STABLE MINIMUM SPACE PARTITIONING
IN LINEAR TIME

JYRKI KATAJAINEN and TOMI PASANEN

Department of Computer Science, Department of Computer Science,
University of Copenhagen, University of Turku,
Universitetsparken 1, Lemminkdisenkatu 14 A,

DK-2100 Copenhagen East, Denmark SF-20520, Turku, Finland

Abstract.

In the stable 0-1 sorting problem the task is to sort an array of n elements
with two distinct values such that equal elements retain their relative input order.
Recently, Munro, Raman and Salowe gave an algorithm which solves this problem
in O(nlog*n)' time and constant extra space. We show that by a modification
of their method the stable 0-1 sorting is possible in O(n) time and O(1) extra
space. Stable three-way partitioning can be reduced to stable 0-1 sorting. This
immediately yields a stable minimum space quicksort, which sorts multisets in
asymptotically optimal time with high probability.

CR categories: E.5, F.2.2

The stable 0-1 sorting problem is defined as follows: Given an array of
n elements and a function f mapping each element to the set {0,1}, the
task is to rearrange the elements such that all elements, whose f-value is
zero, become before elements, whose f-value is one. Moreover, the relative
order of elements with equal f-values should be maintained. For the sake of
simplicity, we hereafter refer to bits instead of the f-values of elements.

Stable partitioning is a special case of stable 0-1 sorting, where the f-
values are obtained by comparing every element x; to some pivot element
xj (which will not take part in partitioning):

) = 0 forz; <xj, orx; =x; and 1 < j
Y1 foraz; >uaxy, orx; =x; and i > j.

Another interesting special case is the stable unmerging problem studied in
[9]: Given two lists A and B stably merged together into a single list L, the
task is to separate L into its constituent sublists A and B in their original
order. The information associated with each element, indicating from which
of the sublists the element originated, corresponds to its f-value. In the
case of equal-valued elements, A-elements are considered to be smaller than

T log* n is defined 1 4 log *(log, n) if n > 2, and otherwise it is 1.

© Springer. This is the author’s version of the work. The definitive version was published in BIT
32,4 (1992), 580-585; and is available at http://dx.doi.org with DOI 10.1007/BF01994842.

2 JYRKI KATAJAINEN AND TOMI PASANEN

B-elements. Therefore, in the stable unmerging problem, one never sees a
block of equal-valued A-elements intermixed with B-elements, or vice versa.
(Observe that the algorithm of Salowe and Steiger [9] makes use of this fact
and hence it cannot be immediately adapted to solve the stable 0-1 sorting
problem.)

Recently, Munro, Raman, and Salowe [6] showed that stable 0-1 sorting
is possible in O(nlog*n) time when only O(1) extra space is available. In
this note we improve this result by reducing the running time to O(n) still
maintaining the space bound.

Before proceeding we should define precisely what we mean by a mini-
mum space or in-place algorithm. In addition to the array containing the n
elements, we allow one storage location for storing an array element. This
is needed when swapping two data elements. The elements are regarded to
be atomic. They can only be moved and used as arguments when comput-
ing f-values. Of course the evaluation of the f-function is assumed to be a
constant time operation. Moreover, we assume that a constant number of
extra storage locations, each capable for storing a word of O(log, n) bits,
is available and that operations {<,=, >, 4+, —, shift} take constant time for
these words. An unrestricted shift operation takes two integer operands v
and i and produces |v-2?|. It should be observed that our model of compu-
tation is not as general as that of Munro, Raman, and Salowe [6] since their
algorithms can be implemented without the shift operation.

Next we briefly review the techniques used in our minimum space algo-
rithm.

Blocking: The input array is divided into equal sized blocks. Most efficient
in-place algorithms in the literature are based on the blocking technique.

Block interchanging: A block A can be reversed in-place in linear time
by swapping the pair of end elements, then the pair next to the ends, etc.
Let Af be A reversed. The order of two consecutive blocks (not necessarily
of the same size) A and B may be interchanged by performing three block
reversals, namely BA = (AfB®)®. This idea seems to be part of computer
folklore.

Packing small integers: Let us assume that we have t small integers
i1,...,1t, each of which can be represented by m bits. That is, the inte-
gers are from the domain [0,2™ — 1]. Further, assuming that ¢ - m < logy n,
the integers can be packed into one word w of log, n bits. The integer i;,
1 < j <, is stored by using the bits (j —1)m,...,jm—1 of w. Each integer
is easily recovered from w in constant time if multiplications and divisions
by a power of two are constant time operations. The value v of 7; is obtained
as follows: v = {w — [(w shift — jm) shift jm|} shift —(j —1)m. (Observe
that in our algorithm m can be chosen to be a power of 2, so we do not
need general multiplication.) With a code similar to this the value of i; can
be updated. Previously the packing technique has been used for example in
[2,4].

STABLE MINIMUM SPACE PARTITIONING IN LINEAR TIME 3

Without loss of generality, we can assume that n, the number of elements
is a power of 2. If this is not the case, the following recursive method
can be used to reduce the original problem to subproblems, whose size is a
power of 2. First, compute by repeated doubling the smallest 2* such that
2F < 'n < 281 Second, partition the first 2% elements with Algorithm D to
be given later. Third, call the same method recursively for the last n — 2%
elements. Finally, interchange the block of ones (if any) among the first 2k
elements with the block of zeros (if any) lying after the ones. This method
runs clearly in linear time if the running time of Algorithm D is linear. It is
an easy matter to establish an iterative implementation of the above method
without using any recursion stack, that is O(1) extra space is enough here.

The stable 0-1 sorting problem is easily solved in linear time when O(n)
extra space is available. We describe Algorithm A that performs this. The
algorithm computes first the total number of zeros in the array. Let this
number be Z;yt,;. Then the input array is scanned another time. During
this scan two counters Cy and C are maintained, the former counting the
number of zeros and the latter the number ones to the left of the current
position. Together with each element b; € {0, 1} its rank b; Z;p1a1 + Ch, + 1
is stored. Reserving one more bit for each element, telling whether the
element is in its final position or not, the elements are permuted to their
final positions (for details, see [6; Lemma 1]). Hence we have

LEMMA 1. Algorithm A sorts stably a bit-array of size n in O(n) time
with n bits and n+ O(1) counters, each requiring at most [logy(n+1)] bits.

Munro, Raman, and Salowe [6; Lemma 3] presented an algorithm similar to
Algorithm A but they did not state explicitly the sizes of counters.

Another building block is Algorithm B developed by Munro, Raman, and
Salowe. Its performance is given in the following

LEMMA 2. [6; Theorem 1] Algorithm B sorts stably a bit-array of size n
in O(nlogy n) time and constant extra space, but makes only O(n) moves.

To improve these algorithms we divide the input into blocks of size lgn,
which denotes the smallest power of 2 greater than or equal to logy n. Since
n is a power of 2, it is divisible by lgn. Now the basic steps of our algorithms
are

(i) element sorting: Sort stably every block of lgn elements. When sorting
the blocks the same storage space is used.

(ii) transformation from sorted blocks to typed blocks: Rearrange the ele-
ments stably such that each block (except perhaps the last one) con-
tains only either zeros or ones. We say that a block is of type 0 or 1
depending on its contents. Munro, Raman and Salowe [6; Lemma 2;
Step 3] showed that this transformation from sorted blocks to typed
blocks is possible in O(n) time and O(1) extra space. (Their proof is
for blocks of size \/n, but it is not difficult to see that the same method
works for any block size.)

4 JYRKI KATAJAINEN AND TOMI PASANEN

(iii) block sorting: Sort stably the blocks according to their type.
(iv) cleaning up: Interchange the zeros (if any) in the last block into their
correct positions.

When following the basic steps we have to specify the routines that are
used in element sorting and block sorting. In Algorithm C, Algorithm A is
applied in both places. Therefore we have

LEMMA 3. Algorithm C sorts stably a bit-array of size n in O(n) time
with 1lgn + n/lgn bits and lgn + n/lgn + O(1) counters, each requiring at
most [logg(n + 1)] bits.

The final algorithm, Algorithm D is also based on lgn-blocking. Now,
however, the elements are sorted by Algorithm C' and the typed blocks
by Algorithm B. When sorting the elements of a block, we have to store
O(logy n/ logy logy n) counters, each of O(log, log,) bits (and O(1) indices,
each of O(logy n) bits). The total number of bits required is only O(logy n).
Therefore we can pack the integers into a few words and manipulate them
efficiently with shift operations.

Algorithm D is used for proving our main result.

THEOREM 1. A bit-array of size n can be stably sorted in O(n) time and
O(1) extra space.

PROOF. The most critical part of Algorithm D is element sorting. But,
due to constant-time shift operations, each block is sorted in O(logy n) time.
Block sorting requires O(n/lgn - logy(n/lgn)) time for comparisons and
pointer manipulations, and n/1lgn block moves; that is O(n) time in total.
Since all the steps element sorting, creation of typed blocks, block sorting,
and cleaning up take linear time, the overall running time of Algorithm D
is O(n). O

Algorithm D is quite complicated. It is therefore natural to ask, whether
there exists a simpler algorithm which solves the stable 0-1 sorting problem
in minimum space. (Here it should be observed that, if it is only required
to maintain the stability of zeros or ones, a simple algorithm exists which
is based on the wheel technique [1; Section 10.2].) We consider the tech-
nique of packing small integers important and believe that it can be used
in other applications as well. However, the technique requires that the shift
operation takes constant time. Can stable, in-place 0-1 sorting be done in
linear time by allowing only comparisons, movement of data, additions, and
subtractions?

By computing the minimum, performing stable 0-1 sorting such that ele-
ments equal to the minimum are interpreted as zeros and other elements as
ones, and repeating this for the ones, we obtain

THEOREM 2. An array of n elements with k distinct values can be stably
sorted in O(kn) time and O(1) extra space.

STABLE MINIMUM SPACE PARTITIONING IN LINEAR TIME)

In a decision tree model, Q(nlogy n—Y"%_| n;logy n;+n) is a lower bound for
sorting a multiset with multiplicities ny, ng, . .., ng (where n = Y% n;) [5).
An interesting open question is whether one can improve Theorem 2 and
devise an in-place algorithm that sorts multisets stably in asymptotically
optimal time.

We can give a partial answer to this question, since quicksort can be
adapted to sort a multiset by doing a three-way partition at each recursive
step [12]. If elements less than, equal to, and greater than the pivot are
considered to have values 0,1, and 2, respectively; the stable three-way par-
titioning will reduce to stably sorting of elements with three distinct values.
By avoiding the recursion stack as proposed in [3] or [13], applying the al-
gorithm of Theorem 2 in partitioning, and combining this with the analysis
of Seidel [10], we get the following

THEOREM 3. With probability 1 — O(n=*1822=1) " for any constant o >
1, randomized quicksort sorts stably a multiset of size n with multiplicities
ni,na, ..., (wheren = ¥ n;) in O(anlogyn—"F_; n;logy ni+n) time
and O(1) extra space.

PRrOOF. First of all, one should observe that the running time of quick-
sort is proportional to the total number of comparisons performed. In [10]
(for similar results, see for example [8,11]) it has been proved that, with
probability 1 —O(n~®(gz2=1)) none of the elements is compared to a pivot
more than 2alog, n times. Due to the three-way partitions, all redundant
comparisons between a pivot and elements equal to the pivot are avoided.
This means that n;logy n; — O(n;) comparisons are saved for a class of n;
equal elements (cf. [7; Theorem 3.1]). From this the claim follows. O

Acknowledgements.

We thank Christos Levcopoulos for introducing us the technique of pack-
ing small integers; and Svante Carlsson, Jeffrey Salowe, and Jukka Teuhola
for their help. We are also grateful to a referee whose report helped to
improve the presentation of this note.

Note added in proof.

‘We have been able to solve the open problem posed after Theorem 2. This
finding will be presented at the 3rd Scandinavian Workshop on Algorithm
Theory.

REFERENCES

1. J. Bentley, Programming Pearls, Addison-Wesley, 1986.

2. S. Carlsson, J.I. Munro, P.V. Poblete, An implicit binomial queue with constant
insertion time, 1st Scandinavian Workshop on Algorithm Theory, Lecture Notes in
Computer Science 318, Springer-Verlag, 1988, pp. 1-13.

10.

11.

12.

13.

JYRKI KATAJAINEN AND TOMI PASANEN

B. Durian, Quicksort without a stack, Mathematical Foundations of Computer Science
1986, Lecture Notes in Computer Science 233, Springer-Verlag, 1986, pp. 283—289.
C. Levcopoulos, O. Petersson, An optimal adaptive in-place sorting algorithm, 8th
International Conference on Fundamentals of Computation Theory, Lecture Notes in
Computer Science 529, Springer-Verlag, 1991, pp. 329-338.

J.I. Munro, V. Raman, Sorting multisets and vectors in-place, 2nd Workshop on
Algorithms and Data Structures, Lecture Notes in Computer Science 519, Springer-
Verlag, 1991, pp. 473-480.

J.I. Munro, V. Raman, J.S. Salowe, Stable in situ sorting and minimum data move-
ment, BIT 30 (1990) 220-234.

J.1. Munro, P. M. Spira, Sorting and searching in multisets, SIAM Journal on Com-
puting 5 (1976) 1-8.

P. Raghavan, Lecture notes on randomized algorithms, Computer Science Report RC
15340, IBM Research Division, T.J. Watson Research Center, 1990.

J.S. Salowe, W. L. Steiger, Stable unmerging in linear time and constant space, In-
formation Processing Letters 25 (1987) 285-294.

R. Seidel, Backwards analysis of randomized geometric algorithms, Technical Report,
Computer Science Division, University of California Berkeley, 1991.

S. Sen, Random sampling techniques for efficient parallel algorithms in computational
geometry, Ph.D. thesis, Computer Science Department, Duke University, 1989.

L. M. Wegner, Quicksort for equal keys, IEEE Transactions on Computer C34 (1985)
362-367.

L. M. Wegner, A generalized, one-way, stackless quicksort, BIT 27 (1987) 44-48.

