p, t)) is a quadratic function in t.
Let E((P (p, t)) = ωH(P (p, t))+ F(P (p, t)) be the full augmented objective value of the placement
P (p, t) comprising of overlap, penalties and balance and inertia. In two dimensions E(P (p, t)) is the
sum of a quadratic and a piecewise quadratic function and may therefore be described as a piecewise
quadratic function. In three dimensions E(P (p, t)) is piecewise cubic. The same analysis performed
on H(P (p, t)) as described in the end of Section 4 may be performed on E(P (p, t)) to determine the
minimal translation with respect to the augmented gravity objective function E. Note that (13) shows
that F is quadratic for translations of p that are parallel to the x-axis, however, a similar argument
holds for the other two coordinate system axis.

5.1 Target Region Constraints

To handle the CBWPP version of the problem where the center of gravity must be kept within a
rectangular region of the container (constraints (III)− (V )), all items are placed initially such that
their center of gravity falls within this region.

Let Gx(P ) be the current x-coordinate of the center of gravity, then for a shape p the x-coordinate
of the center of gravity of the placement can be described as a function of the translation t of p along
the x-axis:

Gx(P (p, t)) = Gx(P )+
gp(t− xp)

∑i∈P gi
, (14)

where xp is the x-coordinate of p in P . Since Gx(P (p, t)) is linear we may determine values t0 and
t1 such that Gx(P (p, t0)) = Lx and Gx(P (p, t1)) = Ux. We now only allow translations t of i such that
t0 ≤ t ≤ t1, i.e. translations which retain the center of gravity within the target region.
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5.2 Initial weight

The initial value of ω, ω0, should be carefully selected to match the problem instance. We assume
that the heuristic starts with some initial random placement, P0. We now set:

ω0 = ∑
p∈P

area(p)/F(P0),

where area(p) is the area of polygon (polyhedron) p. If we expect the total area to be in the same order
of magnitude as the initial overlap, then this choice of ω ensures that the contribution of H (P0) and
F (P0) in (12) are of same order of magnitude. Since the overlap is rarely equal to the total area, the
contribution of F (P0) is also slightly larger than that of H (P0). This strategy was found empirically
to weigh F high enough during the initial steps to find good solutions.

6 Computational Experiments

The necessary changes described above were added to the implementation of the heuristic described
in Egeblad et al. [A]. The heuristic was implemented in C++ (gcc 4.1.3) and tests were conducted on
a computer with two quad-core Intel Xeon 5355 2.66 GHz processors and 8 GB RAM. The imple-
mentation did not use any form of parallelism and therefore did not take advantage of the multi-cpu
multi-core system.

To demonstrate the capabilities of the heuristic we conduct experiments in both two- and three-
dimensions and for both BWPP and CBWPP. We also compare results of the heuristic with random
legal placements.

6.1 Two dimensions

To test the two-dimensional variant of the heuristic we use a total of 16 instances which are described
in Table 1. Both rectangular and irregular shapes were used for the computational experiments. The
type of shapes are described in the column ‘Shapes’ and are either rectangular (Rect.) or irregular
(Irre.). The column ‘n’ describes the number of shapes in each instance.

We have selected 10 instances with irregular shapes which are commonly used for The Two-
Dimensional Nesting Problem and are described in Egeblad et al. [A], and 3 instances with rectangular
shapes used for Two-Dimensional Orthogonal Knapsack Packing Problems which are described in
Egeblad and Pisinger [C].

The dimensions of the container were adjusted appropriately for both sets of instances. For the
instances from The Two-Dimensional Nesting Problem the strip-length was set to 105% of the best
strip-length reported in Egeblad et al. [A]. For the knapsack instances the rectangles of the best found
subset was used and the container dimensions were expanded to 105% in all directions. The mod-
ification of container dimensions were made to give the heuristic adequate freedom to optimize for
balance and moment of inertia without too much emphasis on searching for non-overlapping legal
placements.

In addition three more instances were created. Two instances were created to test the heuristic’s
ability to handle odd-sized containers (one with rectangular shapes and one with irregular shapes),
these are called Ship and Car. Finally an instance containing 64 10x10 squares within a 80x80 con-
tainer (64-squares) was created to test the heuristic’s ability to handle simple problems.

The weight, gi, of each item i within each instance was set to area(i) · ri where ri was chosen
uniform randomly within the interval [1

2 ,2].
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Instance n Shapes Target Target Small Large
(x/y) size (%) W H Util. W H Util.

64-squares 64 Rect. 1
2/ 1

2 20 80 80 100.0 120 120 44.4
ep2-50-D-R-75 41 Rect. 1

2/ 1
2 20 82.95 166.95 89.8 118.5 238.5 44.0

ep2-100-U-R-75 69 Rect. 2
3/ 1

2 20 536.6 1073 88.5 766.5 1533 43.3
ep2-200-D-R-75 157 Rect. 1

2/ 1
2 20 155.4 310.8 88.0 222 444 43.1

Albano 24 Irre. 1
2/ 1

2 20 10453 5071.5 80.5 14934 7350 38.9
Dagli 30 Irre. 2

3/ 1
2 30 63.0 62.1 77.8 90 90 37.6

Fu 12 Irre. 1
2/ 1

2 40 33.6 39.33 82.0 48.0 57.0 39.6
Mao 20 Irre. 2

3/ 2
3 20 1818 2677.5 77.2 2598 3825 37.8

Marques 24 Irre. 1
2/ 1

2 30 81.9 107.64 81.6 117.0 156.0 39.4
Shapes0 43 Irre. 2

3/ 1
2 30 63.0 41.4 61.2 90 60 29.6

Shapes2 28 Irre. 1
2/ 1

2 20 28.65 15.52 73.6 22.5 40.5 35.6
Shirts 99 Irre. 2

3/ 2
3 20 65.20 41.4 80.0 60 94.5 38.1

Swim 48 Irre. 1
2/ 1

2 20 6494.3 5953.32 65.8 8628 9277.5 31.8
Trousers 64 Irre. 2

3/ 1
2 30 251.50 5 81.765 82.5 364.5 118.5 39.8

Ship 83 Rect. 2
3/ 1

2 20 58.0 600.0 89.3 - - -
Car 43 Irre. 2

3/ 1
2 20 52 80 66.6 - - -

Table 1: Instances used for two-dimensional experiments.

To test different target center of gravity positions, the instances have their center of gravity target
set to either 1

2 or 2
3 of both x- and y-dimensions of the container. The target center position is written

in column ‘Target’ of Table 1.
For CBWPP-2D we restrict the center of gravity to a region around the center of gravity target.

The dimensions of this rectangular region is described as a percentage of the container dimensions in
the column marked ‘Target size’.

This set of 16 instances we refer to as the set of small container instances. The set of small
container instances with a rectangular container was copied to create a set of 14 large instances. The
dimensions of the large instances was set to 150% their original/best found value but the weight of
each item was kept intact. This allow us to compare the results of the heuristic for compact and less
compact placements. The dimensions of small and large instances are in the columns ‘Small’ and
‘Large’ where ‘W ’ is the width, ‘H’ is the height and ‘Util.’ is the utilization of the instance under the
given container dimensions.

Results of the test instances are listed in Table 2. For each instance we list the results with respect
to moment of inertia and center of gravity after 30, 120 and 300 seconds. The resulting distance to the
target center of gravity is listed in the columns entitled ‘COG’ and the resulting moment of inertia in
the columns entitled ‘Moment’. The distance to the target center of gravity is reported as percentage
deviation between the diagonal length of the instance (

√
W 2 +H2) and the euclidian distance from

the solution center of gravity to the target center of gravity.
We do not report the total value of F(P ), but it may be extrapolated using container dimensions

and the target center of gravity deviation.
Each instance is tested using 3 different formulations; First for solving the BWPP-2D, letting the

heuristic run 300 seconds with α, β, γ and δ all set to 1. This way the moment of inertia is optimized
without sacrificing good solutions to the center of gravity. The results of this test are listed in the first
3 columns of Table 2 with incrementally best result reported after 30, 120 and 300 seconds. Secondly,
300 seconds with the CBWPP-2D formulation are reported in the column entitled ‘300 s. (CBWPP-
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Car (normal) Dagli (small, region constraints)

ep-100-U-R-75 (large, region constraints) ep2-100-D-R-75 (small, normal)

Albano (small, normal) Trousers (small, region constraints)

Ship (normal)

Figure 5: Best solution for selected instances.

2D)’. And finally in the column entitled ‘Random’ we report the solutions achieved by legalizing
random initial solutions using the procedure by Egeblad et al. [A]. Each instance was tested 10 times
with 10 different random seeds leading to 10 different initial placements for each formulation. We
report the average of the best found result within the designated time-limit. For some instances, not
all 10 seeds led to legal placements within the time limit and in this case the number of successful
runs is reported as ‘(x)’ in front of the associated results, and the average is taken over the successful
runs.

Inspection of the results reveals that for the small container instances the improvement of the
combined objective function is on average 4.11 % between the first 30 and 120 seconds and 2.30%
during the last 180 seconds. Similarly for the large container instances the improvements are 5.00
% between the results after 30 and 120 seconds and 1.16% during the last 180 seconds. For the odd
container instances the improvement between the first 30 and 120 seconds is 2.95 % while it is 1.92
% during the last 180 seconds. This shows that most improvements occur during the first 120 seconds
and relatively little improvement occurs during the last 180 seconds.

For the small container instances the resulting moment of inertia is surprisingly 0.43 % worse
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6. Computational Experiments

on average when the heuristic solves for CBWPP-2D instead of BWPP-2D and the average distance
between the target center of gravity and actual center of gravity is also larger. For the large container
instances the moment of inertia is 0.2 % better and for the odd container instances it is 0.84 % better
when the heuristic optimizes for a specific center of gravity region. This shows that that little is
gained by optimizing for a target region for the center of gravity. A likely cause is that there is a
strong correlation between solutions with low moment of inertia and with the center of gravity close
to the target center of gravity. Another possible cause is that the limited target region limits the type
of changes the heuristic can conduct during local search.

The difference between considering the objective function during optimization and random place-
ments can be seen when comparing the results of the heuristic after 300 seconds with results of the
random placements. For the small container instances the value of the combined objective function is
31.6 % higher for the random placements than for those produced by the heuristic. The moment of
inertia is 28.0 % higher and the quadratic distance between the actual center of gravity and the target
center of gravity is 294.9 %. For the large container instances the values are respectively 178.0 %,
162.9 % and 15170 %, and for the odd container instances 68.8 %, 49.6 % and 292.3 %. This shows
that random placements are far from optimal with respect to balance and moment of inertia.

The objective value for the large container instances are on average 17.44% better than for the
small container instances for unconstrained solutions. Since the same set of items were used, but
with larger container dimensions this shows that the heuristic behaves only slightly better even if the
container dimensions are larger, which should simplify the problem of finding feasible solutions and
give greater freedom for positions of items.

Example solutions are shown in figure 5. the target center of gravity is indicated as the intersection
of the dashed lines, while the actual center of gravity is indicated as the intersection of the dotted lines.
Target regions are indicated as dashed rectangles for the solutions of the problems with a target region.

6.2 Three dimensions

A similar set of tests were conducted for a three-dimensional variant of the heuristic. Three instances
with rectangular items and two instances with irregularly shaped items were used for testing. The
rectangular instances are based on solutions to knapsack problems reported in [C] while the irregu-
lar instances are based on the best found solutions to the three-dimensional strip-packing problems
reported by Egeblad et al. [B]. As for the two-dimensional instances, the input containers for the in-
stances with rectangular items were expanded by 5 % in every direction (small container instances)
and by 50 % in every direction (large container instances). The instances are listed in Table 3. For
the instances with irregular shapes the two fixed container dimensions were kept intact and height
(strip-length) was set to 110% of the average height reported in the Egeblad and Pisinger [C]. For
ep3-60-C-R-50 and stoyan3 the target center of gravity is set close to the bottom center of the con-
tainer; (1

2W, 1
2 H, 1

3 L) for small sized containers and (1
2W, 1

2 H, 1
4 L) for large sized containers. The

dimensions of the instances are reported in the columns entitled W (width), H (height) and L (length).
The results of running the heuristic are reported in Table 4 using the same terminology as was

used for the two-dimensional results. Several example solutions are shown in Figure 6.
The average improvement from 30 to 120 seconds of running time is respectively 3.42 % and 0.82

% for the small and large container instances, and respectively 4.03 % and 0.41 % from 120 to 300
seconds. This shows, that although little improvement occurs for the large instances during the last
180 seconds, there is still substantial improvement for the small container instances.

The value of moment of inertia is 2.14% and 0.88 % better for respectively the small and large
container instances, when the heuristic optimizes for CBWPP-3D rather than BWPP-3D. This matches
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Placement of two- and three-dimensional irregular shapes for inertia moment and balance

Instance n Shapes Target Target Small Large
size (%) W H L Util. W H L Util.

ep3-60-C-R-50 46 Rect. Bottom 20 128.1 257.25 128.1 68.9 241.5 483.0 241.5 31.7
ep3-40-L-C-90 24 Rect. Center 20 169.05 338.1 169.05 69.1 183.0 367.0 183.0 25.8
ep3-60-C-R-90 44 Rect. Center 20 205.8 411.0 205.8 68.6 294.0 588.0 294.0 28.9
stoyan2 12 Irre. Center 20 15.0 20.9 14.0 38.4 22.5 32.25 21.0 11.6
stoyan3 25 Irre. Bottom 25 15.0 31.9 16.0 40.27 22.5 46.95 24.0 13.3

Table 3: Instances used for three-dimensional experiments.

the results from the two-dimensional experiments which showed that little is gained with the CBWPP
formulation.

For the small container instances the difference between the random solutions and the heuristic
solutions is 28.9 %, 25.1 % and 354 % for respectively the full objective function, the moment and
center of gravity components of the objective functions. This shows that the three-dimensional random
solutions are suboptimal and matches the results for two dimensions.

As for the two-dimensional instances, the instances with large container dimensions only have an
objective value which is 15.24 % better on average than the instances with small container dimensions.
This, again, shows that the heuristic only works slightly worse when it is easier to find a feasible
placement.

7 Conclusion

We have described a simple approach for solving the two- and three-dimensional placement problem
of shapes with respect to balance and inertia moment. The objective is to minimize the deviation
between actual center of gravity and a target center of gravity as well as the inertia of moment of the
shapes.

The solution method uses a technique previously used by Egeblad et al. [A] that finds feasible
placements of shapes, by minimizes the amount of overlap in the placement. The objective function
we minimize here a weighted sum of overlap and the balance objective. Initially the method focuses
on ensuring proper balance, and slowly increases the weight of overlap in the objective function. Once
a placement with no overlap has been found, the method again reduces the weight of the overlap term,
to continue the search for other feasible placements that are better with respect to balance.

Our method expands on the work by Egeblad et al. [A] to efficiently search the local search
neighborhood consisting of axis-aligned translations. We show that the balance terms of the objective
function for all axis-aligned translations of a single shape can be described by a quadratic function.
This quadratic function is added to the piece-wise quadratic function which describes overlap and
enables us to find the minimal overlap translation for a shape efficiently.

Good results are returned within minutes even for instances with more than 150 rectangles, how-
ever our implementation is general and quality results may be obtained even faster for rectangular
instances with an implementation specifically designed for rectangular placement. The approach is,
to our knowledge, the only method capable of optimizing the center of gravity and moment of inertia
for irregular shapes in both two- and three-dimensions.

7.1 Acknowledgements

The author wishes to thank Benny K. Nielsen and David Pisinger for inspiring and fruitful discussions.

203



7. Conclusion
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Placement of two- and three-dimensional irregular shapes for inertia moment and balance

ep3-60-C-R-50 (small, normal) ep3-60-C-R-50 (large, normal)

ep3-40-L-C-90 (small, region constraints) ep3-40-L-C-90 (large, region constraints)

ep3-60-C-R-90 (small, normal) ep3-60-C-R-90 (large, region constraints)

stoyan2 (small, region constraints) stoyan3 (large, normal)

Figure 6: Best solution for selected three-dimensional instances (rotated 90 degrees).
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Three-dimensional Constrained Capsule Placement for
Coarse Grained Tertiary RNA Structure Prediction

J. Egeblad∗ L. Guibas† M. Jonikas‡ A. Laederach§

Abstract

We present a novel technique to solve problems in which a set of capsules are to be placed
within an arbitrary container. The placements may be further constrained by inter-capsule dis-
tances and angles. We also study optimization variants of the problem where capsules must be
placed such that some objective is optimized. The model has applications within coarse grained
RNA tertiary structure prediction, which we model as a network of inter-connected capsules which
represent alpha-helices that must be placed within some molecular surface. In our model such a
surface is represented by a triangle-mesh. The problem is solved heuristically via an iterative local
search method which utilizes the metaheuristic Guided Local Search. The local search neighbor-
hood consists of all axis aligned translations of a single capsule and is searched efficiently using
a polynomial time algorithm. Results show that the method is capable of finding feasible place-
ments of networks consisting of up to 50 capsules under compact conditions. Experiments with a
model of an RNA-molecule consisting of 7 helices and a molecular envelope return helical place-
ments with an average RMSD of 20 Å to the crystal structure.
Keywords: Cylinder packing, RNA prediction, Irregular Packing

1 Introduction

Knowing the three-dimensional structure of RNA molecules is vital for studying and determining
their function. While x-ray crystallography may be used to determine the structure experimentally,
this is a time and labour consuming process and methods which can accurately predict the structure
computationally may help scientist to uncover the mysteries of the molecules.

The secondary structure of an RNA molecule consists of a list of base pairs. The tertiary structure
consists of a set of three-dimensional coordinates for each atom. Among the successful methods for
secondary structure prediction is the dynamic programming method Mfold [25] and the probabilistic
method ContraFold [5]. Prediction of the tertiary structure of RNA may be done based on the base-
paired regions of a secondary structure prediction.

In this paper we consider a coarse grained model for RNA structure prediction, in which we
assume that the proper secondary structure may be accurately predicted, and that a set of helical
regions can be deduced from it. In our model we treat each helical region as a rigid body. We let each

∗Computer Science Department, University of Copenhagen, DK-2100 Cph Ø, Denmark. E-mail:
jegeblad@diku.dk.

†Computer Science Department, Stanford University, Stanford, CA 94305, USA. E-mail:
guibas@cs.stanford.edu

‡Bioengineering department, Stanford University, Stanford, CA 94305, USA. E-mail: jonikas@stanford.edu
§Department of Biomedical Sciences, Wadsworth Center, New Scotland Av. Albany, NY 12208. USA, E-mail:

alain@wadsworth.org
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1. Introduction

(a) (b) (c)

Figure 1: (a) Example capsule. (b) Coarse model for tertiary structure used in this paper. (c) Example
placement within triangle mesh (Link constraints are indicated with green beams).

α-helix i, from the predicted secondary structure, be represented by a cylinder with spherical ends
(capsule) whose radius, ri, and length, li corresponds to the extents of the helix it represents. Since
atoms cannot overlap, we require that the helices do not overlap.

Base-pairs between two helices are modeled as distance constraints (links), so that the endpoints
of the capsules corresponding to the helices are required to be within a distance of each other that
corresponds to estimated physical distance between the two helices.

Additional data may be available. In some cases scientist will know the molecular envelope of
the RNA molecule which can be determined by SAXS and we may require that all capsules must be
located completely within the envelope.

By observing experimental data, it may also be possible to identify parts of the helices that are
exposed and should therefore lie close to the molecular surface and finally, angles between helices
may be deduced and used to describe the relative orientation of two capsules. A sketch of the model
is depicted on Figure 1 (a,b) along with a real placement of capsules on Figure 1 (c).

In this paper we focus on the problem of determining one or several placements of the capsules
given the requirements. As we will show in Section 2, this problem is N P -complete.

To solve this problem we define an objective function in which any violation of the requirements
contributes positively to the objective value. A objective value of zero implies that we have found a
feasible placement of the helices, that is, a placement where all requirements are met.

The method begins with an infeasible random placement and iteratively refines the placement until
an objective value of zero is reached. In each iteration of the refinement we translate or rotate a single
capsule to a position that reduces the value of the objective function.

Current techniques for RNA tertiary structure prediction may consider molecules with approxi-
mately 50 nucleotides. Since our method considers pure geometry it may open the door for rough
placements of RNA structures with hundreds of nucleotides, that can later be refined by other tech-
niques which accurately determine the positions of the individual nucleotides.

The remainder of this paper is organized as follows: In Section 2 we give the exact problem
formulation. In Section 3 we describe related scientific work. In Section 4 we outline the solution
method and in Section 5 we describe an efficient implementation of the local search moves.
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Constrained Capsule Placement for Coarse Grained Tertiary RNA Structure Prediction

2 Problem Formulation

We consider a simplified model for coarse grained RNA prediction consisting of a network of n
interconnected helices represented as capsules with radius ri, and length, li for i = 1, . . . ,n.

A capsule i in space may be represented as a coordinate pi, a direction vector vi and a radius ri,
where capsule i is the set of points,

{p ∈ R3 | min
t∈[0,1]

||p−pi + tvi||} (1)

which are within a distance ri from the line segment between pi and pi +vi (See figure 1 (a)).
Each capsule is defined in a local coordinate system where the endpoints pi and pi +vi of capsule

i’s are (− li
2 ,0,0)T and ( li

2 ,0,0)T . A placement of n capsules consists of a transformation for each
capsule from its local coordinate system to a global coordinate system. Each transformation consists
a rotation and translation. The translation is given by the vector ci ∈ R3. The rotation is represented
by the matrix Mrot(θi,φi), which first rotates the coordinate system θi ∈ A radians around the z-axis,
then φi ∈ A radians around the x-axis. In this text it is assumed that the set of allowed angles A is
a discrete set. Capsule i’s endpoints in the global coordinate system for a placement P = (c,θ,φ) ∈
R3n×An×An are pi = Mrot(θi,φi)(− li

2 ,0,0)T + ci and pi +vi = Mrot(θi,φi)( li
2 ,0,0)T + ci.

Links which describe how individual helices are connected are modeled as maximal distance
constraints. Links are numbered 1 to m and link i connects capsule s(i) with e(i). For a feasible
placement we require that the distance between the endpoints, ps(i) +vs(i), and pe(i), must be less than
b(i), i.e:

||ps(i) +vs(i)−pe(i)||2 ≤ b(i)2.

We also wish to ensure that all capsules lie within some molecular envelope, E, whose surface is
closed and represented by a set of non-intersecting triangles Es. A point p is enclosed by Es if any ray
from p intersects Es an odd number of times. In other words, for a point p ∈ R3, let c(p) ∈ Z+ be the
number of times the ray r−(p) = sa+p, for any vector a and s < 0 intersects any triangle T ∈ Es, then
the set of points enclosed by the envelope are:

E = {p ∈ R3 | c(p)≡ 1 mod 2},

which, since the surface is closed, is independent of the choice of a.
To ensure that a capsule i is completely within E, we require that both its endpoints are in E and

that the minimal distance from the line segment si to any triangle in T is larger than ri. Note that such
a capsule cannot cross the surface, since that would imply a minimal distance of 0.

We may also consider angles between capsules. For each link i we require that the angle in radians
between the incident pair of capsules, s(i) and e(i) falls within some interval [α−i ,α+

i ]⊂]−π,π].
The primary objective in this paper is to find a placement P , such that all the constraints listed

above are met and we will refer to this problem as the Interconnected Capsule Placement Decision
Problem (ICPDP).

Theorem 5. The Interconnected Capsule Placement Decision Problem with rational coordinates and
values is N P -complete.

Proof. Assume, for now, that we can determine if a capsule is located within a triangle envelope and
if two capsules overlap in polynomial time (This will be shown in Section 5). Then we may determine
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Figure 2: Placement of the capsules that corresponds to the set of items {1,1,1,1,2,2} in the proof
of Theorem 5. Here capsules are either 1−1 or 2−1 units in length and have radius 1

2 .

if a placement is feasible in polynomial time based on the coordinates of the capsules, and we can
therefore use a placement as a polynomial size certificate.

To prove that the problem is N P -complete we show that if we can solve any instance of ICPDP,
we can solve any instance of the Set Partition Problem (SPP) which is N P -complete (see e.g. [8]).

SPP is defined as follows; Given a set of items S, each with a positive integer value ai ∈ N for
i ∈ S, determine if we can divide S into two disjoint sets S′ and S′′ such that S′∪S′′ = S and ∑i∈S′ ai =
∑i∈S′′ ai = 1

2 ∑i∈S ai.
Given an instance I of SPP we may create an instance, I ′, of ICPDP as follows. For each item

i ∈ S from I create a capsule i in I ’ with length li = ai−1 and radius 1
2 . Set M = ∑i∈S ai and create an

envelope with the feasible domain C = [0, M
2 ]× [0,2]× [0,1]. Note that the only feasible z-coordinate

for the endpoints of any capsule is 1
2 . We also fix the feasible set of rotation angles to {0}, so no

rotation is allowed.
Given a solution to I , we may create a solution to I ′ in the following way. Assume (WLOG)

that the items are enumerated such that S′ = {i | 1 ≤ i ≤ |S′|} and S′′ = {i | |S′|+ 1 ≤ i ≤ |S|}.
For each capsule i we set vi = (ai,0,0) and set ci = (1

2 ai + ∑ j<i a j,
1
2 , 1

2) for i ∈ S′ and ci = (1
2 ai +

∑|S′|< j<i a j,
3
2 , 1

2) for i ∈ S′′ (see figure 2). Note that no two capsules overlap with this assignment,
since the length of capsule i is ai−1.

Conversely, assume we have a solution S to I ′, then divide the capsules into two sets S′ = {i|ci,y <
1}, consisting of the capsules with center y-coordinate less than 1, and S′′ = S\S′. Due to the dimen-
sions of the capsules, the fact that rotations are not allowed, and the fact that no two capsules overlap
in S , we can deduce that the only feasible placement must be similar to the one shown in Figure 2,
where the capsules are divided into two rows and therefore:

∑
i∈S′

(ai−1+2ri) = ∑
i∈S′

ai ≤M

Similarly, ∑i∈S′′ ai ≤ M. This shows that S′ and S′′ constitute a solution to I , which completes the
proof that ICPDP is N P -complete.

3 Related work

This paper fall between the fields RNA-structure prediction and optimization of packing and layout
problems and relevant work from both fields is briefly discussed in the following.

3.1 RNA Structure Prediction

In both the surveys on RNA structure prediction by Shapiro et al. [20] and Capriotti and Marti-Renom
[2] a section is devoted to tertiary structure prediction of RNA. Presently, most methods for tertiary
structure prediction rely on some form of human assistance. The Erna-3D program by Muller [19]
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builds helices based on the secondary structure. The helices are combined to form a complete tertiary
structure. The program is based on human manipulation of the generated structured on different levels
of detail with the highest level consisting of complete helices. Massire and Westhof [17] present a tool
that builds the tertiary structure based on a library of RNA motifs. Once constructed, the structures
can be manipulated interactively. MC-Sym by Major [15] also builds 3D structures from known 3D
structures, and allows interactive specification of structural constraints. The 3D structures may be
further refined using molecular dynamics simulation which minimize their energy. The RNA2D3D
program by Martinez et al. [16] generates helices from the secondary structure and spaces atomic
models of nucleotides evenly on a backbone which is used to create the three-dimensional structure
by winding. This first order representation may then be further refined interactively and by molecular
dynamics.

Das and Baker [3] presents a procedure which is inspired by the Rosetta low-resolution protein
structure prediction method. The method assembles RNA fragments controlled by a Monte Carlo
method in order to minimize a knowledge based energy function and is able to accurately predict
structures consisting of approximately 30 nucleotides. Finally, Ding et al. [4] uses discrete molecu-
lar dynamics (DMD) to fold structures consisting of up-to 100 nucleotides although best results are
reached for less that 50 nucleotides.

Some geomtric aspects of RNA structures were analyzed by Hyeon et al. [12]. The RNA molecules
studied were found to be more aspherical and prolate than proteins. Furthermore the radius of gyra-
tion, which determines the compactness of the molecules, was found to be consistently RG = 5.5ÅN

1
3

for N nucleotides, which is less than the compactness for proteins.

3.2 Packing and Layout

Since the methods that we use in this paper have been previously applied to packing and layout prob-
lems we briefly consider this field. Packing problems of non-rectangular shapes in three dimensions
have been considered by several authors. Stoyan et al. [22] considers optimal packing of convex
polyhedra within a rectangular container, while a similar problem involving spheres was considered
by Stoyan and et al. [21]. Imamichi and Hiroshi [13] also considers packing of spheres and model
rigid shapes as collections of spheres. In addition to packing problems, the method is applied to
protein-protein docking problems. The methodology closely resembles the strategies described in this
paper, since a placement with overlap is continuously refined using a gradient search method until a
non-overlapping placement is reached.

Determining a placement of objects given a set of constraints has previously been considered for
component layout optimization. Here a given set of items inter-connected by wires must be placed
within a container such that some objective is optimized. The objective can be wire-length or the
overall center of gravity, and in some cases additional proximity constraints must be met. A survey of
layout problems was given by Cagan et al. [1] and recent work is presented by Yin et al. [24].

The methodology used in this paper, as presented in Section 4, originates from work by Faroe
et al. [7] who consider a relaxed placement method for the bin-packing problem, where the minimal
number of rectangular bins required to contain a set of rectangular items must be found. The method
revolves around a procedure which starts with infeasible placements of overlapping rectangular items,
that are continuously refined to reach non-overlapping placements. The refinement procedure consists
of repeated translations of individual items to less-overlapping positions. The refinement process
was also used by Egeblad et al. [A] for two- and three-dimensional strip-packing problems, where
a minimal length container capable of encompassing a set of polygons must be found. The method
was generalized to three-dimensional problems involving general polyhedra and to higher dimensional
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problems by Egeblad and Pisinger [C]. The refinement procedure Faroe et al. [6] uses a similar method
for very large circuit (VLSI) layout problems, which is a two-dimensional component layout problem.

4 Solution Method

The solution method follows the work by Faroe et al. [6, 7] and Egeblad et al. [A, B] which was
briefly touched upon in Section 3.2. The intuition behind our method is as follows. We begin with a
random placement of the capsules which is unlike to meet all of our requirements. As our solution
method progresses capsules are allowed to be freely moved around in the coordinate system even
that make them overlap with other capsules, extend beyond the envelope, and violate link and angle
constraints. Violations of constraints are described by a continuous objective function, such that a
“larger” violation of constraints has a higher objective value and a placement of the capsules is feasible
with respect to the requirements if and only if the objective value is zero. Our method iteratively
approaches a feasible placement where all requirements are met by reducing the objective value in
each step. In each iteration exactly one capsule, which contributes positively to, the objective function
is selected and all possible axis aligned translations as well as rotations of the capsule are considered.
The translation or rotation that reduces the objective value the most is selected.

The objective function we consider is defined as follows:

F (P ) =
n

∑
i=1

n

∑
j=i

fC(P ,vi j, i, j)+
n

∑
i=1

fE(P , ṽi, i)+
m

∑
i=1

fL(P , i)+
m

∑
i=1

fA(P , i),

where P is the current placement of capsules, and each of the functions fC, fE , fL and fA are explained
in the following and illustrated on Figure 3. We emphasize that all these values are with respect to the
current placement P .

fC(P ,vi j, i, j) ≥ 0 is the amount capsule i must be translated along the vector vi j in placement P
in order for it not to overlap with j as illustrated on Figure 3 (a). This value is related to the concept
intersection depth, and will be described in more detail in Section 5.1. Note that fC(P ,vi j, i, j) = 0 if
and only if i and j are not overlapping in P . T

fE(P , ṽi, i)≥ 0 indicates how far capsule i must be moved in direction ṽi in placement P in order
to be completely contained within the envelope E. This is illustrated on Figure 3 (b). fE(P , ṽi, i) = 0
if and only if i is completely contained within E.

For link k which connects capsules i = s(k) and j = e(k) the value fL(P ,k) = max(||ps(k) +vs(k)−
pe(k)||2−b(i)2,0)≥ 0, is a measure of how far capsules i = s(k) and j = e(i) should be moved relative
to their placement in P in order for the distance between the endpoints of the capsules i and j to be
feasible. This is illustrated on Figure 3 (c) Note that fL(P ,k) = 0 if and only if the distance between
the endpoints of the two capsules linked by link i are within a feasible range.

For link k the value fA(P ,k) indicates how far the angle between capsules s(k) and e(k), is from
the target angle interval [α−i ,α+

i ] and we set:

fA(i) =


α
−
i −∠(i) for ∠(i) < α

−
i

0 for α
−
i ≤ ∠(i)≤ α

+
i

∠(i)−α
+
i for ∠(i) > α

+
i

where ∠(P , i) is the angle in radians between capsules s(i) and e(i) and the difference is calculated
modulo 2π, i.e. it is always positive. This is illustrated on Figure 3 (c).

We will give more details on how to evaluate the different terms of the objective function and
explain the choice of the vectors vi j and ṽi in Section 5. As can be seen from the previous description
F (P ) = 0 if and only if P is feasible with respect to our set of requirements.
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(a) (b) (c) (d)

Figure 3: Illustration of the different terms of the objective function. In all cases the capsule i is at an
infeasible position and the white hollow capsule represents a feasible position. (a) Capsules i and j
overlap and i must be translated fC(P ,v, i, j) along v (indicated by the arrow) to remove the overlap.
(b) i is placed outside E and must be translated fE(P ,v, i) along v (indicated by the arrow), (c) A
link k connects capsules i and j, which are placed too far from each other. fL(P ,k) (indicated by the
arrow) is the quadratic distance that i must be translated for its endpoint to be within a distance b(k)
(represented by the circle) of j’s endpoint. (d) Link k connects capsules i and j and i should be rotated
fA(P ,k) (represented by the arrow) for the angle to be within the required [α−k ,α+

k ].

4.1 Local search overview

Our procedure starts with a random, and likely, infeasible placement P0. We now seek to minimize
F using a simple local search scheme which from a placement Pk searches for a new placement Pk+1
such that F (Pk+1) < F (Pk). The possible changes we look for with respect to Pk revolves around a
single capsule i and are as follows:

1. Translate i in directions parallel to the three coordinate system vectors.

2. Translate i in direction ∇ f (x,y,z), where Pk(x,y,z) is the placement Pk with (x,y,z) added to
ci and f (x,y,z) = ∑

m
j=1 fL(Pk(x,y,z), j). The purpose of this change, is that a translation in this

direction will reduce the link term of the objective function.

3. Rotate i. The set of feasible angles is limited to the discrete set A .

We refer to this set of possible changes as the local search neighborhood. All three possible changes
are evaluated, and all possibilities among each type of translation are investigated. The translation or
rotation which reduces F (Pk) the most is selected and the new placement is Pk+1. Evaluation of the
objective function for each possible translation is a computationally expensive process, and we will
explain how this can be done efficiently in polynomial time in Section 5.

We refer to the set of placements which may arise from one of the changes listed above applied
to a placement P as the local search neighborhood, N (P ). If F (P ′) ≥ F (P ) for any placement
P ′ ∈N (P ), we say that P is a local minimum with respect to F and the local search neighborhood.

The local search process proceeds until either a placement Pk with F (Pk) = 0 or a local minimum
placement is found. If F (Pk) = 0 we have solved the specific instance of the ICPDP and return Pk
as solution. To continue the process from a local minimum we use the metaheuristic Guided Local
Search which will be described in Section 4.2.

Note that when the local search move selected is a translation then we calculate the fC and fE

terms with respect to the direction of translation as will be described in Section 5. We also set the
values of the vectors vi j and v ji for j = 1, . . . ,n and ṽi to the chosen direction. In other words, the
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value which determines the translation distance required for a capsule i, in order for i not to overlap, is
always with respect to the last translation that changed the overlap of i. Therefore one could argue that
during the optimization of F (P ) we also attempt to find the right set of vectors of vi j and ṽi. However,
for F (P ) = 0 the choice of vectors has no effect on the objective value. Therefore our search is still
limited to finding a set of translations and rotations of the capsules such that F (P ) = 0.

4.2 Guided Local Search

One of the main challenges with local search based methods is to ensure that they can continue the
search for a global minimum once they encounter a local minimum. A common way to solve this
problem is to control the local search with a form of metaheuristic. Metaheuristics consists of gen-
eral principle used to attack combinatorial optimization problems and some of most succesful and
well-known metaheuristics are Simulated Annealing (Monte Carlo Methods) Kirkpatrick et al. [14],
Genetic Algorithms Mitchell [18] and Tabu search Glover [9, 10]. Although, many local search based
metaheuristics are percieved as generic tools, some metaheuristics are often more suitable than others
for a specific local search procedure.

The metaheuristic Guided Local Search (GLS) introduced by Voudouris and Tsang [23] has pre-
viously proved successful for packing and layout optimization problems as described by Faroe et al.
[6, 7] and Egeblad et al. [A, B] and was therefore found suitable for solving ICPDP as well. The
primary element of GLS is to minimize an augmented objective function in which undesirable fea-
tures of placements are penalized by adding a set of additional penalty-terms to the objective function
one wishes to optimize. Whenever the local search procedure reaches a local minimum placement,
the augmented objective function is altered by modifying the penalty-terms, such that the current
placement ceases to be a local minimum relative to the modified augmented objective function. An
important part of this paradigm is that penalty terms must be carefully added such that any global
minimum of the augmented objective function is also a global minimum of the original objective
function.

For ICPDP we use the following augmented objective function:

minimize H (P ) = F (P )+Z(P ),

where Z(P ) is value of the penalties in P and given by

Z(P ) = λC

n

∑
i=1

n

∑
j=i+1

IC(i, j,P )ρi, j +λE

n

∑
i=1

IE(i)ψi +λL

m

∑
i=1

IL(i)σi +λA

n

∑
i=1

IA(i)τi.

Here IC(i, j,P ) = 1 if and only if capsules i and j overlap which is true if and only if fC(P ,vi j, i, j) > 0,
IE(i) = 1 if and only if capsule i is not contained within the envelope which is the case if and only
if fE(P , ṽi, i) > 0, IL(i) = 1 if and only if link-distance i is violated and therefore fL(P , i) > 0, and
IA(i) = 1 if and only if the angle of link i is not within its required interval which can be true if and
only if fA(P , i) > 0. The values ρi, j, ψi, σi and τi are penalty counts for respectively inter-capsule
overlap, envelope overlap, link-distance violation, and angle violation and these are explained shortly.
The values λC ≥ 0, λE ≥ 0, λL ≥ 0 and λA ≥ 0 are parameters that determines the weight of each of
the penalties in H and are used to fine-tune the behavior of the heuristic. Note that with this definition
F (P ) = 0 if and only if H (P ) = 0.

Initially all ρi, j, ψi, σi and τi are set to 0 and H = F . However, whenever a local minimum
placement P with H (P ) > 0 is encountered, one of the penalty terms are modified. Note that such
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a placement must contain either overlap, envelope overlap, link-distance violation, or incorrect link-
angles. The heuristic randomly selects one among these four contributions to change. If the overlap
penalty term is chosen we calculate the utility of this feature as:

µi, j =
fC(P ,vi j, i, j)

1+ρi, j
, i, j = 1, . . . ,n

and increase the value ρi, j by 1 for the pair of capsules i and j with maximal µi, j. If the envelope
overlap term is chosen we calculate:

ξi =
fE(P , ṽi, i)

1+ψi
, i = 1, . . . ,n

and increase ψi for the capsule i with largest ξi. If the link-distance term is chosen we calculate:

νi =
fL(P , i)
1+σi

, i = 1, . . . ,m

and increase the value σi for the link i with the highest νi. Finally, if the angle term is chosen we
calculate:

γi =
fA(P , i)
1+ τi

, i = 1, . . . ,m

and increase the value τi for the link i with the highest γi.
After this change of objective function the local search heuristic continues with the modified

objective. The effect of the modification is that the undesirable features, e.g. large overlap of two
specific capsules, are “emphasized” in subsequent optimization and the local search heuristic will
move towards placements without this particular overlap.

4.3 Fast Local Search

A very important aspect of the outlined local search procedure, is the selection of the capsule in each
step. Searching for new placements with respect to every capsule in each iteration of the local search
is computationally expensive. Rather, we use a concept referred to as Fast Local Search (FLS).

The details of FLS are as follows: We maintain a list L of capsules and in each step the local
search procedure searches only for improving changes to the first capsule in the list. Initially the list L
contains all the capsules. Whenever the local search procedure has attempted to change the placement
of a capsule, it is inactivated and removed from L and the procedure continues with the next capsule
in L . If an improving change of the placement for a capsule is found, all capsules connected to it via
links and capsules overlapping with it before or after the move are activated and put in L .

If L is empty, we assume the current placement is a local minimum placement, and we proceed to
change the penalties as described in the previous section. Afterwards, the capsule(s) associated with
the penalized feature are inserted in L and will be considered in subsequent steps by the local search
heuristic.

5 Neighborhood search

In this Section we will show how to evaluate the local search neighborhood described in Section 4.1
efficiently. The computationally most expensive element of the neighborhood is to determine the
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translation of a capsule i in a direction a that minimizes H . In this section, we will consider a specific
capsule i and let P (t) denote the placement that arises from P when i is translated ta units relative to
its current position.

A piecewise quadratic function f (t) consists of k second order polynomials each constrained to a
specific interval (pieces):

f (t) =


a1t2 +b1t + c1 for t ∈ [t1, t2]
...
akt2 +bkt + ck for t ∈ [t2k−1, t2k]

,

where each of the coefficient ai, bi, ci ∈ R3 and [t2i−1, t2i]∩ [t2 j−1, t2 j] = /0 for i, j = 1, . . . ,k.
Rather than probing H (P (t)) for a discrete set of values t and selecting the best translation from

this set, we will present an efficient polynomial time algorithm that returns the minimal value of
H (P (t)). The algorithm determines a piecewise quadratic function which describes H (P (t)) for any
value of t ∈ R, given a and capsule i. It has asymptotic running time O((n + m + |Es|) log(n + m +
|Es|)), where n is the number of capsules in the instance, m is the number of links, and |Es| is the
number of surface triangles from the envelope. Specifically the algorithm can be used to find t for
mint H (P (t)) in the same asymptotic time, by analyzing each piece for its minimum.

H consists of three components that depend on t; capsule overlap ( fC) envelope overlap ( fE), and
link violations ( fL). In the following we discuss how we may determine piecewise quadratic functions
fC(P (t),a, i, j), fE(P (t),a, i), and fL(P (t),a,k) over t for capsules i and j and link k ∈ {1, . . . ,m}.

5.1 Capsule Intersection

The first terms of F are the fC terms. fC(P ,a, i, j) describes the minimum amount capsule i must be
translated in a specific direction in order for i not to overlap with j as illustrated on Figure 3 (a).

To determine if two capsules overlap for different translations t along a we will evaluate the
minimum quadratic distance between two capsules. One with the line segment endpoints p1 + ta and
p1 +v1 + ta, and one with the line segment endpoints p2 and p2 +v2 as a function in t. The capsules
overlap, if the distance between these segments is less than the sum of the capsules’ radii.

For a given translation t and direction a let f (t,a,s,u)= ||p1 +sv1 +ta−p2−uv2||2 be the distance
between specific points on the infinite lines that are coincident with the two line segments, let

dLL(t,a,p1,v1,p2,v2) = min
s,u∈R

f (t,a,s,u),

be the minimal quadratic distance between the two infinite lines that are coincident with the line
segments, and let

dS,S(t,a,p1,v1,p2,v2) = min
s,u∈[0,1]

f (t,a,s,u)

be the minimal quadratic distance between the two line segments.
For fixed values of t and a f is a two dimensional quadratic function in s and u, and the minimum

distance between the two infinite lines occurs for values of s′(t) and u′(t) where:(
∂ f
∂s

(t,s′(t),u′(t)),
∂ f
∂u

(t,s′(t),u′(t))
)

=
(
0,0
)
. (2)
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It can be deduced that:(
∂ f
∂s

(t,s,u),
∂ f
∂u

(t,s,u)
)

= 2M
(

s
u

)
+2V +2t

(
v1 ·a
−v2 ·a

)
,

with

M =
(
||v1||2 −v1 ·v2
−v1 ·v2 ||v2||2

)
and V =

(
v1 · (p1−p2)
p2 · (p2−p1)

)
.

Which allows us to define s′(t) and u′(t) as(
s′(t)
u′(t)

)
=−M−1V − tM−1

(
v1 ·a
−v2 ·a

)
,

which shows that the values s′(t) and u′(t) are linear in t.
If we let S = {t | s′(t) ∈ [0,1]} and U = {t | u′(t) ∈ [0,1]} then both s′(t) ∈ [0,1] and u′(t) ∈ [0,1]

for t ∈ S∩U . This shows, that for t ∈ S∩U the two nearest points of the infinite lines are on the
line segments and for t ∈ S∩U we can evaluate the distance between the two line segments as the
distance dLL(t,a,p1,v1,p2,v2) between two infinite lines going through the endpoints of the capsules.
The distance between two infinite lines can be determined as:

dLL(t,a,p1,v1,p2,v2) =
(t(a · (v1×v2))+(p1−p2) · (v1×v2))2

||v1×v2||2
.

For t /∈ S∩U at least one of the two nearest points of the line segments, is an endpoints of a line
segment and we can evaluate the minimum distance between the two line segments as the minimum
distance between all of the four line segment endpoints and the opposite line segment:

dPPSS(t,a,p1,v1,p2,v2) = min
(

dPS(t,a,p1, p2,v2),dPS(t,a,p1 +v1,p2,v2)
dPS(t,−a,p2,p1,v1), dPS(t,−a,p2 +v2,p1,v1)

)
,

where

dPS(t,a,p,p2,v2) = ||p+ ta−p2− r(t,p,p2,v2)v2||2,
r(t,a,p,p2,v2) = max

(
0,min(1,r′(t,p,p2,v2))

)
,

r′(t,a,p,p2,v2) =
ta ·p2 +p1 ·v2

||v2||2
.

Here r(t,a,p,p2,v2) is the value of s for the point on the line segment p2 +sv2, s∈ [0,1] that is closest
to p. By analyzing the interval for t where r′(t,p1,p2,v2)∈ [0,1], we can describe dPS(t,a,p,p2,v2) as
a piecewise quadratic equal to the quadratic distance between points p+ ta and p2 for r′(t,p,p2,v2) <
0, the point-line distance between p and the line-segment p2,p2 + v2 for 0 ≤ r′(t,pi, l) ≤ 1, and the
distance between points p1 + ta and p2 + v2 for r′(t,pi, l) > 0. In total the distance between the two
line segments can be calculated as:

dSS(t,a,p1,v1,p2,v2) =
{

dLL(t,a,p1,v1,p2,v2) for t ∈ S∩U.
dPPSS(t,a,p1,v1,p2,v2) otherwise .

Since both dLL and dPS are piecewise quadratic in t, dSS may be represented as a single piecewise
quadratic function. Note that extra attention must be given for orthogonal lines and that evaluating
dPPSS(t,a,p1,v1,p2,v2) can be simplified with further boundary analysis.
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Figure 4: Illustration of the feasible translations of a point p, such that it is contained within the
envelope E (see text). For a point p + ta to be feasible, the number of intersections between the
envelope surface Es and the ray p+ ta−ua, for u ∈ [0,∞] must be odd. Here translations with t in the
intervals [t1, t2] or [t3, t4] are feasible.

Having the minimum distance for any translation along a vector a of two line segments allows us
to evaluate the interval O = [t1, t2], where the capsules i and j overlap. The endpoints of O are the
up-to two values of t for which dSS(t,a,p1,v1,p2,v2) = (ri + r j)2.

We now set the value fC(P (t),a, i, j) = min(−t1, t2) if t ∈O and 0 otherwise since we must trans-
late i either −t1 or t2 units along a in order for the two capsules not to overlap. We can also use this to
calculate the value of fC(P (t),a, i, j) by creating the piecewise linear-function:

fC(P (t),a, i, j) =


t− t1 for t ∈ [t1, t2−t1

2 ]
t2− t for t ∈ [ t2−t1

2 , t2]
0 otherwise

.

Thus fC(P (t),a, i, j) for all t ∈R3 can be determined in O(1) asymptotic time and the resulting piece-
wise linear function consists of no more than 4 pieces.

5.2 Surface Intersection

The second term fE of F (t) concerns placement of capsules outside the envelope as illustrated on
Figure 3 (b). First we note that a capsule can only be inside the envelope if both its endpoint are inside
the envelope, it does not cross the envelope, and the minimal distance from the line segment to any
triangle on the envelope is larger than the radius of the capsule. Our strategy is to determine the set
of intervals of t where all these conditions are met. The intersection of those intervals constitute the
feasible translations of capsule i along vector a.

To determine if an endpoint p is within the envelope we may simply cast a ray from p in direction
of−a. If the number of intersections between the ray, and the envelope is odd, p is inside the envelope.
This concept can be used to return the set of intervals of t where p is within the envelope. This is done
by determining all intersections between triangles of the envelope and the line p + ta. Denote the
distinct values of t for the intersections as t1, . . . , tk and assume, WLOG, that they are sorted such that
t1 < t2 < .. . < tk. Since translations of p with an odd number of intersections are feasible translations,
we know that values of t within the intervals [t1, t2], [t3, t4], . . . , [tk−1, tk] are feasible (see Figure 4).

Since multiple intersections can occur for equal values of t when triangle edges are coincident
we ensure that the distance between to subsequent intersections must be larger than a small value ε.
Calculating these intervals may be done in O(|Es| log |Es|) time, since it takes O(|Es|) time to calculate
all the line-triangle intersections, O(|Es| log |Es|) time to sort them and O(|Es|) time to traverse them
and generate the intervals. The set of intervals representing feasible translations of both endpoints
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(a) (b)

Figure 5: Illustration of the formulae required to calculate the distance from a line segment to a
triangle as described in Section 5.2.

can be calculated in O(|Es| log |Es|) time by determining the intersection of the intervals from each
endpoint.

We now consider the problem of determining the distance between the line segment of capsule
i, li(t) : pi + svi + ta, s ∈ [0,1] and a triangle T . If the line segment intersects T , the distance is 0
otherwise the minimal distance is the minimum of the distances between li(t) and any of T ’s edges or
the minimal distance from one of li(t)’s endpoints to T .

To determine if li(t) intersects T we first need to determine the point of intersection between the
infinite line coincident with li(t) and the plane of T as a a parameter of t (see Figure 5). Let the plane
of T be defined as the set of points P : {p ∈ R3|n ·p+q = 0} where n is the normal of the plane and
q ∈ R. Let s′(t) be the value of s for the point of intersection between the infinite line going through
li(t) and P, then we require that:

n · (pi + s′(t)vi + ta)+q = 0,

which implies that:

s′(t) =
n ·pi +q

n · vi
+ t

n ·a
n · vi

.

If n ·vi = 0, li(t) and the P are parallel and no intersection occurs. Otherwise, the points of intersection
are represented by the line:

lpi : t
n ·a
n ·vi

vi +pi +
n ·pi +q

n · vi
vi,

which lies in the plane P. Let It = {t | lpi(t)∈ T} be the interval of intersection between lpi and T , then
It is the interval of t for which the infinite line going through li intersects T . Let Is = {t | s′(t)∈ [0,1]},
then the interval IT ∩ Is is the set of values for t where li(t) intersects the triangle T (see Figure 5 (a)).

The problem of determining the minimal distance between the line segment and T ’s edges as a
parameter in t is similar to the problem of determining the distance between two line segments which
was covered in Section 5.1.

To determine the minimum distance from the line segment endpoints to the interior of T , con-
sider a point p + ta (which can be either endpoint of li(t)), then the distance from p + ta to P is
n · (p+ ta)/||n||+q. This distance is valid as a distance to T when the point closest to p+ ta on P is
within T . When this is not the case, the closest point of T is on one of T ’s edges and this situation
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is handled by the line segment edge distance evaluation mentioned above. To determine for which
values of t the closest point on P is within T we calculate the line (in t) representing the closest point
on P to p + ta for any value of t as follows. First, we define a line l(t) : p + un + ta, u ∈ R which is
the line going through p+ ta in direction n. Let u′(t) be the value of u where l(t) intersects P, then

u′(t) =−p ·n+q+ ta ·n
||n||2

.

Inserting this into the equation for l(t) we get a line representing the closest point of P to p:

l′(t) : p− p ·n+q
||n||2

+ t(a− a ·n
||n||2

n).

Now, the interval of t Ip where the closest point on P is within T is the interval where l′ intersects
the triangle T which is determined by calculating the values of t for l′’s entry and exit point of T (see
Figure 5 (b)).

The minimal quadratic distance between li and T is calculated by combining the different distance
measures over their respective valid intervals; For the interval where li and T intersects we set the
distance to 0. For the remaining parts we calculate the minimum distance of either of the endpoint
distances within their valid intervals and the line segment distances between li and the edges of T .
Since each individual distance is composed of piecewise quadratic functions, we may combine them
into one single piecewise quadratic function which gives the distance from li to T for any translation
t along a. Denote this piecewise quadratic function dST (t,a,pi,vi,T ).

We now generate a set of intervals containing feasible translations of i along a. This may be
generated by subtracting the intervals where dST (t,a,pi,vi,T ) < r2

i for T ∈ E from the set of intervals
representing feasible translations of both endpoints of li, which may be done in O(|Es| log |Es|) time.
Assume the resulting list of intervals with feasible translations is represented as a sorted list of t-
values, t1, t2, . . . , tn, where each interval is represented as a pair of t-values [t j, t j+1], j ≡ 1 mod 2,
then we create a piecewise linear function

fE(P (t),a, i) =



t1− t for t ≤ t1
t− t2 for t2 < t ≤ t2+t3

2
t3− t for t2+t3

2 < t ≤ t3
t− t4 for t4 < t ≤ t4+t5

2
t5− t for t4+t5

2 < t ≤ t5
...
t− tn for t > tn
0 otherwise

,

which describes the amount we need to translate i along a for i to be placed feasibly within E for every
value of t.

5.3 Link Constraints

The third contribution to F (t) is the set of link terms. Specifically we need to determine the value
of ∑

m
j=k fL((P ,k) for any translation of capsule i along vector a. To do this we first note that the sum

of all link-distances for links which are not incident with i, can be described as a constant. For each
remaining link k incident to i we determine the value fL(P (t),k) which is the value fL(P (t),k) for the
placement P (t) where i is translated t units in direction a. Assume i = s(k) (i = e(k) is equivalent) and
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let db(k, t,a) = ||ps(k)+vs(k)+ta−pe(k)||2, then fL(P (t),k) = max(db(k, t,a)−b(k)2,0) is a piecewise
quadratic function:

fL(P (t),k) =
{

db(k, t,a)−b(k)2 for db(k, t,a) > b(k)2

0 otherwise,

where the interval db(k, t,a) > b(k)2 can be found by solving the quadratic equation db(k, t,a) = b(i)2.

5.4 Fast Neighborhood Search

As stated earlier, computation of H (P (t)) can be done by probing with each value t from a discrete
set of values W . However, the size of W would depend on the desired resolution and dimensions of
the coordinate system used for placements and it would impose limits on the set of feasible positions.
Additionally, it would be inefficient since each probe naively would require asymptotic linear time in
the number of capsules and size of envelope. Assuming that we consider translations where t ∈W ,
then such an algorithm would have asymptotic running time O(W (|Es|+ n + m)). Instead we will
present an algorithm which is independent of coordinate system resolution and dimensions and has
running time O((n + |Es|+ m) log(n + |Es|+ m)). The algorithm takes advantage of the fact that,
since each of the individual terms of the objective function may be represented as piecewise quadratic
functions over t, H (P (t)) may also be represented by a piecewise quadratic function over t.

For a capsule i, to be translated, the function fC(P (t),a, i, j) for another capsule j, can be cal-
culated in O(1) time and results in a piecewise quadratic function with less than 5 pieces. For each
link k incident with i, fL(P (t),k) can be calculated in O(1) time, and results in a piecewise quadratic
function with less than 3 pieces. fE(P (t),a, i) can be calculated in O(|Es| log |Es|) time and results in a
piecewise quadratic function of less than |Es|+1 pieces. The values fC(P (t),vi j,k, j), fE(P (t), ṽk,k)
for j,k 6= i and fL(P (t),k) where link k is not incident with i, as well as the values fA(P (t),k), for
k = 1, . . . ,m are constant for all values of t.

A set of piecewise quadratic functions with a total of k intervals may be summed to a global
piecewise quadratic function f (t) in asymptotic time O(k logk); First, sort the interval endpoints,
enumerate the sorted endpoints as t1 ≤ t2 ≤ . . .≤ tk and let (ai,bi,ci) be the coefficients corresponding
to the quadratic function that endpoint ti arose from. Now, construct f (t) by visiting each interval
endpoint ti in order i = 1, . . . ,k and maintaining values values (a,b,c)T , initially 0. As ti is visited
create a quadratic function over the interval [ti−1, ti] with coefficients a,b,c, and update a,b,c by
either adding or subtracting ai,bi,ci depending on whether ti is an interval end or start.

Since the number of pieces of the piecewise quadratic functions which arise from evaluating the
individual terms of F (P (t)) is less than 5n+3m+ |Es|= O(n+m+ |Es|), we can sum the complete
piecewise quadratic function F (P (t)) in O((n + |Es|+ m) log(n + |Es|+ m)) time. Analyzing the
piecewise quadratic function F (P (t)) for its global minimum with respect to t may be done in the
O(n + m + |Es|) time by analyzing each individual piece for local minimum and selecting the global
minimum. Finally, the penalty function Z(P (t)) may be included, by considering where each of the
piecewise quadratic functions are larger than zero and which violations they arise from. In total, we
can calculate H (P (t)) and select the value of t which results in the global minimum of H (P (t)) in
O((n+ |Es|+m) log(n+ |Es|+m)) time.

6 Optimization Variants

The problem described in the previous sections is a decision problem, i.e. we wish determine a
feasible placement under the given set of constraints. One may also consider optimization variants
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Figure 6: Illustration of the evaluation of the fE term. First, the intervals corresponding to trans-
lations where both points are within E are determined. Then the set of intervals where the distance
between the capsule and Es are subtracted which gives the feasible intervals. Finally, the fE function
is determined based on the feasible intervals.

revolving around ICPDP, which, since ICPDP is N P -complete, are N P -hard. Here we will discuss
two types of problems; The first group consists of problems where the objective can be optimized by
solving a series of decision problems. The second group consists of problems where the objective is
optimized by adding it to the decision objective function H (P ). The examples we present here for the
first group are container compaction problems and in the second group we consider adding surface
placement requirements to the capsules.

6.1 Compaction Problems

In this section we consider three simple optimization variants in which container dimensions are
minimized. The procedure we outline in the following was also used by Egeblad et al. [A, B] to solve
two- and three-dimensional strip-packing problems.

Unlike the problem considered previously, we will assume in the following that we are given a
convex container C instead of an envelope E. In the previous variant we allowed capsules outside the
envelope E during the solution process, albeit at a cost of increased objective value. Here we will only
consider translations within C during the solution process, so the fE term is omitted from the objective
function in this section.

The three container minimization problems we consider are as follows and are illustrated on Figure
7:

• Given two dimensions W and H determine a minimum value L such that a feasible placement
of the capsules with respect to overlap, link and angle constraints can be found within the box-
container W ×H×L (strip packing).

• Minimize L such that a feasible placement can be found within the cube L×L×L (minimal
cube packing).
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(a) (b) (c)

Figure 7: The three different compaction objectives. (a) Minimize box-height. (b) Minimize cube. (c)
Minimize sphere.

• Minimize L such that a feasible placement can be found within a sphere of radius L (minimal
sphere packing).

All three problems may be solved similarly. We begin with a sufficiently large value for the free con-
tainer dimension, L0. Once a solution has been found for the ICPDP problem with the free container
dimensions L0, we consider a problem with smaller container dimensions where L1 = L0−ε, where ε

is a step-size. We repeat this process so that the free container dimension in iteration i is L1 = L0− i ·ε,
although more complex strategies mimicking binary search may be applied. When the container di-
mensions are reduced, all capsules not within the new container are translated into the new smaller
container, while the remaining capsules remain at their current position. This way, a large part of the
placement is kept intact and less time is spend on finding a feasible placement. The search may end
after a specific time-limit, where the smallest value Li found so far, is returned as a solution to the
problem.

6.2 Exposure Optimization

It may be possible to identify residues of the molecule that are exposed through experimental tech-
niques. This can be used to aid the search, since they can be used to indicate which portions of the
capsules must be near the surface.

To model this, we may create a set of spheres S corresponding to the identified residues. Each
sphere is then assigned to the capsule that corresponds to the helix of the residue, by specifying a
coordinate in the local coordinate system of the capsule (see figure 8 (a)). Now, during local search,
the same transformation that applies to the capsule as described in the beginning of Section 2 also
applies to the sphere, so that when the capsule is moved the sphere follows it. The objective is to
ensure that each sphere i ∈ S, with radius ri overlaps with the molecular surface Es (see figure 8 (b)).

Rather than modeling this as hard constraint, we can formulate the problem as an optimization
problem. In this variant our objective is to minimize the number of spheres not within a certain
distance of the molecular surface. The objective function is as follows:

minimize G(P ) = ∑
i∈S

wi fX(P , ṽc(i), i),

where wi is a weight assigned to each sphere that can model its importance, c(i) is capsule sphere i is
attached to, and fX(P , ṽc(i), i) is the amount c(i) must be translated for the center of i to be within ri

units of Es.
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(a) (b)

Figure 8: (a) Illustration of two spheres which represent residues that are known to be exposed. These
are described in the local coordinate system of the capsule they are attached to. (b) The residue-
spheres follow the capsules under transformation. Here the two spheres attached to the capsule
overlaps with the surface, as required.

The complete optimization problem, where minimization of G(P ) is combined with ICPDP and
extra penalty terms are added, can now be formulated as follows:

minimize H ′(P ) = H (P )+G(P )+λP ∑
i∈S

ηiIP(i)

where ηi is a penalty value for sphere i, λP is used to fine-tune the heuristic, and IP(i) is an indicator
function:

IP(i) =
{

1 for fX(P , ṽc(i), i)) > 0
0 otherwise

.

Whenever GLS reaches a local minimum and the penalty terms are modified (see Section 4.2), we
also consider the sphere penalties, ηi, and increase the penalty for the sphere i with highest utility:

χ(i) =
fX(ṽc(i), i)

ηi +1
.

At the end of the search the feasible placement, with respect to the ICPDP, with least found value
G(P ) is returned.

Just as for the components of F (P ), we determine fX(P , ṽc(i), i) for any translation of c(i) along
a vector a. Let qi + ta be the center of i, when translated t units along a. Let dS,E(q + ta) be the
distance from qi + ta to any triangle T ∈ Es, then we determine feasible intervals [t1, t2], . . . , [tk−1, tk]
(sorted in ascending order), such that dE(q + ta) < ri , for t ∈ [t2 j−1, t2 j], j ≤ k

2 . Now the intervals
[t1, t2], . . . , [tk−1, tk], represent translations of sphere i relative to P where sphere i overlaps with Es.
We can evaluate dE(q + ta) and determine t1, . . . , tk in O(|Es|log|Es|) time using the same strategy
used to determine the distance between segment endpoints and Es outlined in Section 5.2. We now let
fX(P (t), ṽc(i), i), be:

fX(P (t), ṽ, i)



t1− t for t ≤ t1
0 for t ∈ [t1, t2]
t− t2 for t ∈ [t2, t3+t2

2 )
t3− t for t ∈ [ t3+t2

2 ], t3)
...
t− tk for t ≥ tk
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Since fX(P (t), ṽ, i) is piecewise linear we can use the same strategies as mentioned in Section 5.4 to
evaluate H ′(P (t)) for all values of t. We must evaluate fX(t, ṽ, i) for each sphere i attached to the
capsule of translation c(i) so the total asymptotic running time required to evaluate H ′(P (t)) for all
values of t is O((n + m + l|Es|) log(n + m + l|Es|)), where l is the number of spheres attached to the
capsule c(i) for which the set of possible translations are being examined.

It should be noted that, for this optimization variant rotations around the capsule axis must also
be represented and included in the local search neighborhood, in order to ensure that the all solutions
can be reached.

Hidden residues It is also straightforward to extend the model to include residues which are hidden.
Let S− be the set of sphere representing hidden residues, then we may solve:

minimize G(P ) = ∑
i∈S

wi fX(P , ṽc(i), i)+ ∑
i∈S−

wi f−X (P , ṽc(i), i),

where f−X (P , ṽc(i), i) is the amount c(i) must be translated for the center of i to be more than ri units
from of Es. Penalties are added in the same fashion as for exposed residues and the neighborhood can
be searched in similar fashion.

7 Experimental Results

To investigate the performance of the heuristic it was implemented in C++ and compiled with GCC
4.2.3. All experiments were run on a computer with two Intel Xeon 5355 2.66 GHz quad core proces-
sors (8 cores total) and 8 GB RAM. No advantage was taken of the 8 core system. The set of rotation
angles A was set to {0, 1

32 π, . . . , 31
32 π}.

Suitable values of λC, λL, and λE were found using parameter tuning, and was set as follows
λC = 0.1 ·S, λL = 0.1 ·S, and λE = 0.5 ·S for S = ∑

n
i=1(ci + ri).

Both compaction and decision variants of the problem were tested and will be describe in Section
7.1 and Section 7.2 respectively.

7.1 Results for Compaction

To test the method’s ability to work as an heuristic for the compaction optimization problems listed in
Section 6.1, three different types of problem instances were constructed; Homogeneous problems con-
sisting of only one type of capsule, heterogeneous problems consisting of different types of capsules,
and problems with capsule links.

For each major type of problem, instances for each of the three compaction variants (V = {strip,
cube,sphere}) from Section 6.1 were randomly generated. Capsule radii were all set to 1 and lengths
for the problems are taken from the list L = {0,2,8,32}. The number of capsules in each instance
were taken from the list N = {5,10,15,25,35,50,150}.

For all compaction instances, the heuristic was set to report the best result found within 250,000
iterations, which was found to deliver adequate convergence. To test the stability of the heuristic, each
instance was run with 5 different random seeds for the random number generator.

7.1.1 Homogeneous Problems

For each length from l ∈ L, each number of capsules n ∈ N, and each optimization variant from V an
instance was generated with n capsules and all capsule lengths set to l. This results in 3×4×7 = 84
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Homogeneous
Length 0 2 8 32

n Avg. Std. Time Avg. Std. Time Avg. Std. Time Avg. Std. Time

St
ri

p

5 31.4 0.71 42.7 42.3 0.00 37.4 43.3 0.00 0.3 34.1 0.36 43.7
10 34.7 0.17 61.8 37.1 0.53 109.6 54.5 0.00 51.5 46.8 0.00 74.9
15 39.1 0.19 83.0 38.8 0.19 164.0 45.7 0.41 123.0 41.6 0.69 119.1
25 44.2 0.33 116.6 42.3 0.29 264.0 50.6 0.00 182.3 43.0 0.70 197.5
35 44.9 0.15 139.2 45.1 0.40 357.0 42.0 0.39 302.1 42.8 0.61 225.8
50 41.9 0.35 165.0 47.5 0.34 491.9 44.8 0.13 482.5 46.4 0.60 368.1
150 43.1 0.17 312.4 47.9 0.38 1161.5 48.9 0.37 1066.7 51.0 2.26 874.1

C
ub

e

5 37.4 1.41 42.6 37.5 0.00 68.1 39.8 1.64 59.7 42.4 1.06 50.8
10 35.5 0.00 61.0 38.3 0.00 110.2 44.2 1.46 112.4 51.1 0.00 96.5
15 39.7 0.00 76.0 41.9 1.38 155.8 49.3 0.00 144.7 48.1 1.10 135.8
25 40.7 1.17 95.8 42.8 0.00 223.3 45.5 0.00 234.7 48.3 1.20 225.0
35 42.5 1.12 120.9 44.7 1.12 317.8 47.5 0.89 311.8 49.8 0.87 296.0
50 42.8 1.00 151.9 45.6 0.82 434.2 46.7 0.94 431.4 53.1 0.67 421.2
150 44.8 0.00 338.0 47.2 0.60 1266.1 48.9 0.55 1253.2 51.1 0.00 1163.9

Sp
he

re

5 35.5 0.00 39.0 39.3 0.00 73.7 44.2 2.94 63.8 37.2 1.42 33.7
10 38.7 0.00 65.0 40.2 0.00 150.3 42.4 0.00 125.0 39.5 2.45 71.7
15 43.3 0.00 86.1 43.3 0.00 200.2 42.8 0.00 169.3 41.7 0.00 126.9
25 40.6 0.00 109.9 43.1 0.00 296.2 43.6 0.00 263.1 42.1 1.26 204.9
35 42.1 1.75 134.4 44.1 1.40 387.3 44.5 1.60 343.4 42.8 0.00 281.6
50 42.5 1.34 167.1 45.1 0.00 541.4 44.5 0.00 467.8 43.0 0.00 405.4
150 44.2 0.93 363.2 46.3 0.00 1434.7 47.9 0.86 1303.9 43.8 0.00 1175.7

Table 1: Results of experiments with homogeneous instances. Results are shown for each of the four
capsule lengths 0, 2, 8, 32, and each of three compaction variants (Strip, Cube, and Sphere). ‘n’ is
the number of capsules. Each instance was run five times with 5 different random seeds. ‘avg.’ is the
average utilization of the container in percent. ‘std.’ is the standard deviation of the utilization over
the five runs. ‘time’ is the average running time in seconds over the five runs.

homogeneous instances. The results for the homogeneous instances are presented in Table 1.
In the table, the average utilization [Volume of items]/[Volume of container] from the 5 different

runs are presented for each instance along with the standard deviation. Utilization levels are generally
between 40 and 50 % even for instances with as many as a 150 capsules, although only between 30
and 40 % for the instances with 5 capsules. The high utilization in instances containing as much as
150 spheres indicates that the placement method scales well. Running times are between 30 seconds
for the smallest instances and up-to 20 minutes for the largest. The standard deviation is generally
between 0 and 2 utilization percentage points, which shows a high level of stability. The utilization
is equivalent across the different compaction types, which demonstrates that the heuristic works well
even for different types of containers. Examples of homogeneous solutions are displayed on Figure 9.

The instances where the length is zero are homogeneous sphere-packing instances. Johannes
Kepler’s conjecture, which was recently proved by Hales [11], states that an optimal packing of ho-
mogeneous spheres in an infinitely large box has a utilization of π

3
√

2
≈ 74.048%. However, for a

low number of spheres such a packing may be impossible and the heuristic is not geared specifically
towards homogeneous sphere packing so the utilization levels are promising.
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(a) (b)

(c) (d)

Figure 9: Examples of homogeneous solutions. (a) 10 capsules of length 32 in minimal cube solution
(utilization 51%). (b) 50 capsules of length 32 in minimal strip solution (utilization 53%). (c) 150
capsules of length 0 (spheres) in a minimal sphere (utilization 45% ). (d) 150 capsules of length 32 in
minimal cube (utilization 51%).
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Heterogeneous
Iterations 50,000 125,000 250,000

n Avg. Std. Time Avg. Std. Time Avg. Std. Time
St

ri
p

5 43.0 0.00 0.3 43.0 0.00 0.3 43.0 0.00 0.3
10 49.7 1.81 16.9 52.8 1.03 34.3 54.2 0.35 51.0
15 43.0 0.42 28.3 43.6 0.32 69.8 44.1 0.37 138.7
25 43.5 0.27 45.7 44.1 0.29 114.9 44.4 0.18 229.6
35 43.9 0.41 61.5 44.6 0.28 161.0 44.9 0.19 323.9
50 42.9 0.32 76.7 45.0 0.36 229.6 45.7 0.34 468.3
150 17.8 0.00 159.7 34.8 0.15 409.5 47.3 0.28 1097.2

C
ub

e

5 42.3 0.86 13.3 42.5 1.21 33.6 42.5 1.21 66.8
10 43.1 0.35 23.2 43.3 0.65 58.2 44.0 1.39 117.0
15 45.5 0.90 32.2 45.8 0.96 80.0 46.5 1.08 160.2
25 45.3 0.79 50.0 45.5 0.56 123.4 45.7 0.51 246.1
35 45.8 0.67 67.4 46.2 0.22 166.1 46.6 0.75 331.5
50 46.3 0.23 93.3 46.6 0.19 230.8 46.7 0.39 456.6
150 47.3 0.30 205.8 47.5 0.50 625.4 48.3 0.31 1288.4

Sp
he

re

5 42.2 1.20 11.1 42.8 1.47 27.2 42.8 1.47 54.1
10 43.8 0.93 22.6 43.8 0.93 57.4 44.1 0.47 116.4
15 43.5 1.01 33.6 44.1 0.83 85.0 44.3 0.42 170.8
25 43.4 0.70 51.2 44.5 0.89 127.6 44.7 0.81 256.8
35 44.0 0.39 69.4 45.0 0.32 172.7 45.2 0.00 344.5
50 44.6 0.65 95.9 45.2 0.60 236.5 45.3 0.67 476.1
150 46.4 0.46 237.0 46.6 0.47 660.8 46.8 0.22 1331.0

Table 2: Results for the heterogeneous instances. Results are shown after 50,000, 100,000, and
250,000 iterations to illustrate the convergence of the heuristic. For each instance the average of
the five runs on the three different instances is reported. See Table 1 for a description of labels.

7.1.2 Heterogeneous Problems

For the heterogeneous problems, instances were generated random, with capsule radii set to 1 and
lengths from L. Four instances were generated for each optimization variant from V and each value of
n ∈ N given a total of 3×3×7 = 63 heterogeneous instances. Results of the heterogeneous instances
are presented in Table 1

The results of the heterogenous instances for 250,000 iterations matches those of the homogeneous
instances. Utilization is generally between 40 and 50 % and even matches 50 %. Standard deviation
remains below 2 utilization percentage points. The results also show that the heuristic converges
rapidly. For the small instances containing 5-15 capsules there is little improvement between 50,000
to 250,000 iterations. For the larger instances containing up-to 50 capsules the improvement between
125,000 and 250,000 iterations is less than a single percentage point. For a 150 capsules good results
are only reached with 250,000 iteration in the strip-packing variant, while the last 125,000 iterations
for the other variants show little improvement. Example solutions are shown on Figure 10.

No other published results exists for packing problems involving capsules, but the best known
results for three-dimensional strip-packing of polyhedra yields a utilization of between 40 and 55 %
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(a) (b)

(c) (d)

Figure 10: Examples of heterogeneous solutions. (a) 10 capsules in minimal height container (uti-
lization 55%). (b) 150 capsules in minimal cube container (utilization 58%). (c) 150 capsules in
minimal height container (utilization 47% ). (d) 150 capsules in minimal sphere container (utilization
47%).

as presented by Egeblad et al. [B], so the utilization levels reached by our method are promising.

7.1.3 Problems with Links

A number of instances with linked capsules were randomly generated and tested to investigate the
method’s ability to find feasible placements under compact conditions. Capsules were linked in four
different ways (See Figure 11):

• As an open chain of capsules where capsule i is linked to capsule i+1 ( Figure 11 (a)).

• As a closed chain of capsules where capsule i is linked to capsule i+1 and capsule n is linked
to capsule 1. ( Figure 11 (b)).

• As an open chain consisting of single links or ‘T’-intersection links, where one endpoint of at
least one capsule is connected to two other capsules. The chain is acyclic. ( Figure 11 (c)).

• As a closed chain consisting of single links or ‘T’-intersection links, where capsule i may be
connected to both capsule j and capsule k. The chain consist of at least one cyclic sub-chain.
(Figure 11 (d)).
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(a) (b) (c) (d)

Figure 11: The different types of instances for experiments. (a) Open chain. (b) Closed chain. (c)
Open T-chain. (d) Closed T-chain.

The capsules were generated as the heterogeneous instances described in Section 7.1.2 for each of the
four types of links. This gives a total of 4× 63 = 252 instances with linked capsules. The results of
the instances with linked capsules are given in Table 3.

Results for all of the four different types of chains are promising. Generally, utilization levels of
over 40 % are reached which matches the instances without links, and shows that the heuristic handles
the extra constraints imposed by adding links extremely well.

Although the randomly generated instances with closed T-chains may be infeasible, i.e. it is un-
known if a valid solution for the links exists, close inspection of the data revealed that the heuristic was
able to find feasible placements for all instances, and only failed in 8, 10, and 11 runs for respectively
strip, cube, and sphere packing of the instances containing 150 capsules. There the heuristic handles
difficult link constraints for instances with up-to 50 capsules well and in compact placements, while
open and closed chain compaction problems are dealt with even for 150 capsules.

7.2 Decision Problems

The RNA structure P4-P6 RNA was modeled to test the performance of the heuristic for problems
where only a feasible placement must be found within an envelope. The structure consists of 158
nucleotides and 8 helical regions (See figure 14 (a)). The 8 helical regions were contracted into 7
helices and converted into an instance of the capsule placement problem as illustrated on Figure 14
(b).

A crystal structure was used to identify the actual position of each nucleotide in the RNA molecule.
The nucleotides of each helix were identified and the center axis of each helix was found by linear
least square fitting of the positions of the nucleotides in the crystal structure. The radius of each
helix was determined as the maximum distance from the axis to the center of any of the involved
nucleotides. Links were added between capsule for which the associated helices were neighbors in
the backbone of the RNA, and the required distance between two capsules i and j was set to the total
distance between the last nucleotide of i and the first nucleotide j on the backbone.

Additionally, an molecular surface was generated using Small-angle X-ray scattering (SAXS) and
converted into a triangle mesh consisting of 880 triangles which was used to represent an envelope.

The generated instances was tested with 375 different random seeds. The results of the 375 test-
runs are summarized in Table 4. In 318 (85%) of the 375 test runs an actual placement within the
envelope was found. Each run took on average 445 seconds, but with the fastest run taking less than
4 minutes and the slowest almost 105 minutes.
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With Proximity Constraints
Strip Cube Sphere

n Avg. Std. Time Fail Avg. Std. Time Fail Avg. Std. Time Fail

O
pe

n
ch

ai
n

5 43.0 0.00 0.3 - 45.2 0.52 75.3 - 42.1 0.00 62.8 -
10 49.9 1.12 95.2 - 43.0 0.47 131.0 - 43.7 0.00 126.3 -
15 42.2 0.26 166.6 - 44.4 1.13 183.9 - 41.7 1.17 186.7 -
25 42.0 0.44 276.6 - 43.6 0.94 277.5 - 42.0 0.00 283.3 -
35 41.3 0.32 378.2 - 43.7 0.84 366.5 - 42.0 0.00 376.3 -
50 41.3 0.34 508.7 - 43.6 0.57 498.6 - 42.5 0.81 513.2 -
150 38.4 0.43 1163.9 - 42.6 0.47 1352.8 - 42.0 0.86 1424.3 -

C
lo

se
d

ch
ai

n

5 43.0 0.00 0.3 - 45.2 0.57 76.3 - 42.1 0.00 68.6 -
10 48.2 1.23 98.6 - 42.8 0.84 134.3 - 43.7 0.00 128.2 -
15 42.1 0.34 169.0 - 44.1 0.77 185.5 - 41.7 0.50 186.9 -
25 41.5 0.41 277.3 - 43.4 0.94 280.6 - 41.8 1.31 284.0 -
35 40.9 0.31 379.1 - 43.6 0.83 370.1 - 42.0 0.80 374.2 -
50 41.0 0.35 509.5 - 43.1 0.93 500.1 - 42.5 0.81 513.4 -
150 38.4 0.48 1165.6 - 42.0 0.60 1352.4 - 41.5 0.92 1419.6 -

O
pe

n
T-

ch
ai

n

5 43.0 0.00 0.5 - 44.7 0.46 75.0 - 42.1 0.00 62.4 -
10 48.1 1.03 97.8 - 43.0 0.47 132.1 - 43.4 0.61 126.6 -
15 42.2 0.32 167.9 - 44.6 1.21 184.5 - 42.2 0.56 188.3 -
25 42.0 0.43 279.5 - 43.2 0.85 279.3 - 42.7 0.54 286.4 -
35 41.3 0.47 381.5 - 43.7 0.32 370.9 - 42.6 0.92 381.0 -
50 40.9 0.48 512.0 - 43.6 0.46 505.4 - 42.7 1.18 519.9 -
150 38.0 0.53 1175.8 - 42.5 0.48 1370.6 - 42.0 0.55 1442.7 -

C
lo

se
d

T-
ch

ai
n

5 43.0 0.00 1.1 - 43.0 2.79 76.6 - 42.1 0.00 67.0 -
10 39.7 0.94 116.4 - 40.6 0.90 135.0 - 41.4 2.03 133.6 -
15 39.2 0.56 178.9 - 42.4 1.28 187.3 - 40.4 0.49 188.3 -
25 37.6 0.53 295.3 - 41.4 1.05 287.1 - 40.1 0.43 291.9 -
35 38.4 0.63 392.4 - 40.8 1.11 378.6 - 40.9 1.14 390.9 -
50 36.9 1.24 518.0 - 40.7 0.92 518.7 - 40.1 1.06 528.0 -
150 17.6 1.18 1403.6 8 26.3 2.48 1477.8 10 24.4 0.84 1528.7 11

Table 3: Results of experiments with instances with link constraints. Results are presented for each
of the four different types of chains and each of the three different compaction goals. Results for each
instance type covers the average result of three instances where each instance has been run 5 times.
See table 1 for a description of labels. The column ‘Fail’ contains the number of the 15 runs of each
instance type where no placement could be found within the maximum iteration limit. ‘-’ indicates
that a feasible placement was found for all instances in all runs of the designated instance type.
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(a) (b) (c)

(d) (e) (f)

Figure 12: Example results for problems with capsule links. First row of each example illustrates
the capsule placement, and the second row illustrations connectivity. (a) 5 capsules in a closed chain
(minimal height). (b) 25 capsules in a closed T-chain (minimal height). (c) 50 capsules in a closed
loop (minimal height). (d) 5 capsules in a closed T-chain (minimal height). (e) 10 capsules in an open
loop (minimal height). (f) 35 capsules in an open T-chain (minimal sphere).
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P4-P6 RNA (PDB ID: 1GID)
Utilization Avg. RMSD Min. RMSD Max. RMSD Std. RMSD

30.5% 19.07 10.74 25.44 2.73
Success Avg. Time Min. Time Max. Time Std. Time

318/375 (85%) 445.0 221.7 6303.9 570.0

Table 4: Overview of the results from the envelope decision test. RMSD values are in Å, and time
values are in seconds. ‘Std. RMSD’ and ‘Std. Time’ are standard deviations of the time and RMSD.

Figure 13: An accurate known RNA molecular is converted into a ICPDP and a placement is found
within the molecular envelope using our procedure. The endpoints of the capsule line-segments of
the resulting placement were compared to the endpoints of the capsule line-segments from the known
RNA structure, and the resulting RMSD reported.

The resulting placements were compared with the input-structure, by measuring the root mean
square deviation (RMSD) between the endpoints of the capsules from the crystal structure and the
endpoints of the capsules from the each solution. The method is illustrated on Figure 13.

The placements had an average RMSD distance from the input structure of approximately 23 Å,
while the minimal RMSD distance was 10.74Å and the maximal 29.6Å. The placement with minimal
RMSD found is illustrated on Figure 14 (c) and showed with the target structure on Figure 14 (d).

8 Conclusion

We have introduced a simple coarse grained model for RNA tertiary structure prediction in which
helical regions are converted into interconnected capsules. An efficient method capable of finding
feasible layouts of the capsules within a molecular envelope was described. The method is based on a
local search scheme in which each capsule is translated in one of four directions or rotated such that
the feasibility of the placement is increased with each change. Finding an improving position is done
efficiently using a polynomial time algorithm.

The resulting paradigm can be used not only for finding a feasible placement of the capsules, but
also for solving optimization variants of the problem in which a compact placement is desired.

The compaction heuristics reveal promising results with utilization levels around 50% for minimal
height box packing, minimal cube packing, and minimal sphere packing problems. This matches
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(a) (b) (c) (d)

Figure 14: (a) The nucleotides and base-pairs of the P4-P6 RNA used for testing the coarse grained
model. (b) Layout of the capsules determined from the P4-P6 RNA structure. (c) Placement of cap-
sules from structure with minimal RMSD. (d) Overlay of the structures from (b) and (c) with capsule
radii divided by 4 for a clearer comparison.

previous publicized work from the literature for non-rectangular shapes in three dimensions. The
heuristic handles additional connection constraints between capsules well and is able to find highly
compact placements with connection constraints of up-to 150 capsules within 20 minutes.

Experiments with modeling an RNA structure consisting of more than a 150 nucleotides as a set of
capsules within a molecular envelope reveals promising results and further refinement of the resulting
placement may lead to a more accurate prediction of the actual structure. This shows that the method
has the potential to become a valuable tool for tertiary RNA structure prediction.

Further analysis of the procedure presented in this paper with RNA structures may reveal if the
procedure is capable of accurately prediction structures of hundreds of nucleotides. Additionally, the
model may be extended to include energy potentials or other information which may be increase the
accuracy of this coarse grained method.
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