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Abstract This paper presents GMP, a library for generic, SQL-style programming with
multisets. It generalizes the querying core of SQL in a number of ways: Multisets may
contain elements of arbitrary first-order data types, including references (pointers), recur-
sive data types and nested multisets; it contains an expressive embedded domain-specific
language for specifying user-definable equivalence and ordering relations, extending the
built-in equality and inequality predicates; it admits mapping arbitrary functions over mul-
tisets, not just projections; it supports user-defined predicates in selections; and it allows
user-defined aggregation functions.

Most significantly, it avoids many cases of asymptotically inefficient nested iteration
through Cartesian products that occur in a straightforward stream-based implementation of
multisets. It accomplishes this by employing two novel techniques: symbolic (term) repre-
sentations of multisets, specifically for Cartesian products, for facilitating dynamic symbolic
computation, which intersperses algebraic simplification steps with conventional data pro-
cessing; and discrimination-based joins, a generic technique for computing equijoins based
on equivalence discriminators, as an alternative to hash-based and sort-merge joins.

Full source code for GMP in Haskell, which is based on generic top-down discrimina-
tion (not included), is included for experimentation. We provide illustrative examples whose
performance indicates that GMP, even without requisite algorithm and data structure engi-
neering, is a realistic alternative to SQL even for SQL-expressible queries.
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1 Introduction

Processing bulk data (collections) stored in external or internal memory is a common task
in many programming applications. For externally stored shared data applications, SQL has
established itself as the de facto interface language for relational database systems.

From a programming perspective, SQL has a number of shortcomings, notwithstanding
that some of them are by design. Amongst others (Chamberlin 2009), these are:

– It offers a limited set of operations on tables. In particular, no ad-hoc user-defined oper-
ations are allowed in queries.

– Table data are restricted to atomic value types. Neither references nor structured types
such as collections or trees are allowed as elements of tables.

– SQL query is typically not statically type checked, opening the door to SQL injection
attacks.

– Application programming language and SQL data types usually do not match one-
to-one: They have an “impedance”, requiring back-and-forth conversion, which incurs
computational costs and is fragile under both program and database schema evolution.

Application language specific libraries for bulk data programming, on the other hand, typi-
cally lack the powerful query optimization technology modern RDBMSs provide for SQL,
in particular its efficient processing of join queries. It is noteworthy that recent query lan-
guages such as GQL1 for popular key-value (“NoSQL”) data stores disallow join queries,
exposing application programmers, who do not necessarily have an academic computer sci-
ence background, to the most challenging part of bulk data programming: Handcrafting ef-
ficient join algorithms, or, as a common work-around, storing data in the form of potentially
huge and unwieldy prejoined collections.

Language-integrated querying (Leijen and Meijer 1999; Meijer et al 2006) has been
proposed to combine the virtues of type-safe queries embedded in an application language
with the possibility of powerful query optimization: Application programs do not execute
bulk data computations, but instead construct queries dynamically and ship them off to a
so-called data provider, which may be a RDBMS with a query optimizer. This encapsulates
the impedance mismatch, but does not eliminate it (Eini 2011).

In this paper we reexamine the bulk data library approach. We provide a library for
SQL-style multiset programming that

– supports all the classical features of the data query sublanguage of SQL;
– allows multisets of any element type, including nested multisets and trees;
– permits user-definable predicates in selections, user-definable functions in projections

(actually maps), and user-definable equivalences in join conditions;
– admits naı̈ve programming with Cartesian products, without necessarily incurring quad-

ratic execution time cost for computing them;
– and is easy to implement.

To demonstrate the last point we include the complete source code of a prototype implemen-
tation in Haskell, present examples of SQL-style programming using GMP, and demonstrate
that it performs asymptotically quite acceptably on these examples vis a vis MySQL, despite
being completely untuned.

The key to the library is an ostensibly simple idea, which does not seem to have been
pursued previously, however: Representing Cartesian products symbolically at run time, and
performing opportunistic dynamic symbolic computation on them.

1 See http://code.google.com/appengine/docs/python/datastore/gqlreference.html
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This idea is combined with a new join algorithm based on generic top-down discrimina-
tion (Henglein 2008, 2010a). The resulting algorithm combines symbolic Cartesian product
representation and generic discrimination and computes joins, even for user-defined func-
tions and equivalence relations, in worst-case linear time.

This paper emphasizes the programming aspects, in particular

– the key idea of using symbolic Cartesian products to employ dynamic symbolic compu-
tation for computational efficiency; and

– discrimination-based joins as a new generic equijoin algorithm for user-definable equiv-
alence relations.

We also briefly discuss the tensions between semantic determinacy, efficient joins, and de-
pendent products; and relate our work to other frameworks for querying in-memory and
RDBMS-managed data.

The material is based on Henglein (2010b), which introduces symbolic (“lazy”) Carte-
sian products and generic discrimination-based joins; and on Henglein and Larsen (2010),
which extends the techniques to a library for SQL-style multiset programming. The present
paper in part simplifies and in part generalizes those results. It furthermore adds a step-by-
step development of the method of opportunistic symbolic computation instead of present-
ing it only as a fait accompli,2 and it expands on the example queries by providing reference
formulations in MySQL.

1.1 Required background, notation and terminology

A basic understanding of the relational data model and SQL is required. Any textbook on
databases will do; e.g. Ramakrishnan and Gehrke (2003).

We use the functional core parts of Haskell (Peyton Jones 2003) as our programming
language, extended with Generalized Algebraic Data Types (GADTs) (Cheney and Hinze
2003; Xi et al 2003), as implemented in Glasgow Haskell (GHC Team 2011). GADTs pro-
vide a convenient type-safe framework for shallow embedding of little languages (Bentley
1986), which we use for symbolic representation of multisets, performable functions, pred-
icates, equivalence and ordering relations. Apart from type safety, all other aspects of our
library can be easily coded up in other general-purpose programming languages, both ea-
ger and lazy. Hudak and Fasel (1999) provide a brief and gentle introduction to Haskell.
Since we deliberately do not use monads, type classes or any other Haskell-specific lan-
guage constructs except for GADTs, we believe basic knowledge of functional program-
ming is sufficient for understanding the code we provide. All code included in the paper is
proper Haskell, except if it contains “...”, which indicates missing code.

For consistency we primarily use the term multiset for sets with positive multiplicities
associated with their elements. They are commonly also called bags, which shows up occa-
sionally in our code. We use Cartesian product or simply product to refer to the collection
of all pairs constructed from two collections. We do not use the term “cross-product”, which
is also used in the database literature, because of its common, but different meaning as the
Gibbs vector product in mathematics. We call the number of elements in a multiset its car-
dinality or its count, which is common in database systems. We reserve the word size for
a measure of storage space. For example, the size of a multiset representation, an element
of the data type MSet a, is the number of nodes when viewing it as a tree without node
sharing.

2 This is at the risk to the authors, but hopefully not to the readers, of making the result look less clever.
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1.2 Outline

Section 2 illustrates the idea of adding symbolic Cartesian products to a straightforward
list-based implementation of multisets, adding other symbolic representations to the de-
gree they yield performance benefits by exploiting algebraic properties. Section 3 describes
discrimination-based joins, which are used in combination with symbolic products in the
relational algebra core (Section 4) of GMP and its extension to SQL-style query operations
(Section 5). Section 6 illustrates GMP by example, and Section 7 subjects the examples
to a performance evaluation and comparison with corresponding formulations in MySQL.
We conclude with a discussion of variations, related work, semantic issues in querying, and
future work (Section 8). Section 2 is an intuitive, example-driven introduction into the step-
by-step process of adding more and more dynamic symbolic computing, where we skip most
of the details. Sections 3, 4 and 5, on the other hand, present the complete result as a fait ac-
compli. There is an intended overlap of material to let the reader choose between a focused
reading of the implementation of GMP, skipping the example-driven intuitive explanation;
and skipping the three code-laden GMP implementation sections in favor of “getting the
idea” from the intuitive explanation in Section 2 combined with the examples in Section 6.
Reading all parts of the paper is, of course, encouraged at the slight risk of exposing the
reader to, hopefully limited, irritation over a certain degree of repetitiveness.

2 GMP by example

Assume we have bank accounts represented as unique numeric identifiers, with their asso-
ciated account holders’ names and current account balances stored in separate collections
depositors and accounts, respectively. Assume furthermore we are interested in return-
ing the balance associated with each depositor’s name.

In SQL this can be formulated as the conjunctive join query

SELECT depName, acctBalance
FROM depositors, accounts
WHERE depId = acctId

where the attributes depId and depName belong to the table depositors, and acctId and
acctBalance belong to the table accounts.

2.1 A naı̈ve list implementation

We can write this query as a functional expression that closely reflects the relational algebra
structure of the SQL formulation. To do so, we introduce the following auxiliary function
definitions:

(f ∗∗∗ g) (x, y) = (f x, g y)
(f .==. g) (x, y) = (f x == g y)
prod s t = [ (x, y) | x ← xs, y ← ys ]

They express parallel composition (componentwise function application), equijoin condi-
tion, and product on lists, respectively. With depositors and accounts represented as
lists the query can now be expressed as

map (depName ∗∗∗ acctBalance)
(filter (depId .==. acctId)

(prod depositors accounts))
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The list combinators map and filter correspond to projection and selection, respectively,
in relational algebra.

Coding relational algebra operations as straightforward list processing functions makes
for an a priori attractive library for language-integrated querying. In practice, however, this
is not viable for performance reasons. The culprit is the product function prod. In the ex-
ample above, the computation prod depositors accounts multiplies the result out by
nested iteration through depositors and accounts. Assuming both lists have n elements,
this requires Θ(n2) time.

2.2 Symbolic products to the rescue

The key idea in this paper is a simple one: Be lazy, really lazy, when evaluating costly func-
tions. Ordinary lazy evaluation of prod depositors accounts is not enough: It avoids
materializing the product, but eventually n2 pairs are generated, even though the join condi-
tion subsequently filters all but n of them away.

We go one step further. We define a data type with an explicit data type constructor X
for representing products symbolically. As a starting point, this gives us the following data
type definition:

data MSet a where
MSet : [a] → MSet a
X : MSet a → MSet b → MSet (a, b)

A multiset can be constructed from a list using MSet and by forming a symbolic product
using X. Note that X not only defers multiplying out, it lets a function on multisets check
whether its argument is a symbolic product and extract its component multisets in constant
time. The purpose of introducing X is that there are algebraic properties of products that can
be used to completely avoid multiplying them out in certain application contexts.

In our example there are two application contexts where symbolic products can be ex-
ploited:

– The predicate depId .==. acctId in the selection is an equijoin condition. When
applied to depositors ‘X‘ accounts, we can employ an efficient join algorithm in-
stead of multiplying out depositors ‘X‘ accounts.

– The function depName *** acctBalance works componentwise on its input pairs.
Semantically, the result of mapping it over a product s ‘X‘ t is the product of map-
ping depName and acctBalance over s and t, respectively, which allows us to avoid
multiplying out s ‘X‘ t altogether. Since the result of an equijoin is always a disjoint
union of products, we exploit this by returning its result as a union of symbolic products.

To fully exploit symbolic products, we need to add other symbolic representations. For
example, representing the result of equijoins efficiently requires representing unions of prod-
ucts. We do so by adding a constructor U for binary unions. In this fashion we arrive at the
following data type for multisets, which we use in this paper:

data MSet a where
MSet :: [a] → MSet a -- multiset from list
U :: MSet a → MSet a → MSet a -- union
X :: MSet a → MSet b → MSet (a, b) -- product

We furthermore assume we have a function that multiplies out products and flattens unions
into a list representation of a multiset:
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list :: MSet a → [a]

We also need symbolic representations of functions and predicates used in projections
and selections. We proceed to illustrate the design process of developing them, driven by
our example query.

2.3 Predicates

Consider the subexpression

filter (depId .==. acctId) (prod depositors accounts)

in our query. We would like to replace filter by a function select that operates on multi-
sets instead of lists. We need to represent those Boolean-valued functions symbolically, how-
ever, for which we can take advantage of symbolic products in second argument position.
To that effect we introduce a data type of predicates, symbolic Boolean-valued functions,
starting with a single constructor for representing arbitrary Boolean-valued functions:

data Pred a where
Pred :: (a → Bool) → Pred a
...

The dots represent additional predicate constructors, which we subsequently add to achieve
computational advantage over predicates represented as “black-box” Boolean-valued func-
tions only.

We also need the function

sat :: Pred a → (a → Bool)

which returns the Boolean-valued function denoted by a predicate. It is straightforward to
define and can be thought of as specifying the denotational semantics of predicates.

One class of predicates we can exploit are equivalence join conditions, which we also
just call join conditions. They generalize equality predicates on attributes in relational alge-
bra. A join condition is a predicate on pairs. It has three components: Two functions f ,g and
an equivalence relation E. A pair (x,y) satisfies the join condition if and only if f (x)≡E g(y),
that is f (x) and g(y) are E-equivalent. To represent a join condition symbolically we intro-
duce a constructor Is and add it to Pred a:

data Pred a where
Pred :: (a → Bool) → Pred a
Is :: (a → k, b → k) → Equiv k → Pred (a, b)

The data type Equiv k of equivalence representations contains symbolic representations of
equivalence relations. They are introduced by Henglein (2010a). For the present purpose, all
we need to know is that there exists an efficient generic stable discriminator

disc :: Equiv k → [(k, v)] → [[v]]

which partitions key-value pairs for an equivalence relation E represented by e in the fol-
lowing sense: disc e partitions the input into groups of values associated with E-equivalent
keys. For example, for equality on the number type Int denoted by

eqInt32 :: Equiv Int

the expression disc eqInt32 [(5,10), (8,20), (5,30)] evaluates to [[10, 30],

[20]].
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2.4 Selection

So far we have defined data types for multisets and predicates. Let us now define select.
First we note that select takes predicates as inputs, not Boolean-valued functions:

select :: Pred a → MSet a → MSet a

Its default implementation converts the multiset into a list and filters it using the predicate:

select p s = MSet (filter (sat p) (list s)) -- default clause, must be last

If it were the only clause defining select there would be no point in having symbolic con-
structors since listmultiplies out all products and flattens all unions. The additional clauses
are special cases which avoid this multiplying out. For example, the clause for a join condi-
tion applied to a product is

select ((f, g) ‘Is‘ e) (s ‘X‘ t) = djoin (f, g) e (s, t)

where

djoin :: (a → k, b → k) → Equiv k → (MSet a, MSet b) → MSet (a, b)
djoin (f, g) e (s, t) = ... disc e ...

is an efficient generic join algorithm based on disc. The important point of the select-
clause is not the particular choice of join algorithm invoked, but that select discovers
dynamically when it is advantageous to branch off into an efficient join algorithm. Further-
more, it is important that djoin returns its output symbolically, as unions of products.

The selection in our example query can then be formulated as

select ((depId, acctId) ‘Is‘ eqInt32) (depositors ‘X‘ accounts)

It returns its result as a multiset of the form (s1 ‘X‘ t1) ‘U‘ ... ‘U‘ (sn ‘X‘ tn).
This ensures that the output size3 is linearly bounded by the sum of the cardinalities of the in-
put multisets. This is an important difference to query evaluation in conventional RDBMSs,
which follow the System R (Selinger et al 1979) query engine architecture. There, inter-
mediate results are exclusively represented as streams of records, corresponding to lists in
Haskell. To avoid unnecessarily multiplying out the component products of joins consumed
by other parts of a query, they employ aggressive query optimization prior to issuing a query
plan for execution.

There are more opportunities for exploiting properties of predicates and/or multisets;
e.g. representing the constant-true predicate by TT, we can add the clause

select TT s = s

which just returns the second argument, without iterating through it.

2.5 Performable functions

Consider now the outermost projection applied in our query:

map (depName ∗∗∗ acctBalance) ...

3 Recall that this is not the cardinality of the output, but, up to a constant factor, the storage space required
for representing an element of MSet a.
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We want to replace map with an efficient function perform operating on multisets. We call
it perform instead of project since it maps arbitrary functions over multisets, not only
projections as in relational algebra.

To represent functions symbolically we introduce, analogous to predicates, a data type
of symbolic representations we call performable functions

data Func a b where
Func : (a → b) → Func a b
...

with an extension function

ext : Func a b → (a → b)

returning the ordinary function denoted by a performable function. To represent functions
operating componentwise, we add to Func a b a parallel composition constructor:

Par : Func (a, c) → Func (b, d) → Func (a, b) (c, d)

It lets us represent the projection depName *** acctBalance in our query symbolically:

Func depName ‘Par‘ Func acctBalance :: Func (Deposit, Account) (String, Int)

2.6 Projection

Let us now define perform, which maps a performable function over all elements of a multi-
set. Analogous to select, we note that the first argument should be symbolic, a performable
function:

perform :: Func a b → MSet a → MSet b

Its default implementation converts the multiset into a list and maps the function over it:

perform f s = MSet (map (ext f) (list s)) -- default clause, must be last

The additional clauses are special cases for avoiding multiplying out products. For example,
the clause for performing a parallel composition on a product is

perform (f ‘Par‘ g) (s ‘X‘ t) = perform f s ‘X‘ perform g t

and the clause for performing a function on a union is

perform f (s ‘U‘ t) = perform f s ‘U‘ perform f t

2.7 Query example in GMP

Our query example looks like this in GMP now:

perform (Func depName ‘Par‘ Func acctBalance)
(select ((depId, acctId) ‘Is‘ eqInt32)

(depositors ‘X‘ accounts))

It corresponds to the original list-based formulation. The important difference is that it ex-
ecutes in linear, not quadratic, time in the cardinalities of depositors and accounts. The
select subexpression invokes a discrimination-based join, which returns its result in the
form (s1 ‘X‘ t1) ‘U‘ ... ‘U‘ (sn ‘X‘ tn). The two special clauses for perform
above ensure that perform (Func depName ‘Par‘ Func acctBalance) is executed by
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mapping the component functions depName and acctBalance without multiplying the
products or flattening the unions. The output is of linear size and is computed in linear
time in the sum of the cardinalities of the inputs depositors and accounts. This is the
case even though, in general, the cardinality of the output of the query may be as large as
quadratic in the size of the input. Composing the query with list results in a query which
executes in linear time in the sum of the cardinalities of the inputs and the output of the
query.

3 Discrimination-based joins

We introduce a generic notion of joins and show how they can be implemented efficiently.
We use neither hash-based nor sort-merge based joins, but introduce discrimination-based
joins, a new technique for computing joins in worst-case linear time. As the name indicates,
they are an application of generic discrimination (Henglein 2010a), which we describe first.

3.1 Generic discrimination

Definition 1 (Discriminator) A function ∆ is an equivalence discriminator, or just dis-
criminator, for equivalence relation E if

1. (partitioning) ∆ maps a list of key-value pairs to a list of groups, where each group is a
list containing all the values with E-equivalent keys.

2. (parametricity) ∆ is parametric with respect to the values:
For all binary relations R, if x(I × R)∗ y then ∆(x)R∗∗∆(y), where I is the identity
relation.4

∆ is stable if it returns the elements in each group in the same positional order as they occur
in the input.

The partitioning property expresses that a discriminator partitions the key-value pairs
according to the given equivalence on the keys, but without actually returning the keys them-
selves. The parametricity property guarantees that a discriminator treats values as satellite
data. Intuitively, values can be passed as pointers that are guaranteed not to be dereferenced
during discrimination. Neither the order in which values are listed in a group nor the order
of the groups themselves are fixed by these properties, however.

Discriminators can furthermore be equipped to be partially or fully abstract. Informally
speaking, these are representation independence properties: Implementations of abstract
data types such as sets (represented by lists) or pointers (represented by machine addresses)
can be changed without changing the outputs of discriminators. Since representation inde-
pendence is not central to the present paper, we refer to Henglein (2010a) for a detailed
discussion.

Example 1 Consider [(5,10),(8,20),(6,30),(7,40),(9,50)] and let two keys be equivalent
if and only if they are both even or both odd. A discriminator for this equivalence relation
may return [[10,40,50], [20,30]] as a result: 10, 40 and 50 are associated with the odd keys

4 The operators × and (.)∗ extend binary relations pointwise to pairs, respectively lists.
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in the input; likewise 20 and 30 are the values associated with the even keys. Another dis-
criminator may return the groups in the opposite order ([[20,30], [10,40,50]]) or indeed each
group may be ordered differently, e.g. [[50,40,10], [30,20]].

A discriminator that returns [[10,40,50], [20,30]] for [(5,10),(8,20),(6,30),(7,40),(9,50)]
returns [[101,407,503], [202,309]] for input [(5,101),(8,202),(6,309),(7,407),(9,503)] due
to its parametricity property.

We are interested in a generic discriminator, which takes a specification of an equiva-
lence relation as input and returns a discriminator for it. But how to specify an equivalence
relation? Using binary Boolean-valued functions of type k -> k -> Bool, as is done in
the Haskell library function nubBy, is not only unsafe (the Boolean-valued function might
not represent an equivalence relation), a discriminator necessarily takes quadratic time if
the only operation on keys it has is the Boolean-valued function (Henglein 2010a). Instead,
Henglein (2010a) formulates an expressive domain-specific language of equivalence repre-
sentations.

Equivalence representations provide a compositional way of specifying equivalence re-
lations as symbolic values of type Equiv k. More precisely, each element of Equiv k de-
notes an equivalence relation on a subset of k. Figure 1 shows the definition of Equiv k and
the generic function eq, which maps e to the binary Boolean-valued function corresponding
to the equivalence relation denoted by e. The values v for which eqevv terminates without
error constitute the subset on which the equivalence relation is defined.

Recursively defined equivalence representations allow denoting equivalence relations on
recursive types, such as lists and trees. Consider for example listE e defined by
listE :: Equiv t → Equiv [t]
listE e = MapE fromList (SumE TrivE (ProdE e (listE e)))

fromList :: [t] → Either () (t, [t])
fromList [] = Left ()
fromList (x : xs) = Right (x, xs)

It denotes the elementwise extension of the equivalence denoted by e to lists such that
[v1, . . . ,vm] and [w1, . . . ,wn] are listE e-equivalent if and only if m = n, and vi and wi
are e-equivalent for all i ∈ {1 . . .m}.

Componentwise equivalence is not the only useful equivalence on lists. Two lists are
multiset-equivalent under e, denoted by BagE e, if one of them can be permuted such that
it is listE e-equivalent to the other. They are set-equivalent under e, denoted by SetE e,
if each element in one list is e-equivalent to some element in the other list.

Equivalence representations provide an expressive language for defining useful equiva-
lence relations. It is for example possible to define eqInt32 and eqString8, the equalities
on 32-bit integers and on 8-bit character strings, respectively. We can also define new equiv-
alence constructors. For example,
maybeE :: Equiv k → Equiv (Maybe k)
maybeE e = MapE (maybe (Left ()) Right) (SumE TrivE e)

lifts an equivalence e to an equivalence on the Maybe data type such that two values are
equivalent if they both are Nothing or they both have the form Just v such that the argu-
ments of Just are e-equivalent.

The size of a list is its length plus the sum of the sizes of its elements. The key result
about generic discriminators is the following:

Theorem 1 (Linear-time discrimination (Henglein 2010a)) There exists a generic dis-
criminator
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data Equiv a where
NatE :: Int → Equiv Int
TrivE :: Equiv t
SumE :: Equiv t1 → Equiv t2 → Equiv (Either t1 t2)
ProdE :: Equiv t1 → Equiv t2 → Equiv (t1, t2)
MapE :: (t1 → t2) → Equiv t2 → Equiv t1
BagE :: Equiv t → Equiv [t]
SetE :: Equiv t → Equiv [t]

eq :: Equiv t → t → t → Bool
eq (NatE n) x y =

if 0 ≤ x && x ≤ n && 0 ≤ y && y ≤ n
then (x == y)
else error "Argument out of range"

eq TrivE _ _ = True
eq (SumE e1 _) (Left x) (Left y) = eq e1 x y
eq (SumE _ _) (Left _) (Right _) = False
eq (SumE _ _) (Right _) (Left _) = False
eq (SumE _ e2) (Right x) (Right y) = eq e2 x y
eq (ProdE e1 e2) (x1, x2) (y1, y2) =

eq e1 x1 y1 && eq e2 x2 y2
eq (MapE f e) x y = eq e (f x) (f y)
eq (BagE _) [] [] = True
eq (BagE _) [] (_ : _) = False
eq (BagE e) (x : xs’) ys =

case delete e x ys of Just ys’ → eq (BagE e) xs’ ys’
Nothing → False

where
delete :: Equiv t → t → [t] → Maybe [t]
delete e v = subtract’ []

where subtract’ _ [] = Nothing
subtract’ accum (x : xs) =

if eq e x v then Just (accum ++ xs)
else subtract’ (x : accum) xs

eq (SetE e) xs ys =
all (member e xs) ys && all (member e ys) xs
where member :: Equiv t → [t] → t → Bool

member _ [] _ = False
member e (x : xs) v = eq e v x | | member e xs v

Fig. 1 Equivalence representations and the (binary Boolean-valued function representations of the) equiva-
lence relations denoted by them.

disc :: Equiv k -> [(k, v)] -> [[v]]

such that for each e from a class L of equivalence representations, disc e executes in
linear time in the size of its input list. Furthermore, disc can be implemented to return only
fully abstract discriminators.

The class L is not spelled out here. Suffice it to say that it is quite large, including structural
equality on all first-order types and all equivalence representations occurring in this paper.

Combining linear time performance with full abstraction is, at first sight, a surprising
result. It means that a discriminator behaves as if it has pairwise equivalence tests as the
only operation on keys, which suggests that it should take quadratic time. In its implemen-
tation, however, it uses additional operations before stitching up the output to make their
use unobservable. Ensuring full abstraction requires input instrumentation and an extra pass
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over the output of a simpler discriminator. In our example applications below we have used
the simpler discriminator.

The generic discriminator can be used to partition values according to an equivalence
relation by associating them with themselves prior to discrimination:
part :: Equiv t → [t] → [[t]]
part e xs = disc e [ (x, x) | x ← xs ]

Using part we can eliminate all equivalence class duplicates in an input list; that is, return
exactly one representative from each group of equivalent values.
reps :: Equiv t → [t] → [t]
reps e xs = [ head ys | ys ← part e xs ]

3.2 Discrimination-based join on lists

Definition 2 A binary predicate P is an equivalence join condition, or just join condition, if
there exist functions f ,g and equivalence relation E such that P(x,y)⇐⇒ f (x)≡E g(y).

We can now define a generic join function djoinL (for discrimination-based join on
lists):
djoinL :: (a → k, b → k) → Equiv k → ([a], [b]) → [(a, b)]

The call djoinL (f, g) e (xs, ys) returns all pairs from the Cartesian list product of
xs and ys that satisfy the join condition given by the functions f, g and the equivalence
representation e. It works as follows:

1. Associate each element in xs with a key, computed by applying f to the value, and tag
the value with “Left” to indicate that it comes from the left (first) list argument xs.

2. Do the analogous step for ys, using g and tagging each value with “Right”.
3. Concatenate the two lists of key/tagged-value pairs.
4. Discriminate the concatenated list using disc e. The result is a list of groups, each

containing elements from xs and ys with e-equivalent keys.
5. Split each group into those elements coming from xs (“Left”) and those coming from

ys (“Right”), and form the Cartesian list product of these two subgroups.
6. Concatenate all these Cartesian list products and return them.

Here is the Haskell code:
djoinL :: (a → k, b → k) → Equiv k → ([a], [b]) → [(a, b)]
djoinL (f, g) e (xs, ys) = concat (map mult fprods)

where us = [ (f x, Left x) | x ← xs ] -- [(k, Either a b)]
vs = [ (g y, Right y) | y ← ys ] -- [(k, Either a b)]
bs = disc e (us ++ vs) -- [[Either a b]]
fprods = map split bs -- [([a], [b])]

It uses auxiliary functions for multiplying out a Cartesian list product
mult :: ([a], [b]) → [(a, b)]
mult (vs, ws) = [ (v, w) | v ← vs, w ← ws ]

and splitting tagged values into those tagged Left and those tagged Right.
split :: [Either a b] → ([a], [b])
split [] = ([], [])
split (v : vs) = let (lefts, rights) = split vs in

case v of Left v’ → (v’ : lefts, rights)
Right v’ → (lefts, v’ : rights)
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[(5,	
  “B”),	
  	
  
	
  (4,	
  “A”),	
  	
  
	
  (7,	
  “J”)]	
  

[(20,	
  “P”),	
  	
  
	
  (88,	
  “C”),	
  	
  
	
  (11,	
  “E”)]	
  

[(5,	
  Le8	
  (5,	
  “B”)),	
  	
  
	
  (4,	
  Le8	
  (4,	
  “A”)),	
  	
  
	
  (7,	
  Le8	
  (7,	
  “J”))]	
  

[(20,	
  Right	
  (20,	
  “P”)),	
  	
  
	
  (88,	
  Right	
  (88,	
  “C”)),	
  	
  
	
  (11,	
  Right	
  (11,	
  “E”))]	
  

[(5,	
  Le8	
  (5,	
  “B”)),	
  	
  
	
  (4,	
  Le8	
  (4,	
  “A”)),	
  
	
  (7,	
  Le8	
  (7,	
  “J”)),	
  	
  
	
  (20,	
  Right	
  (20,	
  “P”)),	
  	
  
	
  (88,	
  Right	
  (88,	
  “C”)),	
  	
  
	
  (11,	
  Right	
  (11,	
  “E”))]	
  

[[	
  Le8	
  (5,	
  “B”),	
  	
  Le8	
  (7,	
  “J”),	
  Right	
  (11,	
  “E”)	
  ],	
  
	
  	
  [	
  Le8	
  (4,	
  “A”),	
  	
  Right	
  (20,	
  “P”),	
  	
  Right	
  (88,	
  “C”)]]	
  

[([	
  (5,	
  “B”),	
  	
  (7,	
  “J”)],	
  	
  	
  	
  	
  	
  	
  	
  [(11,	
  “E”)	
  ]),	
  
	
  	
  ([(4,	
  “A”)],	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [(20,	
  “P”),	
  (88,	
  “C”)]]	
  

[	
  	
  ((5,	
  “B”),	
  (11,	
  “E”)),	
  ((7,	
  “J”),	
  (11,	
  “E”)),	
  
	
  	
  	
  ((4,	
  “A”),	
  (20,	
  “P”)),	
  ((4,	
  “A”),	
  (88,	
  “C”))	
  ]	
  	
  	
  

++ 

disc evenOdd 

bs = 

xs =  = ys 

map split 

fprods = 

mulAply	
  out	
  

Fig. 2 Example execution of discrimination-based join.

If follows from Theorem 1 that djoinL executes in worst-case linear time. Since the
output can be quadratically larger than the input, linearity is in both the input and the output.

Theorem 2 Let f, g be constant-time computable and let e be an equivalence represen-
tation with a linear-time discriminator disc e. Then djoinL (f, g) e (xs, ys) exe-
cutes in time O(m+n+o) where n is the size of xs, m the size of ys, and o the length of the
output.

Note the subtle difference: o is only the length of the output list whereas m and n are the
lengths of the input lists, plus the sizes of their elements. Observe also that, except for the
final multiplying out of the pairs of subgroups, djoinL runs in time O(m+n), independent
of the output length.

3.3 A join example

Figure 2 illustrates execution of the call

djoinL (fst, fst) evenOdd
([(5, "B"), (4, "A"), (7, "J")], [(20, "P"), (88, "C"), (11, "E")])

where two numbers are evenOdd-equivalent if and only if they both are even or both are
odd. It is specified by the equivalence representation

evenOdd :: Equiv Int
evenOdd = MapE (‘mod‘ 2) (NatE 1)
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4 Relational algebra programming with symbolic products

In this section we present the complete code for adding symbolic products for efficient mul-
tiset processing by dynamic symbolic computation. The ideas are the same as in Henglein
(2010b), but the concrete representations are slightly different to make them practically
more expressive and compatible with SQL semantics. In particular, our bulk data represent
multisets, not sets, and disjunction is added here.

4.1 Multisets

A multiset, also called bag, is an unordered collection that may contain duplicate elements.
We use lists as a basic representation of multisets and add symbolic constructors for union
and product.

data MSet a where
MSet :: [a] → MSet a -- multiset from list
U :: MSet a → MSet a → MSet a -- union
X :: MSet a → MSet b → MSet (a, b) -- product

The empty multiset is denoted by the empty list:

empty = MSet []

A list representation of a multiset can be prepended to a given argument list

prepend :: MSet a → [a] → [a]
prepend (MSet xs) zs = xs ++ zs
prepend (s ‘U‘ t) zs = prepend s (prepend t zs)
prepend (s ‘X‘ t) zs = foldr (\x us → foldr (\y vs → (x, y) : vs) us ys) zs xs

where xs = list s
ys = list t

and prepending to the empty list converts a multiset to a list representing it:

list :: MSet a → [a]
list s = prepend s []

The function list multiplies symbolic products out and flattens symbolic unions, result-
ing in a potentially superlinear blow-up in time and space. Since this is the only nonlinear
code we use we can easily identify where we incur potentially nonlinear complexity in the
subsequent code. Observe that list encapsulates not only a computational, but also a se-
mantic problem: it is nondeterministic in the sense that two different representations of the
same multiset may yield different results; e.g. MSet [1, 2, 3] and MSet [3, 2, 1] de-
note the same multiset, but list returns different lists for them. In particular, representation
changes of multisets can be observed by list. Since all other operations we use are seman-
tically deterministic, we can identify potential nondeterminism by the presence of list.

The cardinality or count of a multiset is the number of elements it contains:

count :: MSet a → Int
count (MSet xs) = length xs
count (s ‘U‘ t) = count s + count t
count (s ‘X‘ t) = count s ∗ count t

Note the last clause: It computes the cardinality without multiplying out the product.
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4.2 Performable functions

We define symbolic representations of performable functions, functions that can be applied
to each element of a multiset:

data Func a b where
Func :: (a → b) → Func a b -- from ordinary function
Par :: Func a b → Func c d → Func (a, c) (b, d) -- parallel composition
Fst :: Func (a, b) a -- first component of pair
Snd :: Func (a, b) b -- second component of pair

Any user-definable function f can be turned into a performable function by applying the
constructor Func to it. The constructors Fst and Snd represent the corresponding projec-
tions on pairs. The parallel composition Par f g of performable functions f and g operates
on the components of pairs independently.

The function ext maps performable functions to their extensions as ordinary functions:

ext :: Func a b → a → b
ext (Func f) x = f x
ext (Par f1 f2) (x, y) = (ext f1 x, ext f2 y)
ext Fst (x, _) = x
ext Snd (_, y) = y

4.3 Predicates

Similar to performable functions, we allow arbitrary Boolean functions as predicates, but
maintain symbolic representations for constant-true (TT), constant-false (FF), sequential
conjunction (SAnd), parallel conjunction (PAnd), sequential disjunction (SOr), parallel dis-
junction (POr), and join condition (Is).

data Pred a where
Pred :: (a → Bool) → Pred a -- from Boolean-valued function
TT :: Pred a -- constant true
FF :: Pred a -- constant false
SAnd :: Pred a → Pred a → Pred a -- sequential conjunction
PAnd :: Pred a → Pred b → Pred (a, b) -- parallel conjunction
SOr :: Pred a → Pred a → Pred a -- sequential disjunction
POr :: Pred a → Pred b → Pred (a, b) -- parallel disjunction
Is :: (a → k, b → k) → Equiv k → Pred (a, b) -- join condition

Their extension as Boolean-valued functions and thus the semantics of predicates is given
by sat:

sat :: Pred a → a → Bool
sat (Pred f) x = f x
sat TT _ = True
sat FF _ = False
sat (p1 ‘SAnd‘ p2) x = (sat p1 x && sat p2 x)
sat (p1 ‘PAnd‘ p2) (x, y) = sat p1 x && sat p2 y
sat (p1 ‘SOr‘ p2) x = sat p1 x | | sat p2 x
sat (p1 ‘POr‘ p2) (x, y) = sat p1 x | | sat p2 y
sat ((f, g) ‘Is‘ e) (x, y) = eq e (f x) (g y)

Observe that PAnd and POr are analogous to Par: They combine two predicates to a
predicate on pairs. The triple (f, g) ‘Is‘ e represents a join condition; see Definition 2.
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4.4 Selection

We now define select, which corresponds to the relation algebra operation of selection:

select :: Pred a → MSet a → MSet a
select TT s = s
select FF s = empty
select p (s ‘U‘ t) = select p s ‘U‘ select p t
select (p ‘SAnd‘ q) s = select q (select p s)
select (p ‘SOr‘ q) s = select p s ‘U‘ select q s
select (p ‘PAnd‘ q) (s ‘X‘ t) = select p s ‘X‘ select q t
select (p ‘POr‘ q) (s ‘X‘ t) = (select p s ‘X‘ t) ‘U‘ (s ‘X‘ select q t)
select ((f, g) ‘Is‘ e) (s ‘X‘ t) = djoin (f, g) e (s, t)
select p s = MSet (filter (sat p) (list s)) -- default

The last clause is a catch-all clause, which performs selection by filtering after multiplying
the multiset out to a list. The clauses before it represent efficiency improvements, in some
cases resulting in potentially asymptotic speed-ups. For example, the clauses for constant
predicates avoid iterating through the multiset argument, and the clauses

select (p ‘PAnd‘ q) (s ‘X‘ t) = select p s ‘X‘ select q t
select (p ‘POr‘ q) (s ‘X‘ t) = (select p s ‘X‘ t) ‘U‘ (s ‘X‘ select q t)
select ((f, g) ‘Is‘ e) (s ‘X‘ t) = djoin (f, g) e (s, t)

avoid naı̈vely multiplying out products. In the first clause, and similarly in the second clause,
we exploit that the results of parallel conjunction and disjunction over products can them-
selves be expressed as (unions of) products. In the third clause we see that it is possible
to dynamically discover when a join condition is applied to a product, which allows us to
employ an efficient join-algorithm.

The algorithm djoin is almost the same as djoinL in Section 3.2. It operates on mul-
tisets instead of lists, however. Most importantly, it avoids multiplying out the subgroups in
the final step, returning them as unions of symbolic products instead.

djoin :: (a → k, b → k) → Equiv k → (MSet a, MSet b) → MSet (a, b)
djoin (f, g) e (s, t) =

foldr (\(vs, ws) s → (MSet vs ‘X‘ MSet ws) ‘U‘ s) empty fprods
where xs = [ (f r, Left r) | r ← list s ]

ys = [ (g r, Right r) | r ← list t ]
bs = disc e (xs ++ ys)
fprods = map split bs

Recall that

split :: [Either a b] → ([a], [b])

splits tagged values according to their tag.

4.5 Projection

We call the functional that maps a performable function over a multiset perform. It corre-
sponds to projection in relational algebra. It is defined by the following clauses:

perform :: Func a b → MSet a → MSet b
perform f (s ‘U‘ t) = perform f s ‘U‘ perform f t
perform (Par f g) (s ‘X‘ t) = perform f s ‘X‘ perform g t
perform Fst (s ‘X‘ t) = count t ‘times‘ s
perform Snd (s ‘X‘ t) = count s ‘times‘ t
perform f s = MSet (map (ext f) (list s)) -- default clause
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In the clause

perform (Par f g) (s ‘X‘ t) = perform f s ‘X‘ perform g t

the product is not multiplied out, and the result is computed symbolically. Analogous to the
select-clauses for parallel conjunction and disjunction, this illustrates why it is important
to maintain a symbolic representation of parallel functional composition. If Par f g is
only available as a black-box function, there is no alternative to multiplying out the product
before applying the function to each pair in the product one at a time, as seen in the default
clause for perform.

In a set-theoretic semantics mapping a projection over a symbolic product could be
performed by simply returning the corresponding component set, once we have checked
that the other set is nonempty. With multisets, however, we need to return as many copies as
the other component has elements:

perform Fst (s ‘X‘ t) = count t ‘times‘ s
perform Snd (s ‘X‘ t) = count s ‘times‘ t

where the times operator defines iterated multiset union:

times :: Int → MSet a → MSet a
times 0 s = empty
times 1 s = s
times n s = s ‘U‘ times (n - 1) s

4.6 Union and product

Operations corresponding to union and Cartesian product in relational algebra are already
defined: They are the multiset constructors U and X, respectively.

5 Generic SQL

We now present the extension of the relational algebra core of Section 4 to generic ver-
sions of the SQL operations EXCEPT, DISTINCT, GROUP BY, ORDER BY, HAVING,
and aggregation functions.

5.1 EXCEPT

The SQL difference operator EXCEPT is based on a notion of equality. We generalize it to an
operation, diff, that removes all equivalent elements from a multiset, where the equivalence
is user-definable:

diff :: Equiv k → MSet k → MSet k → MSet k
diff e s t = foldr include empty bs

where
xs = [ (x, Left x) | x ← list s ]
ys = [ (y, Right y) | y ← list t ]
bs = disc e (ys ++ xs)
untag (Left x) = x
untag (Right _) = error "Impossible: Erroneously tagged value"
include b@(Left x : _) s = MSet (map untag b) ‘U‘ s
include b@(Right y : _) s = s
include [] s = error "Impossible: Application to empty block"
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It resembles djoin in Section 4.4, with only the postprocessing after discrimination being
different. Because of stability of disc the elements from the multiset t to be removed (up
to equivalence) from s occur first in each group output by the discriminator, if the group
contains an element from t at all. Consequently, if and only if the first element of a group is
an element from s we can conclude that it has no equivalent element occurring in t, and we
can place it in the output. For example,

diff (MapE code eqString8) countries european

returns all the countries that are not European (where we assume that we have a multiset
european of European countries available).

Other operations such as intersection and semijoins can be implemented in a similar
fashion.

5.2 DISTINCT

The SQL DISTINCT clause removes duplicate values from a multiset, effectively returning
the underlying set. As for EXCEPT this requires a notion of equality on the elements of
a multiset. As before we allow arbitrary user-definable equivalence relations. We can code
DISTINCT as the binary operation coalesceBy, which uses the generic function reps

defined at the end of Section 3.1 to retain only one representative from each equivalence
class in a multiset.

coalesceBy :: Equiv a → MSet a → MSet a
coalesceBy e s = MSet (reps e (list s))

For example,

coalesceBy eqString8 (perform (Func language) countryLanguage)

first forms the multiset of all languages and then returns the languages without duplicates.

5.3 GROUP BY

The SQL GROUP BY clause partitions a multiset according to an equivalence relation spec-
ified by a so-called grouping list. All such equivalences—and more—are definable using the
equivalence representations in Figure 1. The GROUP BY clause can thus be defined as a bi-
nary operation that takes an equivalence representation and a multiset, and returns a partition
represented as a multiset of multisets.

groupBy :: Equiv a → MSet a → MSet (MSet a)
groupBy e s = MSet (map MSet (part e (list s)))

For example,

groupBy (MapE region eqString8) countries

partitions the countries into groups of countries in the same region.
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data Order a where
Nat :: Int → Order Int
Triv :: Order t
SumL :: Order t1 → Order t2 → Order (Either t1 t2)
PairL :: Order t1 → Order t2 → Order (t1, t2)
MapO :: (t1 → t2) → Order t2 → Order t1
ListL :: Order t → Order [t]
BagO :: Order t → Order [t]
SetO :: Order t → Order [t]
Inv :: Order t → Order t

lte (Nat n) x y =
if 0 ≤ x && x ≤ n && 0 ≤ y && y ≤ n
then x ≤ y
else error "Argument out of allowed range"

lte Triv _ _ = True
lte (SumL r1 r2) (Left x) (Left y) = lte r1 x y
lte (SumL r1 r2) (Left _) (Right _) = True
lte (SumL r1 r2) (Right _) (Left _) = False
lte (SumL r1 r2) (Right x) (Right y) = lte r2 x y
lte (PairL r1 r2) (x1, x2) (y1, y2) =

lte r1 x1 y1 &&
if lte r1 y1 x1 then lte r2 x2 y2 else True

lte (MapO f r) x y = lte r (f x) (f y)
lte (ListL r) xs ys = lte (listL r) xs ys
lte (BagO r) xs ys = lte (MapO (sort r) (listL r)) xs ys
lte (SetO r) xs ys = lte (MapO (usort r) (listL r)) xs ys
lte (Inv r) x y = lte r y x

Fig. 3 Order representations and the (characteristic functions of) ordering relations (total preorders) denoted
by them.

5.4 ORDER BY

The SQL ORDER BY clause is handled completely analogously to GROUP BY. Instead of
an equivalence representation it requires the specification of an ordering relation in the form
of an order representation. The complete definition of order representations (type Order a)
and their extension as the order-representation generic binary Boolean-valued function lte

representing ordering relations is given in Figure 3.
The definition of lte uses a number of auxiliary functions. The function

listL :: Order t → Order [t]
listL r = MapO fromList (SumL Triv (ProdL r (listL r)))

constructs an order representation denoting the lexicographic ordering on lists. Note that is
definition is completely analogous to listE. The function
sort :: Order a → [a] → [a]

is an order-representation generic sorting function. It can be implemented using generic
order discrimination, which generalizes distributive sorting (Henglein 2008, 2010a) from fi-
nite types and strings to all order-representation denotable orders, or by employing classical
comparison-based sorting; e.g.
sort r xs = csort (lte r) xs

where csort is a comparison-parameterized function implemented using Quicksort, Merge-
sort, Heapsort or similar.
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A variant of sort is the unique-sorting function

usort :: Order a → [a] → [a]

which sorts the input, but retains only the first element in each run of equivalent elements.
(We omit the code here.) It is used in the definition of comparing lists under set ordering
SetO r: Two lists are compared by first unique-sorting each under r and then performing a
lexicographic comparison of the resulting lists.

With order representations in place, we can define orderBy as an order-representation
generic function:

orderBy :: Order a → MSet a → [a]
orderBy r s = sort r (list s)

For example,

orderBy (MapO population (Inv ordInt32)) countries

returns the countries as before, but now as a sorted list in descending order of their pop-
ulation. Here ordInt32 denotes the standard order on 32-bit integers. Note that MapO is
analogous to MapE: it induces an ordering on the domain of a function from an ordering on
its codomain.

5.5 HAVING

The SQL HAVING clause is used in combination with the GROUP BY clause in SQL. It
retains only those groups of values that satisfy a user-provided predicate (on multisets!).
Since our multisets can contain elements of any type, not just primitive ordered types as in
SQL, HAVING requires no special attention, but can be coded using select:

having :: MSet (MSet a) → Pred (MSet a) → MSet (MSet a)
having s p = select p s

For example,

groupBy (MapE region eqString8) countries
‘having‘ (Pred (\reg → count reg ≥ 5))

computes the regions with at least five countries each.

5.6 Aggregation

Aggregation is the reduction of a multiset by an associative-commutive function such as
constant, addition, multiplication, maximum and minimum. It is arguably the most signifi-
cant extension of SQL over relational algebra in terms of expressiveness.

Since all inputs and outputs of SQL queries are required to be multisets of primitive
values, different intermediate data types such as the result of grouping operations need to
be coupled with operations yielding primitive values again. This is why aggregation func-
tions are coupled with grouping and ordering clauses in SQL. We are not restricted in the
same fashion and can completely separate aggregation from grouping. Notably, any binary
function and start value can be extended to an aggregation function on multisets:

reduce :: (a → a → a, a) → MSet a → a
reduce (f, n) s = foldr f n (list s)
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CREATE TABLE City (
ID int(11) NOT NULL,
Name char(35) NOT NULL,
PRIMARY KEY (ID)

);
CREATE TABLE Country (

Code char(3) NOT NULL,
Name char(52) NOT NULL,
Population int(11) NOT NULL,
Region char(26) NOT NULL,
Capital int(11),
PRIMARY KEY (Code)

);
CREATE TABLE CountryLanguage (

CountryCode char(3) NOT NULL,
Language char(30) NOT NULL,
IsOfficial char(1) NOT NULL,
Percentage float(4,1) NOT NULL,
PRIMARY KEY (CountryCode, Language),
KEY CountryCode (CountryCode),
CONSTRAINT FOREIGN KEY (CountryCode)

REFERENCES Country (Code)
);

data City = City {
cid :: Int,
cname :: String

} deriving (Eq, Show, Read)

data Country = Country {
code :: String,
name :: String,
population :: Int,
region :: String,
capital :: Maybe Int

} deriving (Eq, Show, Read)

data CountryLanguage = CountryLanguage {
countryCode :: String,
language :: String,
isOfficial :: Bool,
percentage :: Float

} deriving (Eq, Show, Read)

Fig. 4 World Database SQL schemas and corresponding Haskell record declarations, some columns of the
original data set are left out for clarity of presentation.

If the input function f satisfies f v1 ( f v2 w) = f v2 ( f v1 w), reduce yields a semantically
deterministic function; otherwise, the result may depend on the order in which the elements
of the multiset are enumerated by list. For example,

reduce (union, empty) (groupBy (MapE region eqString8) countries
‘having‘ (Pred (\reg → count reg ≤ 5)))

computes the countries belonging to a region with at most five members each.

6 Examples

To demonstrate how GMP works we present a series of examples. First, we show how to
express the same queries both in SQL and by using our library. Second, we show how our
library can be used to express queries over non-normalized data.

6.1 World database

For our first series of examples we use a simplified version of the world sample data from
the MySQL Project (Finland 2010). The database consists of three tables declared by the
schemas in Figure 4, shown together with the corresponding Haskell record declarations.

6.1.1 Finding the capital

The SQL query for finding the capital of each country is:
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SELECT City.Name, Country.Name

FROM City, Country

WHERE ID = Capital

To write a similar query with our library we need to handle an issue that SQL brushes under
the carpet. Notice that the Capital column does not have a NOT NULL constraint in the
SQL schema in Figure 4 and, correspondingly, the capital field in the Haskell record has
type Maybe Int. Thus, what should be done with countries that have a NULL value instead
of an integer key in the Capital column?

Our first solution is a query that uses PAnd to only select those countries that have
a capital, and we use a join condition to match the remaining identifiers. Finally we use
perform to project out the cname and name fields:

findCapitals cities countries =
perform (Func cname ‘Par‘ Func name)

(select ((TT ‘PAnd‘ Pred hasCapital) ‘SAnd‘
((cid, value . capital) ‘Is‘ eqInt32))
(cities ‘X‘ countries))

where hasCapital = maybe False (\_ → True) . capital
value (Just x) = x

While findCapitals computes the right result, the predicate used with select is not
as elegant as we would like. Thus, for our second solution we define a specialized equiva-
lence relation that works similar to the SQL semantics. That is, we lift the matching of fields
to take Nothing values into account. This is done using the maybeE equivalence constructor
defined in Section 3.1:

findCapitals’ :: MSet City → MSet Country → MSet (String, String)
findCapitals’ cities countries =

perform (Func cname ‘Par‘ Func name)
(select ((Just . cid, capital) ‘Is‘ maybeE eqInt32)

(cities ‘X‘ countries))

This computes the same result as our first formulation of findCapitals and, further-
more, it can be thought of as a mechanical translation of the original SQL query. Note that
our translation does not need to iterate through the full Cartesian product. Our query only
uses time linear in the sum of the cardinalities of cities and countries.

6.1.2 Group by language

To construct aggregate queries over groups of countries with the same official language, we
need the skeleton SQL query:

SELECT Language, ...

FROM CountryLanguage, Country

WHERE IsOfficial = ’T’ AND Code = CountryCode

GROUP BY Language

where the ellipses denote the computation we want to perform on each group.
With our library we can first compute the grouping we want:

groupByLanguage :: MSet Country → MSet CountryLanguage
→ MSet (MSet (CountryLanguage, Country))

groupByLanguage countries countryLanguage =
groupBy (MapE (language . fst) eqString8)

(select ((countryCode, code) ‘Is‘ eqString8)
(select (Pred isOfficial) countryLanguage ‘X‘ countries))
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Because we now have an explicit representation of the grouping, we can reuse it for various
“reports”. First, we can generate a multiset of pairs of a language and a list of countries
where that language is the official language:

countriesWithSameLang :: MSet (MSet (CountryLanguage, Country))
→ MSet (String, [String])

countriesWithSameLang groupByLang =
perform (Func report) groupByLang
where report bag = let ls = list bag

lang = language $ fst $ head ls
names = map (name . snd) ls

in (lang, names)

Second, we can generate a top 10 of the most spoken official languages:

languageTop10 :: MSet (MSet (CountryLanguage, Country)) → [(String, Int)]
languageTop10 groupByLang =

take 10 $ orderBy sumOrder (perform (Func report) groupByLang)
where report bag = (lang bag, sum $ list $ perform (Func summary) bag)

lang = language . fst . head . list
summary (l, c) = percentage l ‘percentOf‘ population c
percentOf p r = round $ (p ∗ fromIntegral r) / 100
sumOrder = Inv $ MapO snd ordInt32

6.2 Working with non-normalized data

Our second series of examples does not have natural SQL counterparts, as we will be work-
ing with non-normalized data, namely lists and trees. Our running example is a custom data
type of file system elements, which represent snapshots of a file system directory structure,
without the contents of the files it contains:

data FilesystemElem = File FilePath
| Directory FilePath [FilesystemElem]

where FilePath is synonymous with String. (How to generate a FilesystemElem from
an actual file system is outside the scope of this paper.)

6.2.1 Finding duplicate file names

To find files with the same name, but in different places in the file system, we first flatten
the file system to a list of files with the full path represented as a list in reverse order. We
construct a product of the list with itself, and select those pairs that have the same file name,
but different paths:

findDuplicates :: FilesystemElem → MSet ([FilePath], [FilePath])
findDuplicates fs = select (((head, head) ‘Is‘ eqString8)

‘SAnd‘ (Pred (uncurry (/=))))
(fsBag ‘X‘ fsBag)

where fsBag = MSet (flatten fs)

Recall that eqString8 denotes equality on strings of 8-bit characters. The function head

returns the first element of a list, and uncurry (/=) tests that the two components of a pair
are different.
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6.2.2 Finding duplicate directories

To find directories with the same content based on file and directory names, we first flatten
the file system into a list of pairs: the full path of the directory and a file system element,
one for each Directory element in the file system. Then we form a product of the list with
itself and select pairs that are duplicates of each other, but with different paths:

findDuplicateDirs :: FilesystemElem →
MSet (([FilePath], [FilesystemElem]), ([FilePath], [FilesystemElem]))

findDuplicateDirs fs = select (((snd, snd) ‘Is‘ dirEq)
‘SAnd‘ (Pred $ \((d1,_), (d2,_)) → d1 /= d2))

(fsNonEmpty ‘X‘ fsNonEmpty)
where fsBag = MSet $ dirs [] fs

fsNonEmpty = select (Pred (not . null . snd)) fsBag
dirEq = SetE $ MapE fromFs (SumE eqString8 (ProdE eqString8 dirEq))
fromFs (File f) = Left f
fromFs (Directory d fs) = Right(d, fs)
dirs path (Directory d cont) = (fullpath, cont) : subdirs

where fullpath = d : path
subdirs = [d | c ← cont, d ← dirs fullpath c]

dirs _ _ = []

But what exactly is dirEq, which captures what it means for the contents of a (sub)directory
to be a “duplicate” of another?

To start with, note that the type FilesystemElem is isomorphic to the type Either

FilePath (FilePath [FilesystemElem]). One direction of the isomorphism can be
defined by

fromFs (File f) = Left f
fromFs (Directory d fs) = Right(d, fs)

With this we can recursively define structural equality on file system elements:

fsEq0 :: Equiv FilesystemElem
fsEq0 = MapE fromFs (SumE eqString8

(ProdE eqString8 (listE fsEq0)))

In words, two file system elements are structurally equal if they both are either files with the
same name or both are directories with the same name and containing FilesystemElems
that are, recursively, pairwise structurally equal. As it is not guaranteed that the files and
subdirectories in a directory are listed in the same order, however, we need to discover cases
where a directory is a duplicate of another even though their contents are listed in different
orders. This can be accomplished by replacing listE by BagE, the multiset-equivalence
constructor:

fsEq1 :: Equiv FilesystemElem
fsEq1 = MapE fromFs (SumE eqString8

(ProdE eqString8 (BagE fsEq1)))

Using SetE instead of BagE we can even allow inadvertently duplicated file names and
subdirectories and still identify them as duplicates:

fsEq2 :: Equiv FilesystemElem
fsEq2 = MapE fromFs (SumE eqString8

(ProdE eqString8 (SetE fsEq2)))

Now we have the desired definition of dirEq:

dirEq = SetE fsEq2
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6.2.3 Skipping the product

In the previous two examples we have used the SQL idiom of using self-join before filtering
pairs for non-duplicates. However, it turns out that for this particular pattern of queries, it is
not the most efficient approach to follow the SQL idiom. Instead, we can just use groupBy
directly on the (flattened) data, without first creating the product. Thus, an alternative for-
mulation of the findDuplicates function is:

findDuplicates’ :: FilesystemElem → MSet (MSet [FilePath])
findDuplicates’ fs = select (Pred (\s → count s ≥ 2)) (groupBy fpEq fsBag)

where fsBag = MSet (flatten fs)
fpEq = MapE head eqString8

This function returns a multiset of multisets, each of cardinality at least 2 and having the
same name, but different paths. Note, that this is a more succinct representation of the result
compared to findDuplicates, which uses the SQL self-join idiom.

7 Performance

To give a qualitative illustration of the performance profile of our library we give perfor-
mance measures for some of the examples presented in the previous sections. For compar-
ison we also present numbers for comparative SQL queries using MySQL. The purpose of
this section is not to give a rigorous performance evaluation of our library, as the code is not
optimized and we use naı̈ve data structures in many places (for instance, we use the standard
Haskell representation of strings as lists of characters), nor do we try to claim to be better
than a traditional SQL database systems. What we strive to illustrate is (1) that our library
displays the predicted asymptotic running time, and (2) that its performance is in the same
ballpark as a traditional SQL database system supporting efficient implementation of binary
join queries.

All benchmark tests were performed on a lightly loaded Mac Book Pro with a Intel
Core i5 CPU and 8 GB of RAM. To orchestrate the benchmarks we use the Haskell library
criterion (O’Sullivan 2010), which automatically ensures that the benchmarks are iterated
enough times to fit with the resolution of the clock. Furthermore, the criterion performs
a bootstrap analysis on the timings to check that spikes in the load from other programs
running on the computer do not skew the results. Each timing reported is the average of
100 samplings. Since the standard deviations of these averages are all negligible, we do not
report them.

7.1 World Database

Our first set of benchmarks are three queries on the world database introduced in Section 6.1:
find the capital, find groups of countries that have the same official language, and rank
languages according to how many people speak the language.

Fig. 5 shows the performance numbers for the three benchmarks. To find the groups of
countries that have the same official language we have used the SQL query

SELECT Language, GROUP_CONCAT(Country.Name)
FROM CountryLanguage, Country
WHERE IsOfficial = ’T’ AND Code = CountryCode
GROUP BY Language
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findCapitals’ countriesWithSameLang languageRank

Multiset 9.6 1.8 2.1
MySQL 1.1 1.9 2.2

Fig. 5 Running times (in milliseconds) for queries over the world database.

with the non-standard MySQL aggregate function GROUP_CONCAT that concatenates non-
NULL values from a group.

To rank languages we use use the languageTop10 query from Section 6.1.2 but without
limiting the result to ten languages (that is, we leave out the take 10) and we use the SQL
query:

SELECT Language,
SUM((CountryLanguage.Percentage ∗ Country.Population) / 100)
AS Rank

FROM CountryLanguage, Country
WHERE IsOfficial = ’T’ AND Code = CountryCode
GROUP BY Language
ORDER BY Rank DESC

For MySQL we have used the InnoDB engine and the world database unchanged as down-
loaded. For reference, the City table has 4079 rows, the Country table has 239 rows, and
CountryLanguage has 984 rows.

The numbers in Fig. 5 are not surprising. As expected we see that MySQL is much faster
for the highly selective query of finding capitals as this is of the kind of queries that SQL
is designed for, where indexes can be used effectively, whereas our library needs to make a
full scan of both tables (but only one scan per table). For the aggregate queries there is no
significant difference, possibly because the data set is not big enough to really expose any
differences.

7.2 Non-normalized Data

As our second benchmark we use the queries over FilesystemElem from Section 6.2. For
comparison with MySQL we formulate two versions for finding duplicate files (correspond-
ing to the findDuplicates function). In both cases we use a flattened data set where paths
are in reverse order:

– First, a naı̈ve schema where we have a table with just the full path in one column:

CREATE TABLE FsTest (path VARCHAR(250) NOT NULL)

To find (the number of) duplicate files we write a query that is a direct SQL translation
of the query we used in the findDuplicate function, using the standard SQL functions
SUBSTRING and POSITION:

SELECT COUNT(∗)
FROM FsTest AS f1, FsTest AS f2
WHERE SUBSTRING(f1.path FROM 1 FOR POSITION(’/’ IN f1.path)) =

SUBSTRING(f2.path FROM 1 FOR POSITION(’/’ IN f2.path))
AND f1.path <> f2.path

This setup is likely to make SQL experts cringe as it constitutes highly non-optimal use
of SQL: no index is created, and even if we created an index on the sole column the
complex string manipulation would inhibit use of the index.
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Files/Dirs substring index findDups findDupsPP findDirs

ghc 2816/485 2026 31 81 22 161
testsuite 5417/315 7644 50 216 59 375
g++ 6630/2178 11358 185 974 288 786
gcc-java 24424/1558 169568 102 778 276 3236
full 39287/4537 — 349 2243 697 5335

Fig. 6 Running times (in milliseconds) for various queries over FilesystemElems values.

– Second, we use a table schema that does a tiny bit of extra preprocessing, thus enabling
more effective use of SQL. We use a table with two columns: the name of the file and
the full path:

CREATE TABLE FsTest2 (name VARCHAR(250) NOT NULL,
path VARCHAR(250) NOT NULL)

To find (the number of) duplicate files we first construct an index on the name column
and then use a straightforward query that compares file names and paths:

CREATE INDEX name_index ON FsTest2(name);

SELECT COUNT(∗)
FROM FsTest2 AS f1, FsTest2 AS f2
WHERE f1.name = f2.name

AND f1.path <> f2.path;

We create the index dynamically to make the query more comparable with our library.

For both SQL setups we use in-memory tables (that is, we use the MySQL engine
MEMORY).

Fig. 6 shows the running times for some of the queries from Section 6.2. The data used
for the experiment are file system elements created from various open source projects:

– ghc is the source distribution for GHC version 6.10.4.
– testsuite is the source distribution of the test-suite for GHC version 6.10.4.
– g++ is the source distribution for the C++ part of GCC version 4.6.1.
– gcc-java is the source distribution for the Java part of GCC version 4.6.1.
– full is a directory containing the above four elements.

The Files/Dirs column gives a count of the number of files and directories found in the
various data sets; the substring column is the timing for the naı̈ve SQL setup, the index
column is for the index-based SQL setup; the findDup column is for the findDuplicates
function; the findDupsPP column is for the findDuplicates’ function from Section 6.2.3
with the extra post-processing step of unfolding the result to be equivalent to the result
returned by findDuplicates; and the findDirs column is for the findDuplicateDirs
function.

The results are mostly as expected: The naı̈ve SQL query runs in quadratic time, and the
rest runs roughly in linear time.

8 Discussion

We briefly discuss related work on data structures, language integration, comprehensions,
and optimization of relational queries below, as well as variations and future work on se-
mantics, expressiveness and further asymptotic optimizations.
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8.1 Lazy data structures

Henglein (2010b) has shown how to represent collections—there interpreted as sets—using
symbolic (“lazy”) unions and products, as presented in Section 4. The idea of thinking of
collections as constructed from a symmetric union operation instead of element-by-element
cons operation (lists) is at the heart of the Boom hierarchy and developed in the Bird-
Meertens formalism (Backhouse 1989) for program calculation. Early on Skillikorn ob-
served its affinity with data-parallel implementations (Skillicorn 1990), which has received
renewed interest in connection with MapReduce style parallelization (Dean and Ghemawat
2004; Steele 2009). Representing products lazily, however, does not seem to have received
similar attention despite its eminent simplicity and usefulness in supporting naı̈ve program-
ming with products without necessarily incurring a quadratic run-time blow-up.

8.2 Language-integrated querying

Exploiting the natural affinity of the relational model with functional programming has led
to numerous proposals for integrating persistent database programming into a functional lan-
guage in a type-safe fashion, initiated by Buneman in the early 80s; see e.g. Buneman et al
(1981, 1982); Atkinson and Buneman (1987); Ohori and Buneman (1988); Ohori (1990);
Breazu-Tannen et al (1992); Tannen et al (1992); Buneman et al (1995); Wong (2000). More
recently, a number of type-safe embedded query languages have been devised that provide
for interfacing with SQL databases: HaskellDB (Leijen and Meijer 1999), Links (Cooper
et al 2006; Lindley et al 2009) and Ferry (Grust et al 2009a). The latter two allow formu-
lating queries in a rich query language, which is mapped to SQL queries. The former is the
basis of Microsoft’s popular LINQ technology (Meijer et al 2006), which provides a typed
language for formulating queries, admitting multiple query implementations and bindings to
data sources. Execution of a query consists of building up an abstract syntax representation
of the query and shipping it off to the data source manager for interpretation. In particular,
the data can be internal (in-memory) collections processed internally, as we do here. How-
ever, we provide an actual query evaluation with efficient join implementation, not just an
abstract syntax tree generator or a naı̈ve (nested loop) interpreter.

8.3 Comprehensions

Wadler (1992) introduces monad comprehensions for expressing queries in “calculus”-style
using list comprehensions. Trinder and Wadler (1988, 1989) demonstrate how relational cal-
culus queries can be formulated in this fashion and how common algebraic optimizations
on queries have counterparts on list comprehensions. Peyton Jones and Wadler (2007) ex-
tend list comprehensions with language extensions to cover SQL-style constructs, notably
ORDER BY and GROUP BY. These and other comprehension-based formulations (Wong
1994) are based on nested iteration with the attendant quadratic run-time cost, however.
Instead we forfeit the possibility of formulating arbitrary dependent products of the form
[ ... | x <- S, y <- f x, ... ], but provide an efficient implementation of inde-
pendent products, which corresponds to [ ... | x <- S, y <- T, ... ] where T does
not depend on x. Many queries can be manually transformed into an independent product
form. Even though developed for a different purpose, the analysis technique developed by ?
for nested lists may be helpful in developing an automatic technique for doing so. A general
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investigation of efficient dependent product representation and computation is future work,
however.

8.4 Query evaluation and optimization

SQL query evaluation and optimization are well-studied subjects in the database theory and
systems. A thorough comparison with the literature (Deshpande et al 2007; Chaudhuri 1998;
Graefe 1993) is beyond the scope of this paper. The idea of representing relations (tables)
using lazy unions and products during query evaluation does not appear to have been in-
vestigated systematically, as it clashes with the classical System R-based database system
architecture where query evaluation is performed in two separate stages: In the first stage
queries are transformed based on algebraic properties, the availability of indexes and statis-
tical information about the data and query history, resulting in a query plan. In the second
stage the query plan is executed, where all tables, also intermediate ones, are represented as
record streams.

In contrast to this, GMP essentially intermixes the symbolic computation steps of the
first stage with the second stage “standard” evaluation. This intermixing simplifies achiev-
ing the effects of the first stage. For example, GMP achieves most of the effects5 of classical
algebraic optimizations based on join-introduction (from select and cross-product or other
joins) as well as commutation of selection and projection with union and with cross-product
(Ramakrishnan and Gehrke 2003, Section 15.3) at run time. Conversely, in the form pre-
sented in this paper, we believe GMP does not do better on non-nested queries.

A practical benefit of GMP’s dynamic symbolic query evaluation is that it can accom-
modate user-defined functions and support functional abstractions without forcing them to
be represented symbolically for performance reasons. For example, we can define a library
function such as

combineWith t = depositors ‘X‘ t

(or something more complicated and impressive-looking) and then easily use it multiple
times

...
select ((depId, loanId) ‘Is‘ eqInt32) (combineWith loans)
...
select ((depId, acctId) ‘Is‘ eqInt32) (combineWith accounts)
...
select (((depName, loanName) ‘Is‘ lookTheSame)

‘SAnd‘ (TT ‘PAnd‘ (Pred ((> 50000) . loanBalance))))
(combineWith (perform (Id ‘Par‘ Func roundToNearestThousand) loans))

...

and getting linear performance in each case. In a System R-style query optimization setting,
the function combineWith would have to be represented symbolically to facilitate inlining
where it is used so as to produce separate SQL queries, which each can then be optimized
and evaluated.

Intermixed symbolic and standard evaluation offers the potential of taking run-time char-
acteristics of computed data into account; e.g., depending on the actual cardinality of an
intermediate result, we may choose to invoke one or the other join algorithm. In System
R-style query optimization intermediate data characteristics are only estimated.

5 It does not push projections through selection or the other way round.
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Performing symbolic computation at run time comes at the cost of having to process the
two constructors X and U in addition to the cons and nil constructors when only streams need
to be processed. There are highly tuned implementations for stream processing. How much
of any extra cost the two (or, eventually, more) additional constructors cost after a similar
tuning effort is an open question. The type system of GMP recognizes when code operates
on multisets represented as stream (constructed by MSet), which can then be processed by
stream-specific code. If large inputs and outputs of queries are stored as tables (essentially
streams), almost all processing should then be expected to be processed in stream processing
mode.

Additional optimizations appear to be possible by pushing the method of introducing
symbolic representations in connection with dynamic symbolic computation even further.
For example, the clause for Fst

perform Fst (s ‘X‘ t) = count t ‘times‘ s

results in producing representations of such scalar multiplications in essentially unary form:
s ‘U‘ ... ‘U‘ s. This suggests introducing a constructor for scalar multiplication to
avoid this asymptotic time and space blow-up. Likewise, reduce simply multiplies out its
multiset argument. In some common cases, however, substantially better performance can be
accomplished by representing the result of performing (mapping) a function on a Cartesian
product symbolically. This is the subject of ongoing and future work.

A thorough complexity-theoretic analysis and comparison with theoretical results by
Willard (1996); Goyal and Paige (1997); Willard (2002) for query sublanguages guaran-
teeing worst-case linear or quasi-linear running time (data complexity) remains to be done.
Off-hand it appears that their techniques are complementary to ours and thus potentially
combinable with the symbolic unions and products used here.

8.5 k-ary joins

A number of variations and improvements are possible while staying within our imple-
mentation framework. For example, decomposing a join on k tables into binary joins is a
major part of classical query optimization. An often applicable alternative is to generalize
the binary join conditions (f, g) ‘Is‘ e to k-ary conditions; e.g. (f, g, h) ‘Is‘ e

representing a join condition on triples instead of pairs. This yields linear-time joining on
more than 2 tables in the limited, but common case of joining on some field in each of the
tables involved in the join, typically a key or foreign key.

In column-oriented databases (Stonebraker et al 2005) a table is stored as its decom-
position into key- or position-ordered columns that are joined on their keys, respectively
positions, to construct the whole table or particular projections of it. They can be viewed
as related to the idea of representing tables by symbolic products: Loosely speaking, they
correspond to a symbolic product representation with an associated k-ary join condition.

8.6 Querying on infinite lists and with functions as elements

The inputs to our query functions are elements of MSet a, interpreted as finite multisets
of (possibly recursively typed) first-order values. Fixing djoin in Section 2.4 as the join
algorithm yields a deterministic semantics for MSet a, even when interpreted as finite lists.
Unfortunately, joins in general (and discrimination-based joins in particular) do not easily
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extend to infinite lists. For this reason, querying on streams (possibly infinite lists) restricts
joining to finite windows over input streams (Jain et al 2008). Since stream processing is
highly relevant in practice, it would be interesting to see if and how the techniques in this
paper can be extended to streams.

Another input domain extension consists of admitting higher-order values—functions—
as input elements. The only equivalence we have for functions is the trivial one, TrivE: All
functions of a given type are TrivE-equivalent. This does allow useful applications, how-
ever. If functions (more precisely, function closures) are tagged with dynamically generated
names when they are constructed (think of them as elements of type ref (a -> b) in
ML), we can perform a join on tag equality as a form of “intensional” equality on functions:
Only functions with the same tag are recognized as equal. Less intensional equalities are
conceivable, but a fully extensional equality is undecidable.

8.7 Semantic nondeterminism

We have on several occasions observed that operations on multisets are not semantically
deterministic; that is, applying a function to different representations of the same multi-
set may yield observably different results (say, different numbers). This is a problem that
permeates all of database application development: Relational database systems insist on
manipulating “unordered” collections, but then applications iterate over them in a certain,
implementation-specific order. The query engine may decide to return a table in one order
today and in a different order tomorrow. This puts the onus of ensuring semantic determinacy
on the application software developer. Anecdotal evidence suggests that it is not uncommon
for programmers to incorrectly rely on a particular order.

But why work with unordered collections at all? Why not simply use lists? The problem
is that the product then needs to define a particular order for its pairs that each imple-
mentation must abide by, but the order is different depending on which join algorithm is
used: nested iteration, sort-merge join, hash join or discrimination-based join. It is possi-
ble to provide a faithful deterministic list semantics by representing lists as multisets of
elements instrumented with their list positions (Grust et al 2004). This requires a postpro-
cessing traversal before list conversion, however, which is often shunned for performance
reasons. An alternative, at least for ordered elements, is to maintain all lists in sorted order,
which obviates storing the list positions. We leave it to future work as to whether this can be
made to be both semantically clean and computationally efficient.
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